九年级数学上册 22.1二次函数的图象和性质4二次函数y=ax2+bx+c的图象和性质1_6-9
人教版九上数学22.1.4二次函数y=ax2+bx+c的图象和性质
二次函数c bx ax y ++=2的图象和性质要点链接★二次函数y=ax ²+bx+c 可配方为:224()24b ac b y a x a a-=++,其顶点坐标为( , ),对称轴直线是 . ★求抛物线顶点和对称轴的方法:(1)直接代入顶点公式24(,)24b ac b a a --,对称轴公式2bx a=- (2)将函数y=ax ²+bx+c 配方成y=a (x-h )²+k 的形式得到顶点坐标和对称轴. ★a 、b 、c 与图象的关系:1.a 正负决定抛物线的 :a >0时, ;a <0时, .|a |决定抛物线的开口大小:|a |越大,则 ,|a |越小,则 .2.a 、b 同时决定 :①当b =0时,对称轴是 ;②左同右异,即当a 、b 同号时,对称轴在 ;当a 、b 异号时,对称轴在 .3.c 决定抛物线与y 轴 :①当c >0时,抛物线与y 轴交点在 ;②当c <0时,抛物线与y 轴交点在 ;③当c =0时,抛物线经过 . 题型一 直接利用c bx ax y ++=2获取图象信息例1 下列对于二次函数x x y -=2的图象描述正确的是( )A.开口向下B.对称轴是y 轴C.经过原点D.在对称轴右侧部分是下降的 【变式训练1】对于二次函数12842--=x x y 下列说法正确的是( ) A.图象开口向下 B.顶点坐标是(-1,3) C.当0<x 时,y 随x 的增大而减小 D.图象的对称轴是直线1-=x题型二 确定抛物线c bx ax y ++=2的解析式 角度a 利用平移规律确定抛物线的解析式例2 把抛物线322+-=x x y 沿x 轴向右平移2个单位长度,得到抛物线的解析式为 角度b 利用待定系数法确定抛物线的解析式例3 抛物线c bx ax y ++=2经过A (-2,4),B (6,4)两点,且顶点在x 轴上,则抛物线的解析式为 .【变式训练2】若函数k h x a y +-=2)(的图象经过原点,最小值为-8且形状与抛物线3222+--=x x y 相同,则此函数的解析式为 ;题型三 根据抛物线c bx ax y ++=2确定a 、b 、c 的关系例4 已知二次函数y=ax ²+bx+c (a≠0)的图象如图所示,有下列结论:①0<abc ;②c a b -<;③b c 32<;④)1)((≠+<+m b am m b a .其中正确的结论是 (只填序号)例4图 变式3图【变式训练3】已知二次函数y=ax ²+bx+c (a ≠0)的图象如图,现有下列结论:①abc >0;②0<++c b a ;③b =2a ;④a+b >0.其中正确的结论是 (只填序号). 题型四 二次函数y=ax ²+bx+c 与一次函数的双图象问题例5 一次函数y=ax+b (a ≠0)与二次函数y=ax ²+bx+c 在同一坐标系中的图象可能是( )题型五 二次函数y=ax ²+bx+c 的实际应用例6 某小说中有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):由这些数据,科学家推测出植物每天高度增长量y 是温度x 的二次函数,有下列说法: ①该植物在0℃时,每天高度增长量最大;②该植物在-6℃时,每天高度增长量仍能保持在20mm 以上;③该植物与大多数植物不同,6℃以上的环境下高度几乎不增长,其中正确的有( )A.0个B.1个C.2个D.3个【变式训练4】某学校开展了多场足球比赛,在某场比赛中,一个足球被从地面上向上踢出,它距离地面的高度h (m )可以用公式t v t h 025+-=表示,其中)(s t 表示足球被踢出后经过的时间,)/(0s m v 是足球被踢出时的速度,如果要求足球的最大高度达到20m ,那么足球被踢出时的速度应该达到( )A.5m/sB.10m/sC.20m/sD.40m/s题型六 二次函数的动态问题例7 如图,已知关于x 的二次函数y=x ²+bx+c 的图象与x 轴交于点A (1,0)和点B ,与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D.(1)求二次函数的解析式.(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在,请求出点P 的坐标.(3)有一个动点M 从点A 出发,以每秒1个单位长度的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位长度的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M ,N 运动到何处时,△MNB 的面积最大,试求出最大面积.【变式训练5】如图,已知抛物线y=x²+bx+c过点A(1,0),C(0,-3).(1)求此抛物线对应的函数解析式,并确定其顶点.(2)在抛物线上存在一动点P,使△ABP的面积为10,请求出点P的坐标.中考演练考法一 二次函数c bx ax y ++=2的图象和性质例1.(2018成都)关于二次函数1422-+=x x y ,下列说法正确的是( ) A.图象与y 轴的交点坐标为(0,1) B.图象的对称轴在y 轴的右侧 C.当0<x 时,y 的值随x 值的增大而减小 D.y 的最小值为-3【变式训练1】(2018攀枝花)抛物线222+-=x x y 的顶点坐标为( ) A.(1,1) B.(-1,1) C.(1,3) D.(-1,3) 考法二 求二次函数的解析式 例2.(2018宁波)已知抛物线c bx x y ++-=221经过点)23,0(),0,1(. (1)求该抛物线的函数解析式; (2)将抛物线c bx x y ++-=221平移,使其顶点恰好落在原点,写出一种平移的方法及平移后的函数解析式.【变式训练2】(2018乌鲁木齐)把抛物线3422+-=x x y 向左平移1个单位长度,得到抛物线的解析式为 .【变式训练3】(2018湖州)已知抛物线)0(32≠-+=a bx ax y 经过点)0,3(),0,1(-,求b a ,的值考法三 抛物线c bx ax y ++=2与一次函数的双图象问题例3.(2017阜新)二次函数c bx ax y ++=2的图象如图所示,则一次函数c ax y +=的图象可能是( )【变式训练4】(2018德州)函数122+-=x ax y 和a ax y -=(a 是常数且0≠a )在同一平面直角坐标系中的图象可能是( )考法四 二次函数c bx ax y ++=2的图象与c b a ,,的关系例4.(2018日照)已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列结论:①0<abc ;②02<-b a ;③22)(c a b +>;④若点),1(),,3(21y y -都在抛物线上,则有21y y >.其中正确的结论有( )A.4个B.3个C.2个D.1个例4图 变式5图【变式训练5】(2017遵义)如图,抛物线c bx ax y ++=2经过点(-1,0),对称轴为l ,有下列结论:①0>abc ;②0=+-c b a ;③02<+c a ;④0<+b a .