第六章 树与二叉树(三)
数据结构(C语言版)严蔚敏第6章 树和二叉树
⑷ 孩子结点、双亲结点、兄弟结点
一个结点的子树的根称为该结点的孩子结点(child) 或子结点;相应地,该结点是其孩子结点的双亲结点 (parent)或父结点。
4
如图6-1(b)中结点B 、C、D是结点A的子结点,而结 点A是结点B 、C、D的父结点;类似地结点E 、F是结 点B的子结点,结点B是结点E 、F的父结点。
这是树的递归定义,即用树来定义树,而只有 一个结点的树必定仅由根组成,如图6-1(a)所示。
2
2 树的基本术语
⑴ 结点(node):一个数据元素及其若干指向其子树的分支。 ⑵ 结点的度(degree) 、树的度:结点所拥有的子树
的棵数称为结点的度。树中结点度的最大值称为树的度。
A
B
C
D
A
E
F G HI J
同一双亲结点的所有子结点互称为兄弟结点。
如图6-1(b)中结点B 、C、D是兄弟结点;结点E 、 F是兄弟结点。
⑸ 层次、堂兄弟结点
规定树中根结点的层次为1,其余结点的层次等于 其双亲结点的层次加1。
若某结点在第l(l≧1)层,则其子结点在第l+1层。
双亲结点在同一层上的所有结点互称为堂兄弟结点。 如图6-1(b)中结点E、F、G、H、I、J。
(a) 只有根结点
K
LM N
图6-1 树的示例形式
(b) 一般的树
3
如图6-1(b)中结点A的度是3 ,结点B的度是2 ,结点 M的度是0,树的度是3 。
⑶ 叶子(left)结点、非叶子结点:树中度为0的
结点称为叶子结点(或终端结点)。相对应地,度不为 0的结点称为非叶子结点(或非终端结点或分支结点)。 除根结点外,分支结点又称为内部结点。
树和二叉树 PPT课件
C
E
D
F
C
D
C
D
F
E F 二叉链表
E
二叉树
三叉链表
三叉链表的静态结构
root data parent lchild rchild 0 1 2 3 4 5 A B C D E F -1 0 1 1 3 3 1 2 -1 4 -1 -1 -1 3 -1 5 -1 -1
A
B C E D F
0
1 3 7 8 9 4 5
2 6
4. 二叉树的存储结构
顺序表示
1
2 4 5 6 3 7 7 4 8 2 5 9 1 3 6 10 9
8 9 10
1 2 3 4 5 6 7 8 910
完全二叉树 的顺序表示
1 2 3 4 0 5 6 7 8 0 0 0 0 910
一般二叉树 的顺序表示
链表表示
第六章 树和二叉树
1. 2. 3. 4. 5. 6.
树的定义和基本术语 二叉树 遍历二叉树与线索二叉树 树与森林 赫夫曼树 及其应用 二叉树的计数
6.1 树的定义和基本术语
树的定义
树是由 n (n 0) 个结点组成的有限集合。如果 n = 0, 称为空树;如果 n > 0,则 有且仅有一个特定的称之为根(Root)的结点,它只有直 接后继,但没有直接前驱; 当n > 1,除根以外的其它结点划分为 m (m >0) 个互不 相交的有限集 T1, T2 ,…, Tm,其中每个集合Ti本身又是一 棵树,并且称为根的子树(SubTree)。
特点
每个结点至多只有两棵非空子树(二叉树中 不存在度大于2的结点)
2.五种形态
数据结构考试题库含答案
数据结构习题集含答案目录选择题第一章绪论1.数据结构这门学科是针对什么问题而产生的(A )A、针对非数值计算的程序设计问题B、针对数值计算的程序设计问题C、数值计算与非数值计算的问题都针对D、两者都不针对2.数据结构这门学科的研究内容下面选项最准确的是(D )A、研究数据对象和数据之间的关系B、研究数据对象C、研究数据对象和数据的操作D、研究数据对象、数据之间的关系和操作3.某班级的学生成绩表中查得张三同学的各科成绩记录,其中数据结构考了90分,那么下面关于数据对象、数据元素、数据项描述正确的是(C )A、某班级的学生成绩表是数据元素,90分是数据项B、某班级的学生成绩表是数据对象,90分是数据元素C、某班级的学生成绩表是数据对象,90分是数据项D、某班级的学生成绩表是数据元素,90分是数据元素4.*数据结构是指(A )。
A、数据元素的组织形式B、数据类型C、数据存储结构D、数据定义5.数据在计算机存储器内表示时,物理地址与逻辑地址不相同,称之为(C )。
A、存储结构B、逻辑结构C、链式存储结构D、顺序存储结构6.算法分析的目的是(C )A、找出数据的合理性B、研究算法中的输入和输出关系C、分析算法效率以求改进D、分析算法的易懂性和文档型性7.算法分析的主要方法(A )。
A、空间复杂度和时间复杂度B、正确性和简明性C、可读性和文档性D、数据复杂性和程序复杂性8.计算机内部处理的基本单元是(B )A、数据B、数据元素C、数据项D、数据库9.数据在计算机内有链式和顺序两种存储方式,在存储空间使用的灵活性上,链式存储比顺序存储要(B )。
A、低B、高C、相同D、不好说10.算法的时间复杂度取决于( C )A 、问题的规模B、待处理数据的初始状态C、问题的规模和待处理数据的初始状态D、不好说11.数据结构既研究数据的逻辑结构,又研究物理结构,这种观点(B )。
