2017年中考数学一模试卷(附答案和解释)

合集下载

2017年中考数学一模试卷(上海市普陀区含答案和解释)

2017年中考数学一模试卷(上海市普陀区含答案和解释)

2017年中考数学一模试卷(上海市普陀区含答案和解释)2017年上海市普陀区中考数学一模试卷一、选择题(每题4分)1.“相似的图形”是() A.形状相同的图形 B.大小不相同的图形 C.能够重合的图形 D.大小相同的图形 2.下列函数中,y 关于x的二次函数是() A.y=2x+1 B.y=2x(x+1) C.y= D.y=(x�2)2�x2 3.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于()A. B. C. D. 4.抛物线y=�x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:x … �2 �1 0 1 2 … y … 0 4 6 6 4 … 从上表可知,下列说法中,错误的是() A.抛物线于x 轴的一个交点坐标为(�2,0) B.抛物线与y轴的交点坐标为(0,6) C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的 5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是() A.∠DAC=∠ABC B.AC 是∠BCD的平分线 C.AC2=BC•CD D. = 6.下列说法中,错误的是() A.长度为1的向量叫做单位向量 B.如果k≠0,且≠ ,那么k 的方向与的方向相同 C.如果k=0或 = ,那么k = D.如果= , = ,其中是非零向量,那么∥ 二、填空题(每题2分) 7.如果x:y=4:3,那么 = . 8.计算:3 �4( + )= . 9.如果抛物线y=(m�1)x2的开口向上,那么m的取值范围是. 10.抛物线y=4x2�3x与y轴的交点坐标是. 11.若点A(3,n)在二次函数y=x2+2x�3的图象上,则n的值为. 12.已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP的长等于厘米. 13.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是. 14.已知点P在半径为5的⊙O外,如果设OP=x,那么x的取值范围是. 15.如果港口A的南偏东52°方向有一座小岛B,那么从小岛B观察港口A的方向是. 16.在半径为4厘米的圆面中,挖去一个半径为x厘米的圆面,剩下部分的面积为y平方厘米,写出y关于x的函数解析式:(结果保留π,不要求写出定义域) 17.如果等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于. 18.如图,DE∥BC,且过△ABC的重心,分别与AB、AC交于点D、E,点P是线段DE上一点,CP的延长线交AB于点Q,如果 = ,那么S△DPQ:S△CPE的值是.三、解答题 19.计算:cos245°+ �•tan30°. 20.如图,已知AD是⊙O的直径,BC是⊙O的弦,AD⊥BC,垂足为点E,AE=BC=16,求⊙O的直径. 21.如图,已知向量,,.(1)求做:向量分别在,方向上的分向量,:(不要求写作法,但要在图中明确标出向量和).(2)如果点A是线段OD的中点,联结AE、交线段OP于点Q,设 = , = ,那么试用,表示向量,(请直接写出结论) 22.一段斜坡路面的截面图如图所示,BC⊥AC,其中坡面AB的坡比i1=1:2,现计划削坡放缓,新坡面的坡角为原坡面坡脚的一半,求新坡面AD的坡比i2(结果保留根号) 23.已知:如图,在四边形ABCD中,∠BAD=∠CDA,AB=DC= ,CE=a,AC=b,求证:(1)△DEC∽△ADC;(2)AE•AB=BC•DE. 24.如图,已知在平面直角坐标系xOy中,点A(4,0)是抛物线y=ax2+2x�c上的一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P.(1)求平移后所得到的新抛物线的表达式,并写出点C的坐标;(2)求∠CAB的正切值;(3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标. 25.如图,在直角三角形ABC中,∠ACB=90°,AB=10,sinB= ,点O是AB的中点,∠DOE=∠A,当∠DOE以点O为旋转中心旋转时,OD交AC的延长线于点D,交边CB于点M,OE交线段BM于点N.(1)当CM=2时,求线段CD的长;(2)设CM=x,BN=y,试求y与x之间的函数解析式,并写出定义域;(3)如果△OMN是以OM为腰的等腰三角形,请直接写出线段CM的长.2017年上海市普陀区中考数学一模试卷参考答案与试题解析一、选择题(每题4分) 1.“相似的图形”是() A.形状相同的图形 B.大小不相同的图形 C.能够重合的图形 D.大小相同的图形【考点】相似图形.【分析】根据相似形的定义直接进行判断即可.【解答】解:相似图形是形状相同的图形,大小可以相同,也可以不同,故选A. 2.