光电效应试验---普朗克常量的测量

合集下载

光电效应测定普朗克常数

光电效应测定普朗克常数

光电效应实验规律研究及普朗克常量的测定1887年H·赫兹在验证电磁波存在时意外发现,一束光照射到金属表面,会有电子从金属表面逸出,这个物理现象被称为光电效应。

1888年以后,W·哈耳瓦克期、A·T斯托列托夫、P·勒纳德等人对光电效应作了长时间地研究,并总结了光电效应的基本实验规律,但是这些规律无法用光的波动理论解释。

1905年爱因斯坦受到普朗克能量子假设启发,提出了光量子假说,即一束光是一粒一粒以光速c运动的粒子流,这些粒子称为光子,一个光子的能量为E=h 。

根据光量子假说,爱因斯坦导出了光电效应方程,并成功地解释了光电效应的实验规律。

1916年密立根以精湛的实验技术检验了爱因斯坦的光电效应方程,并对普朗克常数h作了首次精确测定。

1922年康普顿发现了“康普顿效应”,他采用单个光子和自由电子的碰撞理论,对这个效应做出了满意的理论解释,进一步证实了爱因斯坦的光子理论。

光电效应实验在证实光的量子性方面起着决定性的作用,与此密切相关的研究5次获得诺贝尔奖。

光电效应分为外光电效应和内光电效应。

利用外光电效应制成的光电器件如光电管、光电池、光电倍增管等已广泛应用于生产科研和日常生活中,如摄影,电视,光控路灯,数码相机;利用内光电效应(光电导效应和光生伏打效应)的光敏电阻、光电二极管和光电三极管、场效应光电管、雪崩光电二极管、电荷耦合器件等半导体光敏元件制成的光电式传感器已应用到纺织、造纸、印刷、医疗、环境保护等领域,在红外探测、辐射测量、光纤通信,自动控制等传统应用领域的研究也有新发展。

[实验目的]1.通过对实验现象的观测与分析,了解光电效应的实验规律和光的量子性。

2. 测定光电效应的伏安特性曲线,加深对光的量子性的认识和理解。

3.观测光电管的弱电流特性,测量不同光频率下的截止电压,确定阴极材料逸出功。

4.学习验证爱因斯坦光电方程的实验方法,测定普朗克常数。

[实验预习要解决的问题]1、查阅相关资料了解勒纳德等总结的四条光电效应实验规律,并用光量子假说进行解释。

基础物理实验-光电效应法测定普朗克常数

基础物理实验-光电效应法测定普朗克常数

基础物理实验-光电效应法测定普朗克常数
光电效应法测定普朗克常数是一项基础物理实验,是通过研究光电效应来测定普朗克常数(符号为h)的一种方式。

普朗克常数是物理定律中一个重要的常数,它影响到热力学、光学等物理现象。

其值与许多量子现象有关,因此普朗克常数的准确的测定具有很重要的意义。

光电效应法测定普朗克常数有两种方法:第一种是爱因斯坦-ヒル方法,第二种是思廉斯-威尔逊方法。

爱因斯坦-ヒル方法主要是测定半导体中发生光电效应时,所放射或吸收光子与电子电荷之间的关系。

思廉斯-威尔逊方法是研究普朗克常数在发生激光光电效应中及电子电荷与激光能量所关联的关系。

爱因斯坦-ヒル方法测定普朗克常数的具体实验操作是:测量铋基半导体片材,将研磨涂硅好的片材压入Si的夹头,然后将夹头底座接入电路中,成为一个封闭的系统;然后将强光源聚焦于夹头和片材之间,激发半导体材料,使它发射出电子,接着将其能谱绘制出来;最后根据电荷量分子和光子能量的关系求得普朗克常数的值。

思廉斯-威尔逊方法的实验过程是:首先构造一个电路,电路中要有激光源、金属晶体和放大器等元件;然后将一定能量的光束输出,激发金属晶体,使它产生电离;接着通过放大器将电离电荷数目设定为有限数量,最后通过积分器计算积分,得到普朗克常数的大小。

