六年级数学上册知识点归纳精选

合集下载

六年级数学上册知识点总结(优秀11篇)

六年级数学上册知识点总结(优秀11篇)

六年级数学上册知识点总结(优秀11篇)六年级数学上册知识点总结篇一1.分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零。

3.分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数:找一个分数的倒数,例如3/4,把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子,则是4/3,3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12,12是1/12的倒数。

8.小数的倒数:普通算法:找一个小数的倒数,例如0.25,把0.25化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/19.用1计算法:也可以用1去除以这个数,例如0.25,1/0.25等于4,所以0.25的倒数4,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。

11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1.单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

六年级上册数学知识点

六年级上册数学知识点

六年级上册数学知识点六年级上册数学知识点概述一、数与代数1. 分数的基本概念- 分子、分母、分数线- 真分数与假分数- 带分数与假分数的互化2. 分数的四则运算- 分数的加法与减法- 分数的乘法与除法- 分数的通分与约分- 混合运算法则3. 小数的基本概念- 小数的读法与写法- 小数点的位置移动引起大小变化的规律4. 小数的四则运算- 小数的加法与减法- 小数的乘法与除法- 小数与整数、分数的互化5. 整数的进一步认识- 整数的性质- 整数的四则混合运算- 正负数的概念与运算6. 比例与比例关系- 比例的概念- 比例的性质- 比例的应用7. 百分数- 百分数的读法与写法- 百分数与分数、小数的互化- 百分数的实际应用8. 代数式- 字母表示数- 用字母表示数的基本规律- 代数式的简单运算二、几何与测量1. 平面图形的认识- 点、线、面、体的认识- 角的概念与分类- 直线、射线、线段的区分2. 三角形的基本性质- 三角形的定义与分类- 三角形的内角和定理- 等腰三角形与等边三角形的性质3. 四边形的基本性质- 四边形的定义与分类- 矩形、正方形的性质- 平行四边形、梯形的性质4. 圆的基本性质- 圆的定义与分类- 圆的周长与面积公式- 扇形、弧长与面积的关系5. 立体图形的认识- 立体图形的基本概念- 长方体与正方体的性质- 圆柱与圆锥的初步认识6. 图形的变换- 平移、旋转、轴对称的概念- 图形变换的规律与应用7. 测量- 长度、面积、体积的测量- 单位换算- 测量工具的使用三、统计与概率1. 数据的收集与整理- 数据的收集方法- 数据的整理与表示- 表格与图表的绘制2. 数据的分析与解释- 频数与频率的概念- 条形图、折线图、饼图的绘制与解读3. 概率的初步认识- 随机事件的概念- 可能性的判断与计算以上是六年级上册数学的主要知识点概述,学生应掌握这些基本概念、性质和计算方法,以便为后续的学习打下坚实的基础。

(完整版)六年级数学上册重点知识归纳

(完整版)六年级数学上册重点知识归纳

六年级数学上册重点知识归纳第一单元:位置1、确定第几列、第几行的一般规则:竖排叫做列,横排叫做行;确定第几列一般是从左往右数,确定第几行一般是从前往后数。

2、用数对表示位置时,一般先表示第几列,再表示第几行。

如数对(3,2)中的“3”表示第三列,“2”表示第二行。

3、物体平移前后顶点的位置变化:(1)图形向左或向右平移,改变了顶点所在的列,没有改变顶点所在的行,数对中的第一个数变了,第二个数没有变;(2)图形向上或下平移,改变了顶点所在的行,没有改变顶点所在的列,数对中的第一个数没有变,第二个数变了。

第二单元:分数乘法1、分数乘整数的计算方法:分母不变,分子与整数相乘的积作分子。

2、分数乘分数,应该分子乘分子,分母乘分母。

注意:能约分的可以先约分再乘。

注意:一个大于0的数乘大于1的数,积大于这个数。

一个大于0的数乘小于1的数,积小于这个数。

3、分数混合运算的顺序和整数的混合运算顺序相同。

(1)在没有括号的算式里,同级运算从左往右进行计算;(2)在没有括号的算式里,既有乘除又有加减,要先算乘除后算加减;(3)有括号的要先算小括号里面的,后算中括号里面的,最后算括号外面的数。

4、整数乘法的交换律、结合律和分配律,对于分数乘法也适用。

(1)乘法交换律:a×b=b×a(2)乘法结合律:(a×b)×c=a×(b×c)(3)乘法分配律:(a+b)×c=a×c+b×c5、解决求一个数的几分之几是多少的问题,用乘法计算。