A、正确B、错误C、前半句对,后半句错D、前半句错,后半句对12.在数据结构中,从逻辑上可以把数据结构分成( C )A、动态结构和静态结构B、紧凑结构和非紧凑结构C、线性结构和非线性结构D、内部结构和外部结构13.线性表的顺序存储结构是一种( )的存储结构,线性表的链式存储结构是一种( A )存储结构。
《数据结构》第二版严蔚敏课后习题作业参考答案(1-7章)
《数据结构》第二版严蔚敏课后习题作业参考答案(1-7章)【第一章绪论】1. 数据结构是计算机科学中的重要基础知识,它研究的是如何组织和存储数据,以及如何通过高效的算法进行数据的操作和处理。
本章主要介绍了数据结构的基本概念和发展历程。
【第二章线性表】1. 线性表是由一组数据元素组成的数据结构,它的特点是元素之间存在着一对一的线性关系。
本章主要介绍了线性表的顺序存储结构和链式存储结构,以及它们的操作和应用。
【第三章栈与队列】1. 栈是一种特殊的线性表,它的特点是只能在表的一端进行插入和删除操作。
本章主要介绍了栈的顺序存储结构和链式存储结构,以及栈的应用场景。
2. 队列也是一种特殊的线性表,它的特点是只能在表的一端进行插入操作,而在另一端进行删除操作。
本章主要介绍了队列的顺序存储结构和链式存储结构,以及队列的应用场景。
【第四章串】1. 串是由零个或多个字符组成的有限序列,它是一种线性表的特例。
本章主要介绍了串的存储结构和基本操作,以及串的模式匹配算法。
【第五章数组与广义表】1. 数组是一种线性表的顺序存储结构,它的特点是所有元素都具有相同数据类型。
本章主要介绍了一维数组和多维数组的存储结构和基本操作,以及广义表的概念和表示方法。
【第六章树与二叉树】1. 树是一种非线性的数据结构,它的特点是一个节点可以有多个子节点。
本章主要介绍了树的基本概念和属性,以及树的存储结构和遍历算法。
2. 二叉树是一种特殊的树,它的每个节点最多只有两个子节点。
本章主要介绍了二叉树的存储结构和遍历算法,以及一些特殊的二叉树。
【第七章图】1. 图是一种非线性的数据结构,它由顶点集合和边集合组成。
本章主要介绍了图的基本概念和属性,以及图的存储结构和遍历算法。
【总结】1. 数据结构是计算机科学中非常重要的一门基础课程,它关注的是如何高效地组织和存储数据,以及如何通过算法进行数据的操作和处理。
本文对《数据结构》第二版严蔚敏的课后习题作业提供了参考答案,涵盖了第1-7章的内容。
填空
第六章树和二叉树PROC Postorder-eval(t:ptrType)BEGIN IF (t!=NULL)BEGIN (1)_______; (2)_______;CASE t^.data:‘+’: t^.Val:=t^. Lchild^. Val + t^. Rchild ^. Val; BREAK;‘-’: t^.Val:=t^. Lchild^. Val - t^. Rchild ^. Val; BREAK;‘*’: t^.Val:=t^. Lchild^. Val * t^. Rchild ^. Val; BREAK;‘/’: t^.Val:=t^. Lchild^. Val / t^. Rchild ^. Val; BREAK;otherwise: (3)___; BREAK;ENDCASE ENDEND;②PROC Delete(x:datatype,A:tree)BEGIN tempA:= (4)___;WHILE (tempA^.Item!=x) AND (tempA!=NULL) DOIF (x<tempA^.item) BEGIN r:=tempA; tempA:= (5)___; ENDELSE BEGIN r:=tempA;tempA:=tempA^.Rchild;END;//tempA为要删结点,r为tempA的父亲IF (6)___ return(x);IF (tempA^.Lchild!=NULL) AND (tempA^.rchild!=NULL)BEGIN t:=tempA; q:=tempA^.Rchild;WHILE (q^.Lchild!=NULL) DO BEGIN t:=q; q:=q^.Lchild; END;t^.Lchild:= (7)___; //删去qq^.Lchild :=tempA^.Lchild; q^.Rchild:=tempA^.Rchild;IF (tempA^.item< r^.item) r^.Lchild := (8)_ ELSE r^.Rchild:=q //用q代替 tempAEND;ELSE IF(tempA^.Lchild!=NULL) IF(tempA^.item<r^.item) r^.Lchild:=tempA^.LchildELSE r^.Rchild:=tempA^.LchildELSE IF(tempA^.Rchild!=NULL) IF(tempA^.item<r^.item) r^.Rchild:= (9)___ELSE r^.Lchild:=tempA^.Rchild ELSE //tempA为树叶IF(10)_ r^.Lchild:=NULL ELSE r^.Rchild:=NULLEND; 【中山大学 1999 四、 (20分)】58.下面的类PASCAL语言递归算法的功能是判断一棵二叉树(采用二叉链表存贮结构)是否为完全二叉树。
云大《数据结构》课程教学课件-第6章 树和二叉树(147P)_OK