有了以上两个方法,人们便可以精确测定普朗克常数,并利用该方法进行其他实验中也会经常用到该常数的计算。

由此可见光电效应法测定普朗克常数的重要性。

通过本次实验学习,可以充分体现出基础物理实验中的实用性,使我们能够仔细学习其核心内容,深入理解并巩固学习结果。

光电效应测量普朗克常量

光电效应测量普朗克常量

光电效应测量普朗克常量一、前言光电效应是物理学中的一个基础概念,它是指当光子与物质相互作用时,能量被传递给物质,导致电子从物质中被释放出来。

这个现象在我们日常生活中有很多应用,比如太阳能电池板、数字摄像机和光电二极管等。

而在科学研究中,测量普朗克常量也是非常重要的一个任务。

二、什么是普朗克常量普朗克常量(Planck constant)是一个基本的自然常数,通常用符号h表示。

它描述了微观世界的行为方式,在量子力学中起着重要作用。

普朗克常量的数值为6.62607015×10^-34 J·s。

三、什么是光电效应在经典物理学中,我们认为当电磁波照射到金属表面时,金属会吸收能量并将其转化为热能。

但实际上,在某些条件下,金属表面会释放出电子。

这个现象就是光电效应。

四、测量普朗克常量的方法测量普朗克常量有很多方法,其中一种比较常见的方法是通过光电效应来测量。

这个方法基于爱因斯坦的光电效应理论,即当光子与金属相互作用时,会将能量传递给金属表面上的电子,使其跃迁到导体内部。

如果我们知道了光子的能量和电子从金属表面跃迁到导体内部所需要的最小能量(也就是逸出功),就可以通过测量电流和光强度来计算出普朗克常量。

五、实验步骤1. 实验器材:半导体激光器、反射镜、滤波器、准直器、样品台、数字万用表等。

2. 调整激光器输出波长和功率,使其符合实验要求。

3. 将激光束准直后,通过反射镜将其照射到样品台上的金属表面。

4. 在样品台上放置不同材质的金属片,并调整滤波器,使得只有特定波长的光线可以照射到金属片上。

5. 测量不同波长下的电流和光强度,并计算出逸出功。

6. 根据逸出功和不同波长下的能量差,计算出普朗克常量。

六、实验注意事项1. 实验过程中要保证实验器材的稳定性和精度。

2. 选择适当的金属片和滤波器,确保实验数据的准确性。

3. 在实验过程中要注意安全,避免激光对眼睛造成伤害。

七、结论通过测量光电效应可以得到逸出功和能量差,进而计算出普朗克常量。

光电效应测普朗克常量实验报告

光电效应测普朗克常量实验报告

光电效应测普朗克常量实验报告1.引言光电效应是指金属表面被光照射时,光子与金属中自由电子相互作用,将光子的能量转化为电子的动能,从而产生电流的现象。

普朗克常量是描述光电效应的重要物理常量,它与光子的能量之间存在着一种基本关系。

本实验旨在通过测量不同波长的光照射下,光电流随光强度变化的实验数据,并利用实验数据计算普朗克常量。

2.实验仪器和原理本实验使用的主要仪器有:石英光电管、可调光源、微安表、测微器等。

光电管是一种将光信号转化为电信号的装置,它的工作原理是当光子通过光电管时,会与金属中的电子发生作用,使电子获得一定动能,从而产生电流。

光电管经过光阑限制只能接收到一束经过光衰减器调节的光,调节光强度可以通过改变光衰减器的旋钮来实现。

3.实验步骤1)首先,通过调节光源的光强度,使得微安表刻度在合适的量程范围内,并记录下光源的功率。

2)为了确定光电流与光强度之间的关系,可以通过固定光源功率,逐渐改变入射光的波长,测量光电流随光强度变化的实验数据。

3)将实验数据整合,并画出光电流随光强度的曲线图。

4)利用实验数据计算普朗克常量。

4.结果与分析根据实验数据整理后,我们得到了光电流随光强度变化的曲线图。

在实验过程中,我们发现当光源功率较小时,光电流与光强度之间存在线性关系;但当光源功率增大时,光电流与光强度之间出现饱和现象。

这是因为当光源功率较小时,每个光子与光电管中的电子发生作用的概率较小,因此光电流与光强度存在线性关系;而当光源功率较大时,大量光子与电子作用,光电流已接近饱和状态,无法再继续增大。

利用实验数据计算得到的普朗克常量与理论值相比较,可以发现它们在实验误差内是一致的。

这说明通过测量光电流与光强度的关系,我们能够较为准确地测量出普朗克常量。

5.实验误差分析和改进措施1)采用更为精确的仪器和测量方法,如使用高精度的功率计和微安表。

2)提高实验的精度,增加实验重复性,减小人为操作的影响。

3)通过加大光衰减器的步长,并且测量多个数据点,可以更好地捕捉到光电流与光强度之间的关系。

光电效应以及普朗克常数的测量

光电效应以及普朗克常数的测量

实验二十九 光电效应及普朗克常数的测量光电效应是指一定频率的光照射在金属表面时会有电子从金属表面逸出的现象。

光电效应实验对于认识光的本质及早期量子理论的发展,具有里程碑式的意义。

普朗克常数是量子力学当中的一个基本常量,它首先由普朗克在研究黑体辐射问题时提出,其值约为s J h ⋅⨯=-3410626069.6,它可以用光电效应法简单而又较准确地求出。

1905年,爱因斯坦借鉴了普朗克在黑体辐射研究中提出的辐射能量不连续观点,并应用于光辐射,提出了“光量子”概念,建立了光电效应的爱因斯坦方程,从而成功地解释了光电效应的各项基本规律,使人们对光的本性认识有了一个飞跃。

1916年密立根用实验验证了爱因斯坦的上述理论,并精确测量了普朗克常数,证实了爱因斯坦方程。

因光电效应等方面的杰出贡献,爱因斯坦与密立根分别于1921年和1923年获得了诺贝尔奖。

作为第一个在历史上实验测得普朗克常数的物理实验,光电效应的意义是不言而喻的。

一、实验目的1. 了解光电效应的规律,加深对光的量子性的理解。

2. 测量普朗克常数h 。

二、实验仪器仪器由汞灯及电源、滤色片、光阑、光电管、测试仪(含光电管电源和微电流放大器)构成,仪器结构如图1所示,测试仪的调节面板如图2所示。

汞灯:可用谱线365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 、579.0nm 滤色片:5片,透射波长365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 光阑:3片,直径分别为2mm 、4mm 、8mm光电管:阳极为镍圈,阴极为银-氧-钾(Ag-O-K ),光谱响应范围320~700nm ,暗电流:I ≤2×10-13A (-2V≤U AK ≤0V )光电管电源:2档,-2~0V ,-2~+30V ,三位半数显,稳定度≤0.1%图1 仪器结构示意图1 2 3 4 5 6 7 8 9 1测试仪; 2光电管暗盒; 3光电管; 4光阑选择圈; 5滤色片选择圈;6基座; 7汞灯暗盒; 8汞灯; 9汞灯电源微电流放大器:6档,10-8~10-13A ,分辨率10-13A ,三位半数显,稳定度≤0.2%。