6、乘积是1的两个数互为倒数。

求分数的倒数是交换分子、分母的位置;求整数的倒数是把整数看作分子是1的分数,再交换分子和分母和位置。

注意:1的倒数是1,0没有倒数。

7、真分数的倒数一定都大于1;假分数的倒数一定都小于或等于1。

第三单元:分数除法1、分数除法的意义与整数除法的意义相同,是已知两个数的积与其中一个因数,求另一个因数的运算。

(完整版)六年级数学上册重点知识归纳

(完整版)六年级数学上册重点知识归纳

六年级数学上册重点知识归纳第一单元:位置1、确定第几列、第几行的一般规则:竖排叫做列,横排叫做行;确定第几列一般是从左往右数,确定第几行一般是从前往后数。

2、用数对表示位置时,一般先表示第几列,再表示第几行。

如数对(3,2)中的“3”表示第三列,“2”表示第二行。

3、物体平移前后顶点的位置变化:(1)图形向左或向右平移,改变了顶点所在的列,没有改变顶点所在的行,数对中的第一个数变了,第二个数没有变;(2)图形向上或下平移,改变了顶点所在的行,没有改变顶点所在的列,数对中的第一个数没有变,第二个数变了。

第二单元:分数乘法1、分数乘整数的计算方法:分母不变,分子与整数相乘的积作分子。

2、分数乘分数,应该分子乘分子,分母乘分母。

注意:能约分的可以先约分再乘。

注意:一个大于0的数乘大于1的数,积大于这个数。

一个大于0的数乘小于1的数,积小于这个数。

3、分数混合运算的顺序和整数的混合运算顺序相同。

(1)在没有括号的算式里,同级运算从左往右进行计算;(2)在没有括号的算式里,既有乘除又有加减,要先算乘除后算加减;(3)有括号的要先算小括号里面的,后算中括号里面的,最后算括号外面的数。

4、整数乘法的交换律、结合律和分配律,对于分数乘法也适用。

(1)乘法交换律:a×b=b×a(2)乘法结合律:(a×b)×c=a×(b×c)(3)乘法分配律:(a+b)×c=a×c+b×c5、解决求一个数的几分之几是多少的问题,用乘法计算。

6、乘积是1的两个数互为倒数。

求分数的倒数是交换分子、分母的位置;求整数的倒数是把整数看作分子是1的分数,再交换分子和分母和位置。

注意:1的倒数是1,0没有倒数。

7、真分数的倒数一定都大于1;假分数的倒数一定都小于或等于1。

第三单元:分数除法1、分数除法的意义与整数除法的意义相同,是已知两个数的积与其中一个因数,求另一个因数的运算。

六年级上册数学知识点大全

六年级上册数学知识点大全

六年级上册数学知识点大全1500字六年级上册数学知识点大全一、数的认识:1. 数的读法、写法;2. 形式相同的数与数相等。

二、数的比较:1. 掌握数的大小关系;2. 大于、小于的符号;3. 正整数的比较;4. 数排序。

三、数的组成:1. 两位数的由十位和个位组成;2. 分析两个数的关系;3. 比较两个数的大小。

四、数的运算:1. 了解数的加法和减法;2. 加法和减法的运算规则;3. 加法和减法的口算;4. 加法和减法的综合应用。

五、整数的认识:1. 正整数和零;2. 整数的概念;3. 整数的正负。

六、整数的大小比较:1. 整数的大小;2. 整数的绝对值。

七、整数的加法运算:1. 整数的加法运算规则;2. 整数的加法法则;3. 整数的加法口诀;4. 整数的加法计算方法;5. 整数的加法练习;6. 整数的加法的应用。

八、整数的减法运算:1. 整数的减法运算规则;2. 整数减法的性质;3. 整数减法运算的口诀;4. 整数减法计算方法;5. 整数减法的应用。

九、整数的乘法运算:1. 正整数的乘法运算;2. 整数的乘法运算规则;3. 整数的乘法口诀;4. 整数的乘法计算方法;5. 整数的乘法计算应用。

十、整数的除法运算:1. 正整数的除法运算;2. 整数的除法运算规则;3. 带余除法运算;4. 整数的除法运算应用。

十一、数的分数:1. 了解分数的定义;2. 看图分析分数;3. 转化分数为整数;4. 分数的大小比较;5. 分数的简便表示;6. 分数及其十分之一;7. 分数的意义。

十二、分数的加法运算:1. 分数的加法原则;2. 分子之和、分母保持不变;3. 分数的加法口诀;4. 分数的加法计算。

十三、分数字的减法运算:1. 分数的减法原则;2. 分子之差、分母保持不变;3. 分数的减法口诀;4. 分数的减法计算。

十四、分数的乘法运算:1. 分数和整数的乘法原则;2. 分数的乘法口诀;3. 分数乘法的计算方法;4. 分数和分数的乘法;5. 分数的乘法的简化。

小学六年级上册数学知识点总结归纳(绝对经典)

小学六年级上册数学知识点总结归纳(绝对经典)

