2020小学六年级数学上册知识点归纳

合集下载

数学六年级上册一到六单元知识点总结

数学六年级上册一到六单元知识点总结

数学六年级上册一到六单元知识点总结以下是数学六年级上册1-6单元的知识点总结:第一单元:分数乘法1. 分数乘法的意义:表示求几个相同分数的和的简便运算。

2. 分数乘法的计算法则:分数乘整数,分母不变,分子乘整数,能约分的先约分;分数乘分数,用分子乘分子作分子,分母乘分母作分母,能约分的先约分。

3. 乘积是1的两个数互为倒数。

4. 分数乘法的意义、计算法则、倒数的知识点与整数乘法的意义、计算法则、倒数的知识点相同。

第二单元:分数除法1. 分数除法的意义:表示求一个数的几分之几是多少。

2. 分数除法的计算法则:除以一个数(0除外),等于乘上这个数的倒数。

3. 当被除数小于除数时,商小于1;当被除数等于除数时,商等于1;当被除数大于除数时,商大于1。

4. 有两个数相除,可以先把“两个数相除商是几”转化为“两个数的几分之几相除是几”,再根据分数除法的意义转化为乘法算式进行计算。

5. 分数除法中的有关公式:被除数÷除数=被除数×除数的倒数。

第三单元:分数四则混合运算1. 分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同。

2. 一个算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第一级运算,后做第二级运算;如果有括号,要先算括号里面的,再算括号外面的。

3. 一个算式里,如果有加、减、乘、除四则运算,要首先进行乘、除运算,然后进行加、减运算;如果有括号,要先算括号里面的,再算括号外面的。

4. 分数四则混合运算中的解题关键在于确定运算的顺序。

第四单元:百分数1. 百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。

百分数也叫百分比或百分率。

2. 百分数与分数的意义不同。

百分数只表示两个数的倍比关系,不能带单位名称;分数既可以表示具体的数量,又可以表示两个数的倍比关系,可以带单位名称。

3. 百分数的读法:读百分数时,先读“百分之”,再读百分号前面的数字。

(完整版)六年级数学上册重点知识归纳

(完整版)六年级数学上册重点知识归纳

六年级数学上册重点知识归纳第一单元:位置1、确定第几列、第几行的一般规则:竖排叫做列,横排叫做行;确定第几列一般是从左往右数,确定第几行一般是从前往后数。

2、用数对表示位置时,一般先表示第几列,再表示第几行。

如数对(3,2)中的“3”表示第三列,“2”表示第二行。

3、物体平移前后顶点的位置变化:(1)图形向左或向右平移,改变了顶点所在的列,没有改变顶点所在的行,数对中的第一个数变了,第二个数没有变;(2)图形向上或下平移,改变了顶点所在的行,没有改变顶点所在的列,数对中的第一个数没有变,第二个数变了。

第二单元:分数乘法1、分数乘整数的计算方法:分母不变,分子与整数相乘的积作分子。

2、分数乘分数,应该分子乘分子,分母乘分母。

注意:能约分的可以先约分再乘。

注意:一个大于0的数乘大于1的数,积大于这个数。

一个大于0的数乘小于1的数,积小于这个数。

3、分数混合运算的顺序和整数的混合运算顺序相同。

(1)在没有括号的算式里,同级运算从左往右进行计算;(2)在没有括号的算式里,既有乘除又有加减,要先算乘除后算加减;(3)有括号的要先算小括号里面的,后算中括号里面的,最后算括号外面的数。

4、整数乘法的交换律、结合律和分配律,对于分数乘法也适用。

(1)乘法交换律:a×b=b×a(2)乘法结合律:(a×b)×c=a×(b×c)(3)乘法分配律:(a+b)×c=a×c+b×c5、解决求一个数的几分之几是多少的问题,用乘法计算。

6、乘积是1的两个数互为倒数。

求分数的倒数是交换分子、分母的位置;求整数的倒数是把整数看作分子是1的分数,再交换分子和分母和位置。

注意:1的倒数是1,0没有倒数。

7、真分数的倒数一定都大于1;假分数的倒数一定都小于或等于1。

第三单元:分数除法1、分数除法的意义与整数除法的意义相同,是已知两个数的积与其中一个因数,求另一个因数的运算。

(完整版)六年级数学上册重点知识归纳

(完整版)六年级数学上册重点知识归纳

六年级数学上册重点知识归纳第一单元:位置1、确定第几列、第几行的一般规则:竖排叫做列,横排叫做行;确定第几列一般是从左往右数,确定第几行一般是从前往后数。

2、用数对表示位置时,一般先表示第几列,再表示第几行。

如数对(3,2)中的“3”表示第三列,“2”表示第二行。

3、物体平移前后顶点的位置变化:(1)图形向左或向右平移,改变了顶点所在的列,没有改变顶点所在的行,数对中的第一个数变了,第二个数没有变;(2)图形向上或下平移,改变了顶点所在的行,没有改变顶点所在的列,数对中的第一个数没有变,第二个数变了。