光电效应测普朗克常量

光电效应测普朗克常量

实验五、光电效应测普朗克常量普朗克常量是量子力学当中的一个基本常量,它首先由普朗克在研究黑体辐射问题时提出,其值约为s J h ⋅×=−3410626069.6,它可以用光电效应法简单而又较准确地求出。

光电效应是这样一种实验现象,当光照射到金属上时,可能激发出金属中的电子。

激发方式主要表现为以下几个特点:1、光电流与光强成正比2、光电效应存在一个阈值频率(或称截止频率),当入射光的频率低于某一阈值频率时,不论光的强度如何,都没有光电子产生3、光电子的动能与光强无关,与入射光的频率成正比4、光电效应是瞬时效应,一经光线照射,立刻产生光电子(延迟时间不超过910−秒),停止光照,即无光电子产生。

传统的电磁理论无法对这些现象对做出解释。

1905年,爱因斯坦借鉴了普朗克在黑体辐射研究中提出的辐射能量不连续观点,并应用于光辐射,提出了“光量子”概念,建立了光电效应的爱因斯坦方程,从而成功地解释了光电效应的各项基本规律,使人们对光的本性认识有了一个飞跃。

1916年密立根用实验验证了爱因斯坦的上述理论,并精确测量了普朗克常数,证实了爱因斯坦方程。

因光电效应等方面的杰出贡献,爱因斯坦与密立根分别于1921年和1923年获得了诺贝尔奖。

实验目的1、 通过实验理解爱因斯坦的光电子理论,了解光电效应的基本规律;2、 掌握用光电管进行光电效应研究的方法;3、 学习对光电管伏安特性曲线的处理方法、并以测定普朗克常数。

实验仪器GD-3型光电效应实验仪(GDⅣ型光电效应实验仪)图1 光电效应实验仪实验原理1、 光电效应理论:爱因斯坦认为光在传播时其能量是量子化的,其能量的量子称为光子,每个光子的能量正比于其频率,比例系数为普朗克常量,在与金属中的电子相互作用时,只表现为单个光子:h εν= (1)212h mv W ν=+ (2) 上式称为光电效应的爱因斯坦方程,其中的W 为金属对逃逸电子的束缚作用所作的功,对特定种类的金属来说,是常数。

光电效应测普朗克常量实验报告(附实验数据及分析)

光电效应测普朗克常量实验报告(附实验数据及分析)

实验题目:光电效应测普朗克常量实验目的: 了解光电效应的基本规律。

并用光电效应方法测量普朗克常量和测定光电管的光电特性曲线。

实验原理: 当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,而另一部分则转换为物体中某些电子的能量,使电子逸出物体表面,这种现象称为光电 效应,逸出的电子称为光电子。

光电效应实验原理如图1所示。

1.光电流与入射光强度的关系光电流随加速电位差U 的增加而增加,加速电位差增加到一定量值后, 光电流达到饱和值和值I H ,饱和电流与光强成正比,而与入射光的频率无关。

当U= U A -U K 变成负值时,光电流迅速减小。

实验指出,有一个遏止电位差U a 存在,当电位差达到这个值时,光电流为零。

2.光电子的初动能与入射频率之间的关系光电子从阴极逸出时,具有初动能,在减速电压下,光电子逆着电场力方向由K 极向A 极运动。

当U=U a 时,光电子不再能达到A 极,光电流为零。

所以电子的初动能等于它克服电场力作用的功。

即a eU mv =221 (1) 每一光子的能量为hv =ε,光电子吸收了光子的能量h ν之后,一部分消耗于克服电子的逸出功A ,另一部分转换为电子动能。

由能量守恒定律可知:A mv hv +=221 (2) 由此可见,光电子的初动能与入射光频率ν呈线性关系,而与入射光的强度无关。

3.光电效应有光电存在实验指出,当光的频率0v v <时,不论用多强的光照射到物质都不会产生光电效应,根据式(2),hAv =0,ν0称为红限。

由式(1)和(2)可得:A U e hv +=0,当用不同频率(ν1,ν2,ν3,…,νn )的单色光分别做光源时,就有:A U e hv +=11,A U e hv +=22,…………,A U e hv n n +=,任意联立其中两个方程就可得到ji j i v v U U e h --=)( (3)由此若测定了两个不同频率的单色光所对应的遏止电位差即可算出普朗克常量h ,也可由ν-U 直线的斜率求出h 。

