新北师大版八年级下数学期末考试试卷(有答案) (1) - 副本
新北师大版八年级下期末数学试卷(WORD文档有答案)
新北师大版八年级(下)期末数学试卷==本文档为word格式有参考答案,下载后可随意编辑修改!==注意事项:1.本试卷分选择题)和非选择题两部分。
2.答卷前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的学校、班级、姓名及座位号,在右上角的信息栏填写自己的考号,并用2B铅笔填涂相应的信息点。
3.答Ⅰ卷时,选出每题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案,答在本试卷上无效。
4.答第Ⅱ卷时,请用直径0.5毫米黑色字迹签字笔在答题卡上各题的答题区域内作答。
答在本试卷上无效。
一、选择题(共12小题,每小题3分,满分36分)1.以下是节水、回收、低碳、绿色包装四个标志,其中是中心对称图形的是()A. B.C. D.2.若a<b,则下列各式中一定成立的是()A.﹣a<﹣b B.ac<bc C.a﹣1<b﹣1 D.>3.使分式有意义的x的取值范围是()A.x≥1 B.x≤1 C.x>1 D.x≠14.下列从左边到右边的变形,因式分解正确的是()A.2a2﹣2=2(a+1)(a﹣1)B.(a+3)(a﹣3)=a2﹣9C.﹣ab2+2ab﹣3b=﹣b(ab﹣2a﹣3)D.x2﹣2x﹣3=x(x﹣2)﹣35.如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.6 B.8 C.10 D.125题图 6题图6.如图,直线l1的解析式为y1=k1x+b1,直线l2的解析式为y2=k2x+b2,则不等式k1x+b1>k2x+b2的解集是()A.x>2 B.x<2 C.x>﹣2 D.x<﹣27.若x2﹣kx+9是一个完全平方式,则k的值为()A.﹣3 B.﹣6 C.±3 D.±68.对分式,通分时,最简公分母是()A.4(a﹣3)(a+3)2B.4(a2﹣9)(a2+6a+9) C.8(a2﹣9)(a2+6a+9) D.4(a﹣3)2(a+3)29.一个长为2、宽为1的长方形以下面的四种“姿态”从直线l的左侧水平平移至右侧(下图中的虚线都是水平线).其中,所需平移的距离最短的是()A.B.C.D.10.下列说法错误的是()A.x=4是方程的增根B.一组对边平行,另一组对边相等的四边形是平行四边形C.命题“平行四边形的对角线互相平分”和它的逆命题是以对互逆定理D.把点A的横坐标不变,纵坐标乘以﹣1后得到点B,则点A与点B关于y轴对称11.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=100°,则∠DAE的度数为()A.20° B.25° C.30° D.35°12.如图所示,△ABC的两条外角平分线AP、CP相交于点P,PH⊥AC于H.若∠ABC=60°,则下面的结论:①∠ABP=30°;②∠APC=60°;③PB=2PH;④∠APH=∠BPC,其中正确结论的个数是()A.1个B.2个C.3个D.4个11题图 12题图 16题图二、填空题(共4小题,每小题3分,满分12分)13.七边形的内角和是.14.化简+的结果是.15.若x=5是关于x的不等式2x+5>a的一个解,但x=4不是它的解,则a的取值范围是.16.如图所示,长方形ABCD绕点C顺时针旋转90°后得到长方形CEFG,连接DG交EF于H连接AF交DG 于点M,若AB=4,BC=1,则AM= .三、解答题(共7小题,满分52分)17.分解因式:(1)3x2﹣12xy+12y2;(2)(x﹣y)2+16(y﹣x).18.先化简,再求值:(﹣)•(a+3),其中a=3+2.19.如图所示,点P的坐标为(4,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.(1)写出点Q的坐标是;(2)若把点Q向右平移m个单位长度,向下平移2m个单位长度后,得到的点Q′恰好落在第三象限,求m 的取值范围.20.解方程:.21.如图,△ABC和△BEF都是等边三角形,点D在BC边上,点F在AB边上,且∠EAD=60°,连接ED、CF.(1)求证:△ABE≌△ACD;(2)求证:四边形EFCD是平行四边形.22.给点燃的蜡烛加上一个特质的外罩后,蜡烛燃烧的时间会更长,为了测量蜡烛在有、无外罩条件下的燃烧时长,某天,小明同时点燃了A、B、C三只同样质地、同样长的蜡烛,他给其中的A、B两只加了外罩,C没加外罩,一段时间后,小明发现自己忘了记录开始时间,于是,他马上请来了小聪,小聪根据现场情况采取了如下的补救措施,在C刚好燃烧完时,他马上拿掉了B的外罩,但没有拿掉A的外罩,结果发现:B 在C燃烧完以后12分钟才燃烧完,A在B燃烧完以后8分钟燃烧完(假定蜡烛在“有罩”或“无罩”条件下都是均匀燃烧)设无外罩时,已知蜡烛可以燃烧x分钟,则:(1)填空:把已知蜡烛的总长度记为单位1,当蜡烛B燃烧完时,它在“有罩”条件下燃烧的长度为;在“无罩”条件下燃烧的长度为;(两个空都用含有x的代数式表示)(2)求无外罩时,已知蜡烛可以燃烧多少分钟;(3)如果一支点燃的蜡烛至少能够燃烧40分钟,则无罩燃烧至多几分钟后就要给这支蜡烛加上外罩?23.如图1、2,A、B是y轴上的两点(点A在点B的上边),C、D是x轴上的两点(点C在点D的左边),E、F分别是BC、AD的中点.(1)如图1,过点C作x轴的垂线交AE的延长线于点P,求证:AB=PC;(2)如图1,连接EF,若AB=4,CD=2,求EF的长;(3)如图2,若AB=CD,当线段AB、CD分别在y轴、x轴上滑动时,直线EF与x轴正方向的夹角∠α的大小是否会发生变化?若变化,请你说明理由;若不变,请你求出∠α的大小.八年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.以下是节水、回收、低碳、绿色包装四个标志,其中是中心对称图形的是( D )A. B.C. D.2.若a<b,则下列各式中一定成立的是( C )A.﹣a<﹣b B.ac<bc C.a﹣1<b﹣1 D.>3.使分式有意义的x的取值范围是(D )A.x≥1 B.x≤1 C.x>1 D.x≠14.下列从左边到右边的变形,因式分解正确的是( A )A.2a2﹣2=2(a+1)(a﹣1)B.(a+3)(a﹣3)=a2﹣9C.﹣ab2+2ab﹣3b=﹣b(ab﹣2a﹣3)D.x2﹣2x﹣3=x(x﹣2)﹣35.如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是(C.)A.6 B.8 C.10 D.126.如图,直线l1的解析式为y1=k1x+b1,直线l2的解析式为y2=k2x+b2,则不等式k1x+b1>k2x+b2的解集是( D )A.x>2 B.x<2 C.x>﹣2 D.x<﹣27.若x2﹣kx+9是一个完全平方式,则k的值为( D )A.﹣3 B.﹣6 C.±3 D.±68.对分式,通分时,最简公分母是( A )A.4(a﹣3)(a+3)2B.4(a2﹣9)(a2+6a+9) C.8(a2﹣9)(a2+6a+9) D.4(a﹣3)2(a+3)2 9.一个长为2、宽为1的长方形以下面的四种“姿态”从直线l的左侧水平平移至右侧(下图中的虚线都是水平线).其中,所需平移的距离最短的是( C )A.B.C.D.【解答】解:A、平移的距离=1+2=3,B、平移的距离=2+1=3,C、平移的距离==,D、平移的距离=2,所以选C.10.下列说法错误的是( C )A.x=4是方程的增根B.一组对边平行,另一组对边相等的四边形是平行四边形C.命题“平行四边形的对角线互相平分”和它的逆命题是以对互逆定理D.把点A的横坐标不变,纵坐标乘以﹣1后得到点B,则点A与点B关于y轴对称11.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=100°,则∠DAE的度数为()A.20° B.25° C.30° D.35°【解答】解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=100°,∴∠ADC=120°,∠CDE═∠F=100°,∴∠ADE=360°﹣120°﹣100°=140°,∴∠DAE=(180°﹣140°)÷2=20°,故选:A.12.如图所示,△ABC的两条外角平分线AP、CP相交于点P,PH⊥AC于H.若∠ABC=60°,则下面的结论:①∠ABP=30°;②∠APC=60°;③PB=2PH;④∠APH=∠BPC,其中正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:如图作,PM⊥BC于M,PN⊥BA于N.∵∠PAH=∠PAN,PN⊥AD,PH⊥AC,∴PN=PH,同理PM=PH,∴PN=PM,∴PB平分∠ABC,∴∠ABP=∠ABC=30°,故①正确,∵在Rt△PAH和Rt△PAN中,,∴△PAN≌△PAH,同理可证,△PCM≌△PCH,∴∠APN=∠APH,∠CPM=∠CPH,∵∠MPN=180°﹣∠ABC=120°,∴∠APC=∠MPN=60°,故②正确,在Rt△PBN中,∵∠PBN=30°,∴PB=2PN=2PH,故③正确,∵∠BPN=∠CPA=60°,∴∠CPB=∠APN=∠APH,故④正确.【点评】本题考查角平分线的判定定理和性质定理.全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识,属于中考常考题型.二、填空题(共4小题,每小题3分,满分12分)13.七边形的内角和是900°.14.化简+的结果是 a .【解答】解:原式=﹣===a,15.若x=5是关于x的不等式2x+5>a的一个解,但x=4不是它的解,则a的取值范围是13≤a<15 .16.如图所示,长方形ABCD绕点C顺时针旋转90°后得到长方形CEFG,连接DG交EF于H连接AF交DG于点M,若AB=4,BC=1,则AM= .【解答】解:如图,连结AC、CF.∵长方形ABCD绕点C顺时针旋转90°后得到长方形CEFG,∴DC=GC,AC=FC,∠ACF=90°,∴△ACF是等腰直角三角形.∵在Rt△ABC中,∠B=90°,AB=4,BC=1,∴AC==,∴FC=AC=.在Rt△CAF中,由勾股定理得,AF==.∵DC=GC,∠DCG=90°,∴∠DGC=45°,∴∠FGH=90°﹣∠DGC=45°,∴△FHG是等腰直角三角形,∴FH=FG,∵FG=AD,∴FH=AD.在△ADM与△FHM中,∴△ADM≌△FHM,∴AM=FM,∵AM+FM=AF=,∴AM=.故答案为.三、解答题(共7小题,满分52分)17.分解因式:(1)3x2﹣12xy+12y2;(2)(x﹣y)2+16(y﹣x).【解答】解:(1)原式=3(x2﹣4xy+4y2)=3(x﹣2y)2;18.先化简,再求值:(﹣)•(a+3),其中a=3+2.【解答】解:原式=[﹣]•(a+3)=•(a+3)=,当a=3+2时,原式=.19.如图所示,点P的坐标为(4,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.(1)写出点Q的坐标是(﹣3,4);(2)若把点Q向右平移m个单位长度,向下平移2m个单位长度后,得到的点Q′恰好落在第三象限,求m 的取值范围.【解答】解:(1)点Q的坐标为(﹣3,4);故答案为(﹣3,4);(2)把点Q(﹣3,4)向右平移m个单位长度,向下平移2m个单位长度后,得到的点Q′的坐标为(﹣3+m,4﹣2m),而Q′在第三象限,所以,解得2<m<3,即m的范围为2<m<3.20.解方程:.【解答】解:方程的两边同乘(x﹣2),得:1﹣x=﹣1﹣2(x﹣2),解得:x=2.检验:当x=2时,(x﹣2)=0,即x=2不是原分式方程的解.则原方程无解.21.如图,△ABC和△BEF都是等边三角形,点D在BC边上,点F在AB边上,且∠EAD=60°,连接ED、CF.(1)求证:△ABE≌△ACD;(2)求证:四边形EFCD是平行四边形.【解答】证明:(1)∵△ABC和△BEF都是等边三角形,∴AB=AC,∠EBF=∠ACB=∠BAC=60°,∵∠EAD=60°,∴∠EAD=∠BAC,∴∠EAB=∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD.(2)由(1)得△ABE≌△ACD,∴BE=CD,∵△BEF、△ABC是等边三角形,∴BE=EF,∴∠EFB=∠ABC=60°,∴EF∥CD,∴BE=EF=CD,∴EF=CD,且EF∥CD,∴四边形EFCD是平行四边形.22.给点燃的蜡烛加上一个特质的外罩后,蜡烛燃烧的时间会更长,为了测量蜡烛在有、无外罩条件下的燃烧时长,某天,小明同时点燃了A 、B 、C 三只同样质地、同样长的蜡烛,他给其中的A 、B 两只加了外罩,C 没加外罩,一段时间后,小明发现自己忘了记录开始时间,于是,他马上请来了小聪,小聪根据现场情况采取了如下的补救措施,在C 刚好燃烧完时,他马上拿掉了B 的外罩,但没有拿掉A 的外罩,结果发现:B 在C 燃烧完以后12分钟才燃烧完,A 在B 燃烧完以后8分钟燃烧完(假定蜡烛在“有罩”或“无罩”条件下都是均匀燃烧)设无外罩时,已知蜡烛可以燃烧x 分钟,则:(1)填空:把已知蜡烛的总长度记为单位1,当蜡烛B 燃烧完时,它在“有罩”条件下燃烧的长度为 1﹣ ;在“无罩”条件下燃烧的长度为 ;(两个空都用含有x 的代数式表示)(2)求无外罩时,已知蜡烛可以燃烧多少分钟;(3)如果一支点燃的蜡烛至少能够燃烧40分钟,则无罩燃烧至多几分钟后就要给这支蜡烛加上外罩?【考点】一元一次不等式的应用;列代数式.【解答】解:(1)把已知蜡烛的总长度记为单位1,当蜡烛B 燃烧完时,在“无罩”条件下燃烧的长度为,它在“有罩”条件下燃烧的长度为1﹣,故答案为:1﹣,;(2)设无外罩时,一支蜡烛可以燃烧x 分钟,由题意得:=,解得:x=30, 经检验x=30是原分式方程的解,答:无外罩时,一支蜡烛可以燃烧30分钟.(3)设无罩燃烧a 分钟后就要给这支蜡烛加上外罩,由题意得:+≥1,解得:a ≤15,答:无罩燃烧至多15分钟后就要给这支蜡烛加上外罩. 【点评】此题考查分式方程与不等式的实际运用,找出题目蕴含的等量关系和不等关系是解决问题的关键.23.如图1、2,A 、B 是y 轴上的两点(点A 在点B 的上边),C 、D 是x 轴上的两点(点C 在点D 的左边),E、F分别是BC、AD的中点.(1)如图1,过点C作x轴的垂线交AE的延长线于点P,求证:AB=PC;(2)如图1,连接EF,若AB=4,CD=2,求EF的长;(3)如图2,若AB=CD,当线段AB、CD分别在y轴、x轴上滑动时,直线EF与x轴正方向的夹角∠α的大小是否会发生变化?若变化,请你说明理由;若不变,请你求出∠α的大小.【解答】(1)证明:∵OA⊥OD,PC⊥OD,∴AB∥PC,∴∠EAB=∠EPC,在△ABE和△PCE中,∴△ABE≌△PCE,∴AE=EP.(2)如图1中,连接DP,∵△AEB≌△PEC,∴AE=EP,∵CP=AB=4,CD=2,∴DP==2,∵E、F分别是AP、AD中点,∴EF=DP=.(3)结论:∠α的大小不变,∠α=45°理由:如图2中,过点C作x轴的垂线交AE的延长线于点P,由(1)可知,CP=AB=CD,∴∠CDP=45°,∵EF∥DP,∴∠α=∠CDP=45°.【点评】本题考查三角形综合题、全等三角形的判定和性质、勾股定理、三角形中位线定理等知识,解题的关键是学会利用(1)的证明方法,添加辅助线构造全等三角形解决问题,属于中考常考题型.。
北师大版八年级下册数学期末考试试卷及答案
北师大版八年级下册数学期末考试试题一、单选题1.下列图案中,不是中心对称图形的是()A .B .C .D .2.不等式32x -<-的解集是()A .23x >B .23x <-C .23x <D .23x >-3.若分式+-x yx y中的x 、y 的值都变为原来的3倍,则此分式的值()A .不变B .是原来的3倍C .是原来的13D .是原来的164.多项式223634xy x y x yz +-各项的公因式是()A .xyB .2xzC .3xyD .3yz5.如图,在四边形ABCD 中,AB=CD ,M ,N ,P 分别是AD ,BC ,BD 的中点,若∠MPN=130°,则∠NMP 的度数为()A .10°B .15°C .25°D .40°6.如图,ABC ∆中,AB 的垂直平分线DE 交AC 于D ,如果5AC cm =,4BC cm =,那么DBC ∆的周长是()A .6cmB .7cmC .8cmD .9cm7.一个多边形的每个内角均为108º,则这个多边形是()A .七边形B .六边形C .五边形D .四边形8.若解分式方程144x mx x -=++产生增根,则m=()A .1B .0C .﹣4D .﹣59.下列命题中是真命题的是()A .若a b >,则33a b->-B .有两个角为60︒的三角形是等边三角形C .一组对边相等,另一组对边平行的四边形是平行四边形D .如果0ab =,那么0a =,0b =10.如图,在Rt ABC 中,90ABC ∠=︒,AB BC ==ABC 绕点A 逆时针旋转60︒,得到ADE ,连接BE ,则BE 的长是()A .2+B .3+C .2+D .3+二、填空题11.分解因式:22a 4a 2-+=_____.12.关于x 的不等式组22x b a x a b ->⎧⎨-<⎩,的解集为-3<x<3,则a ,b 的值分别为_______.13.对分式12x,14y ,218xy 进行通分时,最简公分母是_____14.等边三角形的两条中线所夹的锐角的度数为__________15.如图,在 ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若AE =4,AF =6, ABCD 的周长为40,则S ABCD 四边形为______.16.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA =____度.17.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边作平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边作平行四边形AO 1C 2B ;…;依此类推,则平行四边形AO 4C 5B 的面积为_____.三、解答题18.先化简,再求值:22211a ab b a b b a -+⎛⎫÷- ⎪-⎝⎭.其中21a =,21b =+.19.解分式方程:241244x x x x -=--+.20.解不等式组1123(1)213x x x -⎧<⎪⎨⎪-≤+⎩,把解集表示在数轴上并写出该不等式组的所有整数解.21.某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么最多购买多少件甲种商品?22.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点A 、B 、C 在小正方形的顶点上,将△ABC 向下平移4个单位、再向右平移3个单位得到△A 1B 1C 1,然后将△A 1B 1C 1绕点A 1顺时针旋转90°得到△A 1B 2C 2.(1)在网格中画出△A 1B 1C 1和△A 1B 2C 2;(2)计算线段AC 从开始变换到A 1C 2的过程中扫过区域的面积(重叠部分不重复计算)23.如图,在ABC ∆中,AD 平分BAC ∠,BE AD ⊥,BE 交AD 的延长线于点E ,点F 在AB 上,且//EF AC ,求证:点F 是AB 的中点.24.