第二章统计数据的整理与展示

合集下载

统计学第二章 统计数据的收集、整理与显示试题及答案

统计学第二章   统计数据的收集、整理与显示试题及答案

第二章统计数据的收集、整理与显示二、单项选择题1、人口普查的调查单位是(C )。

A、每一户B、所有的户C、每一个人D、所有的人2、对一批商品进行质量检验,最适宜采用的调查方法是(B )。

A、全面调查B、抽样调查C、典型调查D、重点调查3、下列调查中,调查单位与填报单位一致的是(D )。

A、企业设备调查B、人口普查C、农村耕畜调查D、工业企业生产经营现状调查4、抽样调查与重点调查的主要区别是(D )。

A、作用不同B、组织方式不同C、灵活程度不同D、选取调查单位的方法不同5、先对总体中的个体按主要标志加以分类,再以随机原则从各类中抽取一定的单位进行调查,这种抽样调查形式属于( D )。

A、简单随机抽样B、等距抽样C、整群抽样D、类型抽样6、对某省饮食业从业人员的健康状况进行调查,调查单位是该省饮食业的(D )。

A、全部网点B、每个网点C、所有从业人员D、每个从业人员7、调查时限是指(B )。

A、调查资料所属的时间B、进行调查工作的期限C、调查工作登记的时间D、调查资料的报送时间8、对某市全部商业企业职工的生活状况进行调查,调查对象是(B )。

A、该市全部商业企业B、该市全部商业企业的职工C、该市每一个商业企业D、该市商业企业的每一名职工9、作为一个调查单位(D )。

A、只能调查一个统计标志B、只能调查一个统计指标C、可以调查多个统计指标D、可以调查多个统计标志10、某市规定2018年工业经济活动成果年报呈报时间是2019年1月31日,则调查期限为( B )。

A、一天B、一个月C、一年D、一年零一个月11、统计分组对总体而言是( B )A、将总体区分为性质相同的若干部分B、将总体区分为性质不同的若干部分C、将总体单位区分为性质相同的若干部分D、将总体单位区分为性质不相同的若干部分12、按某一标志分组的结果表现为( B )A、组内差异性,组间同质性B、组内同质性,组间差异性C、组内同质性,组间同质性D、组内差异性,组间差异性13、设对某地区的人口按年龄分组如下:不满周岁,1—3岁,4—6岁,7—12岁,……60—64岁,65—79岁,80—99岁,100岁以上,最后一组的组中值近拟为( C )A、110岁B、104岁C、104.5岁D、105岁14、为充分利用所得到的原始资料以取得大量统计指标,在统计整理时关键是要( C )A、进行各种汇总B、进行各种计算C、充分利用分组法D、对原始资料进行分析15、按变量的性质和数据的多少划分,变量数列可分为( C )。

统计学第2章 统计数据的搜集、整理和显示

统计学第2章 统计数据的搜集、整理和显示

第二节 数据整理

三、统计指标

(二)统计指标的分类

1. 数量(总量)指标

作用:反映现象的总规模、总水平或工作总量 以绝对数表示(国内生产总值、人口总数、工资总额等) 分类 总体单位数、总体标志总量 时期指标、时点指标 实物指标、价值指标和劳动量指标
第二节 数据整理

三、统计指标

搜集数据的两条途径:统计调查 + 实验 统计调查 —— 调查数据;实验 —— 实验数据 1. 确定调查目的 2. 确定调查对象和调查单位 3. 确定调查项目 4. 调查表格和问卷设计(一览表、单一表,要求简明扼要) 5. 确定调查时间(调查时间、调查期限) 6. 确定调查的组织实施计划

(三)统计调查的方案设计

上限不在内
等距分组与异距分组

等距分组

各组的标志值变动都限于相同的范围 优点:便于计算、绘制统计图 适用场合


异距分组

第一,标志值分布很不均匀的场合 第二,标志值相等的量具有不同意义的场合 第三,标志值按一定比例发展变化的场合
品质分组 单项式分组 间断组距式分组 数量分组 组限 连续组距式分组 组距式分组 等距式分组
6组:530 530 530 540 620 620 620 620 720 720 7组:720 720 630 630 630 630 620 620 620 620
8组:650 650 650 650 650 650 650 650 650 650
提问:从上述资料中,同学们能否直接看出该车间总的生产完成
类型分组
“日产量”分组
500以下 500 500以上 合计

