【最新版】八年级数学下册第1章根式1.3二次根式的运算第1课时二次根式的乘除习题课件新版浙教版_14
人教版八年级数学下册《二次根式的乘除》二次根式PPT精品课件
观察两者有什么关系?
4×9
36 6 ;
=_________
400 20 ;
16 × 25 =_________
900 30 .
25 × 36 = _________
知识讲解
观察三组式子的结果,我们得到下面三个等式:
(1)
4
(2)
16
(3)
25
9 = 4 9;
25= 16 25;
16a 4a 2 a 2 .
4
4
知识讲解
2. 若长为 24 ,宽为 8 ,求出它的面积.
解:它的面积为 24 × 8 = 24 × 8 =
82 × 3 = 8 3.
随堂训练
−6 = ⋅ −6
1.若
,则 ( A )
A.x≥6
B.x≥0
C.0≤x≤6
D.x为一切实数
( D )
6 2
(2) 6 × 12 = _______;
2 6
(3) 3 × 2 2 = _____.
4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):
(1)
5 4
>
4 5;
(2) 4 2
<
2 7.
随堂训练
5.计算:(1)2 3 × 5 21;
18
(2)3 3 × (−
);
4
(3)3 2 × 2 10 × 5;
(3) 3 ×
1
=
3
1
3
3 × = .
1
.
3
知识讲解
归纳: 化简二次根式的步骤:
1.把被开方数分解因式(或因数) ;
2.把各因式(或因数)积的算术平方根化为每个因
八下第一章 1.3二次根式的运算(1)
八年级上学期数学第一章 二次根式1.3二次根式的运算(1)一、回顾知识 导入新课1、计算: (1)=,=∴(2)= , =∴由此你能得出两个二次根式相乘或相除的法则吗?请你用字母表示.例1 计算:(1)322⨯ (2)550 (3)61925÷ (4)2)0,0(324162≥≥⨯y x xy xy跟踪练习:计算:(1)61211÷ (2)672 (3)2)0,0(6632 b a a ab ⨯例2 计算:(1)-9215125.225⨯ (2)5232232⨯÷跟踪练习:计算:(1))7223()563(212-⨯÷; (2)-2)0,0(543362522 b x b b a b a x xb a -÷+⨯-2、最简二次根式的两个条件:(1)(2)三、当堂检测 自我评价1、下列等式中,成立的是( )A. =B. =C. =D. =2的结果是( )A.3- B. C. D. 3-3 )A. B. C. 2 D.4、(2013年佛山市)化简)12(2-÷的结果是( )A .122-B .22-C .21-D .22+5、计算:271331322÷⨯的结果是( ) A 、331 B 、231 C 、26 D 、626、比较大小:,32 6128、计算:(1(2(3 (4))1043(53544-÷⨯3、 将1按如图所示的方式排列.A.1B.2C.4、已知1a a +=1a a-的值为( )A .±B .8C .D .68、探究过程:观察下列各式及其验证过程.(1)验证:==(2)验证:=同理可得:==,……通过上述探究你能猜测出:(a>0),并验证你的结论.。
人教版数学八年级下册课件1二次根式的乘除(16张)
2利利二、用用次利二 二 根用次次式二根根的次式式乘根乘乘法式法法乘法法则法则则变法解对形则决其对实进其际行进问化行题简计化。算简。下列各式,观察计算结果,你能发现什么规律?
二次根式性的质乘知法识法点则回变顾形
利在用本二 章次中根,式如乘果法没法有则特对别其说进明行,化所简有。的字母都表示正数.
2在、本利章用中二,次如根果式没乘有法特法别则说对明其,进所行有化的简字。母都表示正数.
无结果
无结果
二在次本根 章式中性,质如知果识没点有回特顾别说明,所有的字母都表示正数.
01 二次根式的乘法法则
注意公式成立条件 在本章中,如果没有特别说明,所有的字母都表示正数.
这个结果还能化简吗?
01 二次根式的乘法法则变形
注意公式成立条件
在本章中,如果没有特别说明,所有的字母都表示正数.
01 化简二次根式的步骤
20
20
2利、用利二用次二根次式根乘式法乘法法则法对则其对进其行进化行简化。简。
12
12
计第算十下 六列章各二式次,根观式察计算结果,你能发现什么规律?
二计次算根 下式列的各乘式法,法观则察变计形算结果,你能发现什么规律?