第二单元:分数乘法1、分数乘整数的计算方法:分母不变,分子与整数相乘的积作分子。

2、分数乘分数,应该分子乘分子,分母乘分母。

注意:能约分的可以先约分再乘。

注意:一个大于0的数乘大于1的数,积大于这个数。

一个大于0的数乘小于1的数,积小于这个数。

3、分数混合运算的顺序和整数的混合运算顺序相同。

(1)在没有括号的算式里,同级运算从左往右进行计算;(2)在没有括号的算式里,既有乘除又有加减,要先算乘除后算加减;(3)有括号的要先算小括号里面的,后算中括号里面的,最后算括号外面的数。

4、整数乘法的交换律、结合律和分配律,对于分数乘法也适用。

(1)乘法交换律:a×b=b×a(2)乘法结合律:(a×b)×c=a×(b×c)(3)乘法分配律:(a+b)×c=a×c+b×c5、解决求一个数的几分之几是多少的问题,用乘法计算。

6、乘积是1的两个数互为倒数。

求分数的倒数是交换分子、分母的位置;求整数的倒数是把整数看作分子是1的分数,再交换分子和分母和位置。

注意:1的倒数是1,0没有倒数。

7、真分数的倒数一定都大于1;假分数的倒数一定都小于或等于1。

第三单元:分数除法1、分数除法的意义与整数除法的意义相同,是已知两个数的积与其中一个因数,求另一个因数的运算。

六年级上册数学知识点大全

六年级上册数学知识点大全

六年级上册数学知识点大全1500字六年级上册数学知识点大全一、数的认识:1. 数的读法、写法;2. 形式相同的数与数相等。

二、数的比较:1. 掌握数的大小关系;2. 大于、小于的符号;3. 正整数的比较;4. 数排序。

三、数的组成:1. 两位数的由十位和个位组成;2. 分析两个数的关系;3. 比较两个数的大小。

四、数的运算:1. 了解数的加法和减法;2. 加法和减法的运算规则;3. 加法和减法的口算;4. 加法和减法的综合应用。

五、整数的认识:1. 正整数和零;2. 整数的概念;3. 整数的正负。

六、整数的大小比较:1. 整数的大小;2. 整数的绝对值。

七、整数的加法运算:1. 整数的加法运算规则;2. 整数的加法法则;3. 整数的加法口诀;4. 整数的加法计算方法;5. 整数的加法练习;6. 整数的加法的应用。

八、整数的减法运算:1. 整数的减法运算规则;2. 整数减法的性质;3. 整数减法运算的口诀;4. 整数减法计算方法;5. 整数减法的应用。

九、整数的乘法运算:1. 正整数的乘法运算;2. 整数的乘法运算规则;3. 整数的乘法口诀;4. 整数的乘法计算方法;5. 整数的乘法计算应用。

十、整数的除法运算:1. 正整数的除法运算;2. 整数的除法运算规则;3. 带余除法运算;4. 整数的除法运算应用。

十一、数的分数:1. 了解分数的定义;2. 看图分析分数;3. 转化分数为整数;4. 分数的大小比较;5. 分数的简便表示;6. 分数及其十分之一;7. 分数的意义。