其中,所有正确的结论是( )A.①③B.②③C.②④D.②③④考法五 二次函数的综合应用例5.(2018宁夏)如图,抛物线c bx x y ++-=231经过点)0,33(A 和点B (0,3),且这个抛物线的对称轴为直线l ,顶点为C.(1)求抛物线的解析式;(2)连接AB 、AC 、BC ,求△ABC 的面积.【变式训练6】(2018南通)在平面直角坐标系xOy 中,已知抛物线k k x k x y 25)1(222-+--=(k 为常数).(1)若抛物线经过点),1(2k ,求k 的值;(2)若抛物线经过点),2(1y k 和点),2(2y ,且21y y >,求k 的取值范围;(3)若将抛物线向右平移1个单位长度得到新的抛物线,当1≤x ≤2时,新抛物线对应的函数有最小值23-,求k 的值.课后作业1.用配方法将二次函数982--=x x y 化为k h x a y +-=2)(的形式为( )A.7)4(2+-=x yB.25)4(2--=x yC.7)4(2++=x yD.25)4(2-+=x y2.如图,二次函数bx ax y +=2的图象开口向下,且经过第三象限的点P.若点P 的横坐标为-1,则一次函数b x b a y +-=)(的图象大致是( )3.如图,抛物线c bx ax y ++=2的对称轴为直线x=1,且过点(3,0),有下列结论:①0>abc ;②a-b+c <0;③3a-c >0.其中正确结论的个数有( ) A.1 B.2 C.3 D.44.二次函数342++=x x y 的图象是由c bx ax y ++=2的图象向右平移1个单位长度,再向下平移2个单位长度得到的,则=a ,=b ,=c . 5.已知抛物线y=ax ²+bx+c 的图象如图,则|a-b+c |+|2a+b |= .6.已知如图,抛物线y=ax ²+bx+c 经过A (1,0),B (5,0),C (0,5)三点.(1)求抛物线的解析式;(2)求抛物线的顶点坐标、对称轴;(3)若过点C 的直线与抛物线交于点E (4,m ),连接CB ,BE ,并求出△CBE 的面积.人教版九上数学22.1.4二次函数y=ax2+bx+c的图象和性质7.如图,已知抛物线过点A(4,0),B(-2,0),C(0,-4).(1)求抛物线的解析式;(2)如图,点M是抛物线AC上段上的一个动点,当图中阴影部分的面积最小时,求点M的坐标.11 / 11。
最新人教版初中数学九年级上册《22.1.4(第1课时)》精品教学课件
次函数的性质填空:
x=0时, y=c.
x b1
2a1 y
x b2 2a2
a1 _>__ 0 b1_>__ 0 c1_>__ 0
a2_>__ 0 b2_<__ 0
c2_=__ 0
对称轴在y轴 左侧,x<0
O
x 开口向上,a>0
x b1 <0 2a1
x b2 >0
2a2 对称轴在y轴 右侧,x>0
探究新知 【思考4】 如何画二次函数y 1 x2 6x 21的图象?
2
x
…3 4 5 6 7 8
y 1 (x 6)2 +3 …
2
7.5
5
3.5
3
3.5 5
y
方法一:描点法
10
1. 利用图象的对称性列表
9… 7.5 …
2.然后描点画图,得到 图象如右图.
5
y
1 2
x2
-
6x
21
O
5
10 x
1 [(x2 12x 62 ) 62 42] 2
1 [(x 6)2 6] 2
1 (x 6)2 3. 2
探究新知
y 1 x2 6x 21 2
(1)“提”:提出二次项系数;
配
(2)“配”:括号内配成完全平方;
方
(3)“化”:化成顶点式.
y 1 (x 6)2 3 2
【提示】配方后的表达式通常称 为配方式或顶点式.
(2) y 5x2 80x 319; 直线x=8 8, 1
(3)
y
2
x
1 2
x
2
;
直线x=1.25
5 4
,
9 8
(4) y x 12 x.
人教版九年级数学上册第二十二章《二次函数》教案
第二十二章二次函数22.1 二次函数的图象和性质22.1.1 二次函数1.能结合具体情境体会二次函数的意义,理解二次函数的有关概念.2.能够表示简单变量之间的二次函数关系.3.通过具体问题情景中的二次函数关系了解二次函数的一般表述式,在类比一次函数、反比例函数表达式时感受二次函数中二次项系数a≠0的重要特征.4.在探究二次函数的学习活动中,体会通过探究发现的乐趣.【教学重点】结合具体情境体会二次函数的意义,掌握二次函数的有关概念.【教学难点】1.能通过生活中的实际问题情境,构建二次函数关系;2.重视二次函数y=ax2+bx+c中a≠0这一隐含条件.一、情境导入,初步认识问题1 如图所示是一个棱长为xcm的正方体,它的表面积为ycm2,则y与x 之间的关系式可表示为,y是x的函数吗?问题2 n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队n有什么关系?这就是说,每个队要与其他个球队各比赛一场,整个比赛场次数应为,这里m是n的函数吗?问题3 某种产品现在的年产量为20t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x值而确定,y与x之间的关系应怎样表示?二、思考探究,获取新知全班同学合作交流,共同完成上面三个问题,教师全场巡视,发现问题可给予个别指导.在同学们基本完成情形下,教师再针对问题2,解释m=12n(n-1)而不是m=n(n-1)的原因;针对问题3,可引导同学们先算出第二年产量为20(1+x)t ,第三年产量为20(1+x)(1+x)t ,得到y=20(1+x)2.【教学说明】上述活动的目的在于引导同学们能通过具体问题情境建立二次函数关系式,体会二次函数是刻画实际生活中自变量与因变量的关系的重要模型之一.思考函数y=6x 2,m=12n 2-12n,y=20x 2+40x+20有哪些共同点? 【教学说明】在同学们相互交流、发言的过程中,教师应关注:(1)语言是否规范;(2)是否抓住共同点;(3)针对少数同学可能进一步探索出其不同点等问题应及时引导,让同学们在轻松快乐的环境中进入二次函数的学习.【归纳结论】上述三个函数都是用自变量的二次式表示的,从而引出二次函数定义.一般地,形如y=ax 2+bx+c(a,b,c 为常数,a ≠0)的函数,叫做二次函数.其中x 是自变量,a 、b 、c 分别是二次项系数,一次项系数和常数项.【教学说明】针对上述定义,教师应强调以下几个问题:(1)关于自变量x 的二次式必须是二次整式,即可以是二次单项式、二次二项式和二次三项式;(2)二次项的系数a ≠0是定义中不可缺少的条件,若a=0,则它是一次函数;(3)二次项和二次项系数不同,二次项指ax 2,二次项系数则仅是指a 的值;同样,一次项与一次项系数也不同.教师在学生理解的情况下,引导学生做课本P29练习.三、运用新知,深化理解1.下列函数中,哪些是二次函数,哪些不是?若是二次函数,指出它的二次项系数、一次项系数和常数项:(1)y=(x+2)(x-2);(2)y=3x(2-x)+3x 2; (3)y=21x -2x+1;(4)y=1-3x 2.2.