30
30
第十六章 二次根式 2利、用利二用次二根次式根乘式法乘法法则法解则决对实其际进问行题化简。
第十六章 二次根式
二次根式的乘除 (第1课时)
目录
学习目标 LEARNING OBJECTIVES
01 1、理解二次根式乘法法则。
2、利用二次根式乘法法则对其进行化简。
02
重点 A KEY
理解二次根式乘法法则。
03
难点 DIFFICULTY
利用二次根式乘法法则对其进行化简。
(完整版)八年级下册数学--二次根式知识点整理
二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
初中数学_二次根式的乘除法教学设计学情分析教材分析课后反思
数学八年级下册第九章《二次根式》第三节《二次根式乘除法》第1课时教学设计数学八年级下册第九章《二次根式》第三节《二次根式乘除法》第1课时学情分析一、思想状况分析八年级10班大部分学生的学习目的性明确、学习积极性高,能主动地学习,部分同学有上进心,但主动性不够,需要老师的引导。
八年级10班的学生学习目的不明确,不能积极主动地完成学业,甚至不能完成老师布置的作业。
大部分学生正处在生长发育的高峰期,一方面他们对因青春期生理、心理急剧变化而产生的丰富而深刻的感受和体验,有诸多成长的烦恼;另一方面面对沉重的学习、开放的社会环境带来的各种刺激和诱惑,难免不知所措。
二、学习状况分析八年级是一个产生剧烈变化的时期,更是一个危险的时期,也是一个爬坡的时期,是一个分水岭。
第一类:学习有一定的基础和很浓厚的兴趣.学生成绩稳定.第二类:基础差,但热情高,方法不当第三类:学习有一定的基础,但因各种原因成绩(如懒、上课纪律差易开小差注意力不集中、不想上学的思想作怪等)就是提不上来。
第四类:基础差,没有太大的兴趣,但尽量跟住老师.这些孩子的家长当然也在督促。
第五类:跟不上正常的进度.另外,大部分学生有学习目标,学习态度端正,学习积极性高,有一定的理解能力和分析判断推理能力,但学习自主性不太强,基础较薄弱,通过小学的精心培养,学生们已经养成了良好的学习习惯和行为习惯。
语言文明,思想健康,积极、认真、扎实。
但有的学生对自己的学习没信心,在自动放弃学习。
三、今后措施1、在教学中必须立足基础知识,加强基础知识的教学,要让学生通过历史知识的学习,养成良好的思维习惯,培养学生良好的学习习惯和严谨认真的学习态度,加强规范语言训练,提高答题得分率。
2、运用科学探究的方法,获取相应的知识,培养学生的情感和态度,扎扎实实打好基础,引领学生进入阅读世界、注重文献史料的积累借鉴,引导学生系统、牢固地掌握各课的知识考点,并培养他们运用所学知识分析问题、解决问题的能力。
人教版数学八年级下册16.2第1课时《二次根式的乘法》说课稿
人教版数学八年级下册16.2第1课时《二次根式的乘法》说课稿一. 教材分析《二次根式的乘法》是人教版数学八年级下册第16.2节的内容,这部分内容是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行教授的。
二次根式的乘法是数学中基本的运算之一,它在数学问题的解决中有着广泛的应用。
通过学习这部分内容,可以使学生进一步理解和掌握二次根式的性质,提高他们的数学运算能力。
二. 学情分析在八年级的学生已经具备了一定的数学基础,对于二次根式的性质和加减法运算已经有了一定的了解。
但是,学生在进行二次根式的乘法运算时,可能会对如何正确处理根号下的乘法运算感到困惑。
因此,在教学过程中,需要引导学生正确理解二次根式的乘法运算规则,并通过大量的练习来巩固他们的理解。
三. 说教学目标1.知识与技能目标:使学生理解和掌握二次根式的乘法运算规则,能够正确进行二次根式的乘法运算。
2.过程与方法目标:通过教师的引导和学生的自主探究,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们积极的学习态度和良好的学习习惯。
四. 说教学重难点1.教学重点:使学生理解和掌握二次根式的乘法运算规则。
2.教学难点:如何引导学生正确理解二次根式的乘法运算规则,并能够灵活运用。
五. 说教学方法与手段在教学过程中,我将采用讲授法和探究法相结合的教学方法。
在讲解二次根式的乘法运算规则时,我将通过生动的例子和清晰的解释,帮助学生理解和掌握。
同时,我将引导学生进行自主探究,通过解决实际问题,来加深他们对二次根式乘法运算的理解。
此外,我还将运用多媒体教学手段,如PPT等,来辅助教学,使教学内容更加生动和直观。
六. 说教学过程1.导入:通过一个实际问题,引发学生对二次根式乘法运算的思考,激发他们的学习兴趣。
2.讲解:讲解二次根式的乘法运算规则,并通过大量的例子来解释和巩固。
3.练习:让学生进行二次根式乘法运算的练习,及时发现和纠正他们的错误。
人教版八下数学课件-二次根式的乘除
A. 8 3 11
B. 5 2 10
C. 6 ( 2) 12
D. 7 2 14
3.计算: 5 10 8 __2_0_.
探究新知
【思考】你还记得单项式乘单项式法则吗? 试回顾如何计算4a2·5a4= 20a6 .
探究新知
素养考点 2 因数不是1二次根式的乘法运算
解:(1)2 3 5 21
25 321 10 32 7 30 7
(2)3
3 (-
18 ) 4
(2) 3 3 (- 18 )
4
3-14 3 18
3 32 6 4
3 3 6 9 6.
4
4
课堂检测 能力提升题
1.下面是意大利艺术家列奥纳多·达·芬奇所创作世界名画,若 长为 24 ,宽为 8 ,求出它的面积.
不成立!
- 4、- 9没有意义!
因此被开方数a,b需要满足什么条件?
a,b是非负数,即a≥0,b≥0
探究新知
二次根式的乘法法则是:
在本章中, 如果没有特 别说明,所 有的字母都 表示正数.
二次根式相乘,_根__指__数___不变,被__开__方__数__相乘.
语言表述: 算术平方根的积等于各个被开方数积的算术平方根. 注意:a,b都必须是非负数.