下列函数中,y关于x的二次函数是()A.y=2x+1 B.y=2x(x+1) C.y= D.y=(x�2)2�x2 【考点】二次函数的定义.【分析】根据二次函数的定义,可得答案.【解答】解:A、y=2x+1是一次函数,故A错误; B、y=2x(x+1)是二次函数,故B正确; C、y= 不是二次函数,故C错误; D、y=(x�2)2�x2是一次函数,故D错误;故选:B. 3.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于() A. B. C. D.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例,可以解答本题.【解答】解:∵直线l1∥l2∥l3,∴ ,∵AH=2,BH=1,BC=5,∴AB=AH+BH=3,∴ ,∴ ,故选D. 4.抛物线y=�x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:x … �2 �1 0 1 2 … y …0 4 6 6 4 … 从上表可知,下列说法中,错误的是() A.抛物线于x轴的一个交点坐标为(�2,0) B.抛物线与y轴的交点坐标为(0,6) C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的【考点】二次函数的性质.【分析】由表可知抛物线过点(�2,0)、(0,6)可判断A、B;当x=0或x=1时,y=6可求得其对称轴,可判断C;由表中所给函数值可判断D.【解答】解:当x=�2时,y=0,∴抛物线过(�2,0),∴抛物线与x轴的一个交点坐标为(�2,0),故A正确;当x=0时,y=6,∴抛物线与y 轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x= ,故C错误;当x<时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选C. 5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC 和△BAC相似的是() A.∠DAC=∠ABC B.AC是∠BCD的平分线 C.AC2=BC•CD D. = 【考点】相似三角形的判定.【分析】已知∠ADC=∠BAC,则A、B选项可根据有两组角对应相等的两个三角形相似来判定;C选项虽然也是对应边成比例但无法得到其夹角相等,所以不能推出两三角形相似;D选项可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定.【解答】解:在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需满足的条件有:①∠DAC=∠ABC或AC是∠BCD的平分线;② = ;故选:C. 6.下列说法中,错误的是() A.长度为1的向量叫做单位向量 B.如果k≠0,且≠ ,那么k 的方向与的方向相同 C.如果k=0或 = ,那么k = D.如果 = , = ,其中是非零向量,那么∥ 【考点】*平面向量.【分析】由平面向量的性质来判断选项的正误.【解答】解:A、长度为1的向量叫做单位向量,故本选项错误; B、当k>0且≠ 时,那么k 的方向与的方向相同,故本选项正确; C、如果k=0或 = ,那么k = ,故本选项错误; D、如果 = , = ,其中是非零向量,那么向量a与向量b共线,即∥ ,故本选项错误;故选:B.二、填空题(每题2分) 7.如果x:y=4:3,那么 = .【考点】比例的性质.【分析】根据比例的性质用x表示y,代入计算即可.【解答】解:∵x:y=4:3,∴x= y,∴ = = ,故答案为:. 8.计算:3 �4( + )= ��4 .【考点】*平面向量.【分析】根据向量加法的运算律进行计算即可.【解答】解:3 �4( + )=3 �4 �4 =��4 .故答案是:��4 . 9.如果抛物线y=(m�1)x2的开口向上,那么m的取值范围是m>1 .【考点】二次函数的性质.【分析】根据二次函数的性质可知,当抛物线开口向上时,二次项系数m�1>0.【解答】解:因为抛物线y=(m�1)x2的开口向上,所以m�1>0,即m>1,故m 的取值范围是m>1. 10.抛物线y=4x2�3x与y轴的交点坐标是(0,0).【考点】二次函数图象上点的坐标特征.【分析】令x=0可求得y=0,可求得答案.【解答】解:在y=4x2�3x中,令x=0可得y=0,∴抛物线与y轴的交点坐标为(0,0),故答案为:(0,0). 11.若点A(3,n)在二次函数y=x2+2x�3的图象上,则n的值为12 .【考点】二次函数图象上点的坐标特征.【分析】将A(3,n)代入二次函数的关系式y=x2+2x�3,然后解关于n的方程即可.【解答】解:∵A(3,n)在二次函数y=x2+2x�3的图象上,∴A(3,n)满足二次函数y=x2+2x�3,∴n=9+6�3=12,即n=12,故答案是:12. 12.已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP的长等于 5 �5 厘米.