光电效应___普朗克常量的测量

光电效应___普朗克常量的测量
勒纳德研究光电效应规律的实验装置如图所示。 当入射光照射到光洁的金属阴极K表面,就有光 电子发射出来,若有光电子到达阳极A,电路中 就有电流,所以可通过电流计了解用各种光照射 阴极K以及对两极加不同电压时的光电流,从中 摸索规律。
光电效应现象的实验规律:
1.对各种金属都存在着极限频率和极限波长, 低于极限频率的任何入射光强度再大、照射时 间再长都不会发生光电效应。
4、密立根精确实验证实光电效应方程
爱因斯坦的光子假设与光电方程,要为人们认同还 没有理论基础──当时对这一假说的怀疑超过了狭 义相对论,甚至包括普朗克本人也持反对态度。许 多物理学家都想方设法用实验测量普朗克恒量h, 以求验证光电效应方程。
一直对光子假设持有保留态度的美国物理学家密立 根,设计了高精确度的实验装置,经过十年的试验, 不断解决一些技术难点,终于验证了光电方程的直 线性,并测出普朗克恒量h=6.56×10-34J·S。在事 实面前,密立根服从真理,宣布爱因斯坦光子假说 得到证实。
2.光电子的最大初动能与入射光的强度无关, 只随入射光频率的增大而增大。
3.只要入射光频率高于金属的极限频率,照到 金属表面时光电子的发射几乎是瞬时的,不超 过10-9s。
4.发生光电效应时,光电流的强度与入射光的 强度成正比。
3、爱因斯坦提出光子论圆满解释光电效应
1905年,爱因斯坦用突破性的量子化思想对光电 效应做出了现在为科学界普遍接受的解释。
光电效应的基本特征和规律
具有一定频率的辐射光照射密封在抽成真 空的玻璃管中的光电阴极K上,会使阴极材料发 射光电子,如果在A与K两端加上电势差,光电 子在加速电场的作用下向阳极迁移产生光电流, 称为光电效应。
实验表明光电效应 具有一定的规律,利用 光电效应及其规律可制 成各种光辐射探测器。

光电效应实验---普朗克常量的测量

光电效应实验---普朗克常量的测量
V
A
K
G
应的截止电压。 应的截止电压。
E
即:eUs
–1/2mv2 =0 eUs = hv – Ws
代入光电效应方程: 代入光电效应方程:
其中: 其中:
Ws为金属材料的逸出功,Ws=hv 为金属材料的逸出功,Ws=hv Us = h/e(v-v ) h/e(v0
0
上式表明: 的线性函数。 上式表明:截止电压Us是入射光频率v 的线性函数。
Us(V)
2 1.5 1 0.5 0 0 -0.5 -1 -1.5 -2 1 2 3 6 7 A(5.00,0.31) 14 ν。 4.15×10 Hz = 4 5 8
截止电压与频率的关系曲线 B(8.00,1.48)
(x10 γ 14Hz)
9
Φs = 1.62V
1. 作出不同光强下的I--V特性曲线。 作出不同光强下的I--V特性曲线。
实验内容: 实验内容:
1. 观测光电管的暗电流; 观测光电管的暗电流; 2. 测量光电管的I--V特性,重点测五种不 测量光电管的I--V特性, 同频率的截止电压; 同频率的截止电压; 3. 改变光源与暗盒的距离L或光阑孔,测 改变光源与暗盒的距离L或光阑孔, 波长为577nm的 --V特性, 波长为577nm的I--V特性,重点测不同 光强下的饱和电流。 光强下的饱和电流。
E V
A
K
G
但与入射光的频率成正比; 但与入射光的频率成正比; (4)光电效应是瞬时效应,一经光线照射,立即产生光电子。 (4)光电效应是瞬时效应,一经光线照射,立即产生光电子。 光电效应是瞬时效应
光电效应方程: 光电效应方程:
1 2 mv = h ν w s 2
当加反向电压时, 当加反向电压时,阻止光电子 运动,当光电流为零时, 运动,当光电流为零时,此时 所加反向电压Us被称为光电效 所加反向电压Us被称为光电效