若y=(m+1)xm 2+1-2x+3是y 关于x 的二次函数,试确定m 的值或取值范围.3.某商场以每件30元的价格购进一种商品,试销中发现:这种商品的销售量m(件)与每件商品的销售价x (元)满足一次函数关系m=162-2x ,试写出商场销售这种商品的日销售利润y (元)与每件商品的销售价x (元)之间的函数关系式,y 是x 的二次函数吗?4.如图,用同样规格的正方形白瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n 个图中,每一横行共有 块瓷砖,每一竖列共有 块瓷砖(均用含n 的代数式表示);(2)设铺设地面所用瓷砖的总块数为y ,请写出y 与(1)中的n 的函数关系式(不要求写自变量n 的取值范围).【教学说明】这个环节的教学自主性很强,可让同学们分小组完成,对优胜小组给予鼓励,培养学生团队精神,让部分学生分享成功的快乐,但对题2、3、4,教师应及时给予引导,鼓励学生大胆完成.【答案】1.解:(1)y=(x+2)(x-2)=x 2-4,该函数是二次函数,它的二次项系数为1,一次项系数是0,常数项是-4.(2)y=3x(2-x)+3x 2=6x,该函数不是二次函数.(3)该函数不是二次函数.(4)该函数是二次函数,它的二次项系数为-3,一次项系数为0,常数项为1.2.解:∵()21123m y m x x +=+-+是y 关于x 的二次函数.∴m+1≠0且m 2+1=2,∴m≠-1且m2=1,∴m=1.3.解:由题意分析可知,该商品每件的利润为(x-30)元,则依题意可得:y=(162-3x)(x-30)即y=-3x2+252x-4860由此可知y是x的二次函数.4.解:(1)观察图示可知第1、2、3个图形中每一横行瓷砖分别为4,5,6,每一竖列瓷砖分别为3,4,5,由此推断在第n个图中,每一横行共有(n+3)块瓷砖,每一竖行共有(n+2)块瓷砖;(2)y=(n+3)(n+2)即y=n2+5n+6.四、师生互动,课堂小结1.二次函数的定义;2.熟记二次函数y=ax2+bx+c中a≠0,a、b、c为常数的条件.【教学说明】本环节设置的目的在于让学生进一步认识二次函数的相关定义,教师可与学生一起回顾.1.布置作业:教材习题22.1第1、2、7题;2.完成创优作业中本课时练习的“课时作业”部分.本课时的内容涉及到初中第二个函数内容,由于前面有了学习一次函数的经验,因此教师教学时可在学生以往经验的基础上,创设丰富的现实情境,使学生初步感知二次函数的意义,进而能从具体事物中抽象出数学模型,并列出二次函数的解析式.教学时应注重引导学生探究新知,在观察、分析后归纳、概括,注重学生的过程经历和体验,让学生领悟到现实生活中的数学问题,提高研究与应用能力.22.1.2 二次函数y=ax2的图象和性质1.会用描点法画二次函数y=ax2的图象,理解抛物线的有关概念;2.掌握二次函数y=ax2的性质,能确定二次函数y=ax2的表达式.3.通过画出简单的二次函数y=x2,y=-12x2等探索出二次函数y=ax2的性质及图象特征.4.使学生经历探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯.【教学重点】1.二次函数y=ax2的图象的画法及性质;2.能确定二次函数y=ax2的解析式.【教学难点】1.用描点法画二次函数y=ax2的图象,探索其性质;2.能依据二次函数y=ax2的有关性质解决问题.一、情境导入,初步认识问题1在八年级下册,我们学习的一次函数的图象是一条直线,二次函数的图象是什么形状呢?通常怎样画一个函数的图象?【教学说明】通过对问题1的思考,可激发学生的求知欲望,想尝试运用列表法画出一个二次函数的图象.问题2 你能画出二次函数y=x2的图象吗?【教学说明】学生分组画y=x2的图象,教师巡视,对于不正确的给予指导,尤其应关注学生的列表和连线,然后给予讲评,提醒注意的问题,并让学生发表不同的意见,达成共识.二、思考探究,获取新知问题1你能说说二次函数y=x2的图象有哪些特征吗?不妨试试看,并与同伴交流.【教学说明】教师应在学生的交流过程中,听取他们各自的看法,对于通过观察而归纳出的结论叙述较好的给予肯定,对不够完整的或叙述欠佳的学生给予鼓励,并予以诱导.在这一活动过程中,让学生们逐步积累对二次函数y=ax2的图象及其简单性质的感性认识.问题2请在同一坐标系中,画出下列函数的图象,并通过图象谈谈它们的特征及其差异.y=12x2与y=2x2.【教学说明】在这一活动过程中,教师可将全班同学进行适当分组,分别完成两个图象的画图,并结合图象给予恰当的描述.教师巡视,适时点拨,最后在黑板上与全班同学一起进行归纳总结.问题3(1)在同一直面坐标系中,画出函数y=-x2,y=-12x2,y=-2x2的图象,并考虑这些抛物线有什么共同点和不同点?(2)当a<0时,二次函数y=ax2的图象有什么特点?【教学说明】教师在处理问题时可让学生画图后回答,可让学生从开口方向、最值、增减性三个方面作答,最后教师以课件方式展示结论.【归纳结论】1.二次函数y=ax2的图象是一条开口向上或向下的抛物线.一般地,二次函数y=ax2+bx+c的图象叫做抛物线y=ax2+bx+c.2.二次函数y=ax2的图象及其性质,如下表所示:3.二次函数y=ax2的开口大小与a的关系:|a|越大,开口越小;|a|越小,开口越大.|a|值相同,开口形状相同.【教学说明】针对师生共同完成的归纳总结,教师应着重强调两点:(1)a 的符号决定着抛物线的开口方向,|a|的大小,影响抛物线的开口大小;(2)对于函数的增减性及最大(小)值,教师应引导学生通过图象进行分析,利用图象的直观性获得结论,切忌死记硬背,让同学感受到数形结合思想方法是函数问题中最重要的思想方法之一,增强他们的学习兴趣.三、运用新知,深化理解1.若抛物线y=ax2与y=4x2的形状及开口方向均相同,则a= .2.下列关于二次函数y=ax2(a≠0)的说法中,错误的是()A.它的图象的顶点是原点B.当a<0,在x=0时,y取得最大值C.a 越大,图象开口越小;a 越小,图象开口越大D.当a>0,在x>0时,y 随x 的增大而增大3.请在同一坐标系中画出函数y 1=x 和y 2=-x 2的图象,结合图象,指出当x 取何值时,y 1>y 2;当x 取何值时,y 1<y 2.4.一个二次函数,它的图象的顶点是原点,对称轴是y 轴,且经过点(-1,14). (1)求这个二次函数的解析式;(2)画出这个二次函数的图象;(3)根据图象指出,当x>0时,若x 增大,y 怎样变化?当x<0时,若x 增大,y 怎样变化?(4)当x 取何值时,y 有最大(或最小)值,其值为多少?【教学说明】本环节易采用先让学生独立思考,再以小组交流的方式展开.其中题2、3、4均是集图象与性质于一体,鼓励学生用自己的语言叙述,逐步渗透用数学语言进行说理的能力,同时进一步体现数形结合的思想.【答案】1.42.C 【解析】当a>0时,a 值越大,开口越小,a 值越小,开口越大;当a<0时,a 值越大,开口越大,a 值越小,开口越小.所以C 项说法不对.3.