【考点】黄金分割.【分析】根据黄金比值是计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP= AB=(5 �5)厘米,故答案为:5 �5. 13.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是1:4 .【考点】相似图形.【分析】根据等边三角形周长的比是三角形边长的比解答即可.【解答】解:因为原图中边长为5cm的一个等边三角形放大成边长为20cm的等边三角形,所以放大前后的两个三角形的面积比为5:20=1:4,故答案为:1:4. 14.已知点P在半径为5的⊙O外,如果设OP=x,那么x的取值范围是x>5 .【考点】点与圆的位置关系.【分析】根据点在圆外的判断方法得到x的取值范围.【解答】解:∵点P在半径为5的⊙O外,∴OP>5,即x>5.故答案为x>5. 15.如果港口A的南偏东52°方向有一座小岛B,那么从小岛B观察港口A的方向是北偏西52°.【考点】方向角.【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【解答】解:如图,∵∠1=∠2=52°,∴从小岛B观察港口A的方向是北偏西52°.故答案为:北偏西52°. 16.在半径为4厘米的圆面中,挖去一个半径为x厘米的圆面,剩下部分的面积为y平方厘米,写出y关于x的函数解析式:y=�πx2+16π(结果保留π,不要求写出定义域)【考点】函数关系式;函数自变量的取值范围.【分析】根据圆的面积公式,可得答案.【解答】解:由题意得在半径为4厘米的圆面中,挖去一个半径为x厘米的圆面,剩下部分的面积为y平方厘米, y=�πx2+16π,故答案为:y=�πx2+16π. 17.如果等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于.【考点】解直角三角形;等腰三角形的性质.【分析】如图,△ABC中,AB=AC,AC:BC=5:6,作AE⊥BC 于E,则BE=EC,在Rt△AEC中,根据cos∠C= = = ,即可解决问题.【解答】解:如图,△ABC中,AB=AC,AC:BC=5:6,作AE⊥BC于E,则BE=EC,,在Rt△AEC中,cos∠C= = = ,故答案为. 18.如图,DE∥BC,且过△ABC的重心,分别与AB、AC交于点D、E,点P是线段DE上一点,CP的延长线交AB于点Q,如果 = ,那么S△DPQ:S△CPE的值是1:15 .【考点】三角形的重心;相似三角形的判定与性质.【分析】连接QE,由DE∥BC、DE过△ABC的重心即可得出 = ,设DE=4m,则BC=6m,结合 = 即可得出DP=m,PE=3m,由△DPQ与△QPE有相同的高即可得出 = = ,再根据DE∥BC,利用平行线的性质即可得出∠QDP=∠QBC,结合公共角∠DQP=∠BQC即可得出△QDP∽△QBC,依据相似三角形的性质即可得出 = = ,进而得出= ,结合三角形的面积即可得出 = = ,将与相乘即可得出结论.【解答】解:连接QE,如图所示.∵DE∥BC,DE过△ABC的重心,∴ = .设DE=4m,则BC=6m.∵ = ,∴DP=m,PE=3m,∴ = = .∵DE∥BC,∴∠QDP=∠QBC,∵∠DQP=∠BQC,∴△QDP∽△QBC,∴ = = ,∴ = ,∴ = = ,∴= • = × = .故答案为:1:15.三、解答题 19.计算:cos245°+ �•tan30°.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式=()2+ �× = + �1 = . 20.如图,已知AD是⊙O的直径,BC是⊙O的弦,AD⊥BC,垂足为点E,AE=BC=16,求⊙O的直径.【考点】垂径定理;勾股定理.【分析】连接OB,根据垂径定理求出BE,根据勾股定理得出方程,求出方程的解即可.【解答】解:连接OB,设OB=OA=R,则OE=16�R,∵AD⊥BC,BC=16,∴∠OEB=90°,BE= BC=8,由勾股定理得:OB2=OE2+BE2,R2=(16�R)2+82,解得:R=10,即⊙O的直径为20. 21.如图,已知向量,,.(1)求做:向量分别在,方向上的分向量,:(不要求写作法,但要在图中明确标出向量和).(2)如果点A是线段OD的中点,联结AE、交线段OP于点Q,设 = , = ,那么试用,表示向量,(请直接写出结论)【考点】*平面向量.【分析】(1)根据向量加法的平行四边形法则,分别过P作OA、OB的平行线,交OA于D,交OB于E;(2)易得△OAQ∽△PEQ,根据相似三角形对应边成比例得出 = = = ,那么 =2 =�2 , = = .再求出 = = �2 ,然后根据 = �即可求解.【解答】解:(1)如图,分别过P作OA、OB的平行线,交OA于D,交OB于E,则向量分别在,方向上的分向量是,;(2)如图,∵四边形ODPE是平行四边形,∴PE∥DO,PE=DO,∴△OAQ∽△PEQ,∴ = = ,∵点A是线段OD的中点,∴OA= OD= PE,∴ = = = ,∴ =2 =�2 , = = .