如图,在四边形ABCD 中,AD ∥BC ,AD =12cm ,BC =15cm ,点P 自点A 向D 以1cm/s 的速度运动,到D 点即停止.点Q 自点C 向B 以2cm/s 的速度运动,到B 点即停止,点P ,Q 同时出发,设运动时间为t (s ).(1)用含t 的代数式表示:AP =________cm ;DP =________cm ;BQ =________cm ;CQ =________cm .(2)当t 为何值时,四边形APQB 是平行四边形?(3)当t 为何值时,四边形PDCQ 是平行四边形?25.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A B ,两种型号的沼气池共20个,以解决该村所有农户的燃料问题,两种型号沼气池的占地面积、使用农户数及造价见下表:型号占地面积(2m/个)使用农户数(户/个)造价(万元/个)A15182B20303365m,该村农户共有492户.已知可供建造沼气池的占地面积不超过2(1)满足条件的方案共有几种?写出解答过程;(2)通过计算判断,哪种建造方案最省钱.26.已知:如图,点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H,(1)求证:△BCE≌△ACD;(2)求证:CF=CH;(3)判断△CFH的形状并说明理由.参考答案1.C【详解】解:A、是中心对称图形,故A错误;B 、是中心对称图形,故B 错误;C 、不是中心对称图形,故C 正确;D 、是中心对称图形,故D 错误;故选:C .2.A 【详解】−3x <−2,不等式两边同除以−3,得23x >,故选:A .3.A 【详解】解:∵分式+-x yx y中的x 、y 的值都变为原来的3倍∴()()333333x y x y x yx y x y x y+++==---∴此分式的值不变.故应选A 【点睛】本题主要考查了分式的基本性质,解题的关键是把x 、y 的值都变为原来的3倍后代入.4.A 【解析】【分析】根据公因式的定义可求解.【详解】解:()2233=634634xy x y x yz xy x xz+-+-故多项式223634xy x y x yz +-各项的公因式是xy .故选A .【点睛】本题主要考查公因式,掌握公因式的定义是解题的关键.5.C 【解析】【详解】分析:根据中位线定理和已知,易证明△PMN 是等腰三角形,根据等腰三角形的性质和三角形内角和定理即可求出∠PMN 的度数.详解:∵在四边形ABCD 中,M 、N 、P 分别是AD 、BC 、BD 的中点,∴PN ,PM 分别是△CDB 与△DAB 的中位线,∴PM=12AB ,PN=12DC ,PM ∥AB ,PN ∥DC .∵AB=CD ,∴PM=PN ,∴△PMN 是等腰三角形.∵∠MPN=130°,∴∠PMN=1801302︒-︒=25°.故选C .点睛:本题考查了三角形中位线定理及等腰三角形的判定和性质,解题时要善于根据已知信息,确定应用的知识.6.D 【详解】DE 垂直平分AB ,549DBC AD BD C DB DC BC AC BC ∴=∴=++=+=+= 故选D 【点睛】本题考查垂直平分线的性质,是重要常见考点,难度易,掌握相关知识是解题关键.7.C 【详解】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.8.D 【详解】解:方程两边都乘()4x +,得1x m-=原方程增根为4x =-∴把4x =-代入整式方程,得5m =-故选D .【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.9.B 【解析】【分析】由不等式的基本性质判断A ,由等边三角形的判定判断B ,由平行四边形的判定判断C ,由两数之积为0,则两数中至少一个为0判断D .【详解】解:由a b >,所以a -<,b -所以:3a -<3,b -故A 错误;有两个角为60︒的三角形是等边三角形,此命题是真命题,故B 正确;一组对边相等,另一组对边平行的四边形不一定是平行四边形,这样的四边形可以是等腰梯形,故C 错误;如果0ab =,那么0a =或0b =,故D 错误.故选B .【点睛】本题考查的命题的真假的判断,同时考查了不等式的基本性质,等边三角形的判定,平行四边形的判定,两数之积为0,则两数中至少一个为0,掌握命题真假的判断方法是解题的关键.10.C 【解析】【分析】如图(见解析),先利用勾股定理、旋转的性质可得4,60AE AC CAE ==∠=︒,再根据等边三角形的判定与性质可得AE CE =,然后根据垂直平分线的判定与性质可得12,2OA AC OA BE ==⊥,最后利用勾股定理分别可得2,OB OE ==由此即可得出答案.【详解】如图,设AC 与BE 的交点为点O ,连接CE ,90,ABC AB BC ∠=︒==4AC ∴==,由旋转的性质得:4,60AE AC CAE ==∠=︒,ACE ∴ 是等边三角形,AE CE ∴=,BE ∴是线段AC 的垂直平分线,12,2OA AC OA BE ∴==⊥,在Rt AOB 中,2OB ==,在Rt AOE 中,OE =,则2BE OB OE =+=+,故选:C .【点睛】本题考查了勾股定理、旋转的性质、等边三角形的判定与性质、垂直平分线的判定与性质等知识点,通过作辅助线,构造等边三角形是解题关键.11.()22a 1-【解析】【详解】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:()()2222a 4a 22a 2a 12a 1-+=-+=-.12.-3,3【解析】【详解】22x b a x a b ->⎧⎨-<⎩,,22x a bx b a >+⎧⎨<+⎩,所以2323a b b a +=-⎧⎨+=⎩,解得33a b =-⎧⎨=⎩.13.8xy 2【解析】【分析】由于几个分式的分母分别是2x 、4y 、8xy 2,首先确定2、4、8的最小公倍数,然后确定各个字母的最高指数,由此即可确定它们的最简公分母.【详解】根据最简公分母的求法得:分式12x,14y ,218xy 的最简公分母是8xy 2,故答案为8xy 2.【点睛】此题主要考查了几个分式的最简公分母的确定,确定公分母的系数找最小公倍数,确定公分母的字母找最高指数.14.60°【解析】【分析】如图,等边三角形ABC 中,根据等边三角形的性质知,底边上的高与底边上的中线,顶角的平分线重合,所以∠1=∠2=12∠ABC =30°,再根据三角形外角的性质即可得出结论.【详解】解:如图,∵等边三角形ABC ,AD 、BE 分别是中线,∴AD、BE分别是角平分线,∴∠1=∠2=12∠ABC=30°,∴∠3=∠1+∠2=60°.故答案为60°【点睛】本题考查的是等边三角形的性质,熟知等边三角形三线合一的性质是解答此题的关键.15.48【解析】【分析】首先根据平行四边形的性质可得AB=CD,AD=BC,可得AB+BC=20,再利用其面积的求法S=BC×AE=CD×AF,可得4AE=6CD,列出方程组,求出平行四边形的各边长,再求其面积.【详解】解:设BC=x,CD=y,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵▱ABCD的周长为40,∴x+y=20,∵AE=4,AF=6,S ABCD四边形=BC×AE=CD×AF,∴4x=6y,得方程组:20 46x yx y+⎧⎨⎩==,解得:128x y =⎧⎨=⎩∴S 平行四边形ABCD =BC×AE =12×4=48.故答案为:48.【点睛】此题主要考查了平行四边形的性质与其面积公式,解题的关键是根据性质得到邻边的和,根据面积公式得到方程,再解方程组即可.16.36【解析】【分析】首先求得正五边形内角∠C 的度数,然后根据CD =CB 求得∠CDB 的度数,然后利用平行线的性质求得∠DFA 的度数即可.【详解】解:∵正五边形的外角为360°÷5=72°,∴∠C =180°﹣72°=108°,∵CD =CB ,∴∠CDB =36°,∵AF ∥CD ,∴∠DFA =∠CDB =36°,故答案为36.【点睛】本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.17.58【解析】【分析】根据矩形的性质求出△AOB 的面积等于矩形ABCD 的面积的14,求出△AOB 的面积,再分别求出1ABO ∆、2ABO ∆、3ABO ∆、4ABO ∆的面积,即可得出答案【详解】解:∵四边形ABCD 是矩形,∴AO=CO ,BO=DO ,DC ∥AB ,DC=AB ,∴11201022ADC ABC ABCD S S S ∆∆===⨯=矩形,∴1110522AOB BCO ABC S S S ∆∆===⨯=,∴11155222ABO AOB S S ∆∆==⨯=,∴21524ABO ABQ S S ∆∆==,321528ABO ABO S S ∆∆==,4315216ABO AB S S ∆∆==,∴4435522168ABO AO C B S S ==⨯= 平行四边形故答案为:58.【点睛】本题考查了矩形的性质,平行四边形的性质,三角形的面积的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等.18.ab ,1.【解析】【分析】根据分式的除法和减法可以化简题目中的式子,然后将a 、b 的值代入化简后的式子即可解答本题.【详解】解:22211a ab b a b ba -+⎛⎫÷- ⎪-⎝⎭2()a b a b a b ab--=÷-1a b ab a b -=⋅-ab =,当1a =,1b =+时,原式1)1)1=⨯=.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.x=4【分析】先将分式方程去分母转化为整式方程,求出整式方程的解,得到x 的值,经检验即可得到分式方程的解.【详解】解:241244x x x x -=--+,方程两边乘2(2)x -得:2(2)(2)4x x x ---=,解得:x=4,检验:当x=4时,220x ≠(﹣).所以原方程的解为x=4.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.﹣2、﹣1、0、1、2.【解析】【分析】根据不等式组的计算方法,首先单个计算不等式,在采用数轴的方法,求解不等式组即可.【详解】解:11(1)23(1)213(2)x x x -⎧<⎪⎨⎪-≤+⎩解不等式(1)得:x <3,解不等式(2)得:x≥﹣2,它的解集在数轴上表示为:∴原不等式组的解集为:﹣2≤x <3,∴不等式组的整数解为:﹣2、﹣1、0、1、2.【点睛】本题主要考查不等式组的整数解,关键在于数轴上等号的表示.21.(1)每件甲种商品价格为70元,每件乙种商品价格为60元;(2)该商店最多可以购进20件甲种商品【分析】(1)分别设出甲、乙两种商品的价格,根据“用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同”列出方程,解方程即可得出答案;(2)分别设出购进甲、乙两种商品的件数,根据“投入的经费不超过3200元”列出不等式,解不等式即可得出答案.【详解】解:(1)设每件乙种商品价格为x 元,则每件甲种商品价格为(10x +)元,根据题意得:35030010x x=+解得:60x =.经检验,60x =是原方程的解,则1070x +=.答:每件甲种商品价格为70元,每件乙种商品价格为60元.(2)设购进甲种商品a 件,则购进乙种商品(50a -)件,根据题意得:7060(50)3200a a +-≤,解得:20a ≤.∴该商店最多可以购进20件甲种商品.【点睛】本题考查的是分式方程在实际生活中的应用,认真审题,根据题意列出方程和不等式是解决本题的关键.22.见解析【解析】【详解】试题分析:(1)根据图形平移及旋转的性质画出△A 1B 1C 1及△A 1B 2C 2即可;(2)根据图形平移及旋转的性质可知,将△ABC 向下平移4个单位AC 所扫过的面积是以4为底,以2为高的平行四边形的面积;再向右平移3个单位AC 扫过的面积是以3为底以2为高的平行四边形的面积;当△A 1B 1C 1绕点A 1顺时针旋转90°到△A 1B 2C 2时,A 1C 1所扫过的面积是以A 1为圆心以以2为半径,圆心角为90°的扇形的面积,再减去重叠部分的面积,根据平行四边形的面积及扇形面积公式进行解答即可.解:(1)如图所示:(2)∵图中是边长为1个单位长度的小正方形组成的网格,∴AC==2,∵将△ABC向下平移4个单位AC所扫过的面积是以4为底,以2为高的平行四边形的面积;再向右平移3个单位AC扫过的面积是以3为底以2为高的平行四边形的面积;当△A1B1C1绕点A1顺时针旋转90°到△A1B2C2时,A1C1所扫过的面积是以A1为圆心以2为半径,圆心角为90°的扇形的面积,重叠部分是以A1为圆心,以2为半径,圆心角为45°的扇形的面积,∴线段AC在变换到A1C2的过程中扫过区域的面积=4×2+3×2+﹣=14+π.点评:本题考查的是旋转变换及平移变换,扇形的面积公式,熟知图形旋转、平移不变性的特点是解答此题的关键.23.见解析【解析】【分析】由AD为角平分线,利用角平分线定义得到一对角相等,再由EF与AC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠AEF=∠BAE,利用等角对等边得到AF=EF,再由AE与AD垂直,利用垂直的定义及直角三角形的两锐角互余,得到两对角之和为90°,由∠AEF=∠BAE,利用等角的余角相等可得出∠BEF=∠ABE,利用等角对等边得到BF=EF,等量代换得到AF=BF,即F为AB的中点,得证.【详解】证明:∵AD平分∠BAC,∴∠BAE=∠CAE,∵EF∥AC,∴∠AEF=∠CAE,∴∠AEF=∠BAE,∴AF=EF,又∵BE⊥AD,∴∠BAE+∠ABE=90°,∠BEF+∠AEF=90°,又∠AEF=∠BAE,∴∠ABE=∠BEF,∴BF=EF,∴AF=BF,∴F为AB中点.【点睛】此题考查了等腰三角形的判定与性质,平行线的性质,利用了转化及等量代换的思想,其中等腰三角形的判定方法简称“等角对等边”;等腰三角形的性质简称“等边对等角”.24.(1)t,(12﹣t),(15﹣2t),2t;(2)当t=5为何值时,四边形APQB是平行四边形;(3)当t=4时,四边形PDCQ是平行四边形【解析】【分析】(1)根据速度、路程以及时间的关系和线段之间的数量关系,即可求出AP,DP,BQ,CQ 的长;(2)当AP=BQ时,四边形APQB是平行四边形,建立关于t的一元一次方程方程,解方程求出符合题意的t值即可;(3)当PD=CQ时,四边形PDCQ是平行四边形;建立关于t的一元一次方程方程,解方程求出符合题意的t值即可.【详解】解:(1)t,(12﹣t),(15﹣2t),2t;(2)根据题意有AP=t,CQ=2t,PD=12﹣t,BQ=15﹣2t.∵AD∥BC,∴当AP =BQ 时,四边形APQB 是平行四边形.∴t =15﹣2t ,解得t =5.∴t =5时四边形APQB 是平行四边形;(3)由AP =tcm ,CQ =2tcm ,∵AD =12cm ,BC =15cm ,∴PD =AD ﹣AP =12﹣t ,如图1,∵AD ∥BC ,∴当PD =QC 时,四边形PDCQ 是平行四边形.即:12﹣t =2t ,解得t =4,∴当t =4时,四边形PDCQ 是平行四边形.【点睛】本题考查了平行四边形的判定和性质的应用,题目是一道综合性比较强的题目,难度适中,解题的关键是把握“化动为静”的解题思想.25.(1)满足条件的方案有三种,方案一建造A 型沼气池7个,B 型沼气池13个;方案二建造A 型沼气池8个,B 型沼气池12个;方案三建造A 型沼气池9个,B 型沼气池11个,见解析;(2)方案三最省钱,见解析【解析】【分析】(1)关系式为:A 型沼气池占地面积+B 型沼气池占地面积≤365;A 型沼气池能用的户数+B 型沼气池能用的户数≥492;(2)由(1)得到情况进行分析.【详解】解(1)设建设A 型沼气池x 个,B 型沼气池()20x -个,根据题意列不等式组得()()152020365183020492x x x x ⎧+-≤⎪⎨+-≥⎪⎩解不等式组得:79x ≤≤∴满足条件的方案有三种,方案一建造A 型沼气池7个,B 型沼气池13个方案二建造A 型沼气池8个,B 型沼气池12个方案三建造A 型沼气池9个,B 型沼气池11个(2)方案一的造价为:2731353⨯+⨯=万元方案二的造价为2812352⨯+⨯=万元方案三的造价为:2×9+3×11=51万元所以选择方案三建造9个A ,11个B 最省钱【点睛】此题考查一元一次不等式的应用,解题关键在于根据题意列出不等式.26.(1)证明见解析;(2)证明见解析;(3)△CFH 是等边三角形,理由见解析.【解析】【分析】(1)利用等边三角形的性质得出条件,可证明:△BCE ≌△ACD ;(2)利用△BCE ≌△ACD 得出∠CBF=∠CAH ,再运用平角定义得出∠BCF=∠ACH 进而得出△BCF ≌△ACH 因此CF=CH .(3)由CF=CH 和∠ACH=60°根据“有一个角是60°的三角形是等边三角形可得△CFH 是等边三角形.【详解】解:(1)∵∠BCA=∠DCE=60°,∴∠BCE=∠ACD .又BC=AC 、CE=CD ,∴△BCE ≌△ACD .(2)∵△BCE ≌△ACD ,∴∠CBF=∠CAH .∵∠ACB=∠DCE=60°,∴∠ACH=60°.∴∠BCF=∠ACH .又BC=AC ,∴△BCF≌△ACH.∴CF=CH.(3)∵CF=CH,∠ACH=60°,∴△CFH是等边三角形.【点睛】本题考查了三角形全等的判定和性质及等边三角形的性质;普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.同时还要结合等边三角形的性质,创造条件证明三角形全等是正确解答本题的关键.。
北师大版八年级下数学期末考试(含答案)