十二、分数的加法运算:1. 分数的加法原则;2. 分子之和、分母保持不变;3. 分数的加法口诀;4. 分数的加法计算。

十三、分数字的减法运算:1. 分数的减法原则;2. 分子之差、分母保持不变;3. 分数的减法口诀;4. 分数的减法计算。

十四、分数的乘法运算:1. 分数和整数的乘法原则;2. 分数的乘法口诀;3. 分数乘法的计算方法;4. 分数和分数的乘法;5. 分数的乘法的简化。

小学六年级上册数学各单元知识点

小学六年级上册数学各单元知识点

小学六年级上册数学各单元知识点小学六年级上册数学共有11个单元,每个单元的知识点如下:
1. 简便计算:
- 完全平方数的性质和判断
- 连加、连减、连乘、连除的简便计算法
- 等差数列的求和公式
2. 分数:
- 分数的认识和写法
- 分数的大小比较
- 分数的加法、减法和乘法
- 真分数和假分数的相互转化
3. 面积:
- 长方形、平行四边形以及三角形的面积计算
- 在已知面积的情况下确定一条边长
- 面积的单位换算
4. 方程:
- 列方程式解问题
- 正式列方程
- 一元一次方程的解法和验证
5. 除法的应用:
- 带余除法和不带余除法
- 小数的加减
- 小数的乘法和除法
6. 三角形:
- 角的概念和性质
- 直角三角形的判定和性质
- 同边角和同位角的概念
7. 数据的读取和分析:
- 数据的收集、整理和处理
- 条形图、折线图、饼图和表格的读取和分析
8. 同倍数和公倍数:
- 正整数的倍数和公倍数的概念
- 寻找两个数的最大公倍数
- 一些实际问题的应用
9. 商和余数:
- 余数、商和被除数的关系
- 商和余数的求法
- 余数的性质和应用
10. 直角和平行线:
- 直角和直角三角形的概念
- 平行线、交叉线和图形的性质
- 判断平行线和垂直线的方法
11. 小数:
- 小数的认识和读写
- 小数的加减法和乘法
- 小数的比较和化简
以上是小学六年级上册数学各单元的知识点。

这些知识点是学生在这个学期学习和掌握的内容,通过这些知识点的学习,学生可以提高数学运算能力和应用能力。

小学六年级上册数学知识点总结归纳(绝对经典)

小学六年级上册数学知识点总结归纳(绝对经典)

小学六年级上册数学知识点总结归纳第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。

2、数对可以表示物体的位置,也可以确定物体的位置。

3、数对表示位置的方法:先表示列,再表示行。

用括号把代表列和行的数字或字母括起来,再用逗号隔开。

例如:(7,9)表示第七列第九行。

4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。

如:(2,4)和(2,7)都在第2列上。

5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。

如:(3,6)和(1,6)都在第6行上。

6、物体向左、右平移,行数不变,列数减去或加上平移的各数。

物体向上、下平移,列数不变,行数减去或加上平移的各数。

第二单元分数乘法(一)、分数乘法的意义。

1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。

2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

例如:6×512,表示:6的512是多少。

2 7×512,表示:27的512是多少。

(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数,所得的积大于它本身。

2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

(四)、解决实际问题。

1分数应用题一般解题步行骤。

(1)找出含有分率的关键句。

小学六年级数学全册知识点归纳

小学六年级数学全册知识点归纳

一、数与代数1.数的读法:百分数、小数、分数、整数2.数的大小比较:大小关系、用大小符号表示大小关系3.数的进位与退位:百位、千位、万位4.数的四则运算:加法、减法、乘法、除法5.数的倍数和约数:倍数的概念、约数的概念6.乘法的应用:乘法与加法、乘法与减法、乘法与除法7.除法的应用:商的概念、余数的概念、数的整除性质8.分数的认识与比大小:分数的概念、分数的大小比较、分数的简化与扩展9.分数的四则运算:分数的加法、分数的减法、分数的乘法、分数的除法10.整数的认识:正整数、负整数、零、整数的大小比较11.纸带图与有向数线:纸带图的绘制、有向数线的绘制、正负数坐标轴上数的位置表示二、空间与图形1.点、线、面:点的认识、线的认识、面的认识2.平面图形:三角形、四边形、多边形、圆形、椭圆形、正方形、长方形、平行四边形、直角三角形、等腰三角形、等边三角形3.立体图形:长方体、正方体、棱柱、棱锥、棱台、球、圆柱、圆锥、圆台4.图形的名称和性质:平行四边形、矩形、正方形、菱形、三角形、四边形等5.平面镜像与空间镜像:平面图形的镜像、立体图形的镜像6.位置与方向:方向的认识、位置的认识、位置关系的认识三、量的认识与运用1.长度的换算:米与厘米的换算、分米与厘米的换算、运用换算计算长度2.长度和重量的比较:比较长度的大小、比较重量的大小3.时间的认识与计算:时、分、秒的认识、时间段的计算、时钟的读法4.面积的认识与计算:长方形的面积计算、正方形的面积计算5.体积的认识与计算:长方体的体积计算、正方体的体积计算6.资料的收集和整理:资料的收集方法、用表格整理资料四、数据的收集与处理2.数据的处理与分析:数据的整理、数据的比较、数据的运算3.数据的表示与解释:数据的图表表示、图表的读取与解读五、解决问题的策略与方法1.数学问题求解:分析问题、选择适当的计算方法、验证和总结解答结果2.解决实际问题:问题与计算、问题与图形3.数学建模:抽象、分析、解决。