∵ = � = �2 ,∴ = = �2 ,∴ = � = �2 � = �2 . 22.一段斜坡路面的截面图如图所示,BC⊥AC,其中坡面AB的坡比i1=1:2,现计划削坡放缓,新坡面的坡角为原坡面坡脚的一半,求新坡面AD的坡比i2(结果保留根号)【考点】解直角三角形的应用-坡度坡角问题.【分析】作DE⊥AB,可得∠BDE=∠BAC,即可知tan∠BAC=tan∠BDE,即 = = ,设DC=2x,由角平分线性质得DE=DC=2x,再分别表示出BD、AC的长,最后由坡比定义可得答案.【解答】解:过点D作DE⊥AB于点E,∴∠DEB=∠C=90°,∵∠B=∠B,∴∠BDE=∠BAC,∴tan∠BAC=tan∠BDE,即 = = ,设DC=2x,∵∠DAC=∠DAE,∠DEB=∠C=90°,∴DE=DC=2x,则BE=x,BD= = x,∴BC=CD+BD=(2+ )x,∴AC=2BC=(4+2 )x,∴新坡面AD的坡比i2= = =�2. 23.已知:如图,在四边形ABCD中,∠BAD=∠CDA,AB=DC= ,CE=a,AC=b,求证:(1)△DEC∽△ADC;(2)AE•AB=BC•DE.【考点】相似三角形的判定与性质.【分析】(1)两组对应边的比相等且夹角对应相等的两个三角形相似,据此进行证明即可;(2)先根据相似三角形的性质,得出∠BAC=∠EDA, = ,再根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行证明即可.【解答】证明:(1)∵DC= ,CE=a,AC=b,∴CD2=CE×CA,即 = ,又∵∠ECD=∠DCA,∴△DEC∽△ADC;(2)∵△DEC∽△ADC,∴∠DAE=∠CDE,∵∠BAD=∠CDA,∴∠BAC=∠EDA,∵△DEC∽△ADC,∴ = ,∵DC=AB,∴ = ,即= ,∴△ADE∽△CAB,∴ = ,即AE•AB=BC•DE. 24.如图,已知在平面直角坐标系xOy中,点A(4,0)是抛物线y=ax2+2x�c 上的一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P.(1)求平移后所得到的新抛物线的表达式,并写出点C 的坐标;(2)求∠CAB的正切值;(3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标.【考点】二次函数综合题.【分析】(1)先根据点B(0,2)向上平移6个单位得到点B'(0,8),将A(4,0),B'(0,8)分别代入y=ax2+2x�c,得原抛物线为y=�x2+2x+8,向下平移6个单位后所得的新抛物线为y=�x2+2x+2,据此求得顶点C的坐标;(2)根据A(4,0),B(0,2),C(1,3),得到AB2=20,AC2=18,BC2=2,进而得出AB2=AC2+BC2,根据∠ACB=90°,求得tan∠CAB的值即可;(3)先设抛物线的对称轴x=1与x轴交于点H,根据 = = ,求得PH= AH= ,进而得到P (1,),再由HA=HC=3,得∠HCA=45°,根据当点Q在点C下方时,∠BCQ=∠ACP,因此△BCQ与△ACP相似分两种情况,根据相似三角形的性质即可得到点Q的坐标.【解答】解:(1)点B(0,2)向上平移6个单位得到点B'(0,8),将A(4,0),B'(0,8)分别代入y=ax2+2x�c,得,解得,∴原抛物线为y=�x2+2x+8,向下平移6个单位后所得的新抛物线为y=�x2+2x+2,∴顶点C的坐标为(1,3);(2)如图2,由A(4,0),B(0,2),C(1,3),得 AB2=20,AC2=18,BC2=2,∴AB2=AC2+BC2,∴∠ACB=90°,∴tan∠CAB= = = ;(3)如图3,设抛物线的对称轴x=1与x轴交于点H,由 = = ,得PH= AH= ,∴P(1,),由HA=HC=3,得∠HCA=45°,∴当点Q 在点C下方时,∠BCQ=∠ACP,因此△BCQ与△ACP相似分两种情况:①如图3,当 = 时, = ,解得CQ=4,此时Q(1,�1);②如图4,当 = 时, = ,解得CQ= ,此时Q(1,). 25.如图,在直角三角形ABC中,∠ACB=90°,AB=10,sinB= ,点O是AB的中点,∠DOE=∠A,当∠DOE以点O为旋转中心旋转时,OD交AC的延长线于点D,交边CB于点M,OE交线段BM于点N.(1)当CM=2时,求线段CD的长;(2)设CM=x,BN=y,试求y与x之间的函数解析式,并写出定义域;(3)如果△OMN是以OM为腰的等腰三角形,请直接写出线段CM的长.【考点】几何变换综合题.【分析】(1)如图1中,作OH⊥BC于H.只要证明△DCM≌△OHM,即可得出CD=OH=3.(2)如图2中,作NG⊥OB于G.首先证明∠1=∠2,根据tan∠1=tan∠2,可得 = ,由此即可解决问题.(3)分两种情形讨论即可①如图3中,当OM=ON时,OH垂直平分MN,②如图4中,当OM=MN时,分别求解即可.【解答】解:(1)如图1中,作OH⊥BC 于H.在Rt△ABC中,∵AB=10,sinB= ,∴AC=6,BC=8,∵AO=OB,OH∥AC,∴CH=HB=4,OH=3,∵CM=2,∴CM=HM=2,在△DCM和△OHM 中,,∴△DCM≌△OHM,∴CD=OH=3.