小学六年级上册数学知识点总结归纳第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。

2、数对可以表示物体的位置,也可以确定物体的位置。

3、数对表示位置的方法:先表示列,再表示行。

用括号把代表列和行的数字或字母括起来,再用逗号隔开。

例如:(7,9)表示第七列第九行。

4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。

如:(2,4)和(2,7)都在第2列上。

5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。

如:(3,6)和(1,6)都在第6行上。

6、物体向左、右平移,行数不变,列数减去或加上平移的各数。

物体向上、下平移,列数不变,行数减去或加上平移的各数。

第二单元分数乘法(一)、分数乘法的意义。

1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。

2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

例如:6×512,表示:6的512是多少。

2 7×512,表示:27的512是多少。

(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数,所得的积大于它本身。

2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

(四)、解决实际问题。

1分数应用题一般解题步行骤。

(1)找出含有分率的关键句。

小六数学知识点归纳

小六数学知识点归纳

六年级数学上册知识点整理第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。

2、数对可以表示物体的位置,也可以确定物体的位置。

3、数对表示位置的方法:先表示列,再表示行。

用括号把代表列和行的数字或字母括起来,再用逗号隔开。

例如:(7,9)表示第七列第九行。

4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。

如:(2,4)和(2,7)都在第2列上。

5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。

如:(3,6)和(1,6)都在第6行上。

6、物体向左、右平移,行数不变,列数减去或加上平移的各数。

物体向上、下平移,列数不变,行数减去或加上平移的各数。

第二单元分数乘法(一)、分数乘法的意义。

1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。

2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

例如:6×512,表示:6的512是多少。

2 7×512,表示:27的512是多少。

(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数,所得的积大于它本身。

2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

(四)、解决实际问题。

1分数应用题一般解题步行骤。

(1)找出含有分率的关键句。

小学六年级数学全册知识点归纳

小学六年级数学全册知识点归纳

一、数与代数1.数的读法:百分数、小数、分数、整数2.数的大小比较:大小关系、用大小符号表示大小关系3.数的进位与退位:百位、千位、万位4.数的四则运算:加法、减法、乘法、除法5.数的倍数和约数:倍数的概念、约数的概念6.乘法的应用:乘法与加法、乘法与减法、乘法与除法7.除法的应用:商的概念、余数的概念、数的整除性质8.分数的认识与比大小:分数的概念、分数的大小比较、分数的简化与扩展9.分数的四则运算:分数的加法、分数的减法、分数的乘法、分数的除法10.整数的认识:正整数、负整数、零、整数的大小比较11.纸带图与有向数线:纸带图的绘制、有向数线的绘制、正负数坐标轴上数的位置表示二、空间与图形1.点、线、面:点的认识、线的认识、面的认识2.平面图形:三角形、四边形、多边形、圆形、椭圆形、正方形、长方形、平行四边形、直角三角形、等腰三角形、等边三角形3.立体图形:长方体、正方体、棱柱、棱锥、棱台、球、圆柱、圆锥、圆台4.图形的名称和性质:平行四边形、矩形、正方形、菱形、三角形、四边形等5.平面镜像与空间镜像:平面图形的镜像、立体图形的镜像6.位置与方向:方向的认识、位置的认识、位置关系的认识三、量的认识与运用1.长度的换算:米与厘米的换算、分米与厘米的换算、运用换算计算长度2.长度和重量的比较:比较长度的大小、比较重量的大小3.时间的认识与计算:时、分、秒的认识、时间段的计算、时钟的读法4.面积的认识与计算:长方形的面积计算、正方形的面积计算5.体积的认识与计算:长方体的体积计算、正方体的体积计算6.资料的收集和整理:资料的收集方法、用表格整理资料四、数据的收集与处理2.数据的处理与分析:数据的整理、数据的比较、数据的运算3.数据的表示与解释:数据的图表表示、图表的读取与解读五、解决问题的策略与方法1.数学问题求解:分析问题、选择适当的计算方法、验证和总结解答结果2.解决实际问题:问题与计算、问题与图形3.数学建模:抽象、分析、解决。

六年级上册数学知识点大全

六年级上册数学知识点大全

六年级上册数学知识点大全1500字六年级上册数学知识点大全:一、整数运算1.正整数和负整数的概念及表示方法;2.整数的比较与排序;3.整数的加法、减法、乘法和除法运算;4.整数的乘方运算;5.整数的混合运算。