六年级上册1到4单元知识点总结

六年级上册1到4单元知识点总结

六年级上册1到4单元知识点总结六年级上册共有4个单元,分别是"数字与运算"、"数的整除"、"数的倍数与约数"、"分数与小数"。

以下将对每个单元的重点知识进行总结。

一、数字与运算:
1.数字的分类:正整数、负整数、0、分数、小数。

2.十进制数的读法、写法、数位及数位间的关系。

3.条件(视情境而定)下的加减法运算。

4.熟练掌握乘法口诀表。

5.乘法的定义、乘法计算规则,乘法的交换律和分配律。

6.除法的定义、原则以及将剩余作为分数表示的方法。

二、数的整除:
1.定义整数倍数、约数、倍数、整除、质数。

2.质因数分解的概念和方法,如何找出一个数的所有质因数。

3.了解公因数和最大公因数的概念。

4.判断两个数的大小,大小的规则和方法。

三、数的倍数与约数:
1.倍数与约数的概念,以及两者之间的关系。

2.怎样判断一个数是另一个数的倍数。

3.倍数的性质及应用,如何找出一个数的所有倍数。

4.了解两个数的最小公倍数的概念和计算方法。

四、分数与小数:
1.分数的定义、基本概念、读法和写法。

2.分数的大小比较、分数的简化与扩展,以及比较大小的方法。

3.分数的加、减、乘、除运算。

横式计算和竖式计算的应用。

4.小数的概念、特点、读法和写法。

5.小数的大小比较和精确度的问题。

6.小数的加、减、乘、除运算。

以上是六年级上册数学的重点知识总结,希望对你有所帮助。

小学六年级上册数学知识点归纳

小学六年级上册数学知识点归纳

小学六年级上册数学知识点归纳第一部分数与代数一、分数乘法(一)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(二)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(三)分数混合运算的运算顺序和整数的运算顺序相同。

(四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc ac+bc=(a+b)×c二、分数乘法的解决问题(详细见重难点分解)(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面; 或“占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数× 。

3、写数量关系式技巧:(1)“的”相当于“×”(乘号)“占”、“是”、“比”“相当于”相当于“=”(等号)(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1±分率)=分率的对应量二、分数除法(一)倒数1、倒数的意义:乘积是1的两个数互为倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数)。

2、求倒数的方法:(原数与倒数之间不要写等号哦)(1)求分数的倒数:交换分子分母的位置。

(2)求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

六年级上册数学知识归纳

六年级上册数学知识归纳
第三单元(假设为百分数,具体单元名可能因教材而异)
1. 百分数的意义<br>2. 百分数和分数的区别与联系<br>3. 百分数的计算与应用<br>4. 百分数在生活中的实际而异)
1. 圆形、长方形、正方形的周长与面积计算<br>2. 环形、扇形面积的计算方法<br>3. 对称图形的概念及识别<br>4. 圆的周长与直径的关系,圆周率的定义
第五单元(假设为其他数学概念,具体单元名可能因教材而异)
1. 负数、正数的概念及运算<br>2. 代数式的概念及基本运算<br>3. 方程的概念及解法<br>4. 数据的收集、整理与分析方法(如平均数、中位数等)
六年级上册数学知识归纳
单元
知识点
第一单元:分数乘法
1. 分数乘整数的意义与运算法则<br>2. 一个数乘分数的意义<br>3. 分数乘分数的运算法则<br>4. 分数乘法混合运算顺序与定律<br>5. 倒数的意义及求法<br>6. 分数乘法应用题
第二单元(假设为分数除法,具体单元名可能因教材而异)
1. 分数除法的意义<br>2. 分数除法计算法则<br>3. 分数除法混合运算<br>4. 比的概念、性质及化简<br>5. 求比值的方法<br>6. 比和除法、分数的区别与联系