A.x≥6
B.x≥0
C.0≤x≤6
D.x为一切实数
课堂检测
3. 计算:
基础巩固题
(1)3 15=__3__5__ (2) 6 12 =__6__2__
(3)3 2 2 =__2__6__
4. 比较下列两组数的大小(在横线上填“>”
“<” 或“=”):
2024版《二次根式的乘除》二次根式PPT(第1课时)
《二次根式的乘除》二次根式PPT(第1课时)•二次根式基本概念与性质•二次根式乘法运算规则•二次根式除法运算规则•复杂表达式中二次根式化简方法•实际应用问题中二次根式求解策略•课堂小结与拓展延伸01二次根式基本概念与性质二次根式定义及表示方法定义形如$sqrt{a}$($a geq0$)的代数式叫做二次根式。
注意被开方数$a$是非负数。
表示方法二次根式用根号“$sqrt{}$”来表示,根号下的数或代数式叫做被开方数。
二次根式性质介绍非负性01$sqrt{a} geq 0$($a geq 0$),即二次根式的值总是非负的。
乘法定理02$sqrt{a} times sqrt{b} = sqrt{a times b}$($a geq 0$,$b geq0$),即两个非负二次根式的乘积等于它们被开方数的乘积的算术平方根。
除法定理03$frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$($a geq 0$,$b > 0$),即一个非负二次根式除以一个正二次根式等于它们被开方数的商的算术平方根。
例题1解析例题2解析典型例题解析计算$sqrt{8} times sqrt{2}$。
计算$frac{sqrt{20}}{sqrt{5}}$。
根据乘法定理,有$sqrt{8} times sqrt{2} = sqrt{8 times 2} = sqrt{16} = 4$。
根据除法定理,有$frac{sqrt{20}}{sqrt{5}} = sqrt{frac{20}{5}} = sqrt{4} =2$。
02二次根式乘法运算规则运算步骤确认两个二次根式是否为同类根式,即被开方数是否相同。
示例:$sqrt{2} times sqrt{8} = sqrt{2 times 8} = sqrt{16} = 4$若为同类根式,则直接应用乘法公式进行计算。
乘法公式:$sqrt{a} times sqrt{b} = sqrt{a times b}$同类二次根式乘法运算不同类二次根式乘法运算确认两个二次根式是否为不同类根式,即被开方数是否不同。
初中数学《二次根式的乘除(第1课时)》教学设计案例
《16.2 二次根式的乘除(第1课时)》教学设计案例一、内容和内容解析1.内容二次根式的乘法法则和积的算术平方根的性质,化简二次根式.2.内容解析二次根式是初中阶段“数与式”内容的最后一章,因此承担着整理“数与式”的内容、方法和基本思想的任务.本节研究二次根式的乘法运算.运算法则是运算的依据,因此教材通过“探究”栏目,引导学生利用二次根式的性质,从具体数字运算中发现规律,进而归纳得出二次根式的乘法法则.基于以上分析,确定本节课的教学重点:探究二次根式的乘法法则和积的算术平方根的性质.二、目标和目标解析1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式.三、教学问题诊断分析本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难.运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气.,培养学生良好的运算习惯.在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简.本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简.四、教学过程设计1.复习引入,探究新知我们前面已经学习了二次根式的概念和性质,本节课开始我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1什么叫二次根式?二次根式有哪些性质?师生活动学生回答。
第1课时:《二次根式》(1)——二次根式及二次根式的乘除运算
第1课时:《二次根式》(1)——二次根式及二次根式的乘除运算【知识点拨】 一、二次根式式子)0(≥a a 叫做二次根式,二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。
[例题1] 1、用代数式表示:(1)面积为S 的正方形的边长为______.(2)•面积为10•的直角三角形的两直角边的比为1:•2,•则这两条直角边分别为______.2a 的取值范围是( )A .1<aB .1≤aC .1≥aD .1>a 3、下列式子中,是二次根式的有( )A .1个B .2个C .3个D .4个4、(1)若0≥a . (2)若021=++-x y ,则=x _____,=y ______.5、求使式子有意义的实数x 的取值范围.(1 (2二、二次根式的性质 (1))0()(2≥=a a a (2)==a a 2⎩⎨⎧<-≥)0()0(a a a a[例题2] 1、计算:(1)=2)3(______;(2)=-2)52(_____. 2、下列式子正确的个数是( )①2)4(4±=;②3)3(2-=--;③1)2()3(22=-;④2)7(7=. A .1个 B .2个 C .3个 D .4个 3、在实数范围内分解因式792-a .解:=-=-222)7()3(79a a ( )·( )4、计算:(1______.(2=_____; (3=______. 5、计算:(12≤x ) (2 (3三、二次根式的乘除运算 (3)b a ab ⋅=(00≥≥b a ,)(4))0,0(≥≥=b a bab a[例题3]1、计算:(1______.(2______; (3_______. 2、下列运算不正确的是( )A 0.2×0.6=1.2B 2×6=12C == 1.2D 0≥a ) 3、计算:(1(- (2(3) (4)-12(-4、计算:(1______;(2_____.5、计算:(1)_____;(2=______.6、计算:(1___________; (2=____________.7、化简:(1_____;(2______.8、化简:(1___________; (2___________;(00≥>b a ,),9、计算:(1______;(2_____;(3_____.10、计算:(1______;(2=_______.三、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