(2)如图2中,作NG⊥OB于G.∵∠HOB=∠A=∠MON,∴∠1=∠2,在Rt△BNG中,BN=y,sibB= ,∴GN= y,BG= y,∵tan∠1=tan∠2,∴ = ,∴ = ,∴y= ,(0<x<4).(3)①如图3中,当OM=ON时,OH垂直平分MN,∴BN=CM=x,∵△OMH≌△ONG,∴NG=HM=4�x,∵sinB= ,∴ = ,∴CM=x= .②如图4中,当OM=MN时.连接CO,∵OA=OB,OM=MN,∴CO=OA=OB,∴∠MON=∠MNO=∠A=∠OCA,∴△MON∽△OAC,∴∠AOC=∠OMN,∴∠BOC=∠CMO,∵∠B=∠B,∴△CMO∽△COB,∴ = ,∴8x=52,∴x= .综上所述,△OMN是以OM为腰的等腰三角形时,线段CM的长为或. 2017年2月12日。

2017年辽宁省沈阳市中考数学一模试卷含答案解析

2017年辽宁省沈阳市中考数学一模试卷含答案解析

2017年辽宁省沈阳市中考数学一模试卷一、选择题1.﹣的绝对值是()A.﹣3 B.3 C.﹣ D.2.我国是一个严重缺水的国家,淡水资源总量为28000亿立方米,人均淡水资源低于世界平均水平,因此,珍惜水、保护水是我们每一位公民的责任,其中数据28000用科学记数法表示为()A.28×103 B.2.8×104C.0.28×105D.2.8×1053.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.1,2,3 D.5,6,104.不等式|x﹣1|<1的解集是()A.x>2 B.x<0 C.1<x<2 D.0<x<25.在平面直角坐标系中,抛物线y=﹣(x+1)2﹣的顶点是()A.(﹣1,﹣)B.(﹣1,)C.(1,﹣)D.(1,)6.方程2x﹣(x+10)=5x+2(x+1)的解是()A.x= B.x=﹣C.x=﹣2 D.x=27.一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为()A.B.C.D.8.甲、乙两班分别由10名选手参加健美比赛,两班参赛选手身高的方差分别是S甲2=1.5,S乙2=2.5,则下列说法正确的是()A.甲班选手比乙班选手的身高整齐B.乙班选手比甲班选手的身高整齐C.甲、乙两班选手的身高一样整齐D.无法确定哪班选手的身高整齐9.如图,折叠直角三角形ABC纸片,使两锐角顶点A、C重合,设折痕为DE.若AB=4,BC=3,则BD的值是()A.B.1 C.D.二、填空题10.当a=9时,代数式a2+2a+1的值为.11.某舞蹈队10名队员的年龄分布如表所示:则这10名队员年龄的众数是.12.如图,已知AB∥CD,∠A=49°,∠C=27°,则∠E的度数为.13.一个不透明的袋子中有3个白球、4个黄球和5个红球,这些球除了颜色不同外其他完全相同.从袋子里随机摸出一个球,则它是黄球的概率是.14.点A(x1,y1)、B(x2,y2)分别在双曲线y=﹣的两支上,若y1+y2>0,则x1+x2的范围是.15.如图,从一艘船的点A处观测海岸上高为41m的灯塔BC(观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则观测点A到灯塔BC的距离为.(精确到1m)【参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7】16.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为.17.如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AB:DE=.三、解答题(17~19小题每题9分,20题12分.共39分)18.计算: +()﹣1﹣(+1)(﹣1)19.先化简,再求值:,其中.20.如图,▱ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O,求证:OA=OC.21.某校九年级(1)班所有学生参加2010年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有人;(2)将条形统计图补充完整;(3)在扇形统计图中,等级B部分所占的百分比是,等级C对应的圆心角的度数为;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有人.四、解答题(21、22小题每题9分,23题10分.共28分)22.张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?23.如图,已知一次函数的图象y=kx+b与反比例函数y=﹣的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.24.如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A 的切线相交于点E.