统计学 第二章 统计数据的搜集、整理和显示

统计学 第二章 统计数据的搜集、整理和显示

(二)实验方式
所谓实验方式,就是运用自然科学的试验 法,通过观测人为安排条件下试验产生的各种 结果并加以记录的方式来获取数据,或通过人 为安排条件下的试验来探求某个或某些因素对 所研究事物的数量影响程度和作用方式,凭借 实验结果来揭示所考察因素与所研究事物之间 的数量因果关系。
1、实验的原则
运用实验方式需要遵循下列两个原则:均衡分散
1、普查
普查是根据特定的统计研究目的而专门组织的 一次性的全面调查,用以收集所研究现象总体的全 面资料(即总体中的所有个体都是观测单位)。 普查的组织方式一般有两种:一是建立专门的 普查机构,配备一定数量的普查人员,对观测单位 直接进行登记。如我国历次的人口普查等。二是利 用观测单位的原始记录和核算资料,颁发调查表, 由观测单位按要求填报。如物资库存普查等。
重点调查的单位可以是一些企业、行业、 也可以是一些地区、城市。此种调查方式的优点是, 所投入的人力、物力少,而又较快地搜集到统计 信息资料。一般来讲,在调查任务只要求掌握基 本情况,而部分单位又能比较集中反映研究项目 和指标时,就可以采用重点调查。
在下列问题中为了得到数据,采用什么调查? • 为了买校服,了解每个学生衣服的尺寸。 • 商检人员在某超市检查出售的饮料的合格率。 • 对占全市工业总产值五分之一的六个大型企 业进行调查,以了解全市工业总产值的基本 情况。
观测性误差
数 据 收 集 误 差
也叫登记性误差或调查性误差,它 是在调查观测的各个环节因工作粗 心或被观测者不愿很好配合而造成 的所收集数据与实际情况不符的误 差,包括计量错误、记录错误、计 算错误、抄写错误、汇总错误、计 算机输入误差等工作误差,以及被 调查者不愿或难以提供真实情况的 误差,有时还存在调查人员弄虚作 假的误差和各种人为因素干扰的误 差。 这部分误差通常是人为造成的,通 过对统计调查资料的严密审核,是 可以发现并加以更正的。观测性误 差则可能存在于任何统计调查。 因样本不能完全代表总体而产生 的估计结果与总体真实数量特征 不符的误差。根据样本不能完全 代表总体的原因不同,代表性误 差又分为系统性代表性误差和偶 然性代表性误差两种。

西南财经大学向蓉美、王青华《统计学》第三版——第2章:统计数据的收集、整理与显示

西南财经大学向蓉美、王青华《统计学》第三版——第2章:统计数据的收集、整理与显示

– 调查内容详细、提供重要国情国力资料、数 据的规范化程度较高
提供抽样框

– 特别注意

• 必须规定标准时间 • 在规定时间内统一进行
• 基本内容和指标解释统一并相对稳定
• 需要PPT配套视频,请加VX:1033604968 11
Statistics
2.统计报表 –概念 • 按照国家有关法规的规定、自上而下地统一 布置、自下而上地逐级提供基本统计数据。 –特点 • 全面性、稳定性、连续性、可比性 • 曾经是我国数据收集的主要方式 • 耗费大、数据质量差等等。
3
Statistics
§2.1.2 统计调查方案
调查方案的内容

调查
调查

对象
项目


调查
和调

单位
查表

4
Statistics
1.确定调查目的
调查要达到的具体目标 回答“为什么调查?” 调查之前必须明确
5
Statistics
2.确定调查对象和调查单位
调查对象:调查研究的总体或调查范围 调查单位:需要对之进行调查的单位。可以是调查
12
Statistics
第二次全国经济普查的标准时点是2008年12月31日,时
期资料为2008年度。
第六次quanguo人口普查
主要目的:人口普查是一项重大的国情国力调查。组织开
展第六次全国人口普查,将查清十年来我国人口在数量、结构、
分布和居住环境等方面的变化情况,为科学制定国民经济和社
会发展规划,统筹安排人民的物质和文化生活,实现可持续发
重点单位——标志值在总体标志总量中占有 较大比重的单位

第二章习题

第二章习题

第二章统计数据的收集、整理与显示一、单选题1. 调查单位指的是()。

A应登记的总体各单位标志值B搜集其统计资料的那些单位的总体C调查过程中应向其取得资料的总体的“基层组织”D作为应登记标志的承担者和调查时进行核算的基础的原始要素2. 填报单位指的是()。

A应登记的总体各单位标志值B应搜集其统计资料的那些单位的总体C调查过程中应向其取得资料的总体的“基层组织”D作为应登记标志的承担者和调查时进行核算的基础的原始要素3. 假定调查目的是全面掌握某市国有企业生产经营状况的资料,则该市“全部国有企业”是()。

A调查对象B调查单位C调查项目D都不是4. 假定调查目的是全面掌握某市国有企业生产经营状况的资料,则该市“每一个国有企业”是()。

A调查对象B调查单位C调查项目D都不是5. 假定调查目的是全面掌握某市国有企业生产经营状况的资料,则该市每一个国有企业的“产值、销售收入、利润、创汇”等是()。

A调查对象B调查单位C调查项目D都不是6. 对占煤炭开采量75%的大矿井进行劳动生产率调查;调查几个铁路枢纽,就可以了解我国铁路货运量的基本情况和问题;统计机关在住有全国城市人口一半以上的各大城市的超市零售价格水平进行系统调查。

这些都是()。

A全面调查B抽样调查C重点调查D典型调查7. 确定普查标准时间是意义是,减少或防止人口统计登记()。

A因自然变动(出生与死亡)的影响所产生的重复和遗漏B因机械变动(人口流动)的影响所产生的重复和遗漏C因自然变动和机械变动的影响所产生的重复和遗漏D因季节变动的影响所产生的重复和遗漏8. 重点调查中重点单位指的是()。