北师大版八年级下期末考试数 学第Ⅰ卷 选择题一、选择题:本题有12小题,每题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上................ 1.下列各式从左到右的变形为分解因式的是( ).A.)3)(2(62-+=--m m m mB.6)3)(2(2--=-+m m m mC.x m x x x 8)3)(3(982+-+=-+ D.63182323⋅=y x y x2.在下列交通标志中,是中心对称图形的是( ).A.B.C.D.3.若代数式15-+x x 有意义,则x 应满足( ). A.0=xB. 1≠xC.5-≥xD.5-≥x 且x ≠14.一个多边形的每个内角均为108°,则这个多边形是( )边形.A. 4B. 5C. 6D. 75.直线l 经过第二、三、四象限,直线l 的解析式是n x m y +-=)2(,则m 的取值范围在数轴上表示为( ).6. 如图,△ABC 中,AB=AC ,40=∠A , 延长AC 到D , 使CD=BC ,点P 是ABD∠和ADB ∠的平分线的交点,则∠BPD 的度数是( ). A.105 B.110 C.130 D.145第7题图第9题图第6题图PDCBA7.如图,三条公路两两相交,现计划修建一个油库,要求油库到这三条公路的距离相等,那么选择油库的位置有( )处.A. 1B. 2C. 3D.4 8.下列命题中是真命题的有( )个. ①相等的角是对顶角;②两直线被第三条直线所截,内错角相等; ③若n m n m ==则,22;④平行四边形的对角线互相平分;⑤一组对边平行,一组对边相等的四边形是平行四边形.A. 0B.1C.2D.3 9.如图,平行四边形ABCD 中,∠ABC =60°,E 、F 分别在CD 和BC 的延长线上,AE ∥BD ,EF ⊥BC ,EF =3,则AB 的长是( ). A. 0.5 B.1 C. 1.5 D.210. 如图,Rt △ABC 中,∠ACB =90°,BC =3,AC =4,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为 ( ) .A.67 B.65 C.35 D.3411.直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为( ).第11题图EDCAB第10题图A.x >3B.x <3C.x >-1D.x <-112.如图,平行四边形ABCD 的面积为acm 2,对角线交于点O ;以AB 、AO 为邻边做平行四边形AOC 1B ,连接AC 1交BD 于O 1,以AB 、AO 1为邻边做平行四边形 AO 1C 2B ;…;依此类推,则平行四边形AO n-1C n B 的面积为( )cm 2 A. a n 1)21(- B.a n )21(C.a n 1)21(+ D.a n)31(二、填空题:(本题共4小题,每小题3分,共12分)把答案填在答题卡上..........13. 如图,将Rt △ABC 绕直角顶点顺时针旋转90°,得到△A’B’C ,连结AA ′,若∠AA’B’=20°,则∠B 的度数是 .14.如果不等式组⎩⎨⎧>-<+m x x x 148的解集是3>x ,则m 的取值范围是 . 15.在平行四边形ABCD 中,BC 边上的高为4,AB =5,AC =2,则平行四边形ABCD的周长等于 . 16.已知分式方程的1116-=--x mx 的解 x 是正数,则m 的取值范围是______ __. 三、解答题(本大题有七题,其中第17题9分、第18题6分、第19题6分、第20题7分、第21题7分、第22题8分、第23题9分,共52分) 17.(1)(4分)分解因式:22312123xy y x x +-.(2)(5分)先化简,再求值:)225(262---÷--x x x x ,其中2x =- 18. (6分)解不等式组36;445(2)82.x x x x -⎧+⎪⎨⎪--<-⎩≥①②,并把解集在数轴上表示出来.19. (6分)如图,E 、F 是平行四边形ABCD 的对角线AC 上的点,CE =AF ,请你猜想:线段BE 与DF 有怎样的位置关系和数量关系?对你的猜想加以证明.第13题图B'A'CBA20. (7分)天虹商场预测一种夏季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求.商场决定又用17.6万元购进第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元.商场销售这种衬衫时每件定价都是58元,最后剩下150件按八折销售,很快售完.(1)天虹商场第一次购进多少件这种衬衫? (2)在这两笔生意中,商场共盈利多少元?21.(7分)在△ABC 中,AB=AC ,CG ⊥BA 交BA 的延长线于点G .一等腰直角三角尺按如图所示的位置摆放,该三角尺的直角顶点为F ,一条直角边与AC 边在一条直线上,另一条直角边恰好经过点B .⑴在图1中请你通过观察猜想BF 与CG 满足的数量关系,并证明你的结论.⑵当三角尺沿AC 方向平移到图2所示的位置时,一条直角边仍与AC 边在同一直线上,另一条直角边交BC 边于点D ,过点D 作DE ⊥BA 于点E .此时请你通过观察、猜想DE 、DF 与CG 满足的数量关系,并证明你的猜想.22.(8分)深圳图书馆举办读书月活动,决定利用349盆甲种花卉和295盆乙种花卉搭配A 、B 两种园艺造型共50个,摆放在迎宾大道两侧.已知搭配一个A 种造型需要甲种花卉8盆,乙种花卉4盆;搭配B 种造型需要甲种花卉5盆,乙种花卉9盆.(1)某校八年级课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有哪几种?请你帮忙设计出来.(2)若搭配一个A 种造型的成本是200元,搭配一个B 种造型的成本是360元,是说明ABCDE F第19题图(1)中哪个方案的成本最低,最低成本是多少?23.(9分)如图,在平面直角坐标系中,点A ,B 的坐标分别为(﹣3,0),(0,6).动点P 从点O 出发,沿x 轴正方向以每秒1个单位的速度运动,同时动点C 从B 出发,沿射线BO 方向以每秒2个单位的速度运动,以CP ,CO 为邻边构造平行四边形PCOD ,在线段OP 延长线上取点E ,使PE =AO ,设点P 运动的时间为t 秒.(1)直接写出当点C 运动到线段OB 的中点时,求t 的值及点E 的坐标. (2)当点C 在线段OB 上运动时,四边形ADEC 的面积为S . ①求证:四边形ADEC 为平行四边形.②写出s 与t 的函数关系式,并求出t 的取值范围. (3)是否存在某一时刻,使OC 是PC 的一半?若存在, 求出t 的值,若不存在,请说明理由.八年级数学试卷参考答案及评分标准一、选择题(本题有12小题,每题3分,共36分)题号1234567891011 12答案A C DBC BD B B A DB二、填空题(本题有4小题,每题3分,共12分.)题号 13 14 15 16答案65° m ≤3 12或20m <7且m ≠6三、解答题(本大题有7题, 其中17题9分,18题6分,19题6分,20题7分,21题7分,22题8分,23题9分,共52分)17.(本题每小题3分,共12分)(1)(4分)分解因式:22312123xy y x x +-解:原式 =3x(x 2-4xy+4y 2 ) ………………………2分 =3x(x-2y)2 ………………………4分(2)(5分)先化简,再求值:)225(262---÷--x x x x ,其中2x =-292322--÷--=x x x x )(解:原式 ………………………2分)3)(3(2232+---⨯--=x x x x x )( ………………………3分32+-=x ………………………4分-22=-=时,原式当x ………………………5分18.(本题6分)解不等式组36;445(2)82.x x x x -⎧+⎪⎨⎪--<-⎩≥①②,并把解集在数轴上表示出来. 解: 解不等式①得: x ≤7 ………………………2分解不等式②得: x >2 ………………………4分在数轴上表示不等式组的解集………………………5分∴不等式组的解集是 2<x ≤7 ………………………6分19.(本题共6分)解:BE ∥DF,BE=DF.理由如下:………………………1分∵平行四边形ABCD ,∴AD=BC ,AD ∥BC ,………………………2分 ∴∠DAC=∠ACB, ………………………3分∵CE=AF ,∴△DAF ≌△BCE(ASA) ………………………4分 ∴DF=BE ,∠DF A=∠BEC, ………………………5分 ∴BE ∥DF ………………………6分20.解:(1)天虹商场第一次购进x 件这种衬衫,依题意得:ABCDE F第19题图4217600080000-=xx (2)分解得:x =2000 ...........................3分 经检验: x =2000 是原分式方程的解。
新北师版大八年级下期末数学试卷(有答案)
新北师大版八年级(下)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.以下是节水、回收、低碳、绿色包装四个标志,其中是中心对称图形的是()A.B.C. D.2.若a<b,则下列各式中一定成立的是()A.﹣a<﹣b B.ac<bc C.a﹣1<b﹣1 D.>3.使分式有意义的x的取值范围是()A.x≥1 B.x≤1 C.x>1 D.x≠14.下列从左边到右边的变形,因式分解正确的是()A.2a2﹣2=2(a+1)(a﹣1)B.(a+3)(a﹣3)=a2﹣9C.﹣ab2+2ab﹣3b=﹣b(ab﹣2a﹣3)D.x2﹣2x﹣3=x(x﹣2)﹣35.如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.6 B.8 C.10 D.125题图 6题图6.如图,直线l1的解析式为y1=k1x+b1,直线l2的解析式为y2=k2x+b2,则不等式k1x+b1>k2x+b2的解集是()A.x>2 B.x<2 C.x>﹣2 D.x<﹣27.若x2﹣kx+9是一个完全平方式,则k的值为()A.﹣3 B.﹣6 C.±3 D.±68.对分式,通分时,最简公分母是()A.4(a﹣3)(a+3)2B.4(a2﹣9)(a2+6a+9) C.8(a2﹣9)(a2+6a+9) D.4(a﹣3)2(a+3)29.一个长为2、宽为1的长方形以下面的四种“姿态”从直线l的左侧水平平移至右侧(下图中的虚线都是水平线).其中,所需平移的距离最短的是()A.B.C.D.10.下列说法错误的是()A.x=4是方程的增根B.一组对边平行,另一组对边相等的四边形是平行四边形C.命题“平行四边形的对角线互相平分”和它的逆命题是以对互逆定理D.把点A的横坐标不变,纵坐标乘以﹣1后得到点B,则点A与点B关于y轴对称11.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=100°,则∠DAE的度数为()A.20° B.25° C.30° D.35°12.如图所示,△ABC的两条外角平分线AP、CP相交于点P,PH⊥AC于H.若∠ABC=60°,则下面的结论:①∠ABP=30°;②∠APC=60°;③PB=2PH;④∠APH=∠BPC,其中正确结论的个数是()A.1个B.2个C.3个D.4个11题图 12题图 16题图二、填空题(共4小题,每小题3分,满分12分)13.七边形的内角和是.14.化简+的结果是.15.若x=5是关于x的不等式2x+5>a的一个解,但x=4不是它的解,则a的取值范围是.16.如图所示,长方形ABCD绕点C顺时针旋转90°后得到长方形CEFG,连接DG交EF于H连接AF交DG 于点M,若AB=4,BC=1,则AM= .三、解答题(共7小题,满分52分)17.分解因式:(1)3x2﹣12xy+12y2;(2)(x﹣y)2+16(y﹣x).18.先化简,再求值:(﹣)•(a+3),其中a=3+2.19.如图所示,点P的坐标为(4,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.(1)写出点Q的坐标是;(2)若把点Q向右平移m个单位长度,向下平移2m个单位长度后,得到的点Q′恰好落在第三象限,求m 的取值范围.20.解方程:.21.如图,△ABC和△BEF都是等边三角形,点D在BC边上,点F在AB边上,且∠EAD=60°,连接ED、CF.(1)求证:△ABE≌△ACD;(2)求证:四边形EFCD是平行四边形.22.给点燃的蜡烛加上一个特质的外罩后,蜡烛燃烧的时间会更长,为了测量蜡烛在有、无外罩条件下的燃烧时长,某天,小明同时点燃了A、B、C三只同样质地、同样长的蜡烛,他给其中的A、B两只加了外罩,C没加外罩,一段时间后,小明发现自己忘了记录开始时间,于是,他马上请来了小聪,小聪根据现场情况采取了如下的补救措施,在C刚好燃烧完时,他马上拿掉了B的外罩,但没有拿掉A的外罩,结果发现:B 在C燃烧完以后12分钟才燃烧完,A在B燃烧完以后8分钟燃烧完(假定蜡烛在“有罩”或“无罩”条件下都是均匀燃烧)设无外罩时,已知蜡烛可以燃烧x分钟,则:(1)填空:把已知蜡烛的总长度记为单位1,当蜡烛B燃烧完时,它在“有罩”条件下燃烧的长度为;在“无罩”条件下燃烧的长度为;(两个空都用含有x的代数式表示)(2)求无外罩时,已知蜡烛可以燃烧多少分钟;(3)如果一支点燃的蜡烛至少能够燃烧40分钟,则无罩燃烧至多几分钟后就要给这支蜡烛加上外罩?23.如图1、2,A、B是y轴上的两点(点A在点B的上边),C、D是x轴上的两点(点C在点D的左边),E、F分别是BC、AD的中点.(1)如图1,过点C作x轴的垂线交AE的延长线于点P,求证:AB=PC;(2)如图1,连接EF,若AB=4,CD=2,求EF的长;(3)如图2,若AB=CD,当线段AB、CD分别在y轴、x轴上滑动时,直线EF与x轴正方向的夹角∠α的大小是否会发生变化?若变化,请你说明理由;若不变,请你求出∠α的大小.八年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.以下是节水、回收、低碳、绿色包装四个标志,其中是中心对称图形的是( D )A.B.C. D.2.若a<b,则下列各式中一定成立的是( C )A.﹣a<﹣b B.ac<bc C.a﹣1<b﹣1 D.>3.使分式有意义的x的取值范围是(D )A.x≥1 B.x≤1 C.x>1 D.x≠14.下列从左边到右边的变形,因式分解正确的是( A )A.2a2﹣2=2(a+1)(a﹣1)B.(a+3)(a﹣3)=a2﹣9C.﹣ab2+2ab﹣3b=﹣b(ab﹣2a﹣3)D.x2﹣2x﹣3=x(x﹣2)﹣35.如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是(C.)A.6 B.8 C.10 D.126.如图,直线l1的解析式为y1=k1x+b1,直线l2的解析式为y2=k2x+b2,则不等式k1x+b1>k2x+b2的解集是( D )A.x>2 B.x<2 C.x>﹣2 D.x<﹣27.若x2﹣kx+9是一个完全平方式,则k的值为( D )A.﹣3 B.﹣6 C.±3 D.±68.对分式,通分时,最简公分母是( A )A.4(a﹣3)(a+3)2B.4(a2﹣9)(a2+6a+9) C.8(a2﹣9)(a2+6a+9) D.4(a﹣3)2(a+3)2 9.一个长为2、宽为1的长方形以下面的四种“姿态”从直线l的左侧水平平移至右侧(下图中的虚线都是水平线).其中,所需平移的距离最短的是( C )A.B.C.D.【解答】解:A、平移的距离=1+2=3,B、平移的距离=2+1=3,C、平移的距离==,D、平移的距离=2,所以选C.10.下列说法错误的是( C )A.x=4是方程的增根B.一组对边平行,另一组对边相等的四边形是平行四边形C.命题“平行四边形的对角线互相平分”和它的逆命题是以对互逆定理D.把点A的横坐标不变,纵坐标乘以﹣1后得到点B,则点A与点B关于y轴对称11.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=100°,则∠DAE的度数为()A.20° B.25° C.30° D.35°【解答】解:∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=100°,∴∠ADC=120°,∠CDE═∠F=100°,∴∠ADE=360°﹣120°﹣100°=140°,∴∠DAE=(180°﹣140°)÷2=20°,故选:A.12.如图所示,△ABC的两条外角平分线AP、CP相交于点P,PH⊥AC于H.若∠ABC=60°,则下面的结论:①∠ABP=30°;②∠APC=60°;③PB=2PH;④∠APH=∠BPC,其中正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:如图作,PM⊥BC于M,PN⊥BA于N.∵∠PAH=∠PAN,PN⊥AD,PH⊥AC,∴PN=PH,同理PM=PH,∴PN=PM,∴PB平分∠ABC,∴∠ABP=∠ABC=30°,故①正确,∵在Rt△PAH和Rt△PAN中,,∴△PAN≌△PAH,同理可证,△PCM≌△PCH,∴∠APN=∠APH,∠CPM=∠CPH,∵∠MPN=180°﹣∠ABC=120°,∴∠APC=∠MPN=60°,故②正确,在Rt△PBN中,∵∠PBN=30°,∴PB=2PN=2PH,故③正确,∵∠BPN=∠CPA=60°,∴∠CPB=∠APN=∠APH,故④正确.【点评】本题考查角平分线的判定定理和性质定理.全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识,属于中考常考题型.二、填空题(共4小题,每小题3分,满分12分)13.七边形的内角和是900°.14.化简+的结果是 a .【解答】解:原式=﹣===a,15.若x=5是关于x的不等式2x+5>a的一个解,但x=4不是它的解,则a的取值范围是13≤a<15 .16.如图所示,长方形ABCD绕点C顺时针旋转90°后得到长方形CEFG,连接DG交EF于H连接AF交DG 于点M,若AB=4,BC=1,则AM= .【解答】解:如图,连结AC、CF.∵长方形ABCD绕点C顺时针旋转90°后得到长方形CEFG,∴DC=GC,AC=FC,∠ACF=90°,∴△ACF是等腰直角三角形.∵在Rt△ABC中,∠B=90°,AB=4,BC=1,∴AC==,∴FC=AC=.在Rt△CAF中,由勾股定理得,AF==.∵DC=GC,∠DCG=90°,∴∠DGC=45°,∴∠FGH=90°﹣∠DGC=45°,∴△FHG是等腰直角三角形,∴FH=FG,∵FG=AD,∴FH=AD.在△ADM与△FHM中,∴△ADM≌△FHM,∴AM=FM,∵AM+FM=AF=,∴AM=.故答案为.三、解答题(共7小题,满分52分)17.分解因式:(1)3x2﹣12xy+12y2;(2)(x﹣y)2+16(y﹣x).【解答】解:(1)原式=3(x2﹣4xy+4y2)=3(x﹣2y)2;18.先化简,再求值:(﹣)•(a+3),其中a=3+2.【解答】解:原式=[﹣]•(a+3)=•(a+3)=,当a=3+2时,原式=.19.如图所示,点P的坐标为(4,3),把点P绕坐标原点O逆时针旋转90°后得到点Q.(1)写出点Q的坐标是(﹣3,4);(2)若把点Q向右平移m个单位长度,向下平移2m个单位长度后,得到的点Q′恰好落在第三象限,求m 的取值范围.【解答】解:(1)点Q的坐标为(﹣3,4);故答案为(﹣3,4);(2)把点Q(﹣3,4)向右平移m个单位长度,向下平移2m个单位长度后,得到的点Q′的坐标为(﹣3+m,4﹣2m),而Q′在第三象限,所以,解得2<m<3,即m的范围为2<m<3.20.解方程:.【解答】解:方程的两边同乘(x﹣2),得:1﹣x=﹣1﹣2(x﹣2),解得:x=2.检验:当x=2时,(x﹣2)=0,即x=2不是原分式方程的解.则原方程无解.21.如图,△ABC和△BEF都是等边三角形,点D在BC边上,点F在AB边上,且∠EAD=60°,连接ED、CF.(1)求证:△ABE≌△ACD;(2)求证:四边形EFCD是平行四边形.【解答】证明:(1)∵△ABC和△BEF都是等边三角形,∴AB=AC,∠EBF=∠ACB=∠BAC=60°,∵∠EAD=60°,∴∠EAD=∠BAC,∴∠EAB=∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD.(2)由(1)得△ABE≌△ACD,∴BE=CD,∵△BEF、△ABC是等边三角形,∴BE=EF,∴∠EFB=∠ABC=60°,∴EF∥CD,∴BE=EF=CD,∴EF=CD,且EF∥CD,∴四边形EFCD是平行四边形.22.给点燃的蜡烛加上一个特质的外罩后,蜡烛燃烧的时间会更长,为了测量蜡烛在有、无外罩条件下的燃烧时长,某天,小明同时点燃了A、B、C三只同样质地、同样长的蜡烛,他给其中的A、B两只加了外罩,C没加外罩,一段时间后,小明发现自己忘了记录开始时间,于是,他马上请来了小聪,小聪根据现场情况采取了如下的补救措施,在C刚好燃烧完时,他马上拿掉了B的外罩,但没有拿掉A的外罩,结果发现:B 在C燃烧完以后12分钟才燃烧完,A在B燃烧完以后8分钟燃烧完(假定蜡烛在“有罩”或“无罩”条件下都是均匀燃烧)设无外罩时,已知蜡烛可以燃烧x分钟,则:(1)填空:把已知蜡烛的总长度记为单位1,当蜡烛B燃烧完时,它在“有罩”条件下燃烧的长度为1﹣;在“无罩”条件下燃烧的长度为;(两个空都用含有x的代数式表示)(2)求无外罩时,已知蜡烛可以燃烧多少分钟;(3)如果一支点燃的蜡烛至少能够燃烧40分钟,则无罩燃烧至多几分钟后就要给这支蜡烛加上外罩?【考点】一元一次不等式的应用;列代数式.【解答】解:(1)把已知蜡烛的总长度记为单位1,当蜡烛B燃烧完时,在“无罩”条件下燃烧的长度为,它在“有罩”条件下燃烧的长度为1﹣,故答案为:1﹣,;(2)设无外罩时,一支蜡烛可以燃烧x分钟,由题意得: =,解得:x=30,经检验x=30是原分式方程的解,答:无外罩时,一支蜡烛可以燃烧30分钟.(3)设无罩燃烧a分钟后就要给这支蜡烛加上外罩,由题意得: +≥1,解得:a≤15,答:无罩燃烧至多15分钟后就要给这支蜡烛加上外罩.【点评】此题考查分式方程与不等式的实际运用,找出题目蕴含的等量关系和不等关系是解决问题的关键.23.如图1、2,A、B是y轴上的两点(点A在点B的上边),C、D是x轴上的两点(点C在点D的左边),E、F分别是BC、AD的中点.(1)如图1,过点C作x轴的垂线交AE的延长线于点P,求证:AB=PC;(2)如图1,连接EF,若AB=4,CD=2,求EF的长;(3)如图2,若AB=CD,当线段AB、CD分别在y轴、x轴上滑动时,直线EF与x轴正方向的夹角∠α的大小是否会发生变化?若变化,请你说明理由;若不变,请你求出∠α的大小.【解答】(1)证明:∵OA⊥OD,PC⊥OD,∴AB∥PC,∴∠EAB=∠EPC,在△ABE和△PCE中,∴△ABE≌△PCE,∴AE=EP.(2)如图1中,连接DP,∵△AEB≌△PEC,∴AE=EP,∵CP=AB=4,CD=2,∴DP==2,∵E、F分别是AP、AD中点,∴EF=DP=.(3)结论:∠α的大小不变,∠α=45°理由:如图2中,过点C作x轴的垂线交AE的延长线于点P,由(1)可知,CP=AB=CD,∴∠CDP=45°,∵EF∥DP,∴∠α=∠CDP=45°.【点评】本题考查三角形综合题、全等三角形的判定和性质、勾股定理、三角形中位线定理等知识,解题的关键是学会利用(1)的证明方法,添加辅助线构造全等三角形解决问题,属于中考常考题型.。