列表如下:如图所示:根据图象可知,当x>0或x<-1时,y1>y2,当-1<x<0时,y2>y1.4.解:(1)设这个二次函数解析式为y=ax2,将(-1,14)代入得a=14,所以y=14x2.(2)略(3)当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小.(4)当x=0时,y有最小值,y最小值=0.四、师生互动,课堂小结1.画二次函数y=ax2的图象时,有哪些地方是你需关注的?2.你是如何理解并熟记抛物线y=ax2的性质的?3.本节课你还存在哪些疑问?【教学说明】问题1旨在提醒学生画图过程中列表时应以原点为中心,左右对称选取点,连线时应用光滑曲线连接;问题2是为了进一步突出数形结合思想在函数问题的解决过程中的重要性;而问题3是想了解学生哪部分没学好,难学,以便教师可以进行针对性辅导.1.布置作业:教材习题22.1第3、4、11题.2.完成创优作业中本课时练习的“课时作业”部分.本课时的设计比较注重让学生动手操作,让学生通过画二次函数的图象初步掌握其性质,画图的过程中需注意引导学生与其他函数的图象与性质进行对比.本课的目的是要让学生通过动手操作,经历探索归纳的思维过程,逐步获得图象传达的信息,熟悉图象语言,进而形成函数思想.22.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时二次函数y=ax2+k的图象和性质1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.4.通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.5.在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.一、情境导入,初步认识问题1请同学们谈谈一次函数y=x与y=x+2的图象之间的关系;问题2同样地,你能猜想出二次函数y=x2与y=x2+1的图象之间有何关系吗?【教学说明】问题1既是复习旧知识,同时又为解决本节知识起到抛砖引玉的作用.学生的回答也许形式多样,教师适时诱导,并设疑,为后面的解惑作铺垫.二、思考探究,获取新知问题1在同一坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.请观察图象,谈谈它们有哪些相同点和不同点,并指明这两个图象的关系如何?【教学说明】在学生自主操作时,教师应指导它们在画平面直角坐标系时的单位长度要稍大一些,如选取0.8cm或1cm为一个单位长度为好,这样学生们所画出的图形才有可能清晰些.教师应巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.问题2(教材第33页练习)在同一直角坐标中,画出下列二次函数的图象y=12x2,y=12x2+2,y=12x2-2,观察三条抛物线的位置关系并分别指出它们的开口方向、对称轴和顶点.你能说出抛物线y=12x2+k的开口方向、对称轴和顶点吗?它与抛物线y=12x2有什么关系?【教学说明】设计问题2,一方面进一步增强学生的画图能力,另一方面加深学生的感性认识,从而形成对二次函数y=ax2+k的图象及其性质的初步认识.同伴间应相互交流,教师巡视指导,然后完成课本第33页练习.【归纳结论】1.二次函数y=ax2+k的图象可以由y=ax2的图象通过上、下平移得到.2.y=ax2与y=ax2+k的性质如下:三、运用新知,深化理解1.抛物线y=3x2可以看作是抛物线y=3x2-4向平移得到的.2.已知抛物线y=ax2+k与抛物线y=-2x2的形状相同,且图象到x轴的最近点的距离为3,求a、k的值,并指出抛物线y=ax2+k的开口方向,对称轴和顶点坐标.【教学说明】针对本节所学内容及学生掌握的情况,设计训练题1,2,目的是加深学生对新知识的理解,能灵活运用所学知识解决简单的问题.教师在这个过程中要予以诱导.【答案】略四、师生互动,课堂小结本环节师生共同回顾所学知识,如y=ax2+k的图象特征,函数的增减性等,并对可能出现的困难、疑问给予整理,进行辨析.完成创优作业中本课时练习的“课时作业”部分.本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.第2课时二次函数y=a(x-h)2的图象和性质1.能画出二次函数y=a(x-h)2的图象;2.了解抛物线y=ax2与抛物线y=a(x-h)2的联系;3.掌握二次函数y=a(x-h)2的图象特征及其简单性质.4.通过动手操作、观察比较、分析思考、规律总结等活动过程完成对二次函数y=a(x-h)2的图象及其性质的认知.5.在学生学习活动过程中,使他们进一步体会数形结合的思想方法,培养创造性思维能力和动手实践能力,增强学习兴趣、激发学习欲望.【教学重点】1.掌握二次函数y=a(x-h)2的图象及性质;2.二次函数y=ax2与y=a(x-h)2图象之间的联系.【教学难点】利用二次函数y=a(x-h)2的性质解决实际问题.一、情境导入,初步认识我们知道,二次函数y=ax2-2的图象可以由函数y=ax2的图象向下平移得到,那么函数y=12(x-2)2的图象是否可以由函数y=12x2的图象经过平移而得到呢?二、思考探究,获取新知问题在同一坐标系中画出二次函数y=-12(x+1)2,y=-12(x-1)2的图象,指出它们的开口方向、对称轴和顶点坐标;并结合图象,说说抛物线y=-12x2, y=-12(x+1)2,y=-12(x-1)2的关系.【教学说明】在教学过程中,学生独立思考后,合作完成.教师巡视指导,针对学生在画图、探究过程中可能出现的错误给予指正,对好的给予表扬,并展示其图象,在合作交流过程中探索出抛物线y=-12(x+1)2,y=-12(x-1)2与y=-12x2的联系.【归纳结论】函数y=ax2与y=a(x-h)2的图象及其性质如下表:三、运用新知,深化理解【设计说明】针对本节知识,设计了以下几道题,及时了解学生运用新知解决问题的能力,查漏补缺.1.抛物线y=3(x-3)2的开口方向是向,对称轴是,顶点是.2.若抛物线y=a(x-h)2的顶点是(-3,0),它是由抛物线y=-2x2通过平移而得到的,则a= ,h= .【教学说明】这两道题可采用抢答的形式来处理,可适当让学生说明其解题思路或依据.【答案】1.上x=3 (3,0)2.-2-3四、师生互动,课堂小结1.抛物线y=ax2与y=ax2+c和抛物线y=ax2与y=a(x-h)2有哪些共同点,又有哪些不同点?同伴间可相互交流.2.将抛物线y=ax2上下平移与左右平移所得到的表达式在形式上有何区别?3.课本第35页练习.【设计及教学说明】对所给两个问题的思考,让学生亲历知识的自主建构,不断完善自己的知识结构.完成创优作业中本课时练习的“课时作业”部分.本课时教学仍在于着重培养学生的比较和判断能力,通过比较找出异同点,从而进一步归纳性质,并通过练习使学生从“练”中“悟”,形成函数意识.第3课时二次函数y=a(x-h)2+k的图象和性质1.会用描点法画出二次函数y=a(x-h)2+k(a≠0)的图象;2.