A标志总量在总体中占有很大比重的单位B具有典型意义或代表性的单位C那些具有反映事物属性差异的品质标志的单位D能用以推算总体标志总量的单位9. 工业企业生产设备普查中,工业企业的每一台生产设备是()。

A调查对象B调查单位C调查项目D填报单位10. 对某市占成交额比重大的7个大型集市贸易市场的成交额进行调查,这种调查的组织方式是()。

统计学第二章统计调查

统计学第二章统计调查

上一页 下一页
统计数据收集的种类
按收集对象的范围大小分为 按收集时间是否连续分为
按收集的组织形式分为
按收集的方式不同分为
实验方式 调查方式
非全面调查 全面调查
经常性调查 一次性调查 统计报表 专门调查
统计报表 普查
重点调查
抽样调查等
全面调查
调查 范围

非全面调查


调查
连续(经常性)调查
查 形
时间
• 时期现象:指标据反映的起止日期。 • 时点现象:就是规定的统一标准时点。 • 数据收集期限:完成数据收集工作的起止时间。
包括收集资料和报送资料整个工作所需时间。
数据 所属 时间 {客观 时间}
等于
数据 资料 所属 时间
数据 收集 期限 {主观 时间}
等于
数据 收集 工作 时间
起讫时间(一段时期内的数据)
统计报表过多会增加基层负担 有可能由于虚报瞒报而影响统计资料质量
单位
• 观测标志(项目):
• 是根据数据收集目的所确定。包括品质标志 和数量标志。
• 拟定数据收集项目应注意: • 1、观测标志必须是数据收集目的所需要的并
且是确实可取得资料的。 • 2、观测标志必须相互联系,便于统计分析和
核对资料的差错。 • 3、观测标志的含义必须明确,不能 有两个或
以上的解释。 • 4、观测标志的表达形式要明确。用文字还是
①方案设计
②搜集数据
③数据处理
④报告写作
⑤验收
注:6 月 30 日前完成方案设计,问卷的定稿印刷发放
7 月 25 日前完成问卷收回与审核,并制定数据处理方案(数据库框架)
ห้องสมุดไป่ตู้

第2章 统计数据的收集整理与显示

第2章 统计数据的收集整理与显示

A:您至今未买电脑的原因是什么?(单选不可以,多 选可以) (a)买不起(b)没有用(c)不懂(d)其它
(3) 无论多/单选题,任一个备选答案都不能有多 重含义。 A.您选择信息专业的目的是:
(a)自己喜欢,好就业(b)„„
(4) 无论多/单选题,备选答案之间不能有包含关 系。 A.您上大学的目的是:
例2.1 某车间50个工人看管机床台数资料如下:
3 6 2 4 3 2 6 4 3 2 4 2 5 2 6 2 3 5 4 3 2 3 6 5 4 2 4 3 2 2 3 5 4 5 6 2 2 6 4 3 2 6 3 4 5 4 5 2 3 5
试对数据进行分组。 解:由于机器台数属于离散型变量,因此使用单项式分 组方法。将原始资料按变量值升序排列,然后将相同变 量值分为一组,最后将资料分成若干组。
2.按数量标志分组 数值型数据:主要是按照数值进行分组。 例:对学生成绩分组,可分为60分以下、60~70分、 70~80分、80~90分、90分以上5个组。
单项式分组 按数量标志分组的方法: 组距式分组
单项式分组:把每一个变量值作为一组。 适用条件:通常只适于离散变量且变量值较少的情况
表2-2 变量编码表
NUM SEX JOB A11 A12 A13 A14 A15 A21 A22 A23 A24
001
002
1
1
1
210来自001
1
1
1
0
1
1
1
1
0
0
0
1
0
编码表说明:
NUM- 编码 SEX- 性别 jOB- 职务 A11~A15代表第一题中5个选项,选中者输入1, 未选中者输入0。 A21~A24代表第二题中4个选项,选中者输入1, 未选中者输入0。