(1)∠ACB=°,理由是:;(2)猜想△EAD的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD.四、解答题25.如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;′(3)当t为何值时,△APQ是等腰三角形?2017年辽宁省沈阳市中考数学一模试卷参考答案与试题解析一、选择题1.﹣的绝对值是()A.﹣3 B.3 C.﹣ D.【考点】倒数.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣的绝对值是.故选:D.2.我国是一个严重缺水的国家,淡水资源总量为28000亿立方米,人均淡水资源低于世界平均水平,因此,珍惜水、保护水是我们每一位公民的责任,其中数据28000用科学记数法表示为()A.28×103 B.2.8×104C.0.28×105D.2.8×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将28000用科学记数法表示为2.8×104.故选B.3.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.1,2,3 D.5,6,10【考点】三角形三边关系.【分析】根据三角形的三边关系进行分析判断.【解答】解:根据三角形任意两边的和大于第三边,得A中,3+4=7<8,不能组成三角形;B中,5+6=11,不能组成三角形;C中,1+2=3,不能够组成三角形;D中,5+6=11>10,能组成三角形.故选D.4.不等式|x﹣1|<1的解集是()A.x>2 B.x<0 C.1<x<2 D.0<x<2【考点】解一元一次不等式.【分析】根据绝对值性质分x﹣1>0、x﹣1<0,去绝对值符号后解相应不等式可得x的范围.【解答】解:①当x﹣1≥0,即x≥1时,原式可化为:x﹣1<1,解得:x<2,∴1≤x<2;②当x﹣1<0,即x<1时,原式可化为:1﹣x<1,解得:x>0,∴0<x<1,综上,该不等式的解集是0<x<2,故选:D.5.在平面直角坐标系中,抛物线y=﹣(x+1)2﹣的顶点是()A.(﹣1,﹣)B.(﹣1,)C.(1,﹣)D.(1,)【考点】二次函数的性质.【分析】结合抛物线的解析式和二次函数的性质即可得出该抛物线顶点坐标.【解答】解:∵抛物线的解析式为y=﹣(x+1)2﹣,∴该抛物线的顶点坐标为(﹣1,﹣).故选A.6.方程2x﹣(x+10)=5x+2(x+1)的解是()A.x= B.x=﹣C.x=﹣2 D.x=2【考点】解一元一次方程.【分析】方程去括号,移项合并,将x系数化为1,即可求出解.【解答】解:去括号得:2x﹣x﹣10=5x+2x+2,移项合并得:﹣6x=12,解得:x=﹣2,故选C7.一枚质地均匀的正方体骰子的六个面分别刻有1到6的点数,将这枚骰子掷两次,其点数之和是7的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】画树状图展示所有36种等可能的结果数,再找出点数之和是7的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其点数之和是7的结果数为6,所以其点数之和是7的概率==.故选C.8.甲、乙两班分别由10名选手参加健美比赛,两班参赛选手身高的方差分别是S甲2=1.5,S乙2=2.5,则下列说法正确的是()A.甲班选手比乙班选手的身高整齐B.乙班选手比甲班选手的身高整齐C.甲、乙两班选手的身高一样整齐D.无法确定哪班选手的身高整齐【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=1.5,S乙2=2.5,∴S甲2<S乙2,则甲班选手比乙班选手身高更整齐.故选A.9.如图,折叠直角三角形ABC纸片,使两锐角顶点A、C重合,设折痕为DE.若AB=4,BC=3,则BD的值是()A.B.1 C.D.【考点】翻折变换(折叠问题);勾股定理.【分析】利用折叠的性质得出AD=DC,设DB=x,则AD=4﹣x,故DC=4﹣x,根据DB2+BC2=DC2,列出方程即可解决问题.【解答】解:连接DC,∵折叠直角三角形ABC纸片,使两个锐角顶点A、C重合,∴AD=DC,设DB=x,则AD=4﹣x,故DC=4﹣x,∵∠DBC=90°,∴DB2+BC2=DC2,即x2+32=(4﹣x)2,解得:x=,∴BD=.故选A.二、填空题10.当a=9时,代数式a2+2a+1的值为100.【考点】因式分解﹣运用公式法;代数式求值.【分析】直接利用完全平方公式分解因式进而将已知代入求出即可.【解答】解:∵a2+2a+1=(a+1)2,∴当a=9时,原式=(9+1)2=100.故答案为:100.11.某舞蹈队10名队员的年龄分布如表所示:则这10名队员年龄的众数是14岁.【考点】众数.【分析】众数可由这组数据中出现频数最大数据写出;【解答】解:这组数据中14岁出现频数最大,所以这组数据的众数为14岁;故答案为:14岁.12.如图,已知AB∥CD,∠A=49°,∠C=27°,则∠E的度数为22°.【考点】平行线的性质.