^d ^ ^ e ^ 三叉链表
3)二叉链表是二叉树最常用的存储结构。还有其它链接方 法,采用何种方法,主要取决于所要实施的各种运算频度。
例:若经常要在二叉树中寻找某结点的双亲时,可在每个结 点上再加一个指向其双亲的指针域parent,称为三叉链表。
lchild data parent rchild
2021/8/16
2021/8/16
9
6.2 二 叉 树
6.2.1 二叉树的概念
一、二叉树的定义: 二叉树(Binary Tree)是n(n>=0)个结点的有限集,它或者是 空集(n=0)或者由一个根结点和两棵互不相交的,分别称 为根的左子树和右子树的二叉树组成。 可以看出,二叉树的定义和树的定义一样,均为递归定 义。
A
集合3
集合1
BCD
EF
G
集合2
2021/8/16
3
2、树的表示方法 1)树形图法
A
BCD
EF
G
2)嵌套集合法
3)广义表形式 ( A(B, C(E,F), D(G) )
4)凹入表示法
2021/8/16
A B
D
CG
EF
A B C E DF G
4
3、 树结构的基本术语
1)结点的度(Degree):为该结点的子树的个数。 2)树的度:为该树中结点的最大度数。
7)路径(Path):若树中存在一个结点序列k1,k2,…,kj,使得ki是 ki+1的双亲(1<=i<j),则称该结点序列是从ki到kj一条路径 (Path)
路径长度:路径的长度为j-1,其为该路径所经过的边的数 目。
A
BCD
EF
G
第6-10章 树和二叉树--答案
第6章树和二叉树一、基础知识题1.列出右图所示二叉树的叶结点、分支结点和每个结点的层次。
[解答]二叉树的叶结点有⑥、⑧、⑨。
分支结点有①、②、③、④、⑤、⑦。
结点①的层次为0;结点②、③的层次为1;结点④、⑤、⑥的层次为2;结点⑦、⑧的层次为3;结点⑨的层次为4。
2.使用(1)顺序表示和(2)二叉链表表示法,分别画出右图所示二叉树的存储表示。
[解答](1)顺序表示(2)二叉链表表示3.在结点个数为n(n>1)的各棵树中,高度最小的树的高度是多少?它有多少个叶结点?多少个分支结点?高度最大的树的高度是多少?它有多少个叶结点?多少个分支结点?[解答]结点个数为n时,高度最小的树的高度为1,有2层;它有n-1个叶结点,1个分支结点;高度最大的树的高度为n-1,有n层;它有1个叶结点,n-1个分支结点。
4.试分别画出具有3个结点的树和3个结点的二叉树的所有不同形态。
[解答]具有3个结点的树具有3个结点的二叉树5.如果一棵树有n1个度为1的结点,有n2个度为2的结点,…,n m个度为m的结点,试问有多少个度为0的结点?试推导之。
[解答]总结点数n=n0+n1+n2+…+n m总分支数e=n-1= n0+n1+n2+…+n m-1=m×n m+(m-1)×n m-1+…+2×n2+n1则有 n 0=∑=+-mi i n i 21))1((6.试分别找出满足以下条件的所有二叉树:(1) 二叉树的前序序列与中序序列相同; (2) 二叉树的中序序列与后序序列相同; (3) 二叉树的前序序列与后序序列相同。
[解答](1) 二叉树的前序序列与中序序列相同:空树或缺左子树的单支树;(2) 二叉树的中序序列与后序序列相同:空树或缺右子树的单支树; (3) 二叉树的前序序列与后序序列相同:空树或只有根结点的二叉树。
7.填空题(1)对于一棵具有n 个结点的树,该树中所有结点的度数之和为 n-1 。
数据结构——用C语言描述(第3版)教学课件第6章 树与二叉树
6.2 二叉树 6.2.1 二叉树的定义与基本操作 6.2.2 二叉树的性质 6.2.3 二叉树的存储结构
6.2.1 二叉树的定义与基本操作 定义:我们把满足以下两个条件的树型结构叫做二 叉树(Binary Tree): (1)每个结点的度都不大于2; (2)每个结点的孩子结点次序不能任意颠倒。
有序树:在树T中,如果各子树Ti之间是有先后次序的,则称为有序树。 森林:m(m≥0)棵互不相交的树的集合。将一棵非空树的根结点删去,树就变成一 个森林;反之,给森林增加一个统一的根结点,森林就变成一棵树。
同构:对两棵树,通过对结点适当地重命名,就可以使两棵树完全相等(结点对应相 等,对应结点的相关关系也像等),则称这两棵树同构。
二叉树的基本结构由根结点、左子树和右子树组成
如图示
LChild Data RChild
Data
LChild RChild
用L、D、R分别表示遍历左子树、访问根结点、遍 历右子树,那么对二叉树的遍历顺序就可以有:
(1) 访问根,遍历左子树,遍历右子树(记做DLR)。 (2) 访问根,遍历右子树,遍历左子树(记做DRL)。 (3) 遍历左子树,访问根,遍历右子树(记做LDR)。 (4) 遍历左子树,遍历右子树,访问根 (记做LRD)。 (5) 遍历右子树,访问根,遍历左子树 (记做RDL)。 (6) 遍历右子树,遍历左子树,访问根 (记做RLD)。
(8) NextSibling(Tree,x): 树Tree存在,x是Tree中的某个结点。若x不 是其双亲的最后一个孩子结点,则返回x后面的下一个兄弟结点,否则 返回“空”。
基本操作:
(9) InsertChild(Tree,p,Child): 树Tree存在,p指向Tree 中某个结点,非空树Child与Tree不相交。将Child插入Tree中, 做p所指向结点的子树。
数据结构第六章树和二叉树习题及答案
习题六树和二叉树一、单项选择题1.以下说法错误的是 ( )A.树形结构的特点是一个结点可以有多个直接前趋B.线性结构中的一个结点至多只有一个直接后继C.树形结构可以表达(组织)更复杂的数据D.树(及一切树形结构)是一种"分支层次"结构E.任何只含一个结点的集合是一棵树2.下列说法中正确的是 ( )A.任何一棵二叉树中至少有一个结点的度为2B.任何一棵二叉树中每个结点的度都为2C.任何一棵二叉树中的度肯定等于2D.任何一棵二叉树中的度可以小于23.讨论树、森林和二叉树的关系,目的是为了()A.借助二叉树上的运算方法去实现对树的一些运算B.将树、森林按二叉树的存储方式进行存储C.将树、森林转换成二叉树D.体现一种技巧,没有什么实际意义4.树最适合用来表示 ( )A.有序数据元素 B.无序数据元素C.元素之间具有分支层次关系的数据 D.元素之间无联系的数据5.若一棵二叉树具有10个度为2的结点,5个度为1的结点,则度为0的结点个数是()A.9 B.11 C.15 D.不确定6.设森林F中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。
与森林F 对应的二叉树根结点的右子树上的结点个数是()。
A.M1 B.M1+M2 C.M3 D.M2+M37.一棵完全二叉树上有1001个结点,其中叶子结点的个数是()A. 250 B. 500 C.254 D.505 E.以上答案都不对8. 设给定权值总数有n 个,其哈夫曼树的结点总数为( )A.不确定 B.2n C.2n+1 D.2n-19.二叉树的第I层上最多含有结点数为()A.2I B. 2I-1-1 C. 2I-1 D.2I -110.一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( )结点A.2h B.2h-1 C.2h+1 D.h+111. 利用二叉链表存储树,则根结点的右指针是()。
A.指向最左孩子 B.指向最右孩子 C.空 D.非空12.已知一棵二叉树的前序遍历结果为ABCDEF,中序遍历结果为CBAEDF,则后序遍历的结果为()。
第六章树与二叉树教案 二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
即 k-1 ≤ log2 n < k
因为 k 只能是整数,因此, k =log2n + 1
问题:
一棵含有n个结点的二叉树,可能达 到的最大深度和最小深度各是多少?
1
答:最大n,
2
最小[log2n] + 1
第六章 树和二叉树教案
二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
树是常用的数据结构
•家族 •各种组织结构 •操作系统中的文件管理 •编译原理中的源程序语法结构 •信息系统管理 •。。。。
2
6.1 树的类型定义 6.2 二叉树的类型定义
6.2.3 二叉树的存储结构 6.3 二叉树的遍历
二叉树上每个结点至多有两棵子树, 则第 i 层的结点数 = 2i-2 2 = 2i-1 。
性质 2 :
深度为 k 的二叉树上至多含 2k-1 个 结点(k≥1)。
证明:
基于上一条性质,深度为 k 的二叉
树上的结点数至多为
20+21+ +2k-1 = 2k-1 。
(等比数列求和)
k
k
(第i层的最大结点数) 2i1 2k
i 1
i 1
性质 3 :
对任何一棵二叉树,若它含有n0 个叶 子结点(0度节点)、n2 个度为 2 的结 点,则必存在关系式:n0 = n2+1。
证明:
设 二叉树上结点总数 n = n0 + n1 + n2 又 二叉树上分支总数 b = n1+2n2
而 b = n-1 = n0 + n1 + n2 - 1 由此, n0 = n2 + 1 。
数据结构第六章考试题库(含答案)
第六章 树和二叉树一、选择题1.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( )A .-A+B*C/DE B. -A+B*CD/E C .-+*ABC/DE D. -+A*BC/DE【北京航空航天大学 1999 一、3 (2分)】2.算术表达式a+b*(c+d/e )转为后缀表达式后为( )【中山大学 1999 一、5】A .ab+cde/*B .abcde/+*+C .abcde/*++D 3. 设有一表示算术表达式的二叉树(见下图),它所表示的算术表达式是( ) 【南京理工大学1999 一、20(2分)】 A. A*B+C/(D*E)+(F-G) B. (A*B+C)/(D*E)+(F-G) C. (A*B+C)/(D*E+(F-G )) D. A*B+C/D*E+F-G4. 设树T 的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1 则T 中的叶子数为( )A .5B .6C .7D .8【南京理工大学 2000 一、8 (1.5分)】5. 在下述结论中,正确的是( )【南京理工大学 1999 一、4 (1分)】①只有一个结点的二叉树的度为0; ②二叉树的度为2; ③二叉树的左右子树可任意交换; ④深度为K 的完全二叉树的结点个数小于或等于深度相同的满二叉树。