二、分数运算1.分数的概念及表示方法;2.分数的比较与排序;3.分数的加法、减法、乘法和除法运算;4.分数的混合运算。

三、小数运算1.小数的概念及表示方法;2.小数的比较与排序;3.小数的加法、减法、乘法和除法运算;4.小数的混合运算。

四、不等关系及解不等式1.不等关系的概念及符号表示;2.解一元一次不等式;3.解包含绝对值的不等式。

五、算式的变形与等式的解1.算式的相等关系;2.算式的变形与等式的解。

六、数与代数式1.数、代数(变量)和代数式的概念;2.代数式的数值计算和变量计算;3.图形与代数式的关系。

七、几何图形1.平面图形的基本性质;2.平行线、垂直线、相交线的判定;3.平面图形的分类与分析;4.几何图形的投影。

八、图形的轴对称和中心对称1.轴对称图形的性质与判定;2.中心对称图形的性质与判定;3.两种对称关系的联系与区别。

九、运算律和运算法则1.加法和乘法的运算律;2.数的运算律;3.运算法则的应用。

十、数量关系1.相等关系的图象表示;2.比例关系的概念及图象表示;3.百分数的概念及图象表示。

十一、统计与概率1.统计图表的读取和制作;2.统计数据的分析和应用;3.概率的理解和计算;4.概率问题的应用分析。

以上就是六年级上册数学的全部知识点,掌握了这些知识点,学生就能够在数学学习中得心应手,顺利完成各种题目的解答和应用。

六年级上册数学知识归纳

六年级上册数学知识归纳
第三单元(假设为百分数,具体单元名可能因教材而异)
1. 百分数的意义<br>2. 百分数和分数的区别与联系<br>3. 百分数的计算与应用<br>4. 百分数在生活中的实际而异)
1. 圆形、长方形、正方形的周长与面积计算<br>2. 环形、扇形面积的计算方法<br>3. 对称图形的概念及识别<br>4. 圆的周长与直径的关系,圆周率的定义
第五单元(假设为其他数学概念,具体单元名可能因教材而异)
1. 负数、正数的概念及运算<br>2. 代数式的概念及基本运算<br>3. 方程的概念及解法<br>4. 数据的收集、整理与分析方法(如平均数、中位数等)
六年级上册数学知识归纳
单元
知识点
第一单元:分数乘法
1. 分数乘整数的意义与运算法则<br>2. 一个数乘分数的意义<br>3. 分数乘分数的运算法则<br>4. 分数乘法混合运算顺序与定律<br>5. 倒数的意义及求法<br>6. 分数乘法应用题
第二单元(假设为分数除法,具体单元名可能因教材而异)
1. 分数除法的意义<br>2. 分数除法计算法则<br>3. 分数除法混合运算<br>4. 比的概念、性质及化简<br>5. 求比值的方法<br>6. 比和除法、分数的区别与联系

六年级数学上册知识点整理归纳完整版

六年级数学上册知识点整理归纳完整版

六年级数学上册知识点整理归纳完整版六年级上册数学知识点第一单元分数乘法一)分数乘法意义1.分数乘整数的意义与整数乘法相同,即求几个相同加数的和的简便运算。

例如:3/4 × 7 表示求7个3/4的和是多少?2.一个数乘分数的意义是求一个数的几分之几是多少。

例如:5 × 2/3 表示求5的2/3是多少?二)分数乘法计算法则1.分数乘整数的运算法则是:分子与整数相乘,分母不变。

例如:2/3 × 4 = 8/32.分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

例如:2/3 × 1/2 = 2/6 = 1/3三)积与因数的关系一个数(除外)乘大于1的数,积大于这个数。

a ×b = c,当b。

1时,c。

a。

一个数(除外)乘小于1的数,积小于这个数。

a ×b = c,当b < 1时,c < a(b ≠ 0)。

一个数(除外)乘等于1的数,积等于这个数。

a ×b = c,当b = 1时,c = a。

四)分数乘法混合运算1.分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

整数乘法运算定律同样适用于分数乘法,运算定律可使计算更简便。

其中包括乘法交换律、乘法结合律和乘法分配律。

倒数的意义是指乘积为1的两个数互为倒数。

需要注意的是,倒数是两个数的关系,它们互相依存,不能单独存在。

判断两个数是否互为倒数的唯一标准是它们相乘的积是否为1.求倒数的方法包括求分数、整数、带分数和小数的倒数。

1的倒数是它本身,而0没有倒数,因为任何数乘以0的积都是0,且不能作分母。

任意数a(a≠0)的倒数为1/a,非零整数a的倒数为a/1,分数的倒数是倒数的分数。

真分数的倒数是假分数,真分数的倒数大于1,也大于它本身,而假分数的倒数小于或等于1,带分数的倒数小于1.分数乘法可用于解决各种问题。

例如,要求一个数的几分之几是多少,可以用单位“1”的量与分数相乘。

六年级数学上册知识点归纳总结

六年级数学上册知识点归纳总结

六年级数学上册知识点归纳总结
一、数与式
1.实数:正数、负数、零
2.有理数:分数、整数
3.数的分类:自然数、整数、分数、分数的分母为零的无意义数、真分数
4.式子:真式、假式
5.有理数的加减法:用整除法和扩展分数法
6.有理数的乘除法:用倒数的乘除法
7.同位数相减:将被减数拆分成和减数位数相同的多个加数,然后分别减
8.数轴:正负半轴、两个单位
新增
九、位置关系
1.平行:两条线段长度相等,夹角为0°,模式固定且一致。

2.垂直:两条线段长度相等,夹角为90°,模式固定且一致。

3.对称轴:两个物体镜面对称模式固定且一致。

4.连续:有向和无向两种,通过一系列点组成的形状,模式不定。

5.平行四边形:比较运算的固定位置变换,模式固定且一致。

六年级数学上册知识点总结(6篇)

六年级数学上册知识点总结(6篇)

六年级数学上册知识点总结比的意义1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

例如15:10=15÷10=(比值通常用分数表示,也可以用小数或整数表示)前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。