【分析】根据AB∥CD,求出∠DFE=49°,再根据三角形外角的定义性质求出∠E的度数.【解答】解:∵AB∥CD,∴∠DFE=∠A=49°,又∵∠C=27°,∴∠E=49°﹣27°=22°,故答案为22°.13.一个不透明的袋子中有3个白球、4个黄球和5个红球,这些球除了颜色不同外其他完全相同.从袋子里随机摸出一个球,则它是黄球的概率是.【考点】概率公式.【分析】先求出球的总数,再根据概率公式求解即可.【解答】解:∵一个不透明的袋子中有3个白球、4个黄球和5个红球,∴球的总数是:3+4+5=12个,∴从袋子中随机摸出一个球,则它是黄球的概率=;故答案为:.14.点A(x1,y1)、B(x2,y2)分别在双曲线y=﹣的两支上,若y1+y2>0,则x1+x2的范围是x1+x2>0.【考点】反比例函数图象上点的坐标特征.【分析】先把点A(x1,y1)、B(x2,y2)代入双曲线y=﹣,用y1、y2表示出x1,x2,再根据y1+y2>0即可得出结论.【解答】解:∵A(x1,y1)、B(x2,y2)分别在双曲线y=﹣的两支上,∴y1y2<0,y1=﹣,y2=﹣,∴x1=﹣,x2=﹣,∴x1+x2=﹣﹣=﹣,∵y1+y2>0,y1y2<0,∴﹣>0,即x1+x2>0.故答案为:x1+x2>0.15.如图,从一艘船的点A处观测海岸上高为41m的灯塔BC(观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则观测点A到灯塔BC的距离为59m.(精确到1m)【参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7】【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据题意可以得到BC=41m,∠BAC=35°,∠ACB=90°,然后根据锐角三角函数即可求得AC的值.【解答】解:由题意可得,BC=41m,∠BAC=35°,∠ACB=90°,∴tan∠BAC=,即tan35°=,∴0.7=,解得,AC≈59故答案为:59m.16.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为3.【考点】旋转的性质.【分析】利用直角三角形的性质得出AB=2,再利用旋转的性质以及三角形外角的性质得出AB′=1,进而得出答案.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,∴∠CAB=30°,故AB=2,∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=2,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=1,∴AA′=1+2=3,故答案为3.17.如图,△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的,则AB:DE=2:3.【考点】位似变换.【分析】由△ABC经过位似变换得到△DEF,点O是位似中心,根据位似图形的性质,即可得AB∥DE,即可求得△ABC的面积:△DEF面积=,得到AB:DE═2:3.【解答】解:∵△ABC与△DEF位似,位似中心为点O,∴△ABC∽△DEF,∴△ABC的面积:△DEF面积=()2=,∴AB:DE=2:3,故答案为:2:3.三、解答题(17~19小题每题9分,20题12分.共39分)18.计算: +()﹣1﹣(+1)(﹣1)【考点】二次根式的混合运算;负整数指数幂.【分析】原式第一项化为最简二次根式,第二项利用负指数公式化简,第三项利用平方差公式化简,合并后即可得到结果.【解答】解: +()﹣1﹣(+1)(﹣1)=2+4﹣(5﹣1)=2+4﹣4=2.19.先化简,再求值:,其中.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把a=代入进行计算即可.【解答】解法一解:原式===当时,原式=.解法二:原式===当时,原式=.20.如图,▱ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O,求证:OA=OC.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】根据ED=BF,可得出AE=CF,结合平行线的性质,可得出∠AEO=∠CFO,∠FCO=∠EAO,继而可判定△AEO≌△CFO,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=CB,∠AEO=∠CFO,∠FCO=∠EAO,又∵ED=BF,∴AD﹣ED=BC﹣BF,即AE=CF,在△AEO和△CFO中,,∴△AEO≌△CFO,∴OA=OC.21.