A .①②③B .②③④C .②④D .①④6. 设森林F 对应的二叉树为B ,它有m 个结点,B 的根为p,p 的右子树结点个数为n,森林F 中第一棵树的结点个数是( )A .m-nB .m-n-1C .n+1D .条件不足,无法确定 【南京理工大学2000 一、17(1.5分)】7. 树是结点的有限集合,它( (1))根结点,记为T 。
其余结点分成为m (m>0)个((2))的集合T1,T2, …,Tm ,每个集合又都是树,此时结点T 称为Ti 的父结点,Ti 称为T 的子结点(1≤i ≤m )。
数据结构 第六章 树和二叉树
F
G
H
M
I
J
结点F,G为堂兄弟 结点A是结点F,G的祖先
5
树的基本操作
树的应用很广,应用不同基本操作也不同。下面列举了树的一些基本操作: 1)InitTree(&T); 2)DestroyTree(&T); 3)CreateTree(&T, definition); 4)ClearTree(&T); 5)TreeEmpty(T); 6)TreeDepth(T); 7) Root(T); 8) Value(T, &cur_e); 9) Assign(T, cur_e, value); 10)Paret(T, cur_e); 11)LeftChild(T, cur_e); 12)RightSibling(T, cur_e); 13)InsertChild(&T, &p, i, c); 14)DeleteChild(&T,&p, i); 15)TraverseTree(T, Visit( ));
1
2 4 8 9 10 5 11 12 6 13 14 3 7 15 4 6 2
1
3
5 7
证明:设二叉树中度为1的结点个数为n1 根据二叉树的定义可知,该二叉树的结点数n=n0+n1+n2
又因为在二叉树中,度为0的结点没有孩子,度为1的结点有1 个孩子,度为2的结点有2个结孩子,故该二叉树的孩子结点 数为 n0*0+n1*1+n2*2(分支数) 而一棵二叉树中,除根结点外所有都为孩子结点,故该二叉 树的结点数应为孩子结点数加1即:n=n0*0+n1*1+n2*2+1
文件夹1
文件夹n
第六章 树与二叉树
森林的遍历
(4) 广度优先遍历(层次序 遍历) :
数据结构
若森林F为空,返回; 否则 依次遍历各棵树的根 结点; 依次遍历各棵树根结 点的所有子女; 依次遍历这些子女结 森林的二叉树表示 点的子女结点。
45
二叉树的计数 由二叉树的前序序列和中序序列可唯 一地确定一棵二叉树。例, 前序序列 { ABHFDECKG } 和中序序列 { HBDFAEKCG }, 构造二叉树过程如 下:
三个结点构成的不同的二叉树
8
用二 叉 树 表达实际问题
例2 双人比赛的所有可能的结局
开始
甲
开局连赢两局 或五局三胜
乙
甲
甲 甲 乙
乙
乙 甲 乙 甲 甲 乙
甲
乙 甲
乙
乙
甲
乙甲
乙
甲
乙 甲 乙
二叉树的性质
数据结构
性质1 若二叉树的层次从1开始, 则在二叉树的 第 i 层最多有 2i -1个结点。(i 1) [证明用数学归纳法] 性质2 高度为k的二叉树最多有 2k-1个结点。 (k 0) [证明用求等比级数前k项和的公式]
前序遍历二叉树算法的框架是 若二叉树为空,则空操作; 否则 – 访问根结点 (V); – 前序遍历左子树 (L); – 前序遍历右子树 (R)。
遍历结果 -+a*b-cd/ef
27
数据结构
后序遍历 (Postorder Traversal)
后序遍历二叉树算法的框架是 若二叉树为空,则空操作; 否则 – 后序遍历左子树 (L); – 后序遍历右子树 (R); – 访问根结点 (V)。
数据结构
36
左子女-右兄弟表示法 第一种解决方案
数据结构课后习题答案第六章
欢迎下载
6
-
9.已知信息为“ ABCD BCD CB DB ACB ”,请按此信息构造哈夫曼树,求出每一字符的最优编码。 10. 己知中序线索二叉树采用二叉链表存储结构,链结点的构造为:
_,双分支结点的个数为 ____, 3 分支结点的个数为 ____, C 结点的双亲结点为 ____ ,其孩子结点为 ____。
5. 一棵深度为 h 的满 k 叉树有如下性质:第 h 层上的结点都是叶子结点,其余各层上的每个结点都有
k 棵非空子树。
如果按层次顺序(同层自左至右)从 1 开始对全部结点编号,则:
7.二叉树的遍历分为 ____ ,树与森林的遍历包括 ____。 8.一棵二叉树的第 i(i>=1) 层最多有 ____ 个结点;一棵有 n(n>0) 个结点的满二叉树共有 ____ 个叶子和 ____个非终端结点。
9.在一棵二叉树中,假定双分支结点数为 5 个,单分支结点数为 6 个,则叶子结点为 ____个。
A. 逻辑 B.逻辑和存储 C.物理 D.线性 19.由权值分别是 8,7, 2, 5 的叶子结点生成一棵哈夫曼树,它的带权路径长度为
A. 23 B. 37 C. 46 D. 43 20.设 T 是哈夫曼树,具有 5 个叶结点,树 T 的高度最高可以是 ( )。