小学六年级上册数学各单元知识点

小学六年级上册数学各单元知识点

小学六年级上册数学各单元知识点小学六年级上册数学共有十一个单元,每个单元的知识点如下:1. 第一单元:数与代数- 数的认识:数的读法、数的大小比较- 数的加法和减法:竖式计算、交换律和结合律- 乘法口诀表:认识并背诵乘法口诀表2. 第二单元:整数- 正数、负数:了解正数和负数的概念- 整数的加法和减法:正数相加、正数和负数相加、负数相加- 整数的乘法:相乘的规律3. 第三单元:图形与坐标- 点、线、面:了解图形的基本概念- 线段的长度:如何测量线段的长度- 坐标系:认识平面直角坐标系4. 第四单元:图形的变换- 平移、翻转、旋转:了解图形的基本变换操作- 关于对称轴的对称:认识图形的对称性5. 第五单元:小数- 小数的认识:了解小数的概念和读法- 小数的加法和减法:竖式计算- 小数的乘法和除法:带小数点的乘法和除法计算6. 第六单元:百分数- 百分数的认识:了解百分数的概念和读法- 百分数的表示和转化:将百分数转化为小数、将小数转化为百分数- 百分数的加法和减法:竖式计算7. 第七单元:平方与平方根- 平方数:认识平方数和平方根的概念- 计算平方:计算一个数的平方- 开平方:计算一个数的平方根8. 第八单元:长方体的面积和体积- 长方体的面积:计算长方体各个面的面积、计算总面积- 长方体的体积:计算长方体的体积9. 第九单元:圆- 圆的认识:了解圆的概念和相关术语- 圆的面积和周长:计算圆的面积和周长10. 第十单元:时间- 时钟的认识:了解时、分、秒的概念- 时钟的读法:读时、读分、读秒- 时钟的计算:计算时间差、计算时间段11. 第十一单元:数据的处理- 统计图表:了解柱状图和折线图的制作和分析- 数据的整理和处理:收集数据、整理数据、分析数据以上是小学六年级上册数学各单元的知识点,希望对你有帮助!。

六年级数学上册知识点归纳总结

六年级数学上册知识点归纳总结

六年级数学上册知识点归纳总结
一、数与式
1.实数:正数、负数、零
2.有理数:分数、整数
3.数的分类:自然数、整数、分数、分数的分母为零的无意义数、真分数
4.式子:真式、假式
5.有理数的加减法:用整除法和扩展分数法
6.有理数的乘除法:用倒数的乘除法
7.同位数相减:将被减数拆分成和减数位数相同的多个加数,然后分别减
8.数轴:正负半轴、两个单位
新增
九、位置关系
1.平行:两条线段长度相等,夹角为0°,模式固定且一致。

2.垂直:两条线段长度相等,夹角为90°,模式固定且一致。

3.对称轴:两个物体镜面对称模式固定且一致。

4.连续:有向和无向两种,通过一系列点组成的形状,模式不定。

5.平行四边形:比较运算的固定位置变换,模式固定且一致。

小学六年级数学上册知识点总结

小学六年级数学上册知识点总结

小学六年级数学上册知识点总结一、数与运算1. 整数- 大数的读写与比较- 整数的四则运算- 整数的倍数与因数- 质数与合数- 奇数与偶数- 整数的性质和运算规律2. 分数- 分数的意义和性质- 真分数与假分数- 分数的四则运算- 分数与整数的互化- 分数的比较和排序- 混合数和带分数3. 小数- 小数的意义和性质- 小数的四则运算- 小数与整数、分数的互化- 用小数表示实际问题4. 比例与百分数- 比例的概念和基本性质- 比例式的解法- 百分数的意义和应用- 百分数与分数、小数的互化- 利率和利息的计算二、几何1. 平面图形- 平行线和垂线的性质- 角的概念和分类- 三角形的性质和分类- 四边形的性质和分类- 圆的性质和圆周角2. 图形的变换- 平移、旋转和翻转的概念- 对称图形的识别和绘制3. 图形的测量- 周长和面积的计算(正方形、长方形、三角形、平行四边形、梯形、圆)- 体积的计算(长方体和立方体)三、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 条形图、折线图和饼图的绘制和解读2. 概率- 可能性的认识- 简单事件的概率计算四、解决问题1. 应用题- 解决与生活实际相关的数学问题- 分析问题和找出等量关系- 利用方程和不等式解决问题2. 数学思维- 逻辑推理和证明- 数学问题的多种解法五、综合实践1. 数学活动- 参与数学游戏和竞赛- 数学知识的综合运用2. 数学探究- 发现生活中的数学问题- 进行小组合作探究以上总结了小学六年级数学上册的主要知识点。