掌握抛物线y=ax2与y=a(x-h)2+k之间的平移规律;3.依据具体问题情境建立二次函数y=a(x-h)2+k模型来解决实际问题.4.通过“活动探究——观察思考——运用迁移”等三个环节来获取新知识,掌握新技能,解决新问题.5.进一步培养学生观察能力、抽象概括能力,渗透数形结合、从特殊到一般的思想方法,了解从特殊到一般的辩证关系.【教学重点】二次函数y=a(x-h)2+k(a≠0)的图象及其性质.【教学难点】1.二次函数y=a(x-h)+k与y=ax2(a≠0)的图象之间的平移关系;2.通过对图象的观察,分析规律,归纳性质.一、情境导入,初步认识问题将抛物线y=-12x2向下平移1个单位,所得到的抛物线表达式是什么?若再将它向左平移1个单位呢?【教学说明】学生通过对前两节课所学习的上、下平移和左、右平移规律的回顾与思考,在尝试解决问题的过程中,可增强他们的学习兴趣,激发求知欲望,也为新知识的学习做好铺垫.学生们可相互交流,教师对其结论可暂不作评价.二、思考探究,获取新知问题1 画出二次函数y=-12(x+1)2-1的图象,指出它的开口方向、对称轴及顶点坐标.问题2 请在问题1中所在的平面直角坐标系内,画出抛物线y=-12x2,及抛物线y=-12(x+1)2,y=-12x2-1,观察所得到的四个抛物线,你能发现什么?问题3请依据问题2中你的发现,说说抛物线y=a(x-h)2+k是由抛物线y=ax2(a ≠0)通过怎样的平移而得到的?并说说它的对称轴和顶点坐标.【教学说明】教师可给予15~20分钟的时间让学生自主探究,画出图象,并让学生们交流,获得感性认识.教师巡视,鼓励每个学生积极参与进来,针对个别同学,应适时予以点拨.如果条件允许,对学生的成果可通过多媒体展示.【归纳结论】1.一般地,抛物线y=a(x-h)2+k与抛物线y=ax2的形状相同(因为a值相同),而位置不同.将抛物线y=ax2上下平移,可得到抛物线y=ax2+k(k >0时,向上平移k个单位;k<0时,向下平移-k个单位),再将抛物线y=ax2+k 左右平移后,可得到抛物线y=a(x-h)2+k(h>0时,向右平移;h<0时,向左平移).2.抛物线y=a(x-h)2+k的性质:(1)a>0时,开口向上;a<0时,开口向下;(2)对称轴是直线x=h;(3)顶点坐标是(h,k).【教学说明】1.通过探究,师生共同交流,达成共识后,教师在黑板上与学生一道进行归纳,了解并掌握本课时知识.2.此时教师可对问题情境中的问题1作出评价,让学生体验成功的快乐.3.归纳结论完成后,教师引导学生做第37页练习,可让学生采取举手抢答的形式进行.三、典例精析,掌握新知例(教材第36页例4)要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?解:如图建立直角坐标系,点(1,3)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数是y=a(x-1)2+3(0≤x≤3).由这段抛物线经过点(3,0)可得0=a(3-1)2+3,解得a=-34.因此y=-34(x-1)2+3(0≤x≤3).当x=0时,y=2.25,也就是说,水管应长2.25m.【教学说明】教师讲解此例时,可向学生提问:(1)坐标系的原点为什么建立在池中心点?(2)自变量的取值范围为什么是0≤x≤3?(3)设函数解析式有什么诀窍?四、运用新知,深化理解【设计说明】针对本节所学知识,通过几道小题进行演练,巩固所学新知识,并依据学生的完成情况,教师可适时予以查漏补缺.1.抛物线y=-3(x+2)2-4的顶点坐标是,当x 时,函数值y随x的增大而增大.2.若抛物线的对称轴为x=-1,与x轴的一个交点坐标为(1,0),则这条抛物线与x轴的另一个交点是.3.已知二次函数的图象顶点坐标为(-4,3),且经过坐标原点,则这个二次函数的表达式是.4.已知二次函数y=a(x-h)2+k的图象先向左平移2个单位,再向上平移4个单位,得到抛物线y=-12(x+1)2+3.(1)试确定a,h,k的值;(2)指出二次函数y=a(x-h)2+k图象的开口方向,对称轴和顶点坐标.5.将抛物线y=2(x-1)2+3作下列移动,求得到的新抛物线的解析式.(1)向左平移2个单位,再向下平移3个单位;(2)顶点不动,将原抛物线开口方向反向.【教学说明】第1,2题较为简单,可采用抢答形式来处理,第3小题应引导学生设出所求的二次函数表达式为y=a(x-h)2+k的形式,第4、5题为选做题,教师可根据教学实际选择做或不做.五、师生互动,课堂小结1.抛物线y=a(x-h)2+k(a≠0)的特征有哪些?2.如果解抛物线的顶点坐标(或对称轴或最低点等),要想确定该抛物线表达式,如何设出这个表达式更有利于求解呢?【设计及教学说明】问题1侧重于所学知识回顾,而问题2侧重于应用,为后继学习做好铺垫.教学时,教师应予以评讲.1.布置作业:教材习题22.1第5题.2.完成创优作业中本课时练习的“课时作业”部分.前面的几个课时是从最基本的二次函数图象入手开始探索,已初步对二次函数的性质进行了归纳,因此本课时的内容算是对前面内容的小结.所以教学时教师应大胆放手让学生自主归纳与探究,教师给予引导和提示并让学生适时进行练习,以巩固所学,在这一过程中应注意渗透数形结合的思想方法.22.1.4 二次函数y=ax2+bx+c的图象和性质第1课时二次函数y=ax2+bx+c的图象和性质1.能通过配方法把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k的形式,以便确定它的对称轴和顶点坐标;2.会利用对称性画出二次函数的图象,掌握二次函数y=ax2+bx+c(a≠0)的平移规律;3.会用公式确定二次函数y=ax2+bx+c(a≠0)的对称轴和顶点.4.通过思考、探索、尝试与归纳等过程,让学生能主动积极地探索新知.5.经历探求二次函数y=ax2+bx+c的对称轴和顶点坐标的过程,感悟二次函数y=ax2+bx+c与y=ax2的内在联系,体验利用抛物线的对称轴画抛物线的方法,感受数学的对称美.【教学重点】用抛物线的对称轴画二次函数y=ax2+bx+c的图象,通过配方确定抛物线的对称轴和顶点坐标.通过配方法将二次函数的一般形式化为顶点式,探索二次函数y=ax2+bx+c的平移变换.【教学难点】用配方法推导抛物线的对称轴与顶点坐标.一、情境导入,初步认识问题1请说出抛物线y=ax2+k,y=a(x-h)2,y=a(x-h)2+k的开口方向、对称轴和顶点坐标.问题2你知道二次函数y=12x2-6x+21的图象的开口方向,对称轴和顶点坐标吗?【教学说明】问题1设计的目的既是对前面所学知识进行简单的回顾,又为本节知识的学习展示着方法和思路,学生处理起来较为简单,可采用抢答形式来处理.问题2设计的目的在于制造认知冲突,激发学生的求知欲望,学生在处理问题2时可能有些困难,教师适时诱导,引入新课.。
九年级数学上册22、1二次函数的图象和性质4二次函数y=ax2+bx+c的图象和性质第2课时习题课件
(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上, 并写出平移后抛物线的解析式.