A.2 B . 3 C. 4 D. 5
()
6.在叶子数目和权值相同的所有二叉树中,最优二叉树一定是完全二叉树。
()
7.由于二叉树中每个结点的度最大为 2,所以二叉树是一种特殊的树。 8.二叉树的前序遍历序列中,任意一个结点均处在其子树结点的前面。
数据结构第6章 树习题+答案
第六章 树和二叉树一、选择题1.已知一算术表达式的中缀形式为 A+B*C-D/E ,后缀形式为ABC*+DE/-,其前缀形式为( D )A .-A+B*C/DE B. -A+B*CD/E C .2. 设有一表示算术表达式的二叉树(见下图), 它所表示的算术表达式是( C ) A. A*B+C/(D*E)+(F-G) B. (A*B+C)/(D*E)+(F-G) C. (A*B+C)/(D*E+(F-G )) D. A*B+C/D*E+F-G 3. 在下述结论中,正确的是( D )①只有一个结点的二叉树的度为0; ②二叉树的度为2; ③二叉树的左右子树可任意交换;④深度为K 的完全二叉树的结点个数小于或等于深度相同的满二叉树。
A .①②③B .②③④C .②④D .①④4. 设森林F 对应的二叉树为B ,它有m 个结点,B 的根为p,p 的右子树结点个数为n,森林F 中第一棵树的结点个数是( A )A .m-nB .m-n-1C .n+1D .条件不足,无法确定5.设森林F 中有三棵树,第一,第二,第三棵树的结点个数分别为M1,M2和M3。
与森林F 对应的二叉树根结点的右子树上的结点个数是( D )。
A .M1B .M1+M2C .M3D .M2+M36. 设给定权值总数有n 个,其哈夫曼树的结点总数为( D )A .不确定B .2nC .2n+1D .2n-17.一棵二叉树高度为h,所有结点的度或为0,或为2,则这棵二叉树最少有( B )结点A .2hB .2h-1C .2h+1D .h+18. 一棵具有 n 个结点的完全二叉树的树高度(深度)是( A )A .⎣logn ⎦+1B .logn+1C .⎣logn ⎦D .logn-19.深度为h 的满m 叉树的第k 层有( A )个结点。
(1=<k=<h)A .m k-1B .m k -1C .m h-1D .m h -110. 一棵树高为K 的完全二叉树至少有( C )个结点A .2k –1 B. 2k-1 –1 C. 2k-1 D. 2k11. 利用二叉链表存储树,则根结点的右指针是( C )。
数据结构详细教案——树与二叉树
数据结构教案第六章树与二叉树目录6.1树的定义和基本术语 (1)6.2二叉树 (2)6.2.1 二叉树的定义 (2)6.2.2 二叉树的性质 (4)6.2.3 二叉树的存储结构 (5)6.3树和森林 (6)6.4二叉树的先|中|后序遍历算法 (7)6.5先|后|中序遍历的应用扩展 (9)6.5.1 基于先序遍历的二叉树(二叉链)的创建 (9)6.5.2 统计二叉树中叶子结点的数目 (9)6.5.3 求二叉树的高度 (10)6.5.4 释放二叉树的所有结点空间 (11)6.5.5 删除并释放二叉树中以元素值为x的结点作为根的各子树 (12)6.5.6 求位于二叉树先序序列中第k个位置的结点的值 (12)6.5.7 线索二叉树 (13)6.5.8 树和森林的遍历 (14)6.6二叉树的层次遍历 (16)6.7判断一棵二叉树是否为完全二叉树 (16)6.8哈夫曼树及其应用 (18)6.8.1 最优二叉树(哈夫曼树) (18)6.8.2 哈夫曼编码 (19)6.9遍历二叉树的非递归算法 (19)6.9.1 先序非递归算法 (19)6.9.2 中序非递归算法 (20)6.9.3 后序非递归算法 (21)第6章二叉树和树6.1 树的定义和基本术语1、树的递归定义1)结点数n=0时,是空树2)结点数n>0时有且仅有一个根结点、m个互不相交的有限结点集——m棵子树2、基本术语结点:叶子(终端结点)、根、内部结点(非终端结点、分支结点);树的规模:结点的度、树的度、结点的层次、树的高度(深度)结点间的关系:双亲(1)—孩子(m),祖先—子孙,兄弟,堂兄弟兄弟间是否存在次序:无序树、有序树去掉根结点非空树森林引入一个根结点3、树的抽象数据类型定义树特有的操作:查找:双亲、最左的孩子、右兄弟结点的度不定,给出这两种操作可以查找到一个结点的全部孩子插入、删除:孩子遍历:存在一对多的关系,给出一种有规律的方法遍历(有且仅访问一次)树中的结点ADT Tree{数据对象:D={a i | a i∈ElemSet, i=1,2,…,n, n≥0}数据关系:若D为空集,则称为空树;若D仅含一个数据元素,则R为空集,否则R={H},H是如下二元关系:(1) 在D中存在唯一的称为根的数据元素root,它在关系H下无前驱;(2) 若D-{root}≠Ф,则存在D-{root}的一个划分D1, D2, …, D m (m>0)(D i 表示构成第i棵子树的结点集),对任意j≠k (1≤j, k≤m) 有D j∩D k=Ф,且对任意的i (1≤i≤m),唯一存在数据元素x i∈D i, 有<root,x i>∈H(H表示结点之间的父子关系);(3) 对应于D-{root}的划分,H-{<root, x1>,…, <root, x m>}有唯一的一个划分H1, H2, …, H m(m>0)(H i表示第i棵子树中的父子关系),对任意j≠k(1≤j,k≤m)有H j∩H k=Ф,且对任意i(1≤i≤m),H i是D i上的二元关系,(D i, {H i})是一棵符合本定义的树,称为根root的子树。