学生应通过练习和复习,确保对每个知识点都有深刻的理解和掌握。

教师和家长可以根据这份总结来辅导和检查学生的学习情况。

小学六年级数学上册知识点归纳

小学六年级数学上册知识点归纳

小学六年级数学上册知识点归纳一、数的认识与运算1. 自然数:表示物体个数的数,如0、1、2、3等。

2. 整数:包括正整数、负整数和零,如-3、-2、-1、0、1、2等。

3. 分数:表示部分的数,如1/2、3/4、5/6等。

4. 小数:表示十分之几、百分之几的数,如0.1、0.25、0.5等。

5. 百分数:表示百分之几的数,如20%、50%、80%等。

6. 四则运算:加法、减法、乘法、除法。

7. 混合运算:将四则运算按照一定的顺序进行计算。

二、数的大小比较1. 比较整数的大小:从左到右依次比较每一位上的数字,直到找到不同的位或者比较完所有位。

2. 比较分数的大小:先比较分母,如果分母相同,再比较分子。

3. 比较小数的大小:先比较小数点后第一位,如果相同,再比较小数点后第二位,以此类推。

三、数的应用1. 长度:表示物体的长度,单位有厘米、米、千米等。

2. 重量:表示物体的重量,单位有克、千克、吨等。

3. 容量:表示物体的容积,单位有毫升、升、立方米等。

4. 时间:表示时间的长短,单位有秒、分钟、小时、天等。

5. 货币:表示货币的价值,单位有元、角、分等。

四、几何图形1. 点:没有大小和形状的物体。

2. 线:没有宽度和厚度的物体,可以无限延伸。

3. 面:由线段围成的封闭图形。

4. 三角形:由三条边组成的图形,有三个角和三个顶点。

5. 四边形:由四条边组成的图形,有四个角和四个顶点。

6. 圆形:由一条曲线围成的图形,所有点到圆心的距离相等。

7. 正方形:四边相等且四个角都是直角的四边形。

8. 长方形:对边相等且四个角都是直角的四边形。

9. 平行四边形:对边相等且相邻两边平行的四边形。

10. 梯形:有一对边平行的四边形。

11. 菱形:四条边相等且对角线互相垂直的四边形。

12. 矩形:四个角都是直角的平行四边形。

13. 圆环:由两个同心圆组成的图形。

14. 扇形:由圆心和圆上两点组成的图形。

15. 椭圆:由两个焦点和两条准线组成的图形。

6年级上册数学书知识点归纳

6年级上册数学书知识点归纳

6年级上册数学书知识点归纳一、分数乘法。

1. 分数乘整数的意义和整数乘法的意义相同,都是求几个相同加数的和的简便运算。

2. 分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

能约分的先约分再计算。

3. 分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

能约分的先约分再计算。

4. 一个数乘分数,表示求这个数的几分之几是多少。

二、位置与方向(二)1. 根据方向和距离确定物体的位置。

2. 描述路线图时,要先按行走路线确定每一个观测点,然后以每一个观测点为参照物,描述到下一个目标所行走的方向和距离。

三、分数除法。

1. 倒数的定义:乘积是 1 的两个数互为倒数。

2. 求一个数(0 除外)的倒数,只要把这个数的分子、分母调换位置。

3. 分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

4. 分数除以整数(0 除外),等于分数乘这个整数的倒数。

5. 一个数除以分数,等于这个数乘分数的倒数。

四、比。

1. 两个数相除又叫做两个数的比。

2. 在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

3. 比的基本性质:比的前项和后项同时乘或除以相同的数(0 除外),比值不变。

五、圆。

1. 圆的认识:圆心用字母 O 表示,半径用字母 r 表示,直径用字母 d 表示。

在同圆或等圆中,直径是半径的 2 倍,半径是直径的一半,即 d = 2r,r = d÷2。

2. 圆的周长:C = πd 或 C = 2πr。

3. 圆的面积:S = πr²。

六、百分数(一)1. 百分数表示一个数是另一个数的百分之几。

百分数也叫做百分率或百分比。

2. 百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

3. 小数化成百分数,把小数点向右移动两位,同时在后面添上百分号。

百分数化成小数,把百分号去掉,同时把小数点向左移动两位。

六年级上册数学的知识点归纳

六年级上册数学的知识点归纳

六年级上册数学的知识点归纳第一单元:分数乘法。

分数乘法就像是给分数“变胖”或者“变瘦”。

比如说,一个分数乘以一个整数,就相当于把这个分数复制了整数那么多次。

要是一个分数乘以另一个分数,那就是分别看分子和分母,分子乘分子,分母乘分母。

记住哦,能约分的先约分,这样计算更简单!第二单元:位置与方向(二)这单元就像是玩寻宝游戏,要搞清楚东西南北还有角度和距离。