浙教版八年级下测试题1.3 第1课时 二次根式的乘除法
第1课时 二次根式的乘除法1.下列计算正确的是( D )A.25=±5B.2×3= 5C.18÷2=9D.24×32=6【解析】 A 不正确,结果应该为5;B 不正确,结果应该为6;C 不正确,结果应该为3. 2.下列计算不正确的是( B )A.24×6=24×6=4×6×6 =22×62=2×6=12B.2×103×0.2=2010C.23×278=23×278=94=32 D.2340=13240=13120=135102=130 5【解析】 B 不正确,2×103×0.2=400=20.选B. 3.[2013·常德]2×8+3-27的结果为( B )A .-1B .1C .4-33D .74.[2012·杭州]已知m =⎝ ⎛⎭⎪⎫-33×(-221),则有( A )A .5<m <6B .4<m <5C .-5<m <-4D .-6<m <-5 【解析】 m =⎝ ⎛⎭⎪⎫-33×(-221)=233×21=23×37=27=28,∵25<28<36,∴5<28<6,即5<m<6.5.计算912÷5412×36的值为(B)A.312 B.36C.33 D.3 34【解析】原式=912×1254×36=912×1254×36=36.选B.6.下列计算正确的是(A)A.8×102×2×103=8×2×104×10=40010B.243=243=8=2C.1255=25=25D.2.7×1040.3×102=2.7×1040.3×102=300【解析】B不正确,结果应为2 2;C不正确,结果应为5;D不正确,结果应为30.选A.7.计算:(1)[2013·吉林]2×6=.(2)2a·8a(a≥0)=__4a__;(3)8×12=__2__.8.已知6≈2.449,求下列各式的值(精确到0.01).(1)8×27;(2)50 12 .解:(1)原式=8×27=22×2×32×3=66≈6×2.449=14.694≈14.69. (2)原式=5012=256=56 6≈56×2.449≈2.04.9.计算: (1)18× 3. (2)18×50. (3)-5827×114×354. (4)23ab 3·⎝ ⎛⎭⎪⎫-34ab (b ≥0). 解:(1)18×3=3 2×3=3 6. (2)18×50=3 2×5 2=30. (3)-5827×114×354=-5×29×6×52×3×36=-30 5.(4)23 ab 3·⎝ ⎛⎭⎪⎫-34 ab =2b 3 ab ×⎝ ⎛⎭⎪⎫-34 ab=-ab 22. 10.(1)322.(2)5010.(3)415÷710.解:(1)4;(2)5;(3) 6.11.下列各式计算正确的是( D )A .32×26=512 B.1613=16×13 =43 3C.-9-25=925=35 D .(a -1)11-a=-(1-a )2·11-a=-1-a (a <1)【解析】 A 不正确,应为123;B 不正确,应为733;C 不正确,无意义.12.若50·a 的计算结果是一个整数,那么a 的最小正整数值是 ( C ) A .50 B .5 C .2D .10【解析】 ∵50·a =50·a =52·2a , ∴a 的最小正整数值是2.选C.13.如图1-3-1,每个小正方形的边长为1,连结大正方形的3个顶点,可得△ABC ,则AC 边上的高为( B )图1-3-1A.322B.355C.553D.455【解析】 ∵S △ABC =4-12×2×1-12×2×1-12×1×1=4-1-1-12=32,AC =22+12=5,∴AC 边上的高=2S △ABCAC =2×325=355. 14.观察分析下列数据,寻找规律:0,3,6,3,23,…,那么第10个数据应是.【解析】 规律为0=0×3,3=1×3,6=2×3,3=3×3,23=4×3,…,故第10个数为9×3=3 3.15.设三角形的底边长是a ,底边上的高是h ,面积是S . (1)如果a =2,h =14,求S ; (2)如果a =230,S =15,求h . 解:(1)S =12ah =12×2×14=7.(2)h =2S a =2×15230=302.16.如图1-3-2,在Rt △ABC 中,∠ACB =90°,S △ABC =18 cm 2,BC = 3 cm ,CD ⊥AB 于点D ,求AC ,CD 的长.图1-3-2解:∵S △ABC =12AC ·BC , ∴AC =2×S △ABC BC =2×183=26(cm),∴AB =AC 2+BC 2=(26)2+(3)2 =24+3=33(cm),∴CD =2S △ABC AB =2×1833=236(cm).17.阅读与解答:古希腊的几何学家海伦,在他的著作《度量》一书中,给出了下面一个公式:如果一个三角形的三边长分别为a ,b ,c ,设p =a +b +c2,则三角形的面积为S =p (p -a )(p -b )(p -c ).请你解答:在△ABC 中,BC =4,AC =5,AB =6,求△ABC 的面积. 【解析】 先根据△ABC 三边长求出p 的值,然后再代入三角形面积公式中计算.解:由题意,得a =4,b =5,c =6, ∴p =a +b +c 2=152,∴S=152×⎝⎛⎭⎪⎫152-4×⎝⎛⎭⎪⎫152-5×⎝⎛⎭⎪⎫152-6=152×72×52×32=15 74,故△ABC的面积是15 74.。
【人教版教材适用】八年级数学下册《16.2.1 二次根式的乘法》课件
1 计算: (1) 2 5 ;(2) 3 12 ;
(3) 2 6
解:(1) (2)
1 1 ;(4) 288 . 2 72 2 5 2 5 10;
3 12 3 12 36 6; 1 1 (3)2 6 2 6 2 3; 2 2 1 1 (4) 288 288 4 2. 72 72 (来自《教材》)
数时,应留负号在根号外,然后再平方后移到根号内.