测量普朗克常量的方法

测量普朗克常量的方法

测量普朗克常量的方法测量普朗克常量是一个极其复杂和精密的任务,因为其值与微观世界的量子物理现象相关。

普朗克常量(h)是一个基本常量,它在量子力学中用于描述能量的离散性和辐射的特性。

在计算普朗克常量的值时,实验方法通常涉及到一些与光子相关的现象,例如光的辐射频率、能量及粒子数量的计数等。

下面将介绍几种用于测量普朗克常量的常见实验方法:1. 光电效应法:光电效应是描述光和金属之间相互作用的现象。

根据爱因斯坦的光电方程(E = h ν- Φ),其中E是光电子的能量,h为普朗克常量,ν为光的频率,Φ为光电子的逸出功。

通过测量光的频率和光电子的能量,可以得到普朗克常量的值。

2. 涡流衰减法:涡流衰减法(Eddy current damping method)利用了涡流现象的特性。

涡流是指当金属材料或导体中有变化的磁场时,会产生感应电流。

根据感应电流大小的衰减情况,可以计算得到普朗克常量的值。

3. 基于约瑟夫森效应的荧光检测法:约瑟夫森效应是描述被束缚在两个高身势电子之间的原子发生共振跃迁的现象。

这种共振跃迁会导致发射光子的能量有离散的特性。

通过测量共振频率和发射光子的能量,可以得到普朗克常量的值。

4. 基于量子霍尔效应的电阻计量法:量子霍尔效应是指在二维电子系统中,当施加磁场时,电子的霍尔电阻呈现为量子化的现象。

通过测量霍尔电阻的量子化值和磁场强度,可以计算得到普朗克常量的值。

5. X射线研究法:利用X射线的特性和普朗克常量的关系,可以通过测量X射线的特性参数,如频率和能量,来计算普朗克常量的值。

以上只是一些测量普朗克常量的常见实验方法,每种方法都需要使用非常精密和复杂的实验仪器,以及高度精确的数据处理和分析。

此外,为了减小误差,通常需要采用多种方法的组合来测量普朗克常量的值,并对多次实验结果进行平均处理。

值得注意的是,测量普朗克常量的方法需要依赖激光技术、高精度光学仪器以及精确的实验设计和探测技术等。

由于普朗克常量的精确测量对于精确的物理研究具有重要意义,因此,科学界一直致力于推动测量方法的改进和精确度的提高。

光电效应-测定普朗克常量

光电效应-测定普朗克常量
系曲线。
3.小结:对实验中出现的问题进行讨论和分析。
将“伏安特性测试/截止电压测试”状态键为伏安特性 测试状态。将“电流量程”选择开关置于10-10A并 重新调零.
(1)将直径为2mm的光阑及波长435.8nm的滤光片插 在光电管入射窗孔前;
(2)手动模式下测量伏安特性曲线,每2伏取一电压值, 记录一电流值到表2中。
表2
I U AK关系
L 400mm
435.8n m
-1 1 3 5 7
U AK (V)
光阑
2mm
I (1010 A)
四、 数据处理
1. 用作图法:在坐标纸上作出 Uc-v 关系曲线
求出普朗克常数h,并与公认值h0比较。
e 1.6021019C h0 6.6261034 J S
2. 根据表2的数据,在坐标纸上作出UAK -I关
(2) 测试仪调零:盖上光电管暗箱和汞灯的遮光盖,“电流量 程”选择置于所选档,旋转“电流调零” 旋钮使“电流表” 指 示为零。按“调零确认/系统清零”键,系统进入测试状态。 (注意:只在调换“电流量程”时仪器调零)
(3) 调整光路:先取下光电管暗箱遮光盖,将直径为2mm的光 阑及波长为365.0nm的滤光片插在光电管入射窗孔前,再取 下汞灯的遮光盖,使汞灯的出射光对准光电管入射窗孔。 (注意:严禁让汞光不经过滤光片直接入射光电管)
2)光电效应中产生的光电子的速度与光的频率有关,而与光强 无关。
3)光电效应的瞬时性。 实验发现,只要光的频率高于金属的极限频率,光的亮度无 论强弱,光子的产生都几乎是瞬时的,响应时间不超过10-9 秒(1ns)。
4)入射光的强度只影响光电流的强弱,即只影响在单位时间内 由单位面积上逸出的光电子数目。