(2)答案不唯一,如:先向左平移2个单位长 度,再向下平移1个单位长度,得到的抛物线 的解析式为y=-x2,平移后抛物线的顶点为 (0,0),落在直线y=-x上.
考查角度二 已知面积求抛物线上点的坐标 16.如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0). (1)求此抛物线的解析式;
考查角度一 抛物线的平移 15.如图,已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过 点C(0,-3). (1)求抛物线的解析式和顶点坐标;
解:(1)设抛物线的解析式为y=a(x-1)(x-3). ∵抛物线过点C(0,-3),∴-3=a×(-1)×(-3), 解得a=-1,∴y=-(x-1)(x-3)=-x2+4x-3. ∵y=-x2+4x-3=-(x-2)2+1,∴顶点坐标为 (2,1).
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.4 二次函数y=ax2+bx+c的图象和性质 第2课时 用待定系数法求二次函数的解析式
知识点一 利用“一般式”求二次函数的解析式
1.已知二次函数y=x2+bx+c的图象经过点(-1,0)和(1,-2),则这个函
数的解析式为( ) B
A.y=x2-x+2
3
6.如图所示的抛物线的解析式为__y_=__2_x_2_-__4_x_+__2____.
7.已知二次函数当x=-1时,有最小值-4,且当x=0时,y=-3,则二次 函数的解析式为________________.
y=(x+1)2-4
知识点三 利用“交点式”求二次函数的解析式
数学人教版九年级上册22.1.4二次函数y=ax2 bx c的图像与性质.1.4二次函数y=ax2 bx c的图像与性质(胪中王伟
向上
向下
直线x=–3 直线x=1
活动2:创设情Leabharlann ,导入新课思考:我们已经知道二次函数y=a(x-h)2+k的图象和性质,容 1 2 y x 6x21 能否利用这些知识来讨论二次函数 的图象和性 2 质? 即怎样把函数 y 1x2 6x21 转化成 y=a(x-h) 2+k的形式? 2
ax bx c • 一般地,我们可以用配方法将 y 配方成
2
2 b b ac b b 2b b 2 2 24 a ( x x ) c a x x () () c a ( x ) a a 2 a 2 a 4 a a2 2
由此可见函数的图像与函数的图像的形状、开口方向均相同,只是位置不同,可以 通过平移得到。
草图略
y
1 2 (x 4 x) 1 2
1 2 1 ( x 4 x 4 ) ×4 1 2 2 1 ( x 2)2 3 2
对称轴为直线x=-2 顶点坐标为(-2,-3) 当x=-2时,y最小值=-3
草图略
活动3:探究新知
22.1.4 二次函数
2 y ax bx c 的图像
y x2 6x21 2 1 2 12 x 21 提取二次项系数 x 2 1 2 1 x 12x 36 ×36 21 配方 2 2 配方后的表达 1 2 . 整理 x6 3 式通常称为配 2 方式或顶点式
用配方法。 1
1 2 描点、连线,画出函数 y x 6 3 2
二次本节课我们学习了哪些知识? 函数y=ax2+bx+c(a≠0)的图象和性质
1.顶点坐标与对称轴
人教版数学九年级上册教案22.1.4《二次函数y=ax2+bx+c的图象和性质》
人教版数学九年级上册教案22.1.4《二次函数y=ax2+bx+c的图象和性质》一. 教材分析《二次函数y=ax^2+bx+c的图象和性质》这一节是人教版数学九年级上册的教学内容。
本节课的主要内容是让学生了解二次函数的图象和性质,包括开口方向、对称轴、顶点、增减性、对称性和周期性等。
通过本节课的学习,学生能够掌握二次函数图象的特点,理解二次函数的性质,并能够运用这些性质解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了二次函数的定义和一般形式,对二次函数有了初步的认识。
但是,学生对二次函数的图象和性质可能还比较陌生,需要通过本节课的学习来进一步理解和掌握。
同时,学生可能对一些概念和性质的理解还不够深入,需要通过教师的引导和学生的自主探索来加深理解。
三. 教学目标1.了解二次函数的图象和性质,包括开口方向、对称轴、顶点、增减性、对称性和周期性等。
2.能够运用二次函数的性质解决实际问题。
3.培养学生的观察能力、思考能力和解决问题的能力。
四. 教学重难点1.二次函数的图象和性质的理解和掌握。
2.运用二次函数的性质解决实际问题的能力的培养。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题引导学生思考和探索。
2.采用案例分析的教学方法,通过具体的例子来讲解和展示二次函数的性质。
3.采用小组合作的学习方式,让学生在小组内进行讨论和交流,共同解决问题。
六. 教学准备1.准备相关的教学案例和实例,用于讲解和展示二次函数的性质。
2.准备教学课件和板书,用于辅助教学。
七. 教学过程1.导入(5分钟)通过提出问题:“二次函数的图象和性质有哪些?”引导学生思考和探索。
2.呈现(10分钟)通过教学课件和板书,呈现二次函数的图象和性质,包括开口方向、对称轴、顶点、增减性、对称性和周期性等。
同时,通过具体的例子来讲解和展示这些性质。
3.操练(10分钟)让学生通过观察和分析一些具体的二次函数图象,来识别和判断其性质。
人教版数学九年级上册22.1《二次函数的图象和性质(4)》教学设计
人教版数学九年级上册22.1《二次函数的图象和性质(4)》教学设计一. 教材分析人教版数学九年级上册22.1《二次函数的图象和性质(4)》这一节主要讲述了二次函数的图象和性质。
在前面的学习中,学生已经掌握了二次函数的一般形式、顶点坐标、对称轴等概念。
本节内容是对这些知识的进一步拓展和深化,主要包括二次函数的增减性和最值问题。