第十六章
二次根式
16.2
二次根式的乘除
第 1 课时
二次根式的
乘法
1
课堂讲解
二次根式的乘法法则 积的算术平方根的性质
2
课时流程
逐点 导讲练 课堂 小结 作业 提升
复习提问 1.什么叫二次根式?
形如 a (a≥ 0)的式子叫做二次根式 . 2.两个基本性质:
a
a
2
2
=a (a≥ 0) a (a≥ 0) =∣a∣ = -a (a<0)
知1-导
知识点
探究
1
二次根式的乘法法则
计算下列各式,观察计算结果,你能发现什么规律? (1) 4 9 =_______, 4 9 =_______; (2) 16 25 =_______, 16 25 =_______; (3) 25 36 =_______,
25 36 =_______.
知1-讲
法则: 两个二次根式相乘,把被开方数相乘,根指 数不变, 即: a b ab (a≥0,b≥0).
知1-讲
例1 计算: (1)
3 5 ;(2)
1 27. 3
解:(1) 3 5 15;
(2)
数学浙教版八年级下册全册教案
第1章 二次根式1.1 二次根式【教学目标】知识与技能1.理解二次根式的概念。
2.使学生掌握用简单的一元一次不等式解决二次根式中字母的取值范围。
过程与方法1.经历探究二次根式意义的过程,并能观察思考得出二次根式的特点。
2.通过探究,进一步发展观察、归纳、概括等能力。
3.培养与提高灵活运用知识的能力、准确计算能力以及语言表达能力。
情感态度与价值观1.通过探究二次根式,让学生获得成功的体验,锻炼克服困难的意志,建立自信心。
2.通过探究,鼓励学生敢于发表自己的观点,尊重与理解他人的见解,从交流中获益。
3.通过对二次根式特点的归纳,提高学生的逻辑思维能力。
教学重难点重点:二次根式的概念和二次根式有意义的条件。
难点:确定较复杂的二次根式中字母的取值范围。
【教学过程】知识回顾求一求:(1)3的平方根是_____;(2)3的算术平方根是_____;(3呢?归纳:①一个正数有____个平方根,负数_____________;②一个非负数a 的算术平方根可以表示为 。
情景导入根据图1.1-1的直角三角形、正方形和圆的条件,完成以下填空:2 cm a cm图1.1-1直角三角形的斜边长是_____;正方形的边长是______;圆的半径是________。
学生写出表示算术平方根的式子。
问:你认为所得的各代数式的共同特点是什么? 学生通过观察,感知二次根式的特征,从而引出课题。
探究新知1.二次根式的概念引导学生概括二次根式的概念:像这样表示算术平方根的代数式叫做二次根式。
2.深化二次根式的概念:① 提问:9-1呢?② 表示什么意义?此算术平方根的被开方数是什么?被开 方数必须满足什么条件的二次根式才有意义?其中字母a 需满足什么条件?为什么?经学生讨论后,让学生回答,并让其他学生点评。
③ 教师总结:强调二次根式根号内字母的取值范围必须满足被开方数大于或等于0。
④ 巩固练习一: 下列式子,哪些是二次根式?3.讲解例题例1 求下列二次根式中字母a 的取值范围:(1)1+a ; (2)a 43-; (3)x - .教师提问,学生回答,教师板书解题过程。
初中数学浙教版八年级下册第1章 二次根式1.3 二次根式的运算-章节测试习题(17)
章节测试题1.【题文】阅读下述材料:我们在学习二次根式时,熟悉的分母有理化以及应用.其实,有一个类似的方法叫做“分子有理化”:与分母有理化类似,分母和分子都乘以分子的有理化因式,从而消掉分子中的根式比如:.分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问题.例如:比较和的大小.可以先将它们分子有理化如下:∵,∴再例如:求的最大值.做法如下:解:由可知,而当时,分母有最小值2,∴的最大值是2.解决下述问题:(1)比较和的大小;(2)求的最大值和最小值.【答案】(1);(2)的最大值为2,最小值为.【分析】本题考查材料阅读题.【解答】(1),,而,,,;(2)由,,得,,∴当时,有最小值,则有最大值1,此时有最大值1,∴的最大值为2;当时,有最大值,则有最小值,此时有最小值0,∴的最小值为.2.【题文】阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简;.以上这种化简过程叫做分母有理化.还可以用以下方法化简:.(1)请任用其中一种方法化简:①;②为正整数);(2)化简:.【答案】(1)①;②;(2).【分析】本题考查材料阅读题.【解答】(1)①原式;;.3.【答题】下列对于二次根式的计算正确的是()A. B. 2=2C. 2=2D. 2=【答案】C【分析】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.【解答】A.原式=2,∴A选项错误;B.原式=,∴B选项错误;C.原式=2,∴C选项正确;D.原式=6,∴D选项错误.选C.4.【答题】如图,从一个大正方形中截去面积为和的两个正方形,则剩余部分的面积为()A. B. C. D.【答案】D【分析】本题考查了二次根式的应用、完全平方公式的应用,正确求出阴影部分面积是解题关键.【解答】从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,大正方形的边长是,留下部分(即阴影部分)的面积是:(cm2).选D.5.【答题】下列各式与是同类二次根式的是()A. B. C. D.【答案】A【分析】本题考查同类二次根式的定义,同时熟练化简最简二次根式的方法,最后做出判定.【解答】A.=与是同类二次根式.B.与不是同类二次根式.C.与不是同类二次根式.D.与不是同类二次根式.选A.6.