《统计学》教学课件 第二章 统计数据收集、整理与呈现

《统计学》教学课件 第二章 统计数据收集、整理与呈现

全面调查 非全面调查
普查、统计报表制度、抽 样调查、重点调查和典型 调查等是常见的统计调查 方式,其中普查即全面调 查,其余的为非全面调查。
1.普查 普查是根据特定研究目的而专门组织的一次性的全 面调查,以收集研究对象的全面资料。
目前,我国组织实施的普查主要包括人口普查、经济普查和 农业普查三种。
缺然点后:通过典细型致单分析位典的型选单位取以受认人识总为成功经验、找出失败 现(一3)定突的出倾选典向式性。,突出且选典典型式是调指查选结择总体教中训的或先观进察单新位生、事后物进的单情位况或。新生事 果物不作宜为典用型以单推位,算进全行面深入数细据致。的调查。
2.报告法
3.采访法
又称凭证法,指要求调查 由调查人员对被调查者进
对象以原始记录、台帐和 行采访,根据被调查者的
核算资料为依据,向有关 答复来收集数据的方法,
单位提供统计资料的方法。 包括面谈访问、电话访问、
邮寄访问 和网络访问等。
4.登记法 指当事人根据有关法制法规规定,在开展某些活动或 发生某事时,主动到有关机构进行登记,填写有关表 格,提供有关统计信息。
④滚雪球抽样。是一种针对稀疏总体进行的抽样调查,抽选样本时 先找到几个符合条件的调查单位,然后通过这些调查单位找到更多 符合条件的调查单位,以此类推,样本如同滚雪球般由小变大,直 至达到要求的样本数为止。
⑤流动总体抽样。流动总体抽样是采用“捕获—放回—再捕获”的方式 来估计总体。
4.重点调查
重点调查也是一种非全面调查,是对数据收集对象总体 中的部分重点单位进行观测的统计调查方式。
频数(人) 频数(%)
30岁以下
39.3
30-40岁
37.9
40-50岁

第二章统计数据的整理和展示

第二章统计数据的整理和展示

定量变量
分为单项数列和组距数列两种形式.
单项数列:即变量的一个取值为一组,适用于离散 型变量,并且变量的取值较少. 组距数列:即每一组有一个上限值和一个下限值所 形成的区间,适用于连续性变量,或离散型变量且变 量的取值较多的情况.
注意以下三个方面的问题 1.确定组数 2.确定组距:组距为上限与下限之差.
等距数列-数据分布均匀.
异距数列-数据分布不均匀. 3.确定组限 应能把现象的不同类型划分出来 .
要考虑到数据是连续性变量还是离散型 变量.
无法确定实际数据的取值范围,或者数 据中存在极端数值,可采用开口组的形 式. 4.确定组中值 :<上限+下限〕/2 ,开口组
二、统计数据的展示
当统计数据比较多时,就应该制作表格或者图形进行来 展示,使数据的重要特性能从表格或者图形中直观地反 映出来,这样可提高分析数据和解释数据的效率.
某组的频数 该组的组距
频数
折线图可以在直方图基础上,将每个长方形的顶端中点 用折线连接而成,或用组中值与频数〔或频率〕求坐标 点连接而成 .
20 15 10
5 0
25-30 30-35 35-40 40-45 45-50 50-55 销售额
频数 (门店家数)
根据图2-6的直方图绘制的折线图
曲线图当变量的取值非常多,变量数列的组数无限增 多时,折线便趋于一条平滑的曲线,这是一种概括描述 变量数列分布特征的理论曲线.
统计表
是把统计数据用表格的形式展示出来.
类型: 按作用分
调查表 汇总整理表
计算分析表
按数据所属 截面数据表 的时间分 时间序列表
按分组变量 的多少分
统计图
单变量分组表 多变量分组表
有平行形式 交叉形式

第二章+统计资料的收集、整理与显示

第二章+统计资料的收集、整理与显示

特点
目的是推断总体的数量特征;
抽样误差可以事先计算并控制;
能用较少的人力、物力和时间达到全面调查
作用
的目的; 调查资料的准确性较高、受人为干扰的可能 性较小。
抽样调查应用范围:
1.不能或难以进行全面调查的总体的数量特征。 如无限总体、范围过大的有限总体等,以及具有破坏性的 产品质量检测等; 2.发展变化比较稳定和有规律性而不必进行全面调查的现象总 体的数量特征。
事物发展的一般规律。 行的典型调查。
5、抽样调查 抽样调查是一种专门组织的非全面调查,它是按照随机原 则从调查对象中抽取一部分样本单位进行调查,再用样本指标 推断总体的数量特征的一种调查组织方式。
随 机 原 则
样本单位的抽取不受主观因素及其他 系统性因素的影响,每个总体单位都有均 等的被抽中机会
5、抽样调查 按随机原则抽取样本单位;
3、重点调查 能以较少的投入和较快的速度取得总体基
作用
本情况及变动趋势的资料;
对重点单位的选择不带有主观性
局限
只适用于客观存在着重点单位的情况
4、典型调查 典型调查也是专门组织的一种非全面调查,它是根据调 查研究的目的和任务,在对调查对象有一定了解的基础上,
有意识地选择少数典型单位 进行调查的一种调查组织方式。
统计调查的种类
按调查单位的范围大小分为 按调查时间是否连续分为 按调查的组织方式不同分为 统计报表 专门调查
非全面调查
全面调查
经常性调查 一次性调查
普查
重点调查
典型调查
抽样调查
2、统计调查的种类 (1)按组织形式分为: ①统计报表: 根据统计法规的规定,按一定的表式和要求,自上而下
统一部署,自下而上逐级提供统计资料的一种统计调查方法。