教材通过丰富的例题和练习题,帮助学生理解和掌握二次函数的图象和性质,提高解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数有一定的了解。
但学生在学习过程中,可能对二次函数的图象和性质的理解不够深入,尤其是对增减性和最值问题的解决方法。
因此,在教学过程中,教师需要关注学生的学习需求,通过实例讲解和练习,帮助学生巩固知识,提高解决问题的能力。
三. 教学目标1.理解二次函数的增减性,掌握判断二次函数单调性的方法。
2.掌握二次函数的最值问题,学会解决实际问题。
3.提高学生的数学思维能力和解决问题的能力。
四. 教学重难点1.二次函数的增减性及其判断方法。
2.二次函数最值问题的解决方法。
五. 教学方法1.实例分析:通过具体的例子,让学生理解和掌握二次函数的增减性和最值问题。
2.练习巩固:通过大量的练习题,巩固所学知识,提高解决问题的能力。
3.小组讨论:鼓励学生之间相互讨论,共同解决问题,培养学生的合作精神。
六. 教学准备1.教学PPT:制作精美的PPT,展示二次函数的图象和性质。
2.练习题:准备适量的练习题,用于巩固所学知识。
3.教学视频:准备相关的教学视频,帮助学生更好地理解知识。
七. 教学过程1.导入(5分钟)利用教学视频或PPT,展示二次函数的图象和性质,引导学生回顾已学的知识,为新课的学习做好铺垫。
2.呈现(15分钟)讲解二次函数的增减性,通过具体的例子,让学生理解和掌握判断二次函数单调性的方法。
同时,引导学生思考二次函数的最值问题,为新课的学习奠定基础。
九年级数学上册22二次函数22.1二次函数的图象和性质22.1.2二次函数y=ax2的图象和性质
4.函数y=ax2与y=-ax+b图象可能是(
)
B
第8页
5.下列函数中,当 x>0 时,y 随着 x 的增大而增大的是( D )
A.y=-x+1
B.y=-x-1
C.y=-x2
D.y=x2
*6.已知 m 为实数,下列各点中:A(m,-am2),B(m,-m),C(m2,
-m),D(-m,am2),抛物线 y=-ax2 一定不经过的点是____D_______.
22.1 二次函数图象和性质
22.1.2 二次函数y=ax2图象和性质
第1页
1.二次函数y=ax2图象 二次函数y=ax2图象是一条抛物线,它含有以下特点: (1)顶点在__原__点___、对称轴为__y_轴____; (2)当a>0时,抛物线开口____向__上_,a越大,抛物线开口越______小; 当a<0时,抛物线开口____向__下_,a越小,抛物线开口越_______小_. 2.二次函数y=ax2性质 (1)假如a>0,则: 当x<0时,y随x增大而_____减__小_; 当x>0时,y随x增大而_____增__大_; 当x=0时,y取最___小___值0,即y最小=__0____. (2)假如a<0,则: 当x<0时,y随x增大而_____增__大_; 当x>0时,y随x增大而_____减__小_; 当x=0时,y取最___大___值0,即y最大=__0__.
*7.如图,正方形的边长为 4,以正方形中心为原点建立平面直角 坐标系,作出函数 y=13x2 与 y=-13x2 的图象,则阴影部分的面积是
__8____.
*8.已知 a<-1,点(a-1,y1),(a,y2),(a+1,y3)都在函数 y
=x2 的图象上,则 y1,y2,y3 的大小关系是_y_1_1>__y_2_>__y__3__.
人教版数学九年级上册说课稿22.1.4《二次函数y=ax2+bx+c的图象和性质》
人教版数学九年级上册说课稿22.1.4《二次函数y=ax2+bx+c的图象和性质》一. 教材分析人教版数学九年级上册第22章是关于二次函数的学习,而22.1.4《二次函数y=ax^2+bx+c的图象和性质》是这一章的重要内容。
这部分教材主要通过分析二次函数的图象和性质,使学生能够理解和掌握二次函数的基本特征,以及如何运用这些特征解决实际问题。
教材通过详细的理论推导和丰富的例题,引导学生掌握二次函数的顶点坐标、开口方向、对称轴等关键性质,并能够运用这些性质对二次函数进行分析和判断。
二. 学情分析在九年级的学生已经具备了一定的函数基础,他们已经学习了线性函数和一些非线性函数的知识,对函数的概念和性质有一定的理解。
但是,对于二次函数的图象和性质,他们可能还存在一些困惑和误解。
因此,在教学过程中,我需要关注学生的认知基础,通过复习和引导,帮助他们巩固已有的知识,并建立起二次函数图象和性质的知识体系。
三. 说教学目标1.知识与技能:学生能够理解二次函数的图象和性质,并能够运用这些性质解决实际问题。
2.过程与方法:学生通过观察、分析、归纳等方法,探索二次函数的图象和性质,培养他们的抽象思维和解决问题的能力。
3.情感态度与价值观:学生通过学习二次函数的图象和性质,增强对数学的兴趣和自信心,培养他们的探索精神和合作意识。
四. 说教学重难点1.教学重点:学生能够理解和掌握二次函数的图象和性质,并能够运用这些性质解决实际问题。
2.教学难点:学生对于二次函数的顶点坐标、开口方向、对称轴等性质的理解和运用。
五. 说教学方法与手段在教学过程中,我将采用问题驱动的教学方法,通过引导学生观察、分析、归纳等方法,探索二次函数的图象和性质。
同时,我将利用多媒体教学手段,展示二次函数的图象和性质,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过复习一次函数和二次函数的知识,引导学生进入对二次函数图象和性质的学习。
2.探究:学生分组讨论,观察和分析二次函数的图象,归纳出二次函数的顶点坐标、开口方向、对称轴等性质。
22.1.4二次函数y=ax2+bx+c的图象和性质课件 2024-2025学年人教版数学九上
大而增大,则实数a的取值范围是( B )
A.a>1
B.-1<a≤1
C.a>0
D.-1<a<2
知识讲解
知识点1 二次函数y=ax2+bx+c的图象和性质
【例 2】已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象
面积.