北师大版八年级下册数学期末考试试题含答案
北师大版八年级下册数学期末考试试卷一、单选题1.若m n >,则下列不等式中不成立...的是()A .22m n +>+B .22m n->-C .2>2m n --D .22m n>2.下列图形:平行四边形、等腰三角形、线段、正六边形、圆,其中既是中心对称图形又是轴对称图形的有()A .1个B .2个C .3个D .4个3.下列各式从左到右的变形中,是因式分解的是()A .()()2339a a a +-=-B .()()2211a b a b a b -+=+-+C .()()2422m m m -=+-D .2211m m m m ⎛⎫+=+ ⎪⎝⎭4.下列各式中x 、y 的值均扩大为原来的2倍,则分式的值一定保持不变的是()A .2x y B .1x x y-+C .2x y-D .y x y+5.若关于x 的分式方程311-=-m x 的解为2x =,则m 的值为()A .5B .4C .3D .26.如图,在ABC 中,AB AC =,AD AB ⊥交BC 于点D ,120BAC ∠=︒,4=AD ,则BC 的长()A .8B .10C .11D .127.如图,将ABC 绕点A 按逆时针方向旋转80°,得到ADE ,连接BE ,若//AD BE ,CAE ∠的度数为()A .20°B .30°C .25°D .35°8.如图,一次函数1y kx b =+图象经过点()2,0A ,与正比例函数22y x =的图象交于点B ,则不等式02kx b x <+<的解集为()A .0x >B .1x >C .01x <<D .12x <<9.如图,在ABC 中,AB AC =,46BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线OD 交于点O ,点E 在BC 上,点F 在AC 上,连接EF ,将C ∠沿EF 折叠,点C 与点O 恰好重合时,则OEC ∠的度数()A .90°B .92°C .95°D .98°二、填空题10x 的取值范围是______.11.已知一个正多边形的一个内角是120º,则这个多边形的边数是_______.12.若1n m -=,则22242m mn n -+的值为______.13.如图:在ABC 中,90ACB ∠=︒,AD 平分CAB ∠交BC 于点D ,且2BD CD =,9BC cm =,则点D 到AB 的距离为______.14.不等式5132x x -+>-的正整数解为______.15.如图,ABC ∆,D 、E 分别是BC 、AC 的中点,BF 平分ABC ∠,交DE 于点F ,若10AB =,8BC =,则EF 的长是______.16.关于x 的分式方程2433x m mx x++=--的解为非负数,则实数m 的取值范围______.17.如图,四边形ABCD 中,//AB DC ,6DC =cm ,9AB =cm ,点P 以1cm/s 的速度由A 点向B 点运动,同时点Q 以2cm/s 的速度由C 点向D 点运动,其中一点到达终点时,另一点也停止运动,当线段PQ 将四边形ABCD 截出一个平行四边形时,此时的运动时间为______s .18.如图,BD 是ABC 的内角平分线,CE 是ABC 的外角平分线,过A 分别作AF BD ⊥、AG CE ⊥,垂足分别为F 、G ,连接FG ,若6AB =,5AC =,4BC =,则FG 的长度为____三、解答题19.(1)因式分解:32231212x x y xy -+(2)解不等式组:()3241213x x x x ⎧--<⎪⎨+>-⎪⎩,并把解集表示在数轴上.20.(1)先化简,再求值:236214422m m m m m m+-÷++++-,其中5m =.(2)解方:2231111x x x +=+--21.如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,ABC 的顶点均落在格点上.(1)将ABC 先向右平移6个单位长度再向下平移1个单位长度,得到111A B C △,在网格中画出111A B C △;(2)作ABC 关于x 轴的轴对称图形,得到222A B C △,在网格中画出222A B C △.22.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,E 、F 分别是AB ,AC 上的点,且BE AF =,连接AD 、DE 、DF 、EF .求证:①BED ≌AFD V ②DE DF⊥23.某服装厂准备加工260套运动服,在加工了60套后,采用新技术,使每天的工作效率是原来的2倍,结果共用了8天完成,求该厂原来每天加工多少套运动服.24.如图,在ABCD 中,过点B 作BM AC ⊥,交AC 于点E ,交CD 于点M ,过点D 作DN AC ⊥,交AC 于点F ,交AB 于点N .(1)求证:四边形BMDN 是平行四边形;(2)已知125AF EM ==,,求AN 的长.25.甲、乙两家商场以相同的价格出售同样的商品,为了吸引顾客各自推出不同的优惠方案:在甲商场购买商品超过300元之后,超过部分按8折优惠;在乙商场购买商品超过200元之后,超过部分按8.5折优惠,设甲商场实际付费为1y 元,乙商场实际付费为2y 元,顾客购买商品金额为x 元()300x >.(1)分别求出1y ,2y 与x 的函数关系式;(2)比较顾客到哪个商场更优惠,并说明理由.26.在ABC 中,5AB BC ==,6AC =,将ABC 沿BC 方向平移得到DCE ,A ,C 的对应点分别是D 、E ,连接BD 交AC 于点O .(1)如图1,将直线BD 绕点B 顺时针旋转,与AC 、DC 、DE 分别相交于点I 、F 、G ,过点C 作//CH BG 交DE 于点H .①求证:IBC ≌HCE ②若DF CF =,求DG 的长;(2)如图2,将直线BD 绕点O 逆时针旋转()90αα<︒,与线段AD 、BC 分别交于点P 、Q ,在旋转过程中,四边形ABQP 的面积是否发生变化?若不变,求出四边形ABQP 的面积,若变化,请说明理由;(3)在(2)的旋转过程中,AOP 能否为等腰三角形,若能,请直接写出PQ 的长,若不能,请说明理由.参考答案1.B 【详解】解:A .∵m n >,不等式两边同时加2,不等号方向不变,∴22m n +>+,故A 不符合题意;B .∵m n >,不等式两边同时乘以-2,-2<0,不等号方向改变,∴22m n -<-,故B 符合题意;C .∵m n >,不等式两边同时加-2,不等号方向不变,∴22m n ->-,故C 不符合题意;D .∵m n >,不等式两边同时乘以12,12>0,不等号方向不变,∴22m n>,故D 不符合题意;故选B .2.C 【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:平行四边形不是轴对称图形,但是中心对称图形;等腰三角形是轴对称图形,不是中心对称图形;线段、正六边形、圆既是中心对称图形又是轴对称图形,所以既是中心对称图形又是轴对称图形的有3个.故选:C .3.C 【分析】将多项式写成几个整式的积的形式,叫做将多项式分解因式,也叫因式分解,根据定义解答.【详解】解:A 、()()2339a a a +-=-不是因式分解;B 、()()2211a b a b a b -+=+-+不是因式分解;C 、()()2422m m m -=+-是因式分解;D 、2211m m m m ⎛⎫+=+ ⎪⎝⎭不是因式分解;故选:C .【点睛】此题考查因式分解,掌握因式分解的定义及因式分解的方法是解题的关键.4.D 【解析】【分析】根据分式的基本性质,分子分母同时乘除同一个不为零的数或式,分式的值不发生改变进行变形即可求解.【详解】解:根据题意,将x 变成2x,y 变成2y 化简求解:A.2x y 变成22222(2)4x x xy y y =≠,该选项不符合题意,B.1x x y -+变成21122x x x y x y --≠++,该选项不符合题意,C.2x y -变成2222x y x y ≠--,该选项不符合题意,D.yx y+变成22()y y x y x y =++,该选项符合题意,【点睛】本题考查了分式的基本性质,属于基础题,掌握分式的性质是解题关键. 5.B【解析】【详解】分析:直接解分式方程进而得出答案.详解:解分式方程311mx-=-得,x=m-2,∵关于x的分式方程311mx-=-的解为x=2,∴m-2=2,解得:m=4.故选B.点睛:此题主要考查了分式方程的解,正确解方程是解题关键.6.D【解析】【分析】依据等腰三角形的内角和,即可得到∠C=∠B=30°,依据AD⊥AB交BC于点D,即可得到BD=2AD=8,∠CAD=30°=∠B,CD=AD=4,进而得出BC的长.【详解】解:∵△ABC中,AB=AC,∠BAC=120°,∴∠C=∠B=30°,∵AD⊥AB交BC于点D,∴BD=2AD=8,∠CAD=30°=∠B,∴CD=AD=4,∴BC=BD+CD=8+4=12.故选:D.【点睛】本题主要考查了含30°角的直角三角形的性质以及等腰三角形的性质,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.【解析】【分析】由旋转的性质可知AB AE =,CAD BAE ∠=∠,即可求出50AEB ABE ∠=∠=︒.再由平行线的性质可知EAD AEB ∠=∠,最后由CAE CAD EAD ∠=∠-∠,即可求出CAE ∠的大小.【详解】∵ADE 是由ABC 绕点A 按逆时针方向旋转80︒得到,∴AB AE =,80CAD BAE ∠=∠=︒,∴1(180)502AEB ABE BAE ∠=∠=︒-∠=︒.∵//AD BE ,∴50EAD AEB ∠=∠=︒,∴805030CAE CAD EAD ∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查旋转的性质,等腰三角形的判定和性质,平行线的性质.利用数形结合的思想是解答本题的关键.8.D 【解析】【分析】当x >1时,直线y=2x 都在直线y=kx+b 的上方,当x <2时,直线y=kx+b 在x 轴上方,于是可得到不等式0<kx+b <2x 的解集.【详解】解:当x >1时,2x >kx+b ,∵函数y=kx+b (k≠0)的图象经过点B (2,0),∴x <2时,kx+b >0,∴不等式0<kx+b <2x 的解集为1<x <2.故选D .【点睛】本题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.9.B 【解析】【分析】连接OB 、OC .由角平分线和垂直平分线的性质可求出1232ABO BAC ∠=∠=︒,再由等腰三角形的性质可求出67ABC ACB ∠=∠=︒,由OBC ABC ABO ∠=∠-∠,即可求出OBC ∠的大小.在AOB 和AOC △中,利用“SAS”易证AOB AOC ≅ ,即得出OB=OC ,从而可求出44OBC OCB ∠=∠=︒.再由题意折叠可知OE=CE ,即得出44EOC ECO ∠=∠=︒,最后由180OEC EOC ECO ∠=︒-∠-∠,即可求出OEC ∠的大小.【详解】如图,连接OB 、OC.∵46BAC ∠=︒,BAC ∠的平分线与AB 的垂直平分线OD 交于点O ,∴1232OAB OAC ABO BAC ∠=∠=∠=∠=︒.∵AB=AC ,∴1(180)672ABC ACB BAC ∠=∠=︒-∠=︒,∴44OBC ABC ABO ∠=∠-∠=︒.在AOB 和AOC △中,AB AC OAB OAC AO AO =⎧⎪∠=∠⎨⎪=⎩,∴()AOB AOC SAS ≅ ,∴OB=OC ,∴44OBC OCB ∠=∠=︒.由题意将C ∠沿EF 折叠,点C 与点O 恰好重合,∴OE=CE ,∴44EOC ECO ∠=∠=︒,∴18092OEC EOC ECO ∠=︒-∠-∠=︒.故选:B .【点睛】本题考查角平分线、线段垂直平分线的性质,等腰三角形的性质,全等三角形的判定和性质,折叠的性质.作出辅助线构造等腰三角形是解答本题的关键.综合性强,较难.10.1≥x 且3x ≠【解析】【分析】直接利用二次根式有意义被开方数是非负数、分式有意义则分母不为零,进而得出答案.【详解】由题意知:x−1≥0且x−3≠0,解得:x≥1且x≠3.故答案为:x≥1且x≠3.【点睛】此题主要考查了二次根式有意义、分式有意义,正确掌握相关有意义的条件是解题关键.11.6【解析】【详解】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解:外角是180-120=60度,360÷60=6,则这个多边形是六边形.故答案为六.12.2【解析】先把所求式子的前三项分解因式得到()2222422m mn n m n -+=-,然后整体代入计算即得答案.【详解】解:∵1m n -=,∴()22222422212m mn n m n -+=-=⨯=.故答案为:2.【点睛】本题考查了多项式的因式分解和代数式求值,属于常考题型,熟练掌握分解因式的方法和整体的数学思想是解题的关键.13.3cm【解析】【分析】先求出CD 的长,再根据角平分线的性质证得DE=CD 即可.【详解】解:∵2BD CD =,9BC cm =,∴133CD BC ==cm ,过点D 作DE ⊥AB 于E ,∵AD 平分CAB ∠交BC 于点D ,90ACB ∠=︒,∴DE=CD=3cm ,故答案为:3cm .【点睛】此题考查角平分线的性质:角平分线上的点到角两边的距离相等,熟记性质定理是解题的关键.14.1,2【解析】【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.解:去分母得:x−5+2>2x−6,移项得:x−2x >−6+5−2,合并同类项得:−x >−3,系数化为1得:x <3.故不等式的正整数解是1,2,故答案为1,2.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15.1.【解析】【分析】根据三角形中位线定理得到DE ∥AB ,DE=0.5AB=5,根据平行线的性质、角平分线的定义求出DF ,计算即可.【详解】解:D Q 、E 分别是BC 、AC 的中点,152DE AB ∴==,//DE AB ,142BD BC ==,ABF DFB ∴∠=∠,BF 平分ABC ∠,ABF DBF ∴∠=∠,DBF DFB ∠=∠,4DF DB ∴==,1EF DE DF ∴=-=,故答案为1.【点睛】本题考查的是角平分线的定义、三角形中位线定理,掌握平行线的性质、角平分线的定义是解题的关键.16.12m ≤且3m ≠【分析】先解得分式方程的解为43m x =-,再由题意可得43m -≥0,又由x≠3,即可求m 的取值范围.【详解】解:2433x m m x x ++=--,方程两边同时乘以x−3,得x +m−2m =4(x−3),去括号得,x−m =4x−12,移项、合并同类项得,3x =12−m ,解得:43m x =-,∵解为非负数,∴43m -≥0,∴m≤12,∵x≠3,∴m≠3,∴m 的取值范围为m≤12且m≠3,故答案为为:m≤12且m≠3.【点睛】本题考查分式方程的解,熟练掌握分式方程的解法,注意增根的情况是解题的关键.17.2或3【解析】【分析】设运动时间为t ,有题意可得AP=tcm ,PB=(9-t )cm ,CQ=2tcm ,DQ=(6-2t )cm ,然后分当四边形APQD 是平行四边形时,DQ=AP 和当四边形BPQC 是平行四边形时,CQ=BP ,进行求解即可.【详解】解:设运动时间为t ,有题意可得AP=tcm ,PB=(9-t )cm ,CQ=2tcm ,DQ=(6-2t )cm ,∵AB ∥CD∴当四边形APQD 是平行四边形时,DQ=AP ,解得t=2;当四边形BPQC 是平行四边形时,CQ=BP ,∴9-t=2t ,解得t=3,∴当t=2或3时,线段PQ 将四边形ABCD 截出一个平行四边形,故答案为:2或3.【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握相关知识进行求解.18.32【解析】【分析】延长AF 交BC 延长线于H ,延长AG 交BC 延长线于I ,由BD 平分∠ABC ,AF ⊥BF ,可得∠CBF=∠ABF ,∠HFB=∠AFB=90°,可证△HBF ≌△ABF (ASA ),可得BH=BA=6,HF=AF ,由CE 平分∠ACI ,AG ⊥CE ,可得∠ICG=∠ACG ,∠IGC=∠AGC=90°,可证△ICG ≌△ACG (ASA ),可得CI=CA=5,IG=AG,可证FG 为△AHI 的中位线即可.【详解】解:延长AF 交BC 延长线于H ,延长AG 交BC 延长线于I ,∵BD 平分∠ABC ,AF ⊥BF ,∴∠CBF=∠ABF ,∠HFB=∠AFB=90°,在△HBF 和△ABF 中,HBF ABF BF BF HFB AFB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△HBF ≌△ABF (ASA ),∴BH=BA=6,HF=AF ,∵CE 平分∠ACI ,AG ⊥CE ,∴∠ICG=∠ACG ,∠IGC=∠AGC=90°,在△ICG 和△ACG 中,ICG ACG CG CG IGC AGC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ICG ≌△ACG (ASA ),∴CI=CA=5,IG=AG ,∴IH=BC+CI-BH=4+5-6=3,∵HF=AF ,IG=AG ,∴FG 为△AHI 的中位线,∴FG=1133222HI =⨯=.