严蔚敏《结构(c语言)习题集》答案第六章树和二叉树文库
严蔚敏《数据结构(c语言版>习题集》答案第六章树和二叉树文库.txt师太,你是我心中的魔,贫僧离你越近,就离佛越远……初中的体育老师说:谁敢再穿裙子上我的课,就罚她倒立。
第六章树和二叉树6.33int Is_Descendant_C(int u,int v>//在孩子存储结构上判断u是否v的子孙,是则返回1,否则返回0{if(u==v> return 1。
else{if(L[v]>if (Is_Descendant(u,L[v]>> return 1。
if(R[v]>if (Is_Descendant(u,R[v]>> return 1。
//这是个递归算法}return 0。
}//Is_Descendant_C6.34int Is_Descendant_P(int u,int v>//在双亲存储结构上判断u是否v的子孙,是则返回1,否则返回0{for(p=u。
p!=v&&p。
p=T[p]>。
if(p==v> return 1。
else return 0。
}//Is_Descendant_P6.35这一题根本不需要写什么算法,见书后注释:两个整数的值是相等的.6.36int Bitree_Sim(Bitree B1,Bitree B2>//判断两棵树是否相似的递归算法{if(!B1&&!B2> return 1。
else if(B1&&B2&&Bitree_Sim(B1->lchild,B2->lchild>&&Bitree_Sim(B1->rchild,B2->rchild>>return 1。
else return 0。
}//Bitree_Sim6.37void PreOrder_Nonrecursive(Bitree T>//先序遍历二叉树的非递归算法{InitStack(S>。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 1
A
0 1
ABCDEF
D
0 1 0
B
1
0
C
1
E
1
1 Nห้องสมุดไป่ตู้LL
先序线索二叉树
F
2.在中序线索二叉树找前驱和后继
由先缀表示式建树的算法的基本操作:
scanf(&ch); if ( In(ch, 字母集 )) 建叶子结点; else { 建根结点; 递归建左子树; 递归建右子树; }
由原表达式建树
(a+b)×c – d/e
-
× 基本操作:
/
c d e
+
b scanf(&ch); a if (In(ch, 字母集 )) { 建叶子结点; 暂存; } else if (In(ch, 运算符集)) { 和前一个运算符比较优先数; 若当前的优先数“高”,则暂存; 否则建运算符子树; }
由原表达式建树
(a+b)×c – d/e
-
× 基本操作:
/
c d e
#
+
b scanf(&ch); a 运算符栈S if (In(ch, 字母集 )) { 建叶子结点; 暂存; } else if (In(ch, 运算符集)) { 和前一个运算符比较优先数; 若当前的优先数“高”,则暂存; 否则建运算符子树; 结点栈PTR }
a b
先序序列 中序序列
^ e
^ c ^
^d ^ ^ g ^
f ^
ps
n 先序序列 中序序列
a b c d e f g c b d a e g f
is
k 算法步骤: 1. 先序序列的第一个字符为二叉树T的根; 2. 在中序序列找先序序列的第一个字符; 3. 该字符将中序序列分成两个子串,这两个子串分别为 T的左子树中序序列和右子树中序序列 4. 根据左子树中序序列和右子树中序序列的长度可以 将先序序列分解成两个部分,它们分别是对应的两 个左右子树中序序列的子先序序列。
switch (ch) { case ( : Push(S, ch); break; case ) : Pop(S, c); while (c!= ( ) { CrtSubtree( t, c); // 建二叉树并入栈 Pop(S, c) } break; defult : while(!Gettop(S, c) && ( precede(c,ch))) { CrtSubtree( t, c); Pop(S, c); } if ( ch!= # ) Push( S, ch); break; } // switch
后缀表达式 a b + c × d e / -
按给定的表达式建相应二叉树
由先缀表示式建树 例如:已知表达式的先缀表示式 -×+ a b c / d e
由原表达式建树 例如:已知表达式 (a+b)×c – d/e
对应先缀表达式 -×+ a b c / d e的二叉树
×
/
c d e
+
a b
特点: 运算符为分支结点 操作数为叶子结点,
本讲作业
6. 41, 6.43 ,6.44
6.5 线索二叉树
一、问题的提出
二、线索二叉树定义
三、在线索二叉树上找前驱和后继的规律
四、如何建立中序线索二叉树?