也可以表示两个不同量的比,得到一个新量。

例:路程÷速度=时间。

4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、根据分数与除法的关系,两个数的比也可以写成分数形式。

6、比和除法、分数的联系:比前项比号“:”后项比值除法被除数除号“÷”除数商7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

8、根据比与除法、分数的关系,可以理解比的后项不能为0。

体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

六年级数学上册知识点总结(二)比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4.化简比:①用比的前项和后项同时除以它们的最大公因数。

③两个小数的比:向右移动小数点的位置,先化成整数比再化简。

(2)用求比值的方法。

注意:最后结果要写成比的形式。

如:15∶10=15÷10==3∶25.按比例分配:把一个数量按照一定的比来进行分配。

这种方法通常叫做按比例分配。

如:已知两个量之比为,则设这两个量分别为。

六年级数学上册全册知识点

六年级数学上册全册知识点

六年级数学上册全册知识点
六年级数学上册全册知识点包括但不限于:
1. 分数乘法:分数乘法的意义、计算法则、规律以及分数乘法解决问题。

2. 分数除法:分数除法的意义、计算法则、规律以及分数除法解决问题。

3. 比和比例:比的意义、计算以及比和除法、分数的区别;比例的概念、性质以及解比例等。

4. 圆:圆的概念、性质、圆周率、圆的面积和周长等。

5. 百分数:百分数的概念、性质、百分数与小数的互化、百分数的加减乘除等。

6. 扇形统计图:扇形统计图的概念、特点以及作图方法等。

7. 圆的面积:圆面积的概念、计算公式以及推导过程等。

8. 圆柱和圆锥:圆柱和圆锥的概念、性质以及表面积和体积的计算等。

9. 正比例和反比例:正比例和反比例的概念、性质以及应用等。

10. 位置与方向:位置与方向的概念、描述方法以及作图方法等。

11. 负数:负数的概念、表示方法以及大小比较等。

12. 综合与实践:包括探索乐园、生活数学和数学游戏等内容,旨在提高学生的数学应用能力和创新能力。

这些知识点是六年级数学上册的主要内容,需要学生掌握和应用。

在学习过程中,学生应该注重理解概念、掌握方法,多做练习题,提高自己的数学素养和能力。

六年级上册数学重点知识归纳

六年级上册数学重点知识归纳

第1单元分数乘法1、分数乘整数意义:表示几个相同的分数的和。

(表示一个数的几倍是多少)计算方法:分数乘整数,用分子乘整数的积作分子,分母不变。

能先约分的,可以先约分,再计算。

2、分数乘分数意义:一个数乘分数,就是求这个数的几分之几是多少。

计算方法:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分母。

为了计算简便,可以先约分再相乘。

3、分数乘法解决问题①求一个数的几分之几是多少这个数(单位“1”的量)×分率=对应分率的量②连续求一个数的几分之几是多少:用这个数(单位“1”的量)连续乘对应的几分之几。

③求比一个数多(或少)几分之几的数是多少:单位“1”+单位“1”×比单位“1”多几分之几=比单位“1”多几分之几的数。

单位“1”-单位“1”×比单位“1”少几分之几=比单位“1”少几分之几的数。

单位“1”×(1+比单位“1”多几分之几)=比单位“1”多几分之几的数。

单位“1”×(1-比单位“1”多几分之几)=比单位“1”少几分之几的数。

第2二单元方向和位置1、有方向和距离两个条件才能准确地确定物体的位置。

2、在平面图中标出物体的位置,必须标出方向和距离才能确定物体的位置。

过程:确定方向,选定单位长度基准来确定距离。

画出物体的具体位置,并标出名称。

3、位置的相对性。

两个地点间的位置关系是相对的:东偏北<→西偏南北偏西→南偏东东偏南→西偏北北偏东→南偏西4如何描述路线图按行走路线,先确定观测点及行走的方向和路程,再描述。

即每走一步都要说清从哪出发,向什么方向走多远到达哪里。

第3单元分数除法1、倒数的认识定义:乘积是1的两个数互为倒数。

方法:一个分数,分子、分母交换位置后得到的数就是这个分数的倒数。

1的倒数是1,0没有倒数。

如何寻找倒数2、分数除以整数①用分子直接除以整数72736376=÷=÷ ②把除法转化成乘法 723176376=⨯=÷ 1、分数除以分数 把除法转化成乘法 21923763276=⨯=÷ 2、分数除法解决问题-①知道一个数的几分之几是多少,求这个数列方程: 单位“1”×分数=对应量算式: 对应量÷分数=单位“1”②知道比一个数多几分之几的数是多少, 求这个数列方程: 单位“1”×(1+分数)=对应量单位“1”+单位“1”×分数=对应量列算式: 对应量÷(1+分数)=单位“1”③知道比一个数少几分之几的数是多少,求这个数列方程: 单位“1”×(1-分数)=对应量单位“1”-单位“1”×分数=对应量列算式: 对应量÷(1-分数)=单位“1”④和倍问题:方法一:列方程:1、根据2个数的倍数关系设2个未知数。