故答案为32.【点睛】本题考查角平分线定义,垂线定义,三角形全等判定与性质,三角形中位线性质,线段和差,本题难度不大,训练画图构思能力,通过辅助线画出准确图形是解题关键.19.(1)()232x x y -;(2)14x <<,图见解析【解析】【分析】(1)先提公因式3x ,再利用完全平方公式进行因式分解即可;(2)先分别求出每一个不等式的解集,进而求出其公共解即可.【详解】解:(1)原式2223(44)3(2)x x xy y x x y =-+=-;(2)()3241213x x x x ⎧--<⎪⎨+>-⎪⎩①②解不等式①,得1x >,解不等式②,得4x <,在同一数轴上表示不等式①②的解集如下:∴不等式组的解集为:14x <<.【点睛】本题考查提公因式法、公式法分解因式,解一元一次不等式组,熟练掌握因式分解的方法以及解一元一次不等式组的基本步骤是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(1)22m -,23;(2)0x =【解析】【分析】(1)先利用完全平方公式和分式混合运算法则进行化简,然后代值计算即可;(2)先把方程两边同时乘以()()11x x +-化为整式方程,然后求解即可.【详解】解:(1)236214422m m m m m m+-÷++++-()()23221222m m m m m ++=⨯---+3122m m =---22m =-,当5x =时,原式22523==-.(2)2231111x x x +=+--方程两边同时乘以()()11x x +-得()()21311x x -++=,整理得22331x x -++=,解得0x =.检验:将0x =代入原方程,左边1=-=右边,∴原方程的根是0x .【点睛】本题主要考查了分式的化简求值,解分式方程,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)见解析;(2)见解析【解析】【分析】(1)利用点平移的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可;(2)利用关于x 轴对称的点的坐标特征写出A 2、B 2、C 2的坐标,然后描点即可.【详解】解:(1)由图可得:A (-4,5)、B (-5,2)、C (-3,1)∴平移后的坐标:A 1(2,4)、B 1(1,1)、C 1(3,0)如图,111A B C △即为所求.(2)对称后的坐标:A 2(-4,-5)、B 2(-5,-2)、C 2(-3,-1)如图,222A B C △即为所求.【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.22.①见解析;②见解析【解析】【分析】①证明:根据等腰直角三角形的性质推出1452DAF DAB BAC ∠=∠=∠=︒,45B C ∠=∠=︒,BD AD =,即可证得结论;②根据全等的性质证得BDE ADF ∠=∠,利用AD BC ⊥证得结论.【详解】解:①证明:在ABC 中,AB AC =,90BAC ∠=︒,点D 是BC 的中点,∴1452DAF DAB BAC ∠=∠=∠=︒,45B C ∠=∠=︒,∵B DAB ∠=∠,∴BD AD =,∵B DAF ∠=∠,BE AF =,∴BED ≌AFD V ;②证明:由①可知,BED ≌AFD V ,∴BDE ADF ∠=∠,∵AB AC =,点D 是BC 的中点,∴AD BC ⊥,∴90ADB ∠=︒,∴90ADE BDE ∠+∠=︒,∴90ADE ADF ∠+∠=︒,∴90EDF ∠=︒,∴DE DF ⊥.【点睛】此题考查了等腰直角三角形的性质,全等三角形的判定及性质,熟记等腰直角三角形的性质及全等三角形的判定定理是解题的关键.23.该厂原来每天加工20套运动服.【解析】【分析】设该厂原来每天加工x 套运动服,则采用新技术后每天加工2x 套运动服,由题意:某服装厂准备加工260套运动服,在加工了60套后,采用新技术,使每天的工作效率是原来的2倍,结果共用了8天完成,列出分式方程,解方程即可.【详解】解:设该厂原来每天加工x 套运动服,则采用新技术后每天加工2x 套运动服.根据题意得:602606082x x-+=解这个方程得20x =,经检验:20x =是原方程的根.答:该厂原来每天加工20套运动服.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(1)见解析;(2)13【解析】【分析】(1)只要证明DN ∥BM ,DM ∥BN 即可;(2)只要证明△CEM ≌△AFN ,可得FN =EM =5,在Rt △AFN 中,根据勾股定理AN =.【详解】(1)∵四边形ABCD 是平行四边形,∴CD AB .∵BM AC DN AC ⊥⊥,,∴DN BM ,∴四边形BMDN 是平行四边形.(2)∵四边形ABCD ,BMDN 都是平行四边形,∴AB CD DM BN CD AB ==,,∥,∴CM AN MCE NAF =∠=∠,.又∵90CEM AFN ∠=∠=︒,∴()CEM AFN AAS ≌,∴5FN EM ==.在Rt AFN 中,13AN =.【点睛】本题考查平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.(1)10.860y x =+,20.8530y x =+;(2)当600x =时,选择甲、乙两个商场均可,当300600x <<时,选择乙商场更优惠,当x 600>时,选择甲商场更优惠.【解析】【分析】(1)在甲超市购物所付的费用:300元+0.8×超过300元的部分,在乙超市购物所付的费用:200+0.85×超过200元的部分;(2)根据(1)中解析式的费用分类讨论即可.【详解】(1)由题意得,()13000.8300y x =+-,即10.860y x =+,22000.85(200)y x =+-,即20.8530y x =+(2)当300x >时,由12y y <得:0.8600.8530x x +<+,解得:x 600>,由12y y =得:0.8600.8530x x +=+,解得:600x =,由12y y >得:0.8600.8530x x +>+,解得:600x <.∴当600x =时,选择甲、乙两个商场均可,当300600x <<时,选择乙商场更优惠,当x 600>时,选择甲商场更优惠.【点睛】本题考查了一次函数以及一元一次不等式的应用,根据题意列出正确的甲、乙两家商场的实际费用与购买商品金额x 之间的函数关系式是本题的关键.26.(1)①见解析;②2;(2)不变,12;(3)能,5PQ =或6【解析】【分析】(1)①由平移的特征可以推出三角形全等的条件,证明△IBC ≌△HCE ;②由①得IC =HE ,再证明四边形ICHG 是平行四边形,得IC =GH ,再证明△DFG ≌△CFI ,得DG =IC ,于是得DG =GH =HE =13DE =13AC ,可求出DG 的长;(2)由平行四边形的性质可证明线段相等和角相等,证明△AOP ≌△COQ ,将四边形ABQP 的面积转化为△ABC 的面积,说明四边形ABQP 的面积不变,求出△ABC 的面积即可;(3)按OP =OA 、PA =OA 、OP =AP 分类讨论,分别求出相应的PQ 的长,其中,当PA =OA 时,作OL ⊥AP 于点L ,构造直角三角形,用面积等式列方程求OL 的长,再用勾股定理求出OP 的长即可.【详解】(1)证明:①如图1,∵DCE 是由ABC 平移得到的,∴//AC DE BC CE =,∴ACB DEC ∠=∠,∵//CH BG ,∴GBC HCE∠=∠∴IBC ≌HCE②如图1,由①可知:IBC ≌HCE ,∴IC HE =,∵//AC DE ,//CH BG ,∴CI //GH ,CH //GH ,∴四边形ICHG 是平行四边形,∴IC GH =,∵//AC DE ,∴CDG DCI∠=∠∵CFI DFG ∠=∠,DF CF =,∴DFG ≌CFI △,∴DG IC =,∴DG GH HE ==,∴11233DG DE AC ===.(2)面积不变;如图2:由平移可知//AB CD ,AB CD =,∴四边形ABCD 是平行四边形,∴OA OC =,∵//AD BC ,∴APO CQO ∠=∠,∵AOP COQ ∠=∠,∴APO △≌CQO ,∴APO CQO S S =△△,APO CQO ABC ABQP AOQB AOQB S S S S S S =+=+=四边形四边形四边形△△△,∴四边形ABQP 的面积不变.∵5AB BC ==132OA OC AC ===,∴OB AC ⊥,∴90AOB ∠=︒,在Rt BOC 中222OB OC BC +=∴4OB ==,∴11641222ABC S AC OB ==⨯⨯= ,∴12ABQP S =四边形(3)如图3,OP =OA =3,由(2)得,△AOP ≌△COQ ,∴OQ =OP =3,∴PQ =3+3=6;如图4,PA =OA =3,作OL ⊥AP 于点L ,则∠OLA =∠OLP =90°,由(2)得,四边形ABCD是平行四边形,OA=3,∠AOB=90°,∴OD=OB=4,∠AOD=180°−∠AOB=90°,∵AO⊥BD,OD=OB,∴AO垂直平分BD,∴AD=AB=5,由12AD•OL=12OA•OD=AODS得,1 2×5OL=12×3×4,解得,OL=12 5,∴2222129355 AL OA OL⎛⎫=-=-=⎪⎝⎭,∴96355 PL=-=,∴222212665555OP OL PL⎛⎫⎛⎫=+=+=⎪ ⎪⎝⎭⎝⎭,∴PQ=2OP 125 5如图5,OP=AP,∵AD=AB,AC⊥BD,∴∠DAC=∠BAC,∴∠POA =∠DAC =∠BAC ,∴PQ //AB ,∵AP //BQ ,∴四边形ABQP 是平行四边形,∴PQ =AB =5,综上所述,5PQ 或6或5.【点睛】此题重点考查平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、平移的特征、勾股定理以及根据面积等式列方程求线段的长度等知识与方法,解第(3)题时要进行分类讨论,求出所有符合条件的值,此题难度较大,属于考试压轴题.。
北师大版八年级(下)期末考试数学试题(含答案)
北师大版八年级数学第二学期期末综合素质测试试题第Ⅰ卷 选择题(共30分)一、选择题(本大题共10小题,每小题3分,计30分)1.在绿色食品、回收、节能、节水四个标志中,是由某个基本图形经过旋转得到的是 ( ) A. B. C. D.2.因式(m+2n)(m-2n)是下列哪个多项式分解因式的结果 ( )A.m 2+4n 2B.-m 2+4n 2C.m 2-4n 2D. –m 2-4n 23.如图所示,ΔABC 是等边三角形,且BD=CE ,∠1=15°,则∠2的度数为 ( )A. 15°B. 40°C. 45°D. 60°4.把分式y x y 3+中的x 和y 都扩大2倍,分式的值( )A. 扩大2倍B. 扩大4倍C. 不变D. 缩小2倍5.如图,在ΔAB C 中,AD 是角平分线,DE ⊥AB 于点E ,ΔABC 的面积为10,AB=6,DE=2,则AC 的长是( )A. 6B. 5C. 4D. 3 6.不等式的最大整数解为( )A.0B.4C.6D.77.2020年5月以来,各地根据疫情防控工作需要,对重点人群进行核酸检测.为尽快完成检测任务,某地组织甲、乙两支医疗队,分别开展检测工作,甲队比乙队每小时多检测15人,甲队检测600人比乙队检测500人所用的时间少10%.若设甲队每小时检测x 人,根据题意,可列方程为( )A.B.C. D. 8.在四边形ABCD 中,AB=CD ,要判定此四边形是平行四边形,还需要满足的条件是( )A.∠A+∠C=180°B. ∠B+∠D=180°C. ∠A+∠B=180°D. ∠A+∠D=180°9.若关于x 的方程0552=--+--xm x x 有增根,则m 的值是 ( )A.-2B. 2C. 5D. 3 10.如图,在□ABCD 中,AC ,BD 为对角线,BC=10,BC 边上的高为6,则图中阴影部分的面积为( ) A. 6 B. 15C. 30D. 60第Ⅱ卷 非选择题(共70分)二、填空题(本大题共6小题,每小题3分,计18分)11.若a >b ,要使ac<bc ,则c________0.12.当x= 时,分式112--x x 值为0. 13.若一个正多边形的每一个外角都是72°,则这个多边形是_________边形.14.如图,已知线段DE 是由线段AB 平移而得,AB=DC=5cm ,EC=6cm ,则ΔDCE 的周长是 cm .15.在平行四边形ABCD 中,若AB :BC=2:3,周长为30cm ,则AB=______cm ,BC= ______cm . 16.三角形的三条中位线的长分别为3,4,5,则此三角形的周长为________.三、解答题(本大题共7小题,计52分)17.(本题8分) 因式分解:(1)x 3-25x (2)-2x 2y+16xy-32y .18.(本题5分) 尺规作图:如图,已知∠AOB 及M 、N 两点.请你在∠AOB 内部找一点P ,使它到这个角两边的距离相等,且到点M 、N 的距离也相等(不写做法,保留作图痕迹).19.(本题8分)解方程: (1) 189-=x x (2) xx x --=+-2132120.(本题7分)如图,DE 是△ABC 的中位线,延长DE 到F ,使EF=DE ,连接BF .求证:BF=DC ;21.(本题8分)化简:(1)21442---a a(2)先化简212)121(2-+-÷+-x x x x ,然后在-2,-1,0,1,2五个数中给x 选择一个合适的数代入求值.22.(本题8分)如图,在□ABCD中,AE平分∠BAD,BE平分∠ABC,且AE、BE 相交于CD上的一点E.求证:AE⊥BE.23.(本题8分)新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成200万只医用外科口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天生产口罩的数量是乙厂每天生产口罩数量的2倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问甲、乙两厂每天各生产多少万只口罩?八年级数学参考答案一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10选项 B C D C C C A D D C二、填空题(每小题3分,共18分)11.12.-1 13. 5 14. 1615. 6;9 16. 24三、解答题(本题有7小题,计52分)17.(本题8分)解:(1)=x(x2-25)…………………………………………………………………2分.……………………………………………………4分(2)-2x2y+16xy-32y=-2y(x2-8x+16)………………………………………………………2分=-2y(x-4)2………………………………………………………………4分18、(本题5分)解:.………………………………………………4分如图所示:点P即为所求作的点.………………………………………5分19. (本题8分)解:(1)分式方程两边同乘以得:,…………………2分去括号得:,移项得:,合并同类项得:,…………………………………………………3分经检验:是原分式方程的解,原分式方程的解为;………………………………………………4分 分式方程两边同乘以得:,……………1分 去括号得:, 移项得:, 合并同类项得:,系数化为1得:,…………………………………………………3分 经检验:是原分式方程的增根,原分式方程无解.……………………………………………………4分20.(本题7分)证明:连接DB ,CF ,……………………………………1分∵DE 是△ABC 的中位线,∴CE=BE ,………………………………………………………………3分∵EF=ED ,∴四边形CDBF 是平行四边形,…………………………………………6分∴CD=BF ;…………………………………………………………………7分21.(本题8分)解:(1)原式=)2)(2(2)2)(2(a 4-++--+a a a a ……………………………………2分=)2)(2(a 2-+-a a=2a 1+-……………………………………………………………4分(2)原式=2)1(221--⋅--x x x x ……………………………………………………2分=11-x …………………………………………………………………3分当x=0时,原式=101-=-1…………………………………………………4分 (学生选值只要不是1,2即可)22.(本题8分)证明:四边形ABCD 是平行四边形,, ,…………………………………………………2分平分,BE 平分,,,………………………………………5分,,即.………………………………………………………………8分23.(本题8分)解:乙厂每天生产口罩x 万只,则甲厂每天生产口罩2x 万只,根据题意得:……………………………………………………………1分526060=-x x ,………………………………………………………………4分解得:x=6,………………………………………………………………………6分经检验x=6是原方程的解,且符合题意,∴2x=12答:甲厂每天生产口罩12万只,乙厂每天生产口罩6万只.……………8分。
北师大八年级(下)期末数学试卷(含答案) (1)