经济统计 lcg 第二章 统计资料的收集、整理与显示

经济统计 lcg  第二章  统计资料的收集、整理与显示

(三)抽样调查 1. 抽样调查是一种非全面调查。它是按随机 原则从总体中抽取一部分单位作为样本进行 观察,然后根据样本指标值去推算调查对象 的总体指标的一种调查。 随机原则,排除主观因素的影响。 (1)每个单位有相同的中选可能性。 (2)每个单位的中选不中选不是主观所决 定的。
不抽烟不喝酒林彪同志63岁 不抽烟只喝酒恩来同
例如:要了解全国钢铁企业的生产状况,可以选择产量 较大的少数几个企业,如邯钢、宝钢等,作为重点单位 进行调查,以便对钢铁产量有一个大致了解。
(五)典型调查: 根据调查目的和任务,对所研究的现象 总体进行初步分析的基础上,有意识的选取若干具有代表性 的单位进行调查和研究,借以认识事物发展变化的规律。 典型调查单位的确定与其他非全面调查相比较,更多地取决 于调查者主观的判断与决策。 特点:(1)专门组织的非全面调查。(2)主观性。 例如:要研究工业企业的经济效益问题,可以在同行业中选 择一个或几个经济效益突出的单位作为典型,做深入的调查, 从中找出经济效益好的原因和经验。 重点调查是选取一部分重要样本进行调查,这些重要样本在 量的方面占优势;而典型调查是有目的的选取有代表性的样 本进行调查,侧重该样本的质的方面!

2.确定调查对象、调查单位和填报单位
解决向谁(who)调查?由谁来具体提供资料? 调查对数,指需要调查的现象总体,该总体是性 质相同的许多调查单位组成。 调查单位,是指所要调查的具体单位,它是进行 调查登记的标志的承担者。(可以是个人、单位 也可以是物) 报告单位亦称填报单位,一般是在行政上,经济 上具有一定独立性的单位。 调查单位与报告单位的关系(见第7题和第8题) 例如:调查河南省乡镇企业经营状况。 调查对象:全省所有的乡镇企业;调查单位:每个 乡镇企业;填报单位:每个乡镇企业 例如:进行工业设备普查。报告单位是 设备管理部 门,调查单位是单台设备。

2020年10月自考《统计学》2020第二章 数据的整理与展示1

2020年10月自考《统计学》2020第二章  数据的整理与展示1

科技论文篇数 58573 6858 1369 7262 6801 12027 294 9714 14248 139884 24304 127234 5075 355070
page10
分类数据的整理与展示




顺序数据的整理与展示




数值数据的整理与展示
品质数据
分类整理
品质数值型数据
分组整理
11
60 ~ 70
15
30
70 ~ 80
18
36
80 ~ 90
10
20
90 ~ 100
2
4
合计
50
100
向上累计
频数
5 20 38 48 50
频率(%)
10 40 76 96 100


向下累计
频数
50 45 30 12 2
频率(%)
100 90 60 24 4


2/4/2021
page20
四、次数分布的主要类型
某班学生英语成绩频数分布表
成绩分布 59 69 79 89 100
频数 0 1 6 8 5
2/4/2021
page28
(三)列联表
列联表是将观测数据按两个或更多属性(定性变量)分类 时所列出的频数表。列联表又称交互分类表,所谓交互分 类,是指同时依据两个变量的值,将所研究的个案分类。 交互分类的目的是将两变量分组,然后比较各组的分布状 况,以寻找变量间的关系。
统计整理步骤:
1.设计和制订统计资料的汇总方案。 2.对原始资料进行审核和检查。 3.用一定的组织形式和方法,对原始资料进行分组、汇总和计算。 4.对整理好的资料再一次进行审核,以便及时发现和纠正汇总过程中的各种 差错。

管理统计学 第2版 第二章 统计数据的收集整理与显示

管理统计学 第2版 第二章 统计数据的收集整理与显示

(4)系统抽样
首先将总体中各 单位按一定顺序 排列,根据样本 容量要求确定抽 选间隔,然后随 机确定起点,每 隔一定的间隔抽 取一个单位的一 种抽样方式。是 纯随机抽样的变

最主要的优势就 是经济性。最大 的缺陷在于总体 单位的排列上。 一些总体单位数 可能包含隐蔽的 形态或者是“不 合格样本”,调 查者可能疏忽, 把它们抽选为样
• 普查需要规定标准的时点:如第五次人口普查规定的标准时间 为2010年11月1日零时为标准时间。
统计报表
• 统计报表是按照国家有关的规定,自上而下同一布置,自下而上逐级 提供统计资料的调查组织方式。
• 统计报表是我国特有的一种统计调查方式,是建立在各基层单位原始 记录的基础上的一种统计调查方式,由于统计报表是逐级上报和汇总 的,有利于各级部门了解本地区、本部门或本行的的社会和经济发展 现状。
2.1 统计数据的收集
数据的来源
• 间接来源 研究者直接从公开出版物或通过网络渠道获取
所需数据,如《中国统计年鉴》、《中国统计摘 要》、《中国社会统计年鉴》 • 直接来源
研究者直接通过调查取得研究所需数据资料
2.1 统计数据的收集
普查
常用的统计 调查方式
抽样调查
重点调查
典型调查
简单随 机抽样
分层抽样
抽样调查
• 抽样调查是取得数据资料的最主要的一种方式,它是按照 随机原则从总体中抽取部分单位组成样本,对样本指标进 行测定,根据样本指标推断总体指标的一种非全面调查。
抽样调查的具体组织形式 抽样调查
简单随 机抽样
分层抽样
等距抽 样
整群抽样
(1)简单随机抽样
从总体N个单位中任意抽取n个单位作为样本, 使每个可能的样本被抽中的概率相等的一种 抽样方式