【答题】下列二次根式的运算:①;②;③;④;其中运算正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】本题考查了二次根式的混合运算、二次根式的化简;熟练掌握二次根式的化简与运算是解决问题的关键.【解答】①×=2,正确,②-=,正确,③=,正确,④=2④不正确;选C.7.【答题】与最简二次根式能够合并,则m的值为()A. 1B. 2C. 3D. 7【答案】A【分析】本题考查了同类二次根式、最简二次根式,掌握同类二次根式、最简二次根式的定义是解题的关键.【解答】,∵与最简二次根式能够合并,∴,∴,选A.8.【答题】如果a=,b=﹣2,那么a与b的关系是()A. a+b=0B. a=bC. a=D. a>b【答案】A【分析】本题考查了分母有理化,找出分母有理化因式﹣2是解答本题的关键.【解答】∵a===﹣(﹣2),而b=﹣2,∴a=﹣b,即a+b=0.选A.9.【答题】若最简二次根式与是同类二次根式,则b的值是()A. 0B. 1C.D. 2【答案】B【分析】本题考查同类二次根式,解题的关键在于根据同类二次根式的定义列出方程.【解答】由最简二次根式与是同类二次根式可得,解得,选B.10.【答题】“分母有理化”是根式运算的一种化简方法,如:;除此之外,还可以用先平方再开方的方法化简一些有特点的无理数,如要化简,可以先设,再两边平方得,又因为,故x>0,解得,,根据以上方法,化简的结果是()A. B. C. D. 3【答案】D【分析】本题考查了分母有理化,正确化简二次根式是解题关键.【解答】原式=+﹣=++﹣(﹣)=3﹣2++﹣+=3.选D.11.【答题】计算:()×=______.【答案】【分析】本题考查二次根式的混合运算.【解答】原式=.故答案是.12.【答题】面积为的矩形,若宽为,则长为______.【答案】2【分析】本题考查了二次根式的应用,掌握矩形的面积公式以及二次根式的除法法则是解题的关键.【解答】由题意,可知该矩形的长为:÷==2.故答案为2.13.【答题】已知最简根式和是同类根式,则______.【答案】【分析】本题考查了同类二次根式的概念以及解二元一次方程组,熟练掌握最简二次根式的概念是关键.【解答】由题意得:,解得,∴.14.【答题】当时,代数式x2+2x+2的值是______.【答案】18【分析】本题考查了二次根式的运算,熟练掌握运算法则是解答此题的关键.【解答】x2+2x+2=(x+1)2+1,当时,原式=.故答案为18.15.【答题】观察下列等式:第1个等式:a1=,第2个等式:a2=,第3个等式:a3==2-,第4个等式:a4=,……按上述规律,回答以下问题:(1)请写出第n个等式:a n=______.(2)a1+a2+a3+…+a n=______.【答案】(1);(2).【分析】本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题.【解答】(1)∵第1个等式:a1=,第2个等式:a2=,第3个等式:a3==2-,第4个等式:a4=,……∴第n个等式:;故答案为:;(2)==;故答案为:.16.【题文】计算:(1);(2).【答案】(1);(2).【分析】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质和乘法公式,往往能事半功倍.【解答】(1)原式===;(2)原式===.17.【题文】(1)填空:(只填写符号:)①当,时,______;②当,时,______;③当,时,______;④当,时,______;⑤当,时,______;⑥当,时,______;……则关于与之间数量关系的猜想是______.(2)请证明你的猜想;(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.【答案】(1)①=,②=,③=,④>,⑤>,⑥>,≥2(≥,≥);(2)见解答;(3)4.【分析】本题考查了二次根式的应用,完全平方公式的应用,准确进行运算判断出两个算式的大小关系是解题的关键.【解答】(1)①当m=2,n=2时,由于,,∴=2;②当m=3,n=3时,由于,,∴=;③当m=,n=时,由于,,∴=;④当m=4,n=1时,由于,,∴>;⑤当m=5,n=时,由于,,∴>2;⑥当m=,n=6时,由于,,∴>2;则关于与之间数量关系的猜想是≥2(≥,≥);(2)证明:根据非负数的性质()2≥0,∴m2+n≥0,整理得≥2;(3)面积为1平方米的长方形镜框长与宽相等,即为正方形时,周长最小,∴边长为1,周长为1×4=4.18.【答题】下列二次根式中,与不是同类二次根式的是()A. B. C. D.【答案】B【分析】本题考查同类二次根式.【解答】A.与是同类二次根式,选项不符合题意;B.与不是同类二次根式,选项符合题意;C.与是同类二次根式,选项不符合题意;D.与是同类二次根式,选项不符合题意;选B.19.【答题】下列计算正确的是()A. B. C. D. 【答案】D【分析】本题考查二次根式的加减.【解答】A.与不能合并,∴A选项错误;B.与不能合并,∴B选项错误;C.原式3,∴C选项错误;D.原式3×3×2=18,∴D选项正确.选D.20.【答题】的计算结果是()A. 5B.C.D. 【答案】C【分析】本题考查二次根式的加减.【解答】原式=2=3.选C.。
八下第1章二次根式(含答案)
一、二次根式 (1)定义:像 a ( a ≥0)这样表示算术平方根的代数式叫做二次根式. (2)双重非负性:1.二次根式 a 是一个非负数,即 a ≥0;2.被开方数 a 是非负数, 即 a ≥0. (3) a 的 a 既可以是数, 也可以是式; a 既可表示开方运算, 也可表示运算的结果. a +1 不是二次根式,它是含二次根式的代数式. (4) “ a ”中根指数是 2,即“ 2 a ” ,我们一般省略根指数 2,写做“ a ” ,而根指数 3 不能省略. (5)b a 表示的是相乘的关系,b 不能是带分数的形式.