小学数学六年级上册知识点

小学数学六年级上册知识点

小学数学六年级上册知识点一、分数1. 分数的基本概念- 定义- 分子、分母的意义2. 分数的加减法- 同分母分数相加减- 异分母分数的转换与加减3. 分数的乘除法- 乘法原理与计算方法- 除法原理与计算方法4. 分数的比较与排序- 大小比较- 分数的排序二、小数1. 小数的基本概念- 定义与组成- 小数与整数、分数的关系2. 小数的四则运算- 加减法- 乘除法3. 小数的应用- 货币计算- 测量与估算三、比例1. 比例的概念- 定义- 比例的基本性质2. 比例的应用- 比例式的解法- 比例在实际问题中的应用四、面积1. 平行四边形、三角形和梯形的面积公式 - 公式推导- 公式应用2. 面积的计算- 不规则图形的面积估算- 面积单位的换算五、体积1. 立体图形的认识- 长方体和立方体的特征2. 体积的计算- 长方体和立方体体积公式- 体积单位的换算六、数据的收集与处理1. 数据的收集- 调查方法- 数据的整理2. 数据的图表表示- 条形图、折线图和饼图的绘制3. 数据分析- 平均数、中位数和众数的计算- 数据的解释与应用七、初步的代数知识1. 用字母表示数- 字母在数学表达式中的作用2. 简易方程- 方程的概念- 一元一次方程的解法八、数学思维与问题解决1. 逻辑推理- 简单的逻辑推理题2. 问题解决- 数学问题的分析与解决策略请将以上内容复制到Word文档中,并根据实际需要进行格式设置,如添加页眉、页脚、目录、标题样式等,以确保文档的专业性和可读性。

您可以根据具体的教学大纲或课程要求,对上述内容进行适当的增删和调整。

小学六年级数学上册知识点总结

小学六年级数学上册知识点总结

小学六年级数学上册知识点总结一、数与运算1. 整数- 大数的读写与比较- 整数的四则运算- 整数的倍数与因数- 质数与合数- 奇数与偶数- 整数的性质和运算规律2. 分数- 分数的意义和性质- 真分数与假分数- 分数的四则运算- 分数与整数的互化- 分数的比较和排序- 混合数和带分数3. 小数- 小数的意义和性质- 小数的四则运算- 小数与整数、分数的互化- 用小数表示实际问题4. 比例与百分数- 比例的概念和基本性质- 比例式的解法- 百分数的意义和应用- 百分数与分数、小数的互化- 利率和利息的计算二、几何1. 平面图形- 平行线和垂线的性质- 角的概念和分类- 三角形的性质和分类- 四边形的性质和分类- 圆的性质和圆周角2. 图形的变换- 平移、旋转和翻转的概念- 对称图形的识别和绘制3. 图形的测量- 周长和面积的计算(正方形、长方形、三角形、平行四边形、梯形、圆)- 体积的计算(长方体和立方体)三、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 条形图、折线图和饼图的绘制和解读2. 概率- 可能性的认识- 简单事件的概率计算四、解决问题1. 应用题- 解决与生活实际相关的数学问题- 分析问题和找出等量关系- 利用方程和不等式解决问题2. 数学思维- 逻辑推理和证明- 数学问题的多种解法五、综合实践1. 数学活动- 参与数学游戏和竞赛- 数学知识的综合运用2. 数学探究- 发现生活中的数学问题- 进行小组合作探究以上总结了小学六年级数学上册的主要知识点。