比如说,告诉你在某个点的什么方向多少度,距离多远,你就能找到目标啦。

反过来,要是你在一个地方,也能说出其他地方在你的什么方位。

第三单元:分数除法。

分数除法是分数乘法的“逆运算”。

如果一个数除以一个分数,就等于乘以这个分数的倒数。

啥是倒数?就是把分子分母颠倒一下位置。

比如说,2/3 的倒数就是3/2 。

第四单元:比。

比就像是两个东西在比赛,看谁多谁少。

比如说,甲和乙的比是 3:2 ,那就表示甲有 3 份,乙有 2 份。

比还可以转化成分数来计算,可方便啦。

第五单元:圆。

圆可是个神奇的图形!要知道圆的半径、直径、周长和面积的计算方法。

周长就是绕圆一圈的长度,用公式 C=2πr 或者 C=πd 来算。

面积就是圆占的地方大小,公式是 S=πr²。

第六单元:百分数(一)百分数就是表示一个数是另一个数的百分之几。

比如说,及格率、出勤率都是百分数。

计算百分数的题目,要注意把百分数化成小数或者分数来计算。

第七单元:扇形统计图。

扇形统计图就像是一个切开的披萨,能清楚地看出各部分占总体的比例。

通过看扇形的大小,就能知道哪个部分最多,哪个部分最少。

第八单元:数学广角—数与形。

这单元让我们发现数和形之间的奇妙联系。

有时候通过画图能更轻松地解决数学问题,让复杂的数字变得一目了然。

怎么样,这些知识点是不是好懂多啦?。

六年级上册数学知识重点必考

六年级上册数学知识重点必考

六年级上册数学知识重点必考
六年级上册数学知识重点必考:
一、数的认识
1.了解自然数、整数、分数。

2.掌握四则运算,包括加、减、乘、除。

3.了解小数的基本概念。

4.掌握数字四则运算的基本原理和方法。

5.掌握各种计数方法,如倍数、公倍数、约数、最大公约数等。

6.了解相反数与绝对值。

二、代数式
1.知道代数式的定义及表示方法。

2.掌握简单的代数式的计算方法,能够用代数式进行运算。

3.能够应用代数式解决实际问题。

三、图形
1.掌握图形的种类及命名方法。

2.了解图形的性质,如线段的长度、直线的特征等。

3.能够绘制简单的图形,并计算它们的周长、面积等。

四、方程与不等式
1.懂得方程和不等式的定义及书写方法。

2.了解一元一次方程的解法。

3.掌握解一些实际问题的方程和不等式的方法。

五、数据统计
1.掌握数据的收集、整理及统计的基本方法。

2.懂得用表格、图形等表示数据。

3.能够运用统计方法解决实际问题。

六、几何变换
1.知道平移、旋转、翻折等几何变换的定义及描述方法。

2.掌握平移、旋转、翻折等几何变换的基本方法。

3.了解几何变换的应用及其在日常生活中的应用。

以上是六年级上册数学知识的重点,掌握这些知识可以帮助学生更好地完成学习任务,并在日常生活中运用数学知识解决实际问题。

六年级上册必考知识点归纳总结

六年级上册必考知识点归纳总结

六年级上册必考知识点归纳总结一、分数乘法1. 分数乘法的意义:乘法的意义是把相同的数或单位“1”相加,求和。

分数乘法的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2. 分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

3. 乘法运算定律推广到分数:分数乘法也适合乘法交换律、结合律、分配律。

二、分数除法1. 分数除法的意义:与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

2. 分数除法的计算法则:除以一个数(0除外),等于乘上这个数的倒数。

3. “四则运算”中的“除法运算”:在混合运算中,先算括号内的,再算乘除法,最后算加减法。

三、比和比例1. 比的意义和性质:两个数相除又叫做两个数的比。

比是表示两个量相除的关系。

比的性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

2. 比例的意义和性质:表示两个比相等的式子叫做比例。

比例的性质:内项之积等于外项之积。

3. 化简比:根据比的基本性质,把比的前项和后项都乘或除以同一个数(0除外),比值不变。

4. 解比例:解比例的意义在于可以把一个难以解决的比较复杂的问题转化成一个易于解决的一元一次方程,然后解这个方程即可得出所求的比或比例值。

5. 正比例和反比例的意义:两个量中相对应的两个数的商一定,这两个量就成正比例;两个量中相对应的两个数的积一定,这两个量就成反比例。

6. 用字母表示数:用字母表示数可以简明地表达数量关系,同时也可以使一些与数量关系密切相关的性质更直观、更简洁地表达出来。

7. 用字母表示常见的数量关系、运算定律和性质、几何形体的周长、面积、体积公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级数学上册知识点归纳知识点概念总结1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