2. 化简: 3 3 1 3
3. 已知直角三角形的两直角边分别为 2 和 5 ,则斜边长为
a ( a 0) 考点二、公式 a 2 a 的应用 a ( a 0)
例 2:已知 x 2 ,则化简 x 2 4 x 4 的结果是( D )
3
A. x 2
2、若 ( x 3) x 3 0 ,则 x 的取值范围是( (A) x 3 ( B) x 3
2
D
) (D) x 3
( C) x 3
考点三、最简二次根式和同类二次根式
例 1:在根式 1)
a 2 b 2 ; 2)
x ;3) x 2 xy ; 4) 27abc ,最简二次根式是( C ) 5
8
例 3:化简:
3 (1) 64
64b 2 (2) 9a 2
(a 0, b 0)
(3)
9x 64 y 2
( x 0, y 0)
(4)
5x 169 y 2
( x 0, y 0)
例 4:计算:(1)
二次根式的乘除
二次根式的乘除在数学中,我们经常会遇到涉及二次根式的乘除运算。
二次根式是指形如√a的数,其中a为一个非负实数。
本文将详细讨论二次根式的乘法和除法运算,帮助读者更好地理解和应用这些运算法则。
一、二次根式的乘法运算二次根式的乘法运算涉及到两个二次根式的相乘。
为了方便讨论,我们假设有两个二次根式√a和√b。
那么它们的乘积可以表示为:√a * √b = √(a * b)根据上述公式,我们可以得出二次根式的乘法运算法则:将两个二次根式的被开方数相乘,结果再开平方根。
举例来说,假设我们要计算√2 * √3的结果。
按照乘法运算法则,我们可以将2和3相乘得到6,然后再开平方根,得到最终结果√6。
二、二次根式的除法运算二次根式的除法运算涉及到两个二次根式的相除。
同样地,假设有两个二次根式√a和√b,它们的除法可以表示为:√a / √b = √(a / b)根据上述公式,我们可以得出二次根式的除法运算法则:将两个二次根式的被开方数相除,结果再开平方根。
举例来说,假设我们要计算√8 / √2的结果。
按照除法运算法则,我们可以将8和2相除得到4,然后再开平方根,得到最终结果√4=2。
需要注意的是,二次根式的除法运算中,被开方数相除时需要确保除数不为零,否则运算结果将无意义。
三、二次根式的乘除混合运算在实际问题中,我们可能会遇到涉及二次根式的乘除混合运算。
解决这类运算问题的关键在于灵活运用乘法和除法运算法则,根据具体情况进行分解和合并。
举例来说,假设我们要计算(√2 + √3) * (√2 - √3)的结果。
根据乘法分配律的原理,我们可以将该式拆分为两部分,即(√2 * √2) - (√2 * √3) + (√3 * √2) - (√3 * √3)。
然后,根据乘法运算法则进行计算,得到最终结果为2 - √6 - √6 + 3 = 5 - 2√6。
类似地,如果我们要计算(√8 + √2) / (√2 + √3)的结果,可以采用分子分母同除以√2的方法,得到(√4 + 1) / (√1 + √(3/2))。
人教版八年级下册数学《二次根式的混合运算》二次根式说课教学复习课件
)
随堂练习
3.已知= − , 则代数式(+ ) + + + 的值是(C
.
A.
4.已知=
-
, =
.+
+
. −
,则 + +=_______.
)
随堂练习
5.计算:
(1) (1+ )(2- );
解: (1+ )(2- )
问卷调查,统计如下表所示:
颜色
学生人数
黄色 绿色 白色 紫色 红色
100
180
220
80
750
学校决定采用红色,可用来解释这一现象的统计知识是( C )
A. 平均数
C. 众数
B. 中位数
D. 方差
课堂检测
基 础 巩 固 题
2.学习了《数据的分析》后,某同学对学习小组内甲、乙、丙、
丁四名同学的数学月考成绩进行了统计,发现他们的平均成绩
这些平均数受这个人的影响,而中位数是210件,众数
是210件,因此我们认为以210件为规定量比较科学.