学生应通过练习和复习,确保对每个知识点都有深刻的理解和掌握。

教师和家长可以根据这份总结来辅导和检查学生的学习情况。

小学六年级数学上册知识点归纳

小学六年级数学上册知识点归纳

小学六年级数学上册知识点归纳一、数的认识与运算1. 自然数:表示物体个数的数,如0、1、2、3等。

2. 整数:包括正整数、负整数和零,如-3、-2、-1、0、1、2等。

3. 分数:表示部分的数,如1/2、3/4、5/6等。

4. 小数:表示十分之几、百分之几的数,如0.1、0.25、0.5等。

5. 百分数:表示百分之几的数,如20%、50%、80%等。

6. 四则运算:加法、减法、乘法、除法。

7. 混合运算:将四则运算按照一定的顺序进行计算。

二、数的大小比较1. 比较整数的大小:从左到右依次比较每一位上的数字,直到找到不同的位或者比较完所有位。

2. 比较分数的大小:先比较分母,如果分母相同,再比较分子。

3. 比较小数的大小:先比较小数点后第一位,如果相同,再比较小数点后第二位,以此类推。

三、数的应用1. 长度:表示物体的长度,单位有厘米、米、千米等。

2. 重量:表示物体的重量,单位有克、千克、吨等。

3. 容量:表示物体的容积,单位有毫升、升、立方米等。

4. 时间:表示时间的长短,单位有秒、分钟、小时、天等。

5. 货币:表示货币的价值,单位有元、角、分等。

四、几何图形1. 点:没有大小和形状的物体。

2. 线:没有宽度和厚度的物体,可以无限延伸。

3. 面:由线段围成的封闭图形。

4. 三角形:由三条边组成的图形,有三个角和三个顶点。

5. 四边形:由四条边组成的图形,有四个角和四个顶点。

6. 圆形:由一条曲线围成的图形,所有点到圆心的距离相等。

7. 正方形:四边相等且四个角都是直角的四边形。

8. 长方形:对边相等且四个角都是直角的四边形。

9. 平行四边形:对边相等且相邻两边平行的四边形。

10. 梯形:有一对边平行的四边形。

11. 菱形:四条边相等且对角线互相垂直的四边形。

12. 矩形:四个角都是直角的平行四边形。

13. 圆环:由两个同心圆组成的图形。

14. 扇形:由圆心和圆上两点组成的图形。

15. 椭圆:由两个焦点和两条准线组成的图形。

小学六年级数学上册知识点归纳

小学六年级数学上册知识点归纳

小学六年级数学上册知识点归纳一、整数的概念与应用整数是由正整数、负整数和0组成的数集。

在日常生活中,整数可以用来表示温度、海拔、债务等概念。

整数的加法、减法和乘法运算遵循相应的规则,例如同号相加得正,异号相加得负,负数相乘得正等。

二、分数的概念与运算分数由分子和分母组成,表示一个整体被分成若干等分中的一部分。

分数的加法、减法和乘法运算分别遵循相应的规则。

例如,两个分数相加时需要化为相同的分母,分数与整数相乘时需要将整数转化为分数。

三、小数的概念与运算小数是指有限小数和无限循环小数,可以通过小数点的位置表达数的大小关系。

小数的加法、减法和乘法运算遵循相应的规则。

例如,两个小数相加时需要对齐小数点,小数与整数相乘时结果的小数点位置与整数的位数有关。

四、几何图形的认识与性质几何图形包括点、线、面等基本图形,如直线、射线、线段、角、三角形、四边形等。

不同几何图形有不同的性质,如平行线的性质、三角形的分类、四边形的特点等。

五、图表的理解与分析图表是将数据以图形形式展示出来,包括条形图、折线图、饼图等。

通过观察图表可以了解数据的分布和变化规律,进而做出相应的分析和判断。

六、时间与日历的计算日历是记录时间的工具,了解日历的结构可以帮助我们进行日期的计算。

在计算时间时,需要掌握年、月、日、时、分、秒等单位之间的换算关系,同时注意闰年和平年的区别。

七、长度、面积与体积的计算长度是物体的长短,可以通过直尺、卷尺等工具进行测量。

面积是指平面图形所围成的空间的大小,可以通过面积公式进行计算。

体积是指立体图形所包含的空间大小,也可以根据相应的公式进行计算。

八、数据的整理、统计与应用数据的整理和统计是对一组数据进行收集、整理、分析和表示的过程。

通过整理数据可以得到频数表、频率表等,利用统计方法可以对数据进行分析和应用,如平均数、中位数、众数等。

九、问题解决与推理能力的培养数学学习不仅仅是记住知识点,更重要的是培养问题解决和推理能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一单元分数乘法(一)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(二)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(三)分数混合运算的运算顺序和整数的运算顺序相同。

(四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b ×a乘法结合律:( a × b )×c = a ×( b ×c )乘法分配律:( a + b )×c = a c + b c a c + b c = ( a + b )×c常见乘法计算(敏感数字):25×4=100 125×8=1000二、分数乘法的解决问题(如果单位1是已知的, 要求它的几分之几,就用乘法)1、找单位“1”:在分率句中单位1一般在分率的前面;或“占”、“是”、“比”的后面2、求一个数的几倍是多少:就用一个数×几倍;求一个数的几分之几是多少:就用一个数×几分之几。

3、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“= ”如:甲数的12是乙数,单位1的量是甲数,数量关系式为:甲数×12=乙数甲数比乙数多12,单位1的量是乙数,数量关系式为:甲数=乙数+12X乙数或者甲数=乙数X(1+12)第三单元分数除法1、倒数的意义:乘积是1的两个数互为倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数。

如:2X 12=1,则2和12互为倒数,或者说2是12的倒数,12是2的倒数)。

2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。

(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

(3)、求带分数的倒数:把带分数化为假分数,再求倒数。

(4)、求小数的倒数:把小数化为分数,再求倒数。

3、1的倒数是1;因为1×1=1;0没有倒数,0乘任何数都得0,(分母不能为0)4、对于任意数a(a≠0),它的倒数为1a。

非零整数a的倒数为1a。

分数ba的倒数是ab5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

一、分数除法1、分数除法的意义:分数除法与整数除法的意义相同,都表示已知两个因数的积和其中一个因数,求另一个因数的运算。

2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。

即被除数÷除数=被除数×除数的倒数3、规律(分数除法比较大小时):当除数大于1,商小于被除数;当除数小于1(不等于0),商大于被除数;当除数等于1,商等于被除数。