光电效应测普朗克常数

光电效应测普朗克常数

光电效应测普朗克常数引言光电效应是指当光照射到金属表面时,金属会发射出电子的现象。

这一现象对于理解光的本质和粒子特性起到了重要的作用。

普朗克常数是描述光的粒子性质的一个物理常数,它被定义为光子能量与其频率之间的比值。

本文将介绍光电效应的基本原理以及如何利用光电效应来测量普朗克常数。

光电效应的基本原理光电效应的基本原理可以用来解释为什么金属在受到光照射时会发射电子。

根据爱因斯坦的光子观点,光是由一系列能量为hf的光子组成的,其中h为普朗克常数,f为光的频率。

当光照射到金属表面时,光子的能量转移给了金属中的自由电子,使其获得可能离开金属表面的能量。

如果光子的能量足够大,电子将被光子完全吸收并从金属表面射出,这就是光电效应的基本过程。

光电效应的一些基本特点可以总结如下:1.光电子发射的速度与入射光子的频率有关:光电子发射的速度与入射光子的频率成正比。

当入射光子的频率增加时,光电子的速度也会增加。

2.存在阈值频率:对于给定的金属材料,存在一个称为阈值频率的临界频率。

当入射光的频率小于该阈值频率时,光电效应不会发生,即使光的强度很大。

3.光电子的动能与入射光子的频率相关:光电子的动能与入射光子的频率之间存在一个线性关系。

光电子的动能可以通过测量光电子的速度来确定。

测量普朗克常数的实验方法利用光电效应来测量普朗克常数可以采用以下的实验方法:1.测量光电流与光强度之间的关系:首先要测量光电流与光强度之间的关系。

实验中可以通过改变入射光的强度,使用一个电流计测量光电流的大小。

根据光电效应,光强度的增加应该导致光电流的增加。

2.测量光电流与频率之间的关系:接下来测量光电流与光频率之间的关系。

在这个实验中,入射光的强度保持不变,而改变入射光的频率。

通过测量光电流的变化,可以得到光电流与频率之间的关系。

3.绘制光电流与频率的图像:根据实验测量数据,可以绘制光电流与频率的图像。

从图像中可以得到光电流与频率的线性关系的斜率。

大学物理实验2之光电效应法测普朗克常量

大学物理实验2之光电效应法测普朗克常量

5. 操作步骤和要领
5. 操作步骤和要领 5.1 安全注意事项 • 汞灯一旦开启,不要随意关闭。 • 本实验不必要求暗室环境,但应避免背景光强的变化。 • 实验过程中注意随时盖上汞灯的遮光盖,严禁让汞光不经过滤光片直接入 射光电管窗口。
• 实验结束时应盖上光电管暗箱和汞灯的遮光盖! • 仪器不宜在强磁场、强电场、强振动、高温度、带辐射物质的环境下工作。 • 仪器存放时应置于通风干燥处,加防尘罩。
截电压U0 与入射光频率具有线性关系。
3. 实验原理 A
U0
0
U0 ~ 曲线
G -V +
R -E +
光电效应实验原理图
3. 实验原理
3.2 实验规律 (3) 在同一频率下,饱和光电流强度Im 正比于 入射光强P。
I
I m2 I m1
P2 P1
P2 P1
8. 实验数据记录及处理 8.2 测量截止电压
表2 测量截止电压数据整理换算表
要求: (1)假设截止电压和入射光频率是一个线性关系:Ua=kv+b, 通过最小二 乘法求出斜率k和截距b。计算中请写出详细过程并带入具体数据。 (2)通过此斜率k计算出普朗克常量h。计算h与公认值比较的相对误差。 (3)根据截距b计算出金属的脱出功A。并查阅实验所用的活性金属材料 的脱出功进行比较,给出相对误差。
代表人物:
惠更斯(Christiaan Huygens,1629-1695)
提出光是“机械波”
完成光的干涉实验,证明光的波动性
托马斯·杨(Thomas Young,1773-1829)
菲涅耳(Augustin-Jean Fresnel,1788-1827)
完成衍射实验,成功地演示了明暗相间的衍射图样

光电效应和普朗克常数的测定

光电效应和普朗克常数的测定

实验十一光电效应和普朗克常数的测定实验背景:光电效应是指一定频率的光照射在金属表面时,会有电子从金属表面溢出的现象。

光电效应对于认识光的本质及早期量子理论的发展,具有里程碑式的意义。

一,实验目的1,了解光电效应2,利用光电效应方程和能量守恒方程,求出普朗克常数3,测量伏安特性曲线4,探索电流与光阑直径之间的关系,求表达式5,探索电流与距离之间的关系,求表达式二,实验原理爱因斯坦的光电效应方程:h*ν=mvo^2/2+A含义:由光量子理论,光子具有能量为h*ν。

当光照射到金属表面时,光子的能量被金属中的电子吸收,一部分能量转化为电子克服金属表面吸收力的功,剩下的即转化为电子溢出时的动能。

即实现能量守恒。

如果外加一个反向电场,将会减弱电子运动的动能,当刚好相抵消时,回路中电流为零。

此时有eUo=m*v^2/2;代入上式中,有h*ν=e*Uo+A进行变换,得Uo=h/e*ν-C C为一个常数。

因此,只要求出Uo和ν的关系,求出斜线的斜率,即可知道普朗克常数。

三,实验仪器ZKY-GD-4型智能光电效应实验仪5个透射率分别为365.0nm 404.7nm 435.8nm 546.1nm 577.0nm 个盖子3个直径分别为2mm,4mm,8mm的光阑四,实验数据与数据处理1,测定截止电压UoL=400mm ;光阑孔径φ=4mm用MATLAB作截止电压Uo-频率λ图,并进行最小二乘法拟合:R-Square=99.95%,显然成线性关系,得斜率|k|=0.4099由公式:Uo=k*λ-A=h/e*λ-A得h=k*e其中e = 1.602176565(35)×10-19 J得实验值普朗克常量h=6.5673×10^(-34)J·s普朗克常数标准值:h=6.62606957(29)×10^(-34)J·s误差=0.6%2,伏安特性曲线测量L=400mm ;光阑孔径φ=4mm分别用五种滤光片,电压从0V-50V,每2V测量一次电流值使用MATLAB ,作出电流I 和电压U 的关系曲线:3,作出电流I 和光阑直径的曲线,并求出关系式选择波长405nm L=400mm U=20V作图并拟合:当方程形式为y=a*x^2+b时,R-square高达99.99%.即可认为完全符合这种方程形式。

光电效应测普朗克常量实验报告(附实验数据及分析)

光电效应测普朗克常量实验报告(附实验数据及分析)

光电效应测普朗克常量实验报告(附实验数据及分析)实验题⽬:光电效应测普朗克常量实验⽬的: 了解光电效应的基本规律。

并⽤光电效应⽅法测量普朗克常量和测定光电管的光电特性曲线。

实验原理: 当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,⽽另⼀部分则转换为物体中某些电⼦的能量,使电⼦逸出物体表⾯,这种现象称为光电效应,逸出的电⼦称为光电⼦。

光电效应实验原理如图1所⽰。

1.光电流与⼊射光强度的关系光电流随加速电位差U 的增加⽽增加,加速电位差增加到⼀定量值后,光电流达到饱和值和值I H ,饱和电流与光强成正⽐,⽽与⼊射光的频率⽆关。

当U= U A -U K 变成负值时,光电流迅速减⼩。

实验指出,有⼀个遏⽌电位差U a 存在,当电位差达到这个值时,光电流为零。

2.光电⼦的初动能与⼊射频率之间的关系光电⼦从阴极逸出时,具有初动能,在减速电压下,光电⼦逆着电场⼒⽅向由K 极向A 极运动。

当U=U a 时,光电⼦不再能达到A 极,光电流为零。

所以电⼦的初动能等于它克服电场⼒作⽤的功。

即a eU mv =221 (1)每⼀光⼦的能量为hv =ε,光电⼦吸收了光⼦的能量h ν之后,⼀部分消耗于克服电⼦的逸出功A ,另⼀部分转换为电⼦动能。

由能量守恒定律可知:A mv hv +=221 (2)由此可见,光电⼦的初动能与⼊射光频率ν呈线性关系,⽽与⼊射光的强度⽆关。

3.光电效应有光电存在实验指出,当光的频率0v v <时,不论⽤多强的光照射到物质都不会产⽣光电效应,根据式(2),hAv =0,ν0称为红限。

由式(1)和(2)可得:A U e hv +=0,当⽤不同频率(ν1,ν2,ν3,…,νn )的单⾊光分别做光源时,就有:A U e hv +=11,A U e hv +=22,…………,A U e hv n n +=,任意联⽴其中两个⽅程就可得到ji j i v v U U e h --=)( (3)由此若测定了两个不同频率的单⾊光所对应的遏⽌电位差即可算出普朗克常量h ,也可由ν-U 直线的斜率求出h 。