巩固练习
1.甲、乙两位同学在几次数学测验中,各自的平均分都
是88分,甲的方差为0.61,乙的方差为0.72,则( A
A、甲的成绩比乙的成绩稳定
B、乙的成绩比甲的成绩稳定
C、甲、乙两人的成绩一样好
D、甲、乙两人的成绩无法比较
=( )²+2× ×1+1²
=5-2
=3+2 +1
=3.
=4+2 .
典例精析
例3
计算下列各式:
(1)
;
−
解:
−
+
=
( −)( +)
+
第4课时:《二次根式》(1)——二次根式及二次根式的乘除运算
第1课时《二次根式》(1)——二次根式及二次根式的乘除运算【知识点拨】 1、二次根式:(1)概念:形如______的式子叫做二次根式。
(2)被开方数可以是数,也可以是式子,但必须为____________。
[例题1] 1、函数13--=x xy 中,自变量x 的取值范围是 . 【答案】3≤x 且1≠x2、下列二次根式中,x 的取值范围是x ≥2的是( ) A.x -2 B. 2+x C. 2-x D.21-x 【答案】C2、)(0≥a a 是一个________数。
[例题2]1、若20a -=,则2a b -= . 【答案】12、已知x 、y 为实数,且1y =,求x y +的值.【答案】解:由题意得,20090x -≥,且20090x -≥.∴2009x =, ∴1y =. ∴2010x y +=.3、二次根式的性质:(1)=2)(a ___________(________); (2)⎩⎨⎧<≥=)0______()0______(2a a a[例题3]1、有一道练习题是:对于式子2a 后求值.其中a =小明的解法如下:2a 2a -2(2)a a --=2a +2.小明的解法对吗?如果不对,请改正.【答案】解:小明的解法对不对.改正如下:由题意得,2a =(2)2a a =--=-+.∴2a 2a 2(2)a a --+=32a -=2.4、二次根式的乘法:(1)法则:=⋅b a ______(00≥≥b a ,),即两个二次根式相乘,把被开方数______,根指数_______。
(2)应用:=ab _______⋅(00≥≥b a ,)→二次根式的化简。
5、二次根式的除法: (1)法则:=ba _________(00>≥b a ,),即两个二次根式相除,把被开方数________,根指数______。
(2)应用:=ba________(00>≥b a ,)→二次根式的化简。
二次根式的乘除(课件)八年级数学下册(苏科版)
2h
.从100米高空抛物到落地所需时间t2是从50米高
10
空抛物到落地所需时间t1的多少倍?
解:由题意得
t2
t1
2 100
10 20 2.
10
2 50
10
课堂练习
1.化简
A.9
18 2 的结果是( B )
B.3
C. 3 2
D.
2 3
2.下列根式中,最简二次根式是( C )
注意:被开方数 a,b 既可以是数,也可以是代数式,但都必须是非
负的.
典型例题
例1 计算:
1
3 5;
2
1
27.
3
解: 1 3 5= 3 5= 15;
2
1
1
27 = 27 = 9=3.
3
3
提示:
两个二次根式相乘,把被开方数
相乘,根指数不变.即:
a b ab (a≥0,b≥0)
7
7
5
× × =
2²×2×5
2 10
=
.
5×5
5
8
5
探究新知
二次根式的乘除混合运算中的四点注意:
(1)带分数要化成假分数;
(2)要注意确定最后结果的符号;
(3)最后结果一般要化为最简二次根式或整式;
(4)在二次根式的乘除混合运算中,有理数的运算法则同样适用.
05
二次根式乘除法的应用
典型例题
例题9. 一个长方形的长和宽分别是 10 和2 2 .求这个
可以发现这些数不能再化简,这些数有两个特点:
(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.
八年级数学人教版下册二次根式习题课件
B.x≥0
C.x≥-1
D.x≤0
课堂导练
7.(2019·甘肃)使得式子 4x-x有意义的 x 的取值范围是( D ) A.x≥4 B.x>4 C.x≤4 D.x<4
课堂导练
8.(2018·赤峰)代数式 3-x+x-1 1中 x 的取值范围在数轴上表 示为( A )
课堂导练
9.(中考·济宁)若 2x-1+ 1-2x+1 在实数范围内有意义,则 x 满足的条件是( C ) A.x≥12 B.x≤12 C.x=12 D.x≠12
二是根指数为 2. -3无意义,3 8的根指数不是 2,故②④不是 二次根式.二次根式有①③⑤⑥,共 4 个.
课堂导练
4.【2019·武汉】式子 x-1在实数范围内有意义,则 x 的取值范
围是( C )
A.x>0
B.x≥-1
C.x≥1
D.x≤1
课堂导练
5.【2018·苏州】若 x+2在实数范围内有意义,则 x 的取值范围 在数轴上表示正确的是( D )
A. a
B. b2+1
C. 0
D. (a+b)2
【点拨】根据二次根式的定义进行识 别. a中 a<0 时不是二次根式.
课堂导练
3.下列各式中,二次根式的个数为( C )
①
13;②
-3;③-
3
x2+1;④ 8;⑤
132;⑥ x2+2x+3.
A.2 B.3 C.4 D.5
【点拨】二次根式必须满足两个条件:一是被开方数为非负数,
课堂导练
1.( a)2=a(a≥0)反映了一个非负数的算术平方根的平方等于它 __本__身____;反之,任何一个非负数都等于它的算术平方根的 __平__方____.