二、分数除法解决问题1、(已知一个数的几分之几是多少,求这个数,就用除法计算。

即已知单位“1”的几分之几是多少,单位“1”的量是要求的问题。

就用除法)2、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“= ”如:甲数的12是乙数,单位1的量是甲数,数量关系式为:甲数×12=乙数甲数比乙数多12,单位1的量是乙数,数量关系式为:甲数=乙数+12X乙数或者甲数=乙数X(1+1 2)3、解法:(建议:最好用方程解答)(1)方程: 根据数量关系式设未知量为,用方程解答。

(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量 如:六5班有男生29人,刚好是全班人数的6029 ,求全班一共有多少人?就用29÷6029=60人 4、求一个数是另一个数的几分之几:就用 一个数÷另一个数5、求一个数比另一个数多几分之几:就用 (大数–小数)÷比字后面的数或者 大数÷小数 – 1求一个数比另一个数少几分之几:就用 (大数–小数)÷比字后面的数或者 1 –小数÷大数求比一个数多几分之几的数是多少:就用 一个数+一个数X 几分之几 或者 一个数X (1+几分之几)求比一个数少几分之几的数是多少:就用 一个数– 一个数X 几分之几 或者 一个数X(1–几分之几)第四单元 比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

3、比可以表示两个相同量的关系,即倍数关系。

也可以表示两个不同量的比,得到一个新量。

例: 路程÷速度=时间。

4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

5、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

6、根据比与除法、分数的关系,可以理解比的后项不能为0。

体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4.化简比:①整数比的化简:用比的前项和后项同时除以它们的最大公因数。

②分数比的化简:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

③小数比的化简:向右移动小数点的位置,先化成整数比再化简。

(2)用求比值的方法化简。

注意: 最后结果要写成比的形式。

如: 15∶10 = 15÷10 = 3∶25.按比例分配:把一个数量按照一定的比来进行分配。

这种方法通常叫做按比例分配。

如: 六5班男生与女生人数比为29:31,六5班共有学生60人,求男生有多少人?女生有多少人?方法一:可以先把总人数60人平均分成(29+31)份,即60份,60÷60=1,其中男生占29份,即29X1=29人,女生占31份,即31X1=31人。

方法二:男生:60X 312929+=29人 女生:60X 312931+=31人 6、 路程一定,速度比和时间比成反比。

(如:路程相同,速度比是4:5,时间比则为5:4) 工作总量一定,工作效率和工作时间成反比。

(如:工作总量相同,工作时间比是3:2,工作效率比则是2:3)第五单元 圆1、半径:连接圆心到圆上任意一点的线段叫做半径。

一般用字母r 表示。

把圆规两脚分开,两脚之间的距离就是圆的半径。

2、直径:通过圆心并且两端都在圆上的线段叫做直径。

一般用字母d 表示。

直径是一个圆内最长的线段。

3、圆心确定圆的位置,半径确定圆的大小。

4、在同圆或等圆内,有无数条半径,有无数条直径。

所有的半径都相等,所有的直径都相等。

21215.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的 用字母表示为:d =2r 或r = d6、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。

折痕所在的这条直线叫做对称轴。

(经过圆心的任意一条直线或直径所在的直线)7、只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。

只有2条对称轴的图形是: 长方形只有3条对称轴的图形是: 等边三角形只有4条对称轴的图形是: 正方形;有无数条对称轴的图形是: 圆、圆环。

二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。

用字母C 表示。

2、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。

用字母π(pai ) 表示。

(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。

圆周率π是一个无限不循环小数。

在计算时,一般取π ≈ 3.14。

(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。

(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

4、圆的周长公式: 已知直径d 求周长用公式 C= πd 已知半径r 求周长用公式C=2πr 已知周长求直径用公式 d = C ÷π 已知周长求半径用公式 r = C ÷2÷π5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

6、区分周长的一半和半圆的周长:(1)周长的一半:等于圆的周长÷2 计算方法:2πr ÷ 2 即 πr(2)半圆的周长:等于圆的周长的一半加直径。

计算方法:πr +2r三、圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积。

用字母S 表示。

2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。

顶点在圆心的角叫做圆心角。

360n 3、圆面积公式的推导:(1)把一个圆平均分成若干个扇形,拼成一个近似的长方形。

(3)拼出的长方形的长等于圆的周长的一半,拼出的长方形的宽等于圆的半径。

因为: 长方形面积 = 长 × 宽所以: 圆的面积 = 圆周长的一半× 圆的半径即:S 圆= πr × r所以:圆的面积公式: S 圆= πr²4、环形的面积:一个环形,外圆的半径是R ,内圆的半径是r 。

(R =r +环的宽度.)S 环 = πR²-πr² 或 S 环 = π(R²-r²)5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。

而面积扩大或缩小的倍数是这倍数的平方倍。

例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。

6、两个圆: 半径比 = 直径比 = 周长比;而面积比等于这比的平方。

例如:两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶97、任意一个正方形与它内切圆的面积之比都是一个固定值,即在正方形里画一个最大的圆,正方形与圆的面积比为4∶π8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。

反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。

相关文档
最新文档