(2)∵该抛物线的对称轴为直线x=
4
=4,
1
A.(-3,-6)
B.(1,-4)
C.(1,-6)
D.(-3,-4)
再将抛物线y=2(x-1)2-5向下平移1个单位所得抛物线的解析式为
y=2(x-1)2-5-1=2(x-1)2-6,
此时二次函数图象的顶点为(1,-6).
知识讲解
知识点3 抛物线y=ax2+bx+c与系数的关系
项目
a
b
字母的符号
图象的特征
确的结论的序号是________;
解析:由抛物线开口向上,得a>0;
由抛物线y轴的交点在负半轴上,得c<0;
由抛物线的顶点在第四象限,得
b
2a
>0,又a>0,所以b<0;
知识讲解
知识点3 抛物线y=ax2+bx+c与系数的关系
【例 4】如图,二次函数y=ax2+bx+c的图象开口向上,图象经过
2
2
b
c
b
b
b
c
2
2
2
y ax bx c a x x a x x
a
人教版九年级数学上册22.1 二次函数的图象和性质 22.1.4 二次函数y=ax2+bx+c的图象和性质②
当已知抛物线的顶点坐标或对称 轴和最值时,通常设函数的解析式为 项点式,然后代入另一点的坐标,解 关于a的一元一次方程
(a,x1,x2为 常数,a≠0),其中是抛物 线与x轴两个交点的横坐标
当已知抛物线与x轴的两交点坐标 或一个交点的坐标和对称轴时,通常设 函数的解析式为交点式,然后代入另 一点的坐标,解关于a的一元一次方程
情景引入
请你回忆:确定一次函数的解析式需要函数图象上几 个点的坐标?这几个点需要满足什么条件? 请你猜想:确定二次函数的解析式需要几个点的坐标? 这几个点需要满足什么条件?
1
人教版九年级数学上册 第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.4 二次函数y=ax²+bx+c的图象和性质②
15
知识点二:根据 y=a(x -h)2+k(a≠0)求二次函数解析式
学以致用
1.二次函数 y=x²+px+q的最小值是4,且当 x=2时,y=5,则p,q
的值为( ).
A.p=-2,q=15
B.p=-2,q=5或 p=-6,q=13
C.p=-6,q=13
D.p=2,q=-5或 p=6,q=-13
对于二次函数,我们先探究下面问题.
5
知识点一:根据y= ax2 +bx+c(a≠0)求二次函数解析式
新知探究
(1)由几个点的坐标可以确定二次函数?这几个点 应满足什么条件? (2) 如果一个二次函数的图象经过(-1, 10),(1, 4), (2, 7)三 点,能求出这个二次函数的解析式吗?如果能,求出这个 二次函数的解析式.
21
知识点三:根据 y=a(x - x1)(x- x2)(a≠0)求二次函数解析式
九年级数学上册第22章二次函数22_1二次函数的图象和性质22_1_4二次函数yax2bxc的图象和性质待定系数法学案
22.1.4二次函数y =ax 2+bx +c 的图象与性质-待定系数法一、温故知新1.一次函数b kx y +=经过点A(-1,2)和点B(2,5),求该一次函数的解析式。
2.一次函数b kx y +=经过点A(-1,2)和点B(-1,5),能求出一次函数的解析式吗?若过点A(-1,2)和点B(2,2),能求出一次函数的解析式吗? 二、学习新知问题1:已知三点求二次函数的解析式 若果一个二次函数的图象经过点A (-1,10),B (1,4),C (2,7),能求出这个二次函数的解析式吗?如果能,求出二次函数的解析式.问题2:已知抛物线的顶点和另一点求 二次函数的解析式已知抛物线的顶点坐标为(-1,2),且经过点(0,4)求该函数的解析式.问题3:归纳总结由几个点的坐标可以确定二次函数的解析式,这几个点应满足什么条件?用待定系数法求二次函数的解析式通常用以下2种方法:设顶点式()k h x a y +-=2和一般式2y ax bx c =++。
1).已知抛物线过三点,通常设函数解析式为 ;2).已知抛物线顶点坐标及其余一点,通常设函数解析式 。
三、巩固训练 题组一1.一个二次函数,当自变量x=0时,函数值y= -1,当x= -2与21时,y=0.求这个二次函数的解析式.2.已知二次函数y =ax 2+bx +c 的图像与x 轴交于A (1,0),B (3,0)两点,与y 轴交于点C (0,3),求二次函数的解析式.3.求经过下面三点的二次函数的解析式(只写设,列方程两步) (1)、(-1,3),(1,3),(2,6) (2)、(-1,0),(0,-2),(1,1) 题组二1.已知抛物线顶点为(1,-4),且又过点(2,-3).求抛物线的解析2.已知抛物线c bx ax y ++=2的图象过点(0,0)、(12,0),最低点的纵坐标为-3,求该抛物线的解析式.四、 拓展延伸如图,在△ABC 中,∠B =90°,AB =12mm ,BC =24mm ,动点P 从点A 开始沿边AB 向B 以2mm/s 的速度移动,动点Q 从点B 开始沿边BC 向C 以4m m/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,那么△PB Q 的面积S 随出发时间t 如何变化?写出函数关系式及t 的取值范围.QPCBA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用配方法 你知道吗?
y=ax2+bx+c
=a(x2+ b x+ c )
aa
={x2+
b a
x+(b )2 2a
-( b )2 2a
+c } a
=a{(x+ b2a)2
+
4ac-b2 4a2
}
=a(x+
b 2a
即
S=-l 2 +30l
( 0 < l < 30 )
O
5 10 15 20 25 30 l
可以看出,这个函数的图象是一条抛物线的一部分,这条抛物线的顶点是函数的图象的最高点,也 就是说,当l取顶点的横坐标时,这个函数有最大值.由公式可求出顶点的横坐标.
钢丝绳吊索具
)2
+
4ac-b2Βιβλιοθήκη 4a一般地,我们可以用配方求抛物线 y = ax2 + bx + c (a≠0)的顶点与对称轴
y = ax2 + bx + c
因此,抛物线 y = ax2 + bx + c
坐标是
−
b 2a
,
4ac − 4a
b2
= a x +
b
2
+
4ac
−
b2
2a
4a
的对称轴是 x = − b 顶点 2a
用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长 l 的变化而变化,当 l 是多少时, 场地的面积S最大?
分析:先写出S与 l 的函数关系式,再求出使S最大的l值. s
矩形场地的周长是60m,一边长为l,则另一边长
为 60 − l m ,场地的面积
2
200
S=l ( 30-l )
100