八年级(下)第二学期数学期末试题一、选择题(本大题共15小题,每小题3分,共45分)1.若a >b ,则下列各式中一定成立的是( )A .a +2<b +2B .a 一2<b 一2C .a 2>b 2D .-2a >-2b 2.下面式子从左边到右边豹变形是因式分解的是( )A .x 2-x -2=x (x 一1)-2B .x 2—4x +4=(x 一2)2C .(x +1)(x —1)=x 2 - 1D .x -1=x (1-1x) 3下列所培图形中·既是中心对称图形又是轴对称图形的是( )A B C D4.多项式x 2-1与多项式x 2一2x +1的公因式是( )A .x 一1B .x +1C .x 2一1D .(x -1)2 5己知一个多边形的内角和是360°,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形6. 下列多项式能用完全平方公式分解因式的有 ( )A .m 2-mn +n 2B .x 2+4x – 4 C. x 2-4x +4 D. 4x 2-4x +47.如图,将一个含30°角的直角三角板ABC 绕点A 旋转,得点B ,A ,C ′,在同一条直线上,则旋转角∠BAB ′的度数是( )A .60°B .90°C .120°D .150°8.运用分式的性质,下列计算正确的是( )A .x 6x 2 =x 3 B .-x +y x -y =-1 C .a +x b +x =a b D .x +y x +y=0 9.如图,若平行四边形ABCD 的周长为40cm ,BC =23AB ,则BC =( ) A .16crn B .14cm C .12cm D .8cm10.若分式方程x -3x -1=m x -1有增根,则m 等于( ) A .-3 B .-2 C .3 D .2CD11.如图,△ABC 中,AB =AC =15,AD 平分∠BAC ,点E 为AC 的中点,连接DE ,若△CDE 的周长为24,则BC 的长为( )A .18B .14C .12D .612.如图,己知直线y 1=x +m 与y 2=kx —1相交于点P (一1,2),则关于x 的不等式x +m <kx —1的解集在数轴上表示正确的是( )A .B .C .D .13.如图,在菱形ABCD 中,对角线AC 、BD 相较于点O ,BD =8,BC =5,AE ⊥BC 于点E ,则AE 的长为( )A .5B .125C .245D .18514.定义一种新运算:当a >b 时,a ○+b =ab +b ;当a <b 时,a ○+b =ab -b .若3○+(x +2)>0,则x 的取值范围是( )A .-1<x <1或x <-2B .x <-2或1<x <2C .-2<x <1或x >1D .x <-2或x >2D B CAxy2-1P OA DB E15.在平面直角坐标系xOy 中,有一个等腰直角三角形AOB ,∠OAB =90°,直角边AO 在x 轴上,且AO =1.将Rt △AOB 绕原点O 顺时针旋转90°得到等腰直角三角形A 1OB 1,且A 1O =2AO ,再将Rt △A 1OB 1绕原点O 顺时针旋转90°得到等腰三角形A 2OB 2,且A 2O =2A 1O ……,依此规律,得到等腰直角三角形A 2017OB 2017.则点B 2017的坐标( )A .(22017,-22017)B .(22016,-22016)C .(22017,22017)D .(22016,22016)二、填空题(本大题共5小题,每小题4分,共20分)16.若分式1x -1有意义,则x 的取值范围是_______________. 17.若m =2,则m 2-4m +4的值是_________________.18.如图,已知∠AOB =30°,P 是∠AOB 平分线上一点,CP //OB ,交OA 于点C ,PD ⊥OB ,垂足为点D ,且PC =4,则PD 等于_____________.19.不等式组⎩⎨⎧x >4x >m(m ≠4)的解集是x>4,那么m 的取值范围是_______________. 20.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 方向平移2个单位后得到△DEF ,连接DC ,则DC 的长为________________.21.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG ;②BG =CG ;③AG //CF ;④S △EFC =125.其中正确结论的是____________(只填序号).22.(本小题满分7分)(1)分解因式:ax 2-ay 2;(2)解不等式组⎩⎨⎧x -1<2 ①2x +3≥x -1 ②,并把不等式组的解集在数轴上表出来.23(本小题满分7分)(1)如图,在〉ABCD 中,点E ,F 分别在AB ,CD 上,AE =CF .求证:DE =BF .(2)先化简,再求值:(1a +2-1a -2)÷1a -2,其中a =624.(本小题满分8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;(3)直接写出点B2、C2的坐标.25.(本小题满分8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?探索发现:11×2=1-12;12×3=12-13;13×4=13-14…… 根据你发现的规律,回答下列问题:(1) 14×5=___________,1n ×(n +1)=___________; (2)利用你发现的规律计算:11×2+12×3+13×4+……+1n ×(n +1)(3)灵活利用规律解方程:1x (x +2)+1(x +2)(x +4)+……+1(x +98)(x +100)=1x +100.27.(本小最满分9分)如图1,已知四边形ABCD 是正方形,对角线AC 、BD 相交于点E ,以点E 为顶点作正方形EFGH .(1)如图1,点A 、D 分别在EH 和EF 上,连接BH 、AF ,直接写出BH 和AF 的数量关系:(2)将正方形EFGH 绕点E 顺时针方向旋转①如图2,判断BH 和 AF 的数量关系,并说明理由;②如果四边形ABDH 是平行四边形,请在备用图中不劝图形;如果四方形ABCD 的边长为\R (,2),求正方形EFGH 的边长.如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(一6,8).矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.(1)直接写出线段BO的长:(2)求点D的坐标;(3)若点N是平面内任一点,在x轴上是否存在点M,使咀M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标:若不存在,请说明理由.。
新北师大版八年级数学下册期末测试卷及答案【完美版】
新北师大版八年级数学下册期末测试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.若 45+a =5b (b 为整数),则a 的值可以是( )A .15B .27C .24D .206.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .5B .5C .5D .67.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°8.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.9.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P 3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个10.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.21a 8a=__________.3.使x 2-有意义的x 的取值范围是________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= _________度。
2024—2025学年最新北师大新版八年级下学期数学期末考试试卷(含答卷和参考答案)
2024—2025学年最新北师大新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、二十四节气是中国劳动人民独创的文化遗产,能反映季节的变化,指导农事活动.下面四副图片分别代表“芒种”、“白露”、“立夏”、“大雪”,其中是中心对称图形的是()A.B.C.D.2、若a>b﹣1,则下列结论一定正确的是()A.a+1<b B.a﹣1<b C.a>b D.a+1>b3、若点P(1﹣2a,a)在第二象限,那么a的取值范围是()A.B.C.D.4、将分式中的x,y的值同时扩大2倍,则分式的值()A.扩大2倍B.缩小到原来的C.保持不变D.无法确定5、下列命题中,假命题是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行且另一组对边相等的四边形是平行四边形C.两组对角相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形6、如图,在Rt△ABC中,∠ACB=90°,DE垂直平分AB交BC于点D,若△ACD的周长为50cm,则AC+BC=()A.25cm B.45cm C.50cm D.55cm7、甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x个零件,可列方程为()A.﹣=30B.﹣=30C.﹣=D.﹣=8、如图,在▱ABCD 中,点O 是BD 的中点,EF 过点O ,下列结论:①AB ∥DC ;②EO =ED ;③∠A =∠C ;④S 四边形ABOE =S 四边形CDOF ,其中正确结论的个数为( )A .1个B .2个C .3个D .4个9、如图,在Rt △ABC 中,∠C =90°,∠B =30°,BC =6,AD 平分∠CAB 交BC 于点D ,点E 为边AB 上一点,则线段DE 长度的最小值为( )A .B .C .2D .310、关于x 的不等式组整数解仅有4个,则m 的取值范围是( )A .﹣5≤m <﹣4B .﹣5<m ≤﹣4C .﹣4≤m <﹣3D .﹣4<m ≤﹣3二、填空题(每小题3分,满分18分)11、分解因式:3a 3﹣12a= .12、如果一个多边形的每一个外角都是40°,那么这个多边形的边数为 .13、如图,在△ABC 中,∠DCE =40°,AE =AC ,BC=BD ,则∠ACB 的度数为 .14、使得分式值为零的x 的值是 .15、如图,五边形ABCDE 是正五边形.若l 1∥l 2,则∠1﹣∠2= °.16、若关于x 的方程﹣=1无解,则k 的值为 .2024—2025学年最新北师大新版八年级下学期数学期末考试试卷 第7题图 第8题图 第9题图考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解不等式组:.18、先化简,再求值:(+1)÷,其中x=﹣3.19、已知不等式组的解集是﹣1<x<1,求(a+b)2024的值20、已知方程组的解为正数.(1)求a的取值范围;(2)化简:.21、如图,在△ABC中,CD平分∠ACB交AB于点D,E为AC上一点,且DE∥BC.(1)求证:DE=CE;(2)若∠A=90°,AD=4,BC=12,求△BCD的面积.22、某商场购进A,B两种商品,已知购进3件A商品比购进4件B商品费用多60元;购进5件A商品和2件B商品总费用为620元.(1)求A,B两种商品每件进价各为多少元?(2)该商场计划购进A,B两种商品共60件,且购进B商品的件数不少于A 商品件数的2倍.若A商品按每件150元销售,B商品按每件80元销售,为满足销售完A,B两种商品后获得的总利润不低于1770元,则购进A商品的件数最多为多少?23、如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC.(1)求证:四边形ABCD为平行四边形;(2)点E为BC边的中点,连接AE,过E作EF⊥AE交边CD于点F,连接AF.①求证:AF=AB+CF;②若AF⊥CD,CF=3,DF=4,求AE与CE的值.24、如图,在△ABC中,∠ACB=90°,AB=5,AC<BC.以AC为边向形外作等边△ACD,以BC为边向形外作等边△BCE,以AB为边向上作等边△ABF,连接DF,EF.(1)记△ACD的面积为S1,△BCE的面积为S2,求S1+S2的值(2)求证:四边形CDFE是平行四边形.(3)连接CF,若CF⊥EF,求四边形CDFE的面积.25、如图,在平面直角坐标系中,直线y=﹣x+8与x轴交于点A,与y轴交于点B,直线y=kx+b经过点B,且与x轴交于点C(﹣6,0).(1)求直线BC的表达式;(2)点E为射线BC上一点,过点E作EF∥x轴交AB于点F,且EF=7,设点E的横坐标为m.①求m的值;②在y轴上取点M,在直线BC上取点N,在平面内取点Q,使得点E,M,N,Q构成的四边形是以EN为对角线的正方形,求出此正方形的面积.2024—2025学年最新北师大新版八年级下学期数学期末考试参考答案考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、3a(a+2)(a﹣2)12、9 13、100°14、2 15、7216、2或﹣1三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣<x≤4.18、,19、120、(1)﹣1<a<3;(2)3﹣a.21、(1)证明略(2)24.22、(1)A商品的进价是100元/件,B商品的进价是60元/件;(2)购进A商品的件数最多为20件.23、(1)证明略(2)①证明略②AE的长是5,CE的长是.24、(1);(2)证明略(3)四边形CDFE的面积=S=a2=.△ADC25、(1)直线BC的表达式:y=x+8(2)①m=﹣3②正方形的面积为:或450。
新北师大版八年级下数学期末考试试题(有答案解析]-精选.pdf
新北师大版八年级下数学期末考试试卷25、(本小题10分)如图1,图2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A ,B 重合),另一条直角边与∠CBM 的平分线BF 相交于点F .(1)如图1,当点E 在AB 边的中点位置时:①通过测量DE ,EF 的长度,猜想DE 与EF 满足的数量关系是;②连接点E 与AD 边的中点N ,猜想NE 与BF 满足的数量关系是;③请说明你的上述两个猜想的正确性。
(2)如图2,当点E 在AB 边上的任意位置时,请你在AD 边上找到一点N ,使得NE=BF ,进而猜想此时DE 与EF 有怎样的数量关系。
26、(本小题10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系.根据图象回答以下问题:①甲、乙两地之间的距离为km ;②图中点B 的实际意义_______________;③求慢车和快车的速度;④求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;ABCD E M图1NFFABCDE M图2A B CDOy/km90012 x/h4参考答案1、选择题1、A ;2、B ;3、C ;4、C ;5、C ;6、A ;7、D ;8、B ;9、B ;10、D .二、填空题11、2;12、20o;13、12 ;14、18;15、-3;16、(9,6),(-1,6),(7,0).19、解:(1)以B 为圆心,适当长为半径画弧,交AB BC ,于M ,N 两点.分别以M N ,为圆心,大于12MN 长为半径画弧.两弧相交于点P .过B P ,作射线BF 交AC 于F .(2)证明:AD BC ∥,DACC ∠∠.又BF 平分ABC ∠,∴∠ABC =2∠FBC ,∵2ABCADG ∠∠,DBFC ∠∠,又ADBC ,ADE CBF △≌△,DEBF .21、证法一:∵四边形ABCD 是平行四边形,∴AD =BC ,AB =CD ,∠A =∠C ,∵AM =CN ,∴△ABM ≌△CDN (SAS )∴BM =DN .∵AD -AM =BC -CN ,即MD =NB ,∴四边形MBND 是平行四边形(两组对边分别相等的四边形是平行四边形)证法二:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∵AM =CN ,∴AD -AM =BC -CN ,∴MD =NB ,∴四边形MBND 是平行四边形,22、解:(1)△BPD 与△CQP 是全等,理由是:当t =1秒时BP =CQ =3,CP =8-3=5,∵D 为AB 中点,∴BD =12AC =5=CP ,∵AB =AC ,∴∠B =∠C ,在△BDP 和△CPQ 中BD CP B C BPCQ∴△BDP ≌△CPQ (SAS ).(2)解:假设存在时间t 秒,使△BDP 和△CPQ 全等,则BP =2t ,BD =5,CP =8-2t ,CQ =2.5t ,∵△BDP 和△CPQ 全等,∠B =∠C ,∴2825 2.5ttt 或2 2.5582ttt(此方程组无解),解得:t =2,∴存在时刻t =2秒时,△BDP 和△CPQ 全等,此时BP =4,BD =5,CP =8-4=4=BP ,CQ =5=BD ,在△BDP和△CQP中B DC QB CBP CP,∴△BDP≌△CQP(SAS).23、解:(1)依题意得:1(2100800200)1100y x x,2(24001100100)20000120020000y x x,(2)设该月生产甲种塑料m吨,则乙种塑料(700-m)吨,总利润为W元,依题意得:W=1100m+1200(700-m)-20000=-100m+820000.∵400700400mm-解得:300≤m≤400.∵-100<0,∴W随着m的增大而减小,∴当m=300时,W最大=790000(元).此时,700-m=400(吨).因此,生产甲、乙塑料分别为300吨和400吨时总利润最大,最大利润为790000元.24、25、(1)①DE=EF ②NE=B③解:∵四边形ABCD AD=AB,∠DAE=∠CBM=900∵点N 、E 分别为AD 、ABDN =12AD ,AE =12AB ∴DN =EB在Rt ANE 中,∠ANE =∠AEN =450DNE =1350∵BF 平分∠CBM FBM =45EBF =135DNE =∠EBF∵∠FBM +∠DEA =900∠ADE +∠DEA =90∴∠FBM =∠ADE∴△DNE ≌△EBFDE =EFNE =BF(2)在AD 上截取AN =AE ,连结NE ,证法同上类似26、(1)3 (2)1,8 ①900km ②当快车或慢车出发4小时两车相遇③慢车速度为)/(7512900h km ,快车速度为)/(150129004900h km ④y=225x-900(4≤x ≤6)。
八年级下学期期末考试数学试卷带答案(北师大版)
八年级下学期期末考试数学试卷带答案(北师大版)(满分:120分;考试时间:120分钟)一.单选题。
(每小题4分,共40分) 1.下列图形中,其中是中心对称的是( )A. B. C. D.2.下列因式分解正确的是( )A.x 2+y 2=(x+y )2B.5a 2-20ab=m (5m -20n )C.﹣a 2+b 2=(b -a )(a+b )D.a 3-a=a (a 2-1) 3.若x >y ,下列不等式一定成立的是( )A.2x >y+2B.x -2023>y -2023C.﹣x >﹣yD.|x |>|y |4.如图,将平行四边形ABCD 沿对角线AC 折叠,使点B 落在B’处,若∠1=∠2=44°,则∠B 为( )A.124°B.114°C.104°D.66°(第4题图) (第5题图) (第7题图)5.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP ,CP 分别平分∠EDC ,∠BCD ,则∠P=( )A.45°B.60°C.90°D.120° 6.下列多项式中,不能用公式法因式分解的是( )A.﹣x 2+16y 2B.81(a 2-2ab+b 2)-(a+b )2C.m 2-13mn+19n 2 D.﹣a 2-b 2(第9题图)(第10题图)10.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,BD=2AD,E、F、G分别是OC,OD,AB的中点,下列结论:①BE⊥AC;②四边形BEFG是平行四边形;③△EFG≌△GBE,其中正确的个数是()A.0B.1C.2D.3二.填空题。
