人教版七年级数学上第三章一元一次方程知识点总结及应用题详细解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程知识点总结及应用题详细解析

1.等式:用“=”号连接而成的式子叫等式.

2.等式的性质:

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.

3.方程:含未知数的等式,叫方程.

4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!

5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.

6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).

8.一元一次方程解法的一般步骤:

化简方程----------分数基本性质

去分母----------同乘(不漏乘)最简公分母

去括号----------注意符号变化

移项----------变号

合并同类项--------合并后注意符号

系数化为1---------未知数细数是几就除以几

知能点1:市场经济、打折销售问题

(1)商品利润=商品售价-商品成本价(2)商品利润率=

商品利润

商品成本价

×100%

(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.

1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?

解:设这种皮鞋标价是x元

8/10x=60×(1+40%)

解得:x=105

105×8/10=84(元)

答:这种皮鞋标价是105元,优惠价是84元

3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为( B )

A.45%×(1+80%)x-x=50

B. 80%×(1+45%)x - x = 50

C. x-80%×(1+45%)x = 50

D.80%×(1-45%)x - x = 50

解析: 因为自行车按进价提高45%后标价,已经设过自行车进价是X元了所以X(1+45%)=145%X ——也就是标价因为(标价)又以八折优惠卖出所以标价×八折=销售价145%X × 0.8 = 1.16 X 因为结果每辆获利50元(获益= 销售价- 进价)所以获利的50元= 销售价1.16X元- 进价X元上为解题思路,得到方程:145%X • 0.8 - X =50

4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.

解析:按最少利润为800*5%=40,则出售价为800+40=840,则打折为840/1200=70%,最低可以打七折

5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.

解:设每台彩电零售价为x.

[(1+40%)×80%]x-x=2700÷10

x=2250

答:每台彩电零售价为2250元.

知能点2:方案选择问题

6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:

方案一:将蔬菜全部进行粗加工.

方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.

方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.

你认为哪种方案获利最多?为什么?

方案三获利多

方案一:140*4500=630000

方案二:15*6=90 90*7500=675000 (140-90)*1000=50000 675000+50000=725000

方案三:设粗加工x天16*x+6*(15-x)=140 x=5天

精加工15-5=10天

5*16*4500+10*6*7500=360000+450000=810000

7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.

(1)写出y1,y2与x之间的函数关系式(即等式).

(2)一个月内通话多少分钟,两种通话方式的费用相同?

(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?

(1)全球通:50+0.2*X

神州行:0.4X

(2) 50+0.2X=0.4X 得X=250

(3)50+0.2*120=74

0.4*120=48

选择神州行更优惠!

8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。(1)某户八月份用电84千瓦时,共交电费30.72元,求a.

(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦时?•应交电费是多少元?

(1)0.5a+(80-a)×0.3=30 (2)设九月份用电度数为Y,则:

0.5a+24-0.3a=30 <30×0.5+(Y-30)×0.5>÷X=0.36

0.5a-0.3a=30-24 ( 15+0.3Y-9)÷X=0.36

0.2a=6 6+0.3Y=0.36Y

a=30 0.06Y=6

Y=100

知能点3储蓄、储蓄利息问题

相关文档
最新文档