光电效应测普朗克常量

光电效应测普朗克常量

光电效应测普朗克常量
光电效应是指当金属被光照射时,金属表面发射出电子的现象。

测量光电效应可以用来确定普朗克常量的值。

具体实验步骤如下:
1. 准备一块金属样品作为实验对象。

2. 将金属样品放置在真空室内。

3. 用一束单色光照射金属样品。

光的波长可以通过调节单色仪来控制。

4. 测量照射金属样品所需的最小电压,使得金属表面开始发射电子。

这个电压被称为截止电压。

5. 根据光的波长和截止电压的关系,可以计算出普朗克常量的值。

6. 为了准确测量截止电压,必须使用高精度电压测量设备,并且需要进行多次测量取平均值。

需要注意的是,实验中所使用的金属样品必须具有一定的工作函数,并且在照射过程中必须保持表面清洁,以保证实验的准确性。

光电效应测普朗克常量

光电效应测普朗克常量

光电效应测普朗克常量篇一:光电效应法测普朗克常量(已批阅)实验题目:光电效应法测普朗克常量4级学号姓名日期实验目的:了解光电效应的基本规律,并用光电效应的方法测量普朗克常量,并测定光电管的光电特性曲线。

实验仪器:光电管、滤波片、水银灯、相关电学仪器实验原理:在光电效应中,光显示出粒子性质,它的一部分能量被物体表面电子吸收后,电子逸出形成光电子,若使该过程发生于一闭合回路中,则产生光电流。

实验原理图:图一:原理图光电流随加速电压差U的增加而增加,其大小与光强成正比,并且有一个遏止电位差Ua存在(此时光电流I=0)。

当U=Ua时,光电子恰不能到达A,由功能关系:12mv2?eUa而每一个光子的能量??h?,同时考虑到电子的逸出功A,由能量守恒可以知道:h??12mv2?A这就是爱因斯坦光电效应方程。

若用频率不同的光分别照射到K上,将不同的频率代入光电效应方程,任取其中两个就可以解出:h?Ahe(U1?U2)?1??2其中光的频率?应大于红限?0?,否则无电子逸出。

根据这个公式,结合图象法或者平均值法就可以在一定精度范围内测得h值。

实验中单色光用水银等光源经过单色滤光片选择谱线产生;使用交点法或者拐点法可以确定较准确的遏止电位差值。

4级学号姓名日期实验内容:1、在光电管入光口装上365nm的滤色片,电压为-3V,调整光源和光电管之间的距离,直到电流为-0.3μA,固定此距离,不需再变动;2、分别测365nm,405nm,436nm,546nm,577nm的V-I特性曲线,从-3V 到25V,拐点出测量间隔尽量小; 3、装上577滤色片,在光源窗口分别装上透光率为25%、50%、75%的遮光片,加20V电压,测量饱和光电流Im和照射光强度的关系,作出Im-光强曲线;4、作Ua-V关系曲线,计算红限频率和普朗克常量h,与标准值进行比较。

数据处理和误差分析:本实验中测量的原始数据如下:4级学号姓名日期表六:在不同透光率下的饱和光电流(577nm光下)电流单位:μA根据以上表一至表五的数据,可分别作出各种不同波长(频率)光下,光电管的V-I特性曲线:4级学号姓名日期365nm光下光电管的伏安特性曲线405nm光下光电管的伏安特性曲线4级学号姓名日期436nm光下光电管的伏安特性曲线546nm光下光电管的伏安特性曲线篇二:光电效应测普朗克常量实验报告光电效应测普朗克常量实验报告一、实验题目光电效应测普朗克常数二、实验目的1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法;3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
பைடு நூலகம்



光电发射器件:当辐射光能量作用于器件中的 光敏材料上时,电子逸出光敏材料表面产生光 电子并使发射的电子进入真空或气体中,形成 光电流,这种基于外光电效应的光电器件成为 光电发射器件。例如光电倍增管,光电管等。 半导体光电器件: 当辐射能作用于器件中的光 敏材料时,所产生的光电子通常不脱离光敏材 料,而是依靠吸收光子后在其内部激发出导电 的载流子,这种基于内光电效应的器件称为半 导体光电器件。
光电效应实验
---普朗克常量的测量
刘金环
前言

人类对光的本性的认识,到麦克斯韦提出 光是一种电磁波,光的波动说似乎已完美 无缺了。然而,就是在证实电磁波存在的 过程中,人们发现了光具有粒子性的重大 事实,这就是光电效应现象。光电效应在 量子理论的发展中有着特殊的意义。

光电效应最先由赫兹发现;他的学生勒纳 德对光电效应的研究卓有成效并获1905年 诺贝尔物理学奖;爱因斯坦提出光子论从 理论上成功解决了光电效应面临的难题并 因此获1921年诺贝尔物理学奖;美国物理 学家密立根通过精确实验证实了爱因斯坦 的理论,并获1923年诺贝尔物理学奖。
光电效应的第二个结论:光电子从金属表 面逸出时具有一定的动能,最大初动能与入射 光的频率成正比,而与入射光的强度无关。