统计数据的整理和展示

统计数据的整理和展示

统计数据的整理和展示统计数据是我们生活和学习中常见的一种信息形式,它可以帮助我们了解事物的发展趋势、比较不同情况之间的差异以及作出科学决策。

因此,学会正确地整理和展示统计数据对于中学生来说至关重要。

本文将从几个方面介绍统计数据的整理和展示方法,以帮助读者更好地理解和运用这一知识。

一、统计数据的整理在进行统计数据的整理时,我们需要注意以下几点:1. 数据的收集:首先,我们需要明确自己要收集哪些数据,并选择合适的方法进行收集。

例如,如果我们想了解同学们的身高情况,可以通过测量身高的方式收集数据。

2. 数据的分类:将收集到的数据按照一定的规则进行分类,可以更好地整理和分析数据。

例如,我们可以将同学们的身高按照男女分类,或者按照不同年级分类。

3. 数据的整理:整理数据可以采用表格、图表等形式。

表格可以清晰地呈现数据,而图表则可以直观地展示数据之间的关系。

在整理数据时,我们需要注意数据的准确性和完整性。

二、统计数据的展示展示统计数据的目的是为了让读者更加直观地了解数据的含义和规律。

下面介绍几种常见的统计数据展示方法:1. 条形图:条形图是一种常见的展示数据的图表形式,它可以直观地比较不同数据之间的差异。

例如,我们可以用条形图比较不同年级同学们的身高情况,从而得出结论。

2. 饼图:饼图可以清晰地展示不同部分在整体中的比例关系。

例如,我们可以用饼图展示同学们不同爱好的比例,以便更好地了解同学们的兴趣爱好。

3. 折线图:折线图可以展示数据的变化趋势。

例如,我们可以用折线图展示同学们每个月的平均成绩变化情况,以便分析学习进步的趋势。

三、统计数据的应用统计数据不仅仅是为了了解事物的发展趋势和比较差异,还可以帮助我们作出科学决策。

下面以一个例子来说明:假设我们要组织一次班级活动,需要选择一个合适的时间。

我们可以通过统计同学们的空闲时间来做出决策。

首先,我们收集同学们的空闲时间数据,并进行整理。

然后,我们可以通过条形图或者饼图展示同学们的空闲时间分布情况。

统计学第二章

统计学第二章

第二章统计数据的收集、整理与显示2.1统计数据的收集一、统计数据的来源1、直接来源(原始来源):分为实验和统计调查(直接观察、报告、采访、登记)2、间接来源(二手资料):出版物、网络二、统计调查组织方式1、分类①按调查单位的范围大小分:全面调查和非全面调查②按调查时间是否连续分:经常性调查和一次性调查③按调查组织方式分:统计报表和专门调查。

其中专门调查又分为普查、重点调查、典型调查、抽样调查2、统计报表制度:按照国家统一规定的各项要求,自下而上地定期向国家和主管部门报送基本统计资料的一种报告制度①优点:能保证统计资料的全面性和连续性;能保证统计资料的统一性和及时性;能满足各级部门对统计资料的需要②缺点:统计报表过多会增加基层负担;有可能由于虚假瞒报而影响统计资料质量3、普查:是指国家为详尽了解某项重要的国情国力而专门组织的一次性全面调查(主要用于搜集时点资料)①作用:可以为抽样调查提供抽样框;可以收集统计报表所不能提供的反映重大国情国力的基本统计信息②局限:由于需要大量的人力、物力、财力,不宜经常进行4、重点调查:是指为了解总体基本情况,在调查对象中只选择一部分重点单位进行调查的一种非全面调查组织方式。

(这些单位数目不多,但其标志值在总体标志总量中占有较大比重,能反映总体的基本情况)①作用:能以较少的投入和较快的速度取得总体基本情况及变动趋势的资料②局限:只适用于客观存在重点单位的情况5、典型调查:是指在对调查对象有一定了解的基础上,有意识的选择少数典型单位进行调查的一种非全面调查方式。

(指在数量表现上具有普遍意义呵呵代表性的总体单位,可以用来推断总体的数量)①作用:一定条件下能估计总体指标数值;可以用来研究新生事物②缺陷:不能确定推断的把握程度,无法计算和控制推断误差6、抽样调查:是指按照随机原则从调查对象中抽取一部分样本单位进行调查,再用样本资料推断把握总体的数量特征的一种非全面调查组织方式。