(每小题4分,共24分)11.若xy=2,x-y=1,则代数式2x2y-2xy2= .12.如图,在△ABC中,AD为△ABC的平分线,DE⊥AB于点E,DF⊥AC于点F,若△ABC的面积是10cm2,AB=6cm,AC=4cm,则DF= cm.(第12题图)(第14题图)(第16题图)13.正多边形的一个内角等于150°,则这个正多边形的边数是.14.如图,在平行四边形ABCD 中,∠B=60°,AE ⊥BC ,AF ⊥CD ,垂足分别为E 、F ,若AB=6,CF=2,则CE= .15.按图中程序计算:规定输入一个值x 到结果是否≥17为一次程序操作,如果程序操作进行了两次才停止,则x 的取值范围是 .16.如图,等边△ABC 内有一点O ,OA=3,OB=4,OC=5,以点B 为旋转中心将OB 逆时针旋转60°得到线段O’B ,连接O’A ,下列结论:①△BO’A 可以看成是△BOC 绕点B 逆时针旋转60°得到的;②点O 到点O’的距离为5;③∠AOB=150°;④S 四边形AOBO’=6+4√2;⑤S △AOC +S △AOB =6+94√3.其中正确的结论有 .(只填序号) 三.解答题。
最新北师大版八年级下册数学期末考试复习试卷以及答案(4套题) - 副本
八年级下册数学期末测试试卷一、选择题。
(共12道选择题,每道选择题只有一个正确答案)1、下列图形既是中心对称又是轴对称的是( )3、若分式3x 3x -的值为0,则x 的值是( ) A 、0B 、﹣3C 、3D 、±311、如图,在△ABC 中,AB=8,AC=6,∠BAC=30°,将△ABC 绕点A 逆时针旋转60°得到△11C AB ,连接1BC ,则1BC 的长为( )A 、6B 、8C 、10D 、12二、填空题。
(共6道填空题)13、因式分解:22b ab 2a -= 。
14、若﹣3a >﹣3b ,则a b (大小比较)。
15、化简b a b a b a -- = 。
16、如图,在平行四边形ABCD 中,O 是对角线的交点,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M ,如果△CDM 的周长为8,则平行四边形ABCD 的周长为 。
17、若一元二次方程mx 2-2x+1=0有两个不相等的实数根,则m 的取值是 。
18、如图,四边形ACDF 是正方形,∠CEA 和∠ABF 都是直角且点E 、A 、B 三点共线,AB=4,则阴影部分的面积是 。
三、解答题。
23、八年级下册数学期末测试试卷一、选择题。
(共12道选择题,每道选择题只有一个正确答案)8、A、B两点在一次函数图像上的位置如图所示,两点的坐标分别是A(x+a,y)、B(x,y+b),下列结论正确的是()A、a>0B、ab<0C、ab>0D、b<0A、2B、3C、5D、6.5二、填空题。
(共6道填空题)13、方程4x2-4x+1=0的解为。
16、设a、b是方程x2+x-2020=0的解。
则(b-1)(a-1)等于。
17、在平面直角坐标中,点O是原点,点A(﹣1,﹣1)、B(1,3)、C(﹣1,1),如果△COD≌△AOB,则点D坐标是。
18、如图,正方形ABCD的边长为3,E、F分别在AD、CD上,将正方形分贝沿BE、BF折叠,点A的对应点M恰好落在BF上,点C的对应点N恰好落在BE上,则图形阴影部分的面积是。
新北师大版八年级数学下册期末考试及答案【完美版】
新北师大版八年级数学下册期末考试及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .1522.将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).A .22(2)3y x =++;B .22(2)3y x =-+;C .22(2)3y x =--;D .22(2)3y x =+-.3.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.已知x 是整数,当30x -取最小值时,x 的值是( )A .5B .6C .7D .8 5.下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5的负整数解集有有限个C .不等式-2x <8的解集是x <-4D .-40是不等式2x <-8的一个解6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab = 7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 8.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.9.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°二、填空题(本大题共6小题,每小题3分,共18分),4.则a的取值范围是________.1.三角形三边长分别为3,2a12.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.3.4的平方根是.4.如图,在△ABC中,AC=BC=2,∠C=900,AD是△ABC的角平分线,DE⊥AB,垂足为E,AD的垂直平分线交AB于点F,则DF的长为 _________.5.如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是AB ,AC 的中点,点F 是AD 的中点.若AB=8,则EF=________.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2410x x -+= (2)()()2411x x x -=-2.先化简,再求值:233()111a a a a a -+÷--+,其中2.3.解不等式组3(2)2513212x x x x +≥+⎧⎪⎨+-<⎪⎩,并把不等式组的解集在数轴上表示出来.4.如图,在四边形ABCD中,AB DC,AB AD=,对角线AC,BD交于点O,AC平分BAD⊥交AB的延长线于点E,连接OE.∠,过点C作CE AB(1)求证:四边形ABCD是菱形;(2)若5BD=,求OE的长.AB=,25.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.6.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、A5、C6、C7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1a 4<<2、(3,7)或(3,-3)3、±2.4、4-5、26、20三、解答题(本大题共6小题,共72分)1、(1)1222x x ==2)1241,3x x ==.2、3、–1≤x <34、(1)略;(2)2.5、(1)略;(2)MB =MC .理由略;(3)MB =MC 还成立,略.6、(1)设甲种书柜单价为180元,乙种书柜的单价为240元.(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.。
最新北师大版 八年级(下)期末数学试卷(含答案) (1)
八年级(下)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)下列命题中是真命题的是()①4的平方根是2②有两边和一角相等的两个三角形全等③连结任意四边形各边中点的四边形是平行四边形④所有的直角都相等A.0个B.1个C.2个D.3个2.(3分)下列各组数中,能构成直角三角形的是()A.1,1,B.4,5,6 C.6,8,11 D.5,12,153.(3分)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y4.(3分)若x2+mxy+y2是一个完全平方式,则m=()A.2 B.1 C.±1 D.±25.(3分)已知不等式组的解集是x≥2,则a的取值范围是()A.a<2 B.a=2 C.a>2 D.a≤26.(3分)如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F.若DF=3,则AC的长为()A. B.3 C.6 D.97.(3分)如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接C D.若AB=4cm.则△BCD的面积为()A.4B.2C.3D.28.(3分)如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以PQ为底的等腰三角形时,运动的时间是()A.2.5秒B.3秒C.3.5秒D.4秒二、填空题(共8小题,每小题3分,满分24分)9.(3分)不等式的正整数解是.10.(3分)已知x+y=﹣1,xy=3,则x2y+xy2=.11.(3分)关于x的不等式组的解集为﹣3<x<3,则a=,b=.12.(3分)已知关于x的方程的解是负数,则n的取值范围为.13.(3分)化简分式:=.14.(3分)如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2=度.15.(3分)如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于.16.(3分)如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)解方程:.18.(6分)因式分解:x2y﹣2xy2+y3.19.(6分)解不等式组四、(本大题共3小题,每小题8分,共24分)20.(8分)化简:()并解答:(1)当x=1+时,求原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?21.(8分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.22.(8分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=B D.求证:(1)BC=AD;(2)△OAB是等腰三角形.五、(本大题共2小题,每小题9分,共18分23.(9分)阅读例题,回答问题:例题:已知二次三项式:x2﹣4x+m有一个因式是x+3,求另一个因式以及m的值.解:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n.∴∴∴另一个因式为x﹣7,m=21.仿照以上方法解答下面的问题:已知二次三项式2x2+3x+k有一个因式是2x﹣5,求另一个因式以及k的值.24.(9分)已知如图,点E为▱ABCD内任意一点,若▱ABCD的面积为6,连结点E与▱ABCD 的四个顶点,求图中阴影部分的面积.六、(本大题共1小题,12分)25.(12分)某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?2017-2018学年江西省吉安市永新县八年级(下)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)下列命题中是真命题的是()①4的平方根是2②有两边和一角相等的两个三角形全等③连结任意四边形各边中点的四边形是平行四边形④所有的直角都相等A.0个B.1个C.2个D.3个【分析】根据平方根的概念、全等三角形的判定定理、中点四边形的性质判断即可.【解答】解:4的平方根是±2,①是假命题;有两边及其夹角相等的两个三角形全等,②是假命题;连结任意四边形各边中点的四边形是平行四边形,③是真命题;所有的直角都相等,④是真命题;故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.(3分)下列各组数中,能构成直角三角形的是()A.1,1,B.4,5,6 C.6,8,11 D.5,12,15【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+12=()2,能构成直角三角形,故符合题意;B、52+42≠62,不能构成直角三角形,故不符合题意;C、62+82≠112,不能构成直角三角形,故不符合题意;D、122+52≠152,不能构成直角三角形,故不符合题意.故选:A.【点评】本题考查勾股定理的逆定理的应用,正确应用勾股定理的逆定理是解题的关键.3.(3分)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.【点评】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.4.(3分)若x2+mxy+y2是一个完全平方式,则m=()A.2 B.1 C.±1 D.±2【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值.【解答】解:∵x2+mxy+y2是一个完全平方式,∴mxy=±2•x•y,解得m=±2.故选:D.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.5.(3分)已知不等式组的解集是x≥2,则a的取值范围是()A.a<2 B.a=2 C.a>2 D.a≤2【分析】解不等式①可得出x≥,结合不等式组的解集为x≥2即可得出a=2,此题得解.【解答】解:,∵解不等式①得:x≥,又∵不等式组的解集是x≥2,∴a=2.故选:B.【点评】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.6.(3分)如图,在△ABC中,D、E分别为AC、BC的中点,AF平分∠CAB,交DE于点F.若DF=3,则AC的长为()A.B.3 C.6 D.9【分析】首先根据条件D、E分别是AC、BC的中点可得DE∥AB,再求出∠2=∠3,根据角平分线的定义推知∠1=∠3,则∠1=∠2,所以由等角对等边可得到DA=DF=A C.【解答】解:如图,∵D、E分别为AC、BC的中点,∴DE∥AB,∴∠2=∠3,又∵AF平分∠CAB,∠1=∠3,∴∠1=∠2,∴AD=DF=3,∴AC=2AD=6.故选:C.【点评】本题考查了三角形中位线定理,等腰三角形的判定与性质.三角形中位线的定理是:三角形的中位线平行于第三边且等于第三边的一半.7.(3分)如图,将含30°角的直角三角尺ABC绕点B顺时针旋转150°后得到△EBD,连接C D.若AB=4cm.则△BCD的面积为()A.4 B.2C.3 D.2【分析】过D点作BE的垂线,垂足为F,由∠ABC=30°及旋转角∠ABE=150°可知∠CBE为平角,在Rt△ABC中,AB=4,∠ABC=30°,则AC=2,BC=2,由旋转的性质可知BD=BC=2,DE=AC=2,BE=AB=4,由面积法:DF×BE=BD×DE求DF,则S△BCD=×BC×DF.【解答】解:过D点作BE的垂线,垂足为F,∵∠ABC=30°,∠ABE=150°∴∠CBE=∠ABC+∠ABE=180°,∵在Rt△ABC中,AB=4,∠ABC=30°,∴AC=2,BC=2,由旋转的性质可知BD=BC=2,DE=AC=2,BE=AB=4,由DF×BE=BD×DE,即DF×4=2×2,解得DF=,S△BCD=×BC×DF=×2×=3cm2.故选:C.【点评】本题考查了旋转的性质,解直角三角形的方法,解答本题的关键是围绕求△BCD 的面积确定底和高的值,有一定难度.8.(3分)如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以PQ为底的等腰三角形时,运动的时间是()A.2.5秒B.3秒C.3.5秒D.4秒【分析】设运动的时间为x,则AP=20﹣3x,当APQ是等腰三角形时,AP=AQ,则20﹣3x=2x,解得x即可.【解答】解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4.故选:D.【点评】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度,属于中档题.二、填空题(共8小题,每小题3分,满分24分)9.(3分)不等式的正整数解是1,2.【分析】首先确定不等式组的解集,然后再找出不等式的特殊解.【解答】解:解不等式得:x<3,故不等式的正整数解为:1,2.故答案为:1,2.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键,解不等式应根据不等式的基本性质.10.(3分)已知x+y=﹣1,xy=3,则x2y+xy2=﹣3.【分析】直接利用提取公因式法分解因式,进而把已知数据代入求出答案.【解答】解:∵x+y=﹣1,xy=3,∴x2y+xy2=xy(x+y)=3×(﹣1)=﹣3.故答案为:﹣3.【点评】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.11.(3分)关于x的不等式组的解集为﹣3<x<3,则a=﹣3,b=3.【分析】利用一元一次不等式组的解法解出不等式组,根据题意列出方程组,解方程组即可.【解答】解:,∵解不等式①得:x>2a+b,解不等式②得:x>2b+a,又∵不等式组的解集为﹣3<x<3,∴,解得,,故答案为:﹣3;3.【点评】本题考查的是一元一次不等式组、二元一次方程组的解法,根据题意列出二元一次方程组是解题的关键.12.(3分)已知关于x 的方程的解是负数,则n 的取值范围为 n <2且n ≠ .【分析】求出分式方程的解x =n ﹣2,得出n ﹣2<0,求出n 的范围,根据分式方程得出n ﹣2≠﹣,求出n ,即可得出答案.【解答】解:,解方程得:x =n ﹣2,∵关于x 的方程的解是负数, ∴n ﹣2<0,解得:n <2,又∵原方程有意义的条件为:x ≠﹣,∴n ﹣2≠﹣,即n ≠.故答案为:n <2且n ≠.【点评】本题考查了分式方程的解和解一元一次不等式,关键是得出n ﹣2<0和n ﹣2≠﹣,注意题目中的隐含条件2x +1≠0,不要忽略.13.(3分)化简分式: = ﹣ . 【分析】将分子变形为﹣(x ﹣y ),再约去分子、分母的公因式x ﹣y 即可得.【解答】解: ==﹣,故答案为:﹣.【点评】本题主要考查分式的约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.14.(3分)如图,四边形ABCD 中,若去掉一个60°的角得到一个五边形,则∠1+∠2= 240 度.【分析】利用四边形的内角和得到∠B+∠C+∠D的度数,进而让五边形的内角和减去∠B+∠C+∠D的度数即为所求的度数.【解答】解:∵四边形的内角和为(4﹣2)×180°=360°,∴∠B+∠C+∠D=360°﹣60°=300°,∵五边形的内角和为(5﹣2)×180°=540°,∴∠1+∠2=540°﹣300°=240°,故答案为:240.【点评】考查多边形的内角和知识;求得∠B+∠C+∠D的度数是解决本题的突破点.15.(3分)如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于8.【分析】根据平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED 是平行四边形,再根据平行四边形的面积公式即可求解.【解答】解:∵将△ABC沿CB向右平移得到△DEF,平移距离为2,∴AD∥BE,AD=BE=2,∴四边形ABED是平行四边形,∴四边形ABED的面积=BE×AC=2×4=8.故答案为:8.【点评】本题主要考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.16.(3分)如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为32.