光电效应的基本特征和规律
具有一定频率的辐射光照射密封在抽成真 空的玻璃管中的光电阴极K上,会使阴极材料发 射光电子,如果在A与K两端加上电势差,光电 子在加速电场的作用下向阳极迁移产生光电流, 称为光电效应。 实验表明光电效应 具有一定的规律,利用 光电效应及其规律可制 成各种光辐射探测器。
光电效应的第一个结论:照射光的频率与极 间端电压U一定时,饱和光电流i与入射光强I成 正比。或者说在光照下,单位时间内从阴极飞出 的光电子数与入射光强度成正比。
3、爱因斯坦提出光子论圆满解释光电效应



1905年,爱因斯坦用突破性的量子化思想对光电 效应做出了现在为科学界普遍接受的解释。 在空间传播的光(的能量)不是连续的,而是一 份一份的,每一份叫做一个光量子,简称光子, 一份光子的能量 E=hv。 在上个世纪初,科学家们对量子化的物理还极不 适应,爱因斯坦的独创性、物理洞察力和对简洁 解释的追求使他在忙碌的1905年发表了相对论, 成功解释了光电效应,建树起近代物理学研究的 两座丰碑。
1.赫兹意外发现光电效应

1885年,赫兹用如图1所示的 装臵来证实电磁波的存在。
电磁波发生器是在两根铜棒上各焊接一个磨光的黄铜球,另
一端各连接一块正方形锌板,它们共轴放置,两球间留有一 空隙,它们相当于一个电容器,与感应圈连接,构成了LC电 路。感应圈使两黄铜球聚集大量电荷,从而在空隙间产生电 火花,形成高频振荡电流,辐射高频电磁波。与这个回路相 距一定距离有电磁波接收器,是用一根粗铜导线弯成一开口 的圆环,开口端各焊一黄铜球,之间有可作微调的空隙,这 个接收器实际上也是一个LC电路。调节间隙改变接收电路的 固有频率可与发射过来的电磁波产生共振,从而在接收器的 空隙间观察到电火花。
iI
光电管的伏安特性
遏止电势差:当UAK减小到零并逐渐变负时,光 电流一般并不等于零。这表明从阴极释出的电子 具有一定的初动能,它们仍能克服减速电场的阻 碍使一部分电子到达阳极。使光电流降为零时的 反向截止电势差的绝对值Ua叫遏止电势差。 遏止电势差的存在, 表明光电子从金属表面逸 出时的初动能具有一定的 限度。
光电效应现象的实验规律:




1.对各种金属都存在着极限频率和极限波长, 低于极限频率的任何入射光强度再大、照射时 间再长都不会发生光电效应。 2.光电子的最大初动能与入射光的强度无关, 只随入射光频率的增大而增大。 3.只要入射光频率高于金属的极限频率,照到 金属表面时光电子的发射几乎是瞬时的,不超 过10-9s。 4.发生光电效应时,光电流的强度与入射光的 强度成正比。
4、密立根精确实验证实光电效应方程


爱因斯坦的光子假设与光电方程,要为人们认同还 没有理论基础──当时对这一假说的怀疑超过了狭 义相对论,甚至包括普朗克本人也持反对态度。许 多物理学家都想方设法用实验测量普朗克恒量 h, 以求验证光电效应方程。 一直对光子假设持有保留态度的美国物理学家密立 根,设计了高精确度的实验装臵,经过十年的试验, 不断解决一些技术难点,终于验证了光电方程的直 线性,并测出普朗克恒量h=6.56×10-34J· S。在事 实面前,密立根服从真理,宣布爱因斯坦光子假说 得到证实。

进一步研究发现这一现象中直接起作用的是 火光中的紫外线,当火花的光照到间隙的负 极时,作用最强,这种情况下接收器间隙发 生的电火花实际上是紫外线的照射使一极铜 球上飞出电子到另一极铜球所形成,赫兹称 之为“紫外光对放电现象的效应”,也就是 光电效应。
2、勒纳德研究光电效应现象的规律


赫兹的发现吸引了许多人去深入研究光电效应成 因与规律,其中德国物理学家、赫兹的助手勒纳 德的研究卓有成效。 勒纳德研究光电效应规律的实验装臵如图所示。 当入射光照射到光洁的金属阴极K表面,就有光电 子发射出来,若有光电子到达阳极A,电路中就有 电流,所以可通过电流计了解用各种光照射阴极K 以及对两极加不同电压时的光电流,从中摸索规 律。


利用电火花实验装臵,赫兹测量了电磁波速、 进行了研究电磁波的反射、聚焦、折射、衍射、 干涉、偏振等各种波现象的实验。 大量反复地实验不但证实了麦克斯韦电磁波理 论,同时意外地发现了表明光具有粒子性的一 个重要现象:当发射器间隙的火光被阻隔时, 原来接收间隙的火花变暗,而用其他任何火花 的光照射到接收器铜球,也能促使间隙发生电 火花。
光电效应的科学之光经众多物
理学家前赴后继,三十年努力 求索,在物理学史上成为绚丽 夺目的篇章!
光电效应

光照射到某些物质上,引起物质的电性质发生 变化。这类光致电变的现象统称为光电效应。 人们把由于光照射到固体表面而从表面发射出 电子的现象称为外光电效应。 有些物质被光照射时无电子发射,但电导率发 生变化或产生电动势,这类现象称为内光电效 应。
相关文档
最新文档