统计学基础2 3

统计学基础2 3
主要内容
一、绝对数和相对数
(一)绝对数
绝对数(亦称总量指标)是统计资料经过汇总整理后得到的反映总体规模和水平的总和指标。
作用(1)反映一个国家的国情和国力,一个地区或一个企业的人力、物力、财力。
(2)是进行经济核算和经济活动分析的基础。
(3)是计算相对指标和平均指标的基础。
分类:按反映总体的பைடு நூலகம்容分:变量总值/单位总数
3.在确定集中趋势指标的过程中,算术平均数比中位数和众数使用了更多的数据信息。
4.对于钟形分布且数据量很大时,三种集中趋势指标有如下三种数量关系:
应用平均指标的原则
1.必须是同质的量方可平均;
2.总平均数与组平均数结合分析;
3.集中趋势与离散趋势结合分析.
三、离散趋势的测定
标志变异指标是反映变量分布离散趋势、与平均指标相匹配的指标。
统计分组
对于定性数据就是依据属性的不同将数据划分成若干组,对于定量数据就是依据属性数值的不同将数据划分成若干组。
组内同质性,组间差异性。
频数分布编制
分组的关键
变量的选择,选择与研究的问题有关的变量。
组限的确定。应遵循穷尽和互斥原则。
定性数列编制:
组限的确定一般比较简单。
定量变量编制:
分为单项数列和组距数列两种形式。
3.确定组限
应能把现象的不同类型划分出来。
要考虑到数据是连续性变量还是离散型变量。
无法确定实际数据的取值范围,或者数据中存在极端数值,可采用开口组的形式。
4.确定组中值:(上限+下限)/2,开口组
二、统计数据的展示
当统计数据比较多时,就应该制作表格或者图形进行展示,使数据的重要特性能从表格或者图形中直观地反映出来,这样可提高分析数据和解释数据的效率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7% 13% 10% 8% 15% 21% 36% 31% 26% 33%
甲乙班级对A教师满意度的评价
回答类别 非常不满意 不满意 一般 满意 非常满意 合 计 甲班级 8.0% 36.0% 31.0% 15.0% 10.0% 100.0% 乙班级 7.0% 33.0% 26.0% 21.3% 12.7% 100.0%
职业类别 管理人员 技术人员 服务人员 销售人员 生产工人 其它人员 合 计
不可写比率(ratio) , ) 比率是各不同类别数 量的比值。不是总体 中部分与整体之间的 对比关系。如:性别 比105:100,表示每 100个女性对应105个 男性,说明男性人口 数量多于女性人口。
11
(二)定类数据的图示
3
第一节 数据的预处理

通过各种渠道收集到数据之后,首先应对数据进 行加工处理。 数据整理通常包含数据的预处理、分组和汇总、 编制统计图表等,是统计分析前的必要步骤。 数据的预处理包含数据的审核、筛选、排序等。


一、数据的审核 二、数据的筛选
Next 4
一、数据的审核
(一)原始数据的审核
1.数据完整性审核
非常不满意
不满意
一般
满意
非常满意
Back 16
二、定序数据的整理与展示
(一)累积次数表
(二)定序数据的图示
Back 17
(一)累积(计)次数表

累积次数(cumulative frequencies)
将各类别的次数逐级累加起来。
向上累积:从观察值小的一方向观察值大的一
方累加次数,表示上限以下的次数或比重。
销售人员 服务人员 技术人员 管理人员 0 5000 10000 15000 6163 6770 15395 19182 20000 次数

信用卡顾客职业类型的条形图
13
1.条形图

2003年我国按性别分人口数柱形图
每个类别的次数或百分比以递减顺序从左到右显示称排列图。 Back 14
2.饼形图(Pie Chart)
1.2 8.8 30.2 57.6 80.4
500 494
100.0 98.8 91.2 69.8 42.4
456
349 212 98 24
14.8 4.8
100.0
476 500
95.2 100.0
-
19.6 4.8---Back 22
(二)定序数据的图示

累积次数分布图

定类数据采用的图型均适用于定序数据,也可根据累 积次数或累积百分比绘制累积次数/百分比分布图。

以圆形及圆内扇形的面积表示数值大小的图形。


表示总体中各组成部分所占比例。
研究结构性问题。
12.97% 14.25% 40.37%
32.40% 管理人员 技术人员 服务人员 销售人员
信用卡顾客职业类型的饼图 Back 15
3.环形图


同时绘制多个总体的数据系列,每一个总体数据列 为一个环。 显示多个总体各部分所占的相应比例,有利于进行 比较。
每一组的最小值称下限,最大值称上限。
例如:70-80组,70是本组下限,80是上限。
27
(二)组距分组

组距分组的步骤: Step1:计算取值范围 Step2:确定组数 Step3:确定各组的组距 Step4:确定组限 Step5:根据分组整理成次数分布表
Next 28
Step1:计算取值范围
表1 信用卡顾客职业类型次数分布表 职业类别 管理人员 技术人员 服务人员 销售人员 生产工人 其它人员 合 计 顾客人数 19182 15395 6770 6163 5309 553 53372
次数分布可以反 映总体中所有单 位在各组间的分 布状态和分布特 征。
10
(一)次数分布表