五、线索二叉树的遍历算法
六、在线索二叉树中插入结点
如何找二叉树上结点的前驱和后继?
遍历二叉树的结果是, 求得结点的一个线性序列。 例如: A 先序序列: ABCDEFGHK B E 中序序列 : C F BDCAHGKFE G D 后序序列: H K
对线索链表中结点的约定:
ltag lchild data rchild rtag
若该结点的右子树不空, 则rchild域的指针指向其右子树, 且右标志域的值为 “指针 Link”; 即:rtag = 0; 否则,rchild域的指针指向其“后继” 且右标志的值为“线索 Thread”。 即:rtag = 1 ;
由二叉树的先序和中序序列建树
先序序列 a b c
a b c
c b
a
a
b c
仅知二叉树的先序序列“abcdefg” 不能唯一确定一棵二叉树, 二叉树的先序序列 根 左子树 右子树 如果同时已知二叉树的中序序列 “cbdaegf”,则会如何?
二叉树的中序序列 左子树 根 右子树
例如:
a b c d e f g c b d a e g f
A
0
1
B
1
0
D
0
0
C
1 1
E
1
1
NULL
F
6.5 线索二叉树
一、问题的提出
二、线索二叉树定义
三、在线索二叉树上找前驱和后继的规律
四、如何建立中序线索二叉树?
五、线索二叉树的遍历算法
六、在线索二叉树中插入结点
二、线索二叉树
术语:
线索:指向该线性序列中的“前驱” 和 “后继” 的指针。
线索链表:包含 “线索” 的存储结构。 ltag lchild data rchild rtag
void CrtSubtree (Bitree& T, char c) { if (!(T= new BiTNode)) exit(OVERFLOW); T->data = c; Pop(PTR, rc); T->rchild = rc; Pop(PTR, lc); T->lchild = lc; Push(PTR, T); }
先序遍历:A B C D
算法执行过程举例如下:
A B
C
T
D
A
^B ^C^
^D^
以字符串形式定义二叉树算法的基本操作:
scanf(&ch); if (ch==空 ) 建立空指针; else { 生成一颗子树的根结点; 递归建左子树; 递归建右子树; }
Status CreateBiTree(BiTree &T) { scanf(&ch); if (ch==' ') T = NULL; else { if (!(T = new BiTNode)) exit(OVERFLOW); T->data = ch; // 生成根结点 CreateBiTree(T->lchild); // 构造左子树 CreateBiTree(T->rchild); // 构造右子树 } return OK; } // CreateBiTree
void CrtExptree(BiTree &T, char exp[] ) { InitStack(S); Push(S, #); InitStack(PTR); p = exp; ch = *p; while (!(GetTop(S)==# && ch==#)) { if (!IN(ch, OP)) CrtNode( t, ch ); // 建叶子结点并入栈 else { … … } if ( ch!= # ) { p++; ch = *p;} } // while Pop(PTR, T); } // CrtExptree
找后继:若无右孩子,则右线索所指结点为后继; 否则,右孩子的“最左下”孩子为后继; 若无左孩子,则左线索所指结点为前驱; 找前驱: 否则,左孩子的“最右下”孩子为前驱;
中序线索二叉树
NULL
0 B
A
0 1 D
C H BAD FE
NULL
0 C
1
0 0 E 1 1
1
0 1
建叶子结点的算法为:
void CrtNode(BiTree& T,char ch) { if (!(T= new BiTNode)) exit(OVERFLOW); T->data = char; T->lchild = T->rchild = NULL; Push( PTR, T ); }
建子树的算法为:
5、建立二叉树的存储结构
以字符串的形式定义二叉树
按给定的表达式建相应二叉树
由二叉树的先序和中序序列建树
以字符串的形式定义一棵二叉树 (先序次序:加空白字符) 例如: 以空白字符“ ”表示 空树 只含一个根结点 以字符串“A 的二叉树 A
A B C D
”表示
以下列字符串表示
C
A A(B B( ,C C( , )),D D( , ))
if (!(T= new BiTNode)) exit(OVERFLOW); T->data = pre[ps]; if (k==is) T->Lchild = NULL; //没有左子树
else CrtBT(T->Lchild, pre[], ino[], ps+1, is, k-is ); //左子树递归 if (k=is+n-1) T->Rchild = NULL; //没有右子树 else CrtBT(T->Rchild, pre[], ino[], ps+1+(k-is), k+1, n-(k-is)-1 ); //右子树递归
D C B HK GFEA
如何在二叉树上记录结点的前驱和后继信息?
利用二叉链表结点中的n+1个空链域:
root
A
B C
D
E
先序遍历: A B C D E F