但分子分母不能为零.。

3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。

6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/3。

3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是1/12 ,12是1/12的倒数。

8.小数的倒数:普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。

则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。

分数、整数也都使用这种规律。

10.分数除法:分数除法是分数乘法的逆运算。

11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:先找单位1。

单位1已知,求部分量或对应分率用乘法,求单位1用除法。

14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。

表示两个比相等的式子叫做比例,是比的意义。

比例有4项,前项后项各2个.15.比的基本性质:比的前项和后项都乘以或除以一个不为零的数。

比值不变。

比的性质用于化简比。

比表示两个数相除;只有两个项:比的前项和后项。

比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。

16.比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。

比例的性质用于解比例。

17.比和比例的区别(1)意义、项数、各部分名称不同。

比表示两个数相除;只有两个项:比的前项和后项。

如:a:b 这是比比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。

a:b=3:4 这是比例。

(2)比的基本性质和比例的基本性质意义不同、应用不同。

比的性质:比的前项和后项都乘或除以一个不为零的数。

比值不变。

比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。

比例的性质用于解比例。

联系:比例是由两个相等的比组成。

18.比和比例的意义比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式子是叫做比例。

比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

因此,比和比例的意义也有所不同。

而且,比号没有括号的含义而另一种形式,分数有括号的含义!19.比和比例的联系:比和比例有着密切联系。

比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。

比例是由比组成的,如果没有两种量的比,比例就不会存在。

比例是比的发展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一起来。

如果两个比相等,那么这两个比就可以组成比例。

成比例的两个比的比值一定相等。

20.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

21.圆心:圆任意两条对称轴的交点为圆心。

注:圆心一般符号O表示22.直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。

直径一般用字母d表示。

23.半径:连接圆心和圆上任意一点的线段,叫做圆的半径。

半径一般用字母r表示。

圆的直径和半径都有无数条。

圆是轴对称图形,每条直径所在的直线是圆的对称轴。

在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。

圆的半径或直径决定圆的大小,圆心决定圆的位置。

24.圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。

25.圆周率:圆的周长与直径的比值叫做圆周率。

圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。

计算时,通常取它的近似值,π≈3.14。

直径所对的圆周角是直角。

90°的圆周角所对的弦是直径。

26.圆的面积公式:圆所占平面的大小叫做圆的面积。

πr^2;,用字母S表示。

一条弧所对的圆周角是圆心角的二分之一。

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。

在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。

27.周长计算公式(1)已知直径:C=πd(2)已知半径:C=2πr(3)已知周长:D=c/π(4)圆周长的一半:1/2周长(曲线)(5)半圆的周长:1/2周长+直径(π÷2+1)28.面积计算公式:(1)已知半径:S=πr2(2)已知直径:S=π(d/2)2(3)已知周长:S=π[c÷(2π)]229.百分数与分数的区别(1)意义不同。

百分数是“表示一个数是另一个数的百分之几的数。

”它只能表示两数之间的倍数关系,不能表示某一具体数量。

因此,百分数后面不能带单位名称。

分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。

分数还可以表示两数之间的倍数关系.(2)应用范围不同。

百分数在生产、工作和生活中,常用于调查、统计、分析与比较。

而分数常常是在测量、计算中,得不到整数结果时使用。

(3)书写形式不同。

百分数通常不写成分数形式,而采用百分号“%”来表示。

因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。

而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。

任何一个百分数都可以写成分母是100的分数,而分母是100的分数并不都具有百分数的意义.(4)百分数不能带单位名称;当分数表示具体数时可带单位名称。

30.百分数应用百分数一般有三种情况:①100%以上,如:增长率、增产率等。

②100%以下,如:发芽率、成长率等。

③刚好100%,如:正确率,合格率等。

31.百分数的意义百分数只可以表示分率,而不能表示具体量,所以不能带单位。

百分数概念的形成应以学生实际生活中的事例或工农业生产中的事例引入。

32.日常应用每天在电视里的天气预报节目中,都会报出当天晚上和明天白天的天气状况、降水概率等,提示大家提前做好准备,就像今天的夜晚的降水概率是20%,明天白天有五~六级大风,降水概率是10%,早晚应增加衣服。

20%、10%让人一目了然,既清楚又简练。

知识点扩展1.圆的定义几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。

轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。

集合说:到定点的距离等于定长的点的集合叫做圆。

2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。

大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。

连接圆上任意两点的线段叫做弦。

圆中最长的弦为直径。

3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。

顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4.内心和外心:和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。

5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。

圆锥侧面展开图是一个扇形。

这个扇形的半径称为圆锥的母线。

6.圆的种类:(1)整体圆形,(2)弧形圆,(3)扁圆,(4)椭形圆,(5)缠丝圆,(6)螺旋圆,(7)圆中圆、圆外圆,(8)重圆,(9)横圆,(10)竖圆,(11)斜圆。

7.圆和其他图形的位置关系:圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,0≤PO<r。

8.百分数的由来200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。

如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。

而后,人们在分数的基础上又以100做基数,发明了百分数。

相关文档
最新文档