Back
百分比或频率(percentage)
向下累积:从观察值大的一方向观察值小的一
方累加次数,表示下限以上的次数或比重。
18
(一)累积(计)次数表
表 3-2 我国城市按人口分组累积次数表(1987年底)
按人口 分组 10万人以下 10-30万人 30-50万人 50-100万人 100-200万人 200万人以上 合 计 城市数 (个) 13 90 90 115 58 51 417 百分比 (%) 3.1 21.6 21.6 27.6 13.9 12.2 100.0 向上累积 城市数 (个) 13 103 193 308 366 417 百分比 (%) 3.1 24.7 46.3 73.9 87.8 100.0 向下累积 城市数 (个) 417 404 314 224 109 51 百分比 (%) 100.0 96.9 75.3 53.7 26.1 12.2 -
21.6
21.6 27.6 13.9 12.2 100.0
103
193 308 366 417 -
24.7
46.3 73.9 87.8 100.0 -
404
314 224 109 51 -
96.9
75.3 53.7 26.1 12.2 -
21
思考题:计算填写表中所缺数字
根据某市500户居民家计调查的结果,整理成为累计次数表:

取值范围(全距)为最大数值与最小数值之差。
R MaxX MinX
Back 29
Step2:确定组数

根据经验或采用H.A.Sturges提出的经验公式:
K≈1+3.322lgN
K:组数,N:数据总个数

K 是参考值,通常取5-15组
例如:对学生成绩进行分组,确定组数:
1.经验:按及格或不及格分为 2组。 2.经验:按不及格、及格、中等、良好和优秀分为 5组。 3. Sturges公式 N= 46, K≈1+3.322×lg46=1+3.322×1.6627 K≈6.52,可参考分为 5或6组 Back 30
GIGO
除了对数据完整性和准确性审核之外,应着重 审核数据的适用性和时效性。
适用性:了解数据的来源、资料的口径和背景材
料,以便确认是否符合研究需要,是否需要重新 加工整理等。
时效性:有些时效性较强的问题,如果所取得的
数据过于滞后,就失去研究意义,尽可能使用最 新统计数据。
Back 6
二、数据的筛选
三、列联表
Next 24
一、定量数据的分组和制表
(一)单项式分组
(二)组距分组
(三)分位数分组
定量数据在整理时通常要进行数据分组 (统计分组),分组后再计算出各组中出 现的次数,形成表格。
Back 25
(一)单项式分组/单变量值分组

把每一个变量值作为一组。

适用于离散变量且变量值较少的情况。
表3-3 工人生产产品数量的次数分布表
100万人以下的城市有308个
30万人以上的城市有314个。
19
(一)累积(计)次数表

累积百分比或累积频率
(cumulative percentages)

将各类别的百分比逐级累加起来。

有向上累积和向下累积两种。
20
(一)累积(计)次数表
表 3-2 我国城市按人口分组累积次数表(1987年底)
恩格尔系数 次数 居民户数 百分比% 向上累计 居民户数 百分比% 向下累计 居民户数 百分比%
(% ) 20以下 20—30 30—40 40—50 50—60 60—70 70以上 合 计
6 38 107 137 114 74 24 500
1.2 7.6 21.4 27.4 22.8
6 44 151 288 402
1. 条形图(bar chart)
2. 饼形图(pie Chart)
3. 环形图
• 以Excel的图表向导,绘制图形。 • 操作:插入图表
Back 12
1.条形图(bar chart)

以宽度相等、相互分离的条形的长度/高度来表示 次数分布的统计图。
(横置称条形图,纵置称柱形图) 长度/高度表示各类数据的次数或百分比。 用于对比,比较不同地区、不同种类的差异。
GIGO
主要检查应调查单位或个体是否有遗漏,所有的
调查项目或指标是否填写齐全。
2.数据准确性审核
逻辑检查:从定性角度审核数据是否符合逻辑,
内容是否合理,各项目或数字之间有无相互矛盾。
计算检查:检查调查表中的各项数据在计算结果
和计算方法上有无错误。如:合计,100%。
5
一、数据的审核
(二)次级数据的审核
Back 32
Step5:根据分组整理成次数分布表

将原始数据按照各自数值大小分配到各组中, 汇总成次数分布表。
英语成绩分组 30-40分 40-50分 50-60分 60-70分 70-80分 合计 学生人数(次数) 8 6 10 10 12 46 百分比(%) 17.39 13.04 21.74 21.74 26.09 100.00

各组的次数占总次数的比重称为比例(Proportion)。反映 总体的结构。不同类别可进行比较。

比例乘以100就是百分比或百分数,用%表示,表示每 100个分母中拥有多少个分子。
顾客人数(次数) 19182 15395 6770 6163 5309 553 53372 百分比( % 35.94 28.84 12.68 11.55 9.95 1.04 100.00
按人口 分组 10万人以下 城市数 (个) 13 百分比 (%) 3.1 向上累积 城市数 (个) 13 百分比 (%) 3.1 向下累积 城市数 (个) 417 百分比 (%) 100.0
相关文档
最新文档