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=a,∴A2B1=a,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2=16a,以此类推:A6B6=32B1A2=32a.故答案是:32a.【点评】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)解方程:.【分析】观察可得最简公分母是(x﹣2)(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同乘以(x﹣2)(x+3),得6(x+3)=x(x﹣2)﹣(x﹣2)(x+3),6x+18=x2﹣2x﹣x2﹣x+6,化简得,9x=﹣12,解得x=.经检验,x=是原方程的解.【点评】本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定要验根.18.(6分)因式分解:x2y﹣2xy2+y3.【分析】先提取公因式y,再根据完全平方公式进行二次分解即可求得答案.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.19.(6分)解不等式组【分析】运用一元一次不等式的解法,注意去分母,移项,系数化为1几个步骤,分别解两个不等式,最后求交集即可.【解答】解:,解不等式①得:x≥1,解不等式②得:x<6.5,所以不等式组的解集为:1≤x<6.5.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.四、(本大题共3小题,每小题8分,共24分)20.(8分)化简:()并解答:(1)当x=1+时,求原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?【分析】将原式进行化简可得出原式=.(1)代入x=1+,即可求出原式的值;(2)令原式等于﹣1,可求出x=0,由原式中除数不能为零,可得出原代数式的值不能等于﹣1.【解答】解:原式=(﹣)•,=(﹣)•,=•,=.(1)当x=1+时,原式==+1.(2)不能,理由如下:解=﹣1,得:x=0,∵当x=0时,原式中除数=0,∴原代数式的值不能等于﹣1.【点评】本题考查了分式的化简求值,将原式化简为是解题的关键.21.(8分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.【分析】(1)分别找出A、B、C三点关于x轴的对称点,再顺次连接,然后根据图形写出A点坐标;(2)将△A1B1C1中的各点A1、B1、C1绕原点O旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.【解答】解:(1)如图所示:点A1的坐标(2,﹣4);(2)如图所示,点A2的坐标(﹣2,4).【点评】本题考查图形的轴对称变换及旋转变换.解答此类题目的关键是掌握旋转的特点,然后根据题意找到各点的对应点,然后顺次连接即可.22.(8分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=B D.求证:(1)BC=AD;(2)△OAB是等腰三角形.【分析】(1)根据AC⊥BC,BD⊥AD,得出△ABC与△BAD是直角三角形,再根据AC=BD,AB=BA,得出Rt△ABC≌Rt△BAD,即可证出BC=AD,(2)根据Rt△ABC≌Rt△BAD,得出∠CAB=∠DBA,从而证出OA=OB,△OAB是等腰三角形.【解答】证明:(1)∵AC⊥BC,BD⊥AD,∴∠ADB=∠ACB=90°,在Rt△ABC和Rt△BAD中,∵,∴Rt△ABC≌Rt△BAD(HL),∴BC=AD,(2)∵Rt△ABC≌Rt△BAD,∴∠CAB=∠DBA,∴OA=OB,∴△OAB是等腰三角形【点评】本题考查了全等三角形的判定及性质;用到的知识点是全等三角形的判定及性质、等腰三角形的判定等,全等三角形的判定是重点,本题是道基础题,是对全等三角形的判定的训练.五、(本大题共2小题,每小题9分,共18分23.(9分)阅读例题,回答问题:例题:已知二次三项式:x2﹣4x+m有一个因式是x+3,求另一个因式以及m的值.解:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n.∴∴∴另一个因式为x﹣7,m=21.仿照以上方法解答下面的问题:已知二次三项式2x2+3x+k有一个因式是2x﹣5,求另一个因式以及k的值.【分析】设另一个因式为(x+n),得2x2+5x﹣k=(2x﹣3)(x+n)=2x2+(2n﹣3)x﹣3n,可知2n﹣3=5,k=3n,继而求出n和k的值及另一个因式.【解答】解:设另一个因式为(x+n),得2x2+3x﹣k=(2x﹣5)(x+n)=2x2+(2n﹣5)x ﹣5n,则解得:n=4,k=20,故另一个因式为(x+4),k的值为20.【点评】本题考查因式分解的意义,解题关键是对题中所给解题思路的理解,同时要掌握因式分解.24.(9分)已知如图,点E为▱ABCD内任意一点,若▱ABCD的面积为6,连结点E与▱ABCD 的四个顶点,求图中阴影部分的面积.【分析】过E作MN⊥BC,交BC于M,交AD于N,△EBC的面积+△EAD的面积=AD•EN+BC•EM=BC•MN=平行四边形ABCD的面积,即可得出阴影部分的面积.【解答】解:过E作MN⊥BC,交BC于M,交AD于N,如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴EN⊥AD,∵S△AED=AD•EN,S△BCE=BC•EM,∴S△ADE+S△BCE=AD•EN+C•EM=BC•MN=行四边形ABCD的面积=×6=3,∴阴影部分的面积=3.【点评】此题主要考查了平行四边形的性质、阴影部分面积的计算;熟练掌握平行四边形的性质,关键是掌握平行四边形的面积公式=底×高.六、(本大题共1小题,12分)25.(12分)某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?【分析】(1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得等量关系:①买1块电子白板的钱=买3台笔记本电脑的钱+3000元,②购买4块电子白板的费用+5台笔记本电脑的费用=80000元,由等量关系可得方程组,解方程组可得答案;(2)设购买电子白板a块,则购买笔记本电脑(396﹣a)台,由题意得不等关系:①购买笔记本电脑的台数≤购买电子白板数量的3倍;②电子白板和笔记本电脑总费用≤2700000元,根据不等关系可得不等式组,解不等式组,求出整数解即可;(3)由于电子白板贵,故少买电子白板,多买电脑,根据(2)中的方案确定买的电脑数与电子白板数,再算出总费用.【解答】解:(1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得:,解得:.答:购买1块电子白板需要15000元,一台笔记本电脑需要4000元.(2)设购买电子白板a块,则购买笔记本电脑(396﹣a)台,由题意得:,解得:99≤a≤101,∵a为正整数,∴a=99,100,101,则电脑依次买:297台,296台,295台.因此该校有三种购买方案:方案一:购买笔记本电脑295台,则购买电子白板101块;方案二:购买笔记本电脑296台,则购买电子白板100块;方案三:购买笔记本电脑297台,则购买电子白板99块;(3)解法一:购买笔记本电脑和电子白板的总费用为:方案一:295×4000+101×15000=2695000(元)方案二:296×4000+100×15000=2684000(元)方案三:297×4000+99×15000=2673000(元)因此,方案三最省钱,按这种方案共需费用2673000元.解法二:设购买笔记本电脑数为z台,购买笔记本电脑和电子白板的总费用为W元,则W=4000z+15000(396﹣z)=﹣11000z+5940000,∵k=﹣11000<0,∴W随z的增大而减小,∴当z=297时,W有最小值=2673000(元)因此,当购买笔记本电脑297台、购买电子白板99块时,最省钱,这时共需费用2673000元.【点评】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.。
新北师大版八年级数学下册期末考试(附答案)
新北师大版八年级数学下册期末考试(附答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( )A .−2B .2C .−4D .42.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列计算正确的是( )A .235+=B .3223-=C .623÷=D .(4)(2)22-⨯-=4.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+18.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度9.如图,把一个矩形纸片ABCD 沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB=65°,则∠AED ′为( ).A .70°B .65°C .50°D .25°10.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.3.一个正多边形的每个外角为60°,那么这个正多边形的内角和是______.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,菱形ABCD 中,∠B =60°,AB =3,四边形ACEF 是正方形,则EF 的长为__________.6.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是________.三、解答题(本大题共6小题,共72分)1.解下列不等式,并把解集在数轴上表示出来(1)2562x x -≥- (2)532122x x ++-<2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知a 23+229443a a a a --+-的值.4.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.5.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.6.某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同.(1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、B5、D6、C7、B8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、(3,7)或(3,-3)3、720°.4、()()2a b a b ++.5、36、(-10,3)三、解答题(本大题共6小题,共72分)1、(1)43x ≤-,数轴表示见解析;(2)12x >,数轴表示见解析.x=-时,原式=1.2、x+2;当13、7.4、(1)略;(2).5、(1)略;(2)略.6、(1)A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)至少购进A型机器人14台.。
最新北师大版八年级数学下册期末试卷(附答案)
最新北师大版八年级数学下册期末试卷(附答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.若关于x 的方程3m(x +1)+5=m(3x -1)-5x 的解是负数,则m 的取值范围是( )A .m >-54B .m <-54C .m >54D .m <543.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.方程组33814x y x y -=⎧⎨-=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .21x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是( )A .20B .24C .40D .487.下列说法中错误的是( )A .12是0.25的一个平方根B .正数a 的两个平方根的和为0C .916的平方根是34D .当0x ≠时,2x -没有平方根8.下列图形中,不是轴对称图形的是( )A .B .C .D .9.已知,如图,长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .6cm 2B .8 cm 2C .10 cm 2D .12 cm 210.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.分解因式:22a 4a 2-+=__________.3.若23(1)0m n -++=,则m -n 的值为________.4.如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为________.5.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB︒∠=,则AED'∠等于________.6.如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)352526x yx y-=⎧⎨+=⎩(2)3()1242(2)5()5x y yx y x y-⎧+=⎪⎨⎪+=++⎩2.先化简,再求值:(1﹣11x-)÷22441x xx-+-,其中x5 23.解不等式组()31511242x xxx⎧-<+⎪⎨-≥-⎪⎩,并写出它的所有非负整数解.4.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F.(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、A4、A5、D6、A7、C8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、1002、()2 2a1-3、44、x>15、50°6、13 2三、解答题(本大题共6小题,共72分)1、(1)34xy=⎧⎨=⎩;(2)12xy=-⎧⎨=-⎩2、12xx+ -,3、非负整数解是:0,1、2.4、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.5、(1)略(2)90°(3)AP=CE6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学收心考试试卷
25、(本小题10分)如图1,图2,四边形ABCD 是正方形,M 是AB 延长线上一点.直角三角尺的一条
直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A ,B 重合),另一条直角边与∠CBM 的平分线BF 相交于点F .
(1)如图1,当点E 在AB 边的中点位置时:
①通过测量DE ,EF 的长度,猜想DE 与EF 满足的数量关系是 ; ②连接点E 与AD 边的中点N ,猜想NE 与BF 满足的数量关系是 ; ③请说明你的上述两个猜想的正确性。
(2)如图2,当点E 在AB 边上的任意位置时,请你在AD 边上找到一点N ,使得NE=BF ,进而猜想此时DE 与EF 有怎样的数量关系。
26、(本小题10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶
的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x 之间的函数关系. 根据图象回答以下问题:
① 甲、乙两地之间的距离为 km ; ② 图中点B 的实际意义_______________; ③ 求慢车和快车的速度;
④ 求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;
图1
图2
y
参考答案
1、选择题1、A;
2、B;
3、C;
4、C;
5、C;
6、A;
7、D;
8、B;
9、B;10、D.
二、填空题
11、2-;12、20o;13、12 ;14、18;15、-3;16、(9,6),(-1,6),(7,0).19、解:(1)以B为圆心,适当长为半径画弧,交AB BC
,于M,N两点.
分别以M N
,为圆心,大于1
2
MN长为半径画弧.两弧相交于点P.过B P
,作射线BF交AC于F.
(2)证明:AD BC
∥,DAC C
∴=
∠∠.又BF平分ABC
∠,∴∠ABC=2∠FBC,
∵2
ABC ADG
=
∠∠,D BFC
∴=
∠∠,又AD BC
=,ADE CBF
∴△≌△,DE BF
∴=.21、证法一:∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,∠A=∠C,∵AM=CN,∴△ABM≌△CDN (SAS)
∴BM=DN.∵AD-AM=BC-CN,即MD=NB,
∴四边形MBND是平行四边形(两组对边分别相等的四边形是平行四边形)
证法二:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,
∵AM=CN,∴AD-AM=BC-CN,∴MD=NB,∴四边形MBND是平行四边形,
∴存在时刻t =2秒时,△BDP 和△CPQ 全等,
此时
BP =
4,BD =5,
CP
=8-4=4=BP ,CQ =5=BD , 在△BDP 和△CQP 中
BD CQ B C BP CP =⎧⎪
∠=∠⎨⎪=⎩
,∴△BDP ≌△CQP (SAS ).
23、解:(1)依题意得: 1(2100800200)1100y x x =--=,
2(24001100100)20000120020000y x x =---=-,
(2)设该月生产甲种塑料m 吨,则乙种塑料(700-m )吨,总利润为W 元,依题意得:
W=1100m +1200(700-m )-20000=-100m +820000.
∵400700400
m m ≤⎧⎨
≤⎩-解得:300≤m ≤400. ∵-100<0,∴W 随着m 的增大而减小,
∴当m =300时,W 最大=790000(元).此时,700-m =400(吨).
因此,生产甲、乙塑料分别为300吨和400吨时总利润最大,最大利润为790000元. 24、
25、(1)①DE =EF ②NE=B
③解:∵四边形ABCD AD =AB ,∠DAE =∠CBM =900
∵点N 、E 分别为AD 、AB
DN =12AD ,AE =1
2
AB ∴DN =EB
在R t ANE 中,∠ANE =∠AEN =450DNE =1350
∵BF 平分∠CBM
FBM =450
EBF =1350
DNE =∠EBF
∵∠FBM +∠DEA =900 ∠ADE +∠DEA =900 ∴∠FBM =∠ADE
∴△DNE ≌△EBF
DE =EF NE =BF
(2)在AD 上截取AN =AE ,连结NE ,证法同上类似
26、(1)3 (2)1,8 ①900km ②当快车或慢车出发4小时两车相遇 ③慢车速度为
)/(7512900h km =,快车速度为)/(15012
900
4900h km =- ④y=225x-900(4≤x ≤6)。