某校九年级(1)班所有学生参加2010年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有50人;(2)将条形统计图补充完整;(3)在扇形统计图中,等级B部分所占的百分比是40%,等级C对应的圆心角的度数为72°;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有595人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由A等的人数和比例,根据总数=某等人数÷所占的比例计算;(2)根据“总数=某等人数÷所占的比例”计算出D等的人数,总数﹣其它等的人数=C等的人数;(3)由总数=某等人数÷所占的比例计算出B等的比例,由总比例为1计算出C等的比例,对应的圆心角=360°×比例;(4)用样本估计总体.【解答】(1)总人数=A等人数÷A等的比例=15÷30%=50人;(2)D等的人数=总人数×D等比例=50×10%=5人,C等人数=50﹣20﹣15﹣5=10人,如图:(3)B等的比例=20÷50=40%,C等的比例=1﹣40%﹣10%﹣30%=20%,C等的圆心角=360°×20%=72°;(4)估计达到A级和B级的学生数=(A等人数+B等人数)÷50×850=(15+20)÷50×850=595人.四、解答题(21、22小题每题9分,23题10分.共28分)22.张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?【考点】分式方程的应用.【分析】设原计划每天铺设管道x米,根据需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,根据等量关系:铺设120米管道的时间+铺设米管道的时间=27天,可列方程求解.【解答】解:设原计划每天铺设管道x米,依题意得:,解得x=10,经检验,x=10是原方程的解,且符合题意.答:原计划每天铺设管道10米.23.如图,已知一次函数的图象y=kx+b与反比例函数y=﹣的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点A、B的横纵坐标结合反比例函数解析式即可得出点A、B的坐标,再由点A、B的坐标利用待定系数法即可得出直线AB的解析式;(2)设直线AB与y轴交于C,找出点C的坐标,利用三角形的面积公式结合A、B点的横坐标即可得出结论;(3)观察函数图象,根据图象的上下关系即可找出不等式的解集.【解答】解:(1)令反比例函数y=﹣中x=﹣2,则y=4,∴点A的坐标为(﹣2,4);反比例函数y=﹣中y=﹣2,则﹣2=﹣,解得:x=4,∴点B的坐标为(4,﹣2).∵一次函数过A、B两点,∴,解得:,∴一次函数的解析式为y=﹣x+2.(2)设直线AB与y轴交于C,令为y=﹣x+2中x=0,则y=2,∴点C的坐标为(0,2),=OC•(x B﹣x A)=×2×[4﹣(﹣2)]=6.∴S△AOB(3)观察函数图象发现:当x<﹣2或0<x<4时,一次函数图象在反比例函数图象上方,∴一次函数的函数值大于反比例函数的函数值时x的取值范围为x<﹣2或0<x<4.24.如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A 的切线相交于点E.(1)∠ACB=90°,理由是:直径所对的圆周角是直角;(2)猜想△EAD的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD.【考点】圆的综合题.【分析】(1)根据AB是⊙O的直径,点C在⊙O上利用直径所对的圆周角是直角即可得到结论;(2)根据∠ABC的平分线与AC相交于点D,得到∠CBD=∠ABE,再根据AE是⊙O的切线得到∠EAB=90°,从而得到∠CDB+∠CBD=90°,等量代换得到∠AED=∠EDA,从而判定△EAD是等腰三角形.(3)证得△CDB∽△AEB后设BD=5x,则CB=4x,CD=3x,从而得到CA=CD+DA=3x+6,然后在直角三角形ACB中,利用AC2+BC2=AB2得到(3x+6)2+(4x)2=82解得x后即可求得BD的长.【解答】解:(1)∵AB是⊙O的直径,点C在⊙O上,∴∠ACB=90°(直径所对的圆周角是直角)(2)△EAD是等腰三角形.证明:∵∠ABC的平分线与AC相交于点D,∴∠CBD=∠ABE∵AE是⊙O的切线,∴∠EAB=90°∴∠AEB+∠EBA=90°,∵∠EDA=∠CDB,∠CDB+∠CBD=90°,∵∠CBE=∠ABE,∴∠AED=∠EDA,∴AE=AD∴△EAD是等腰三角形.(3)解:∵AE=AD,AD=6,∴AE=AD=6,∵AB=8,∴在直角三角形AEB中,EB=10∵∠CDB=∠E,∠CBD=∠ABE∴△CDB∽△AEB,∴===∴设CB=4x,CD=3x则BD=5x,∴CA=CD+DA=3x+6,在直角三角形ACB中,AC2+BC2=AB2即:(3x+6)2+(4x)2=82,解得:x=﹣2(舍去)或x=∴BD=5x=四、解答题25.如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;′(3)当t为何值时,△APQ是等腰三角形?【考点】相似形综合题.【分析】(1)过点P作PH⊥AC于H,由△APH∽△ABC,得出=,从而求出AB,再根据=,得出PH=3﹣t,则△AQP的面积为:AQ•PH=t(3﹣t),最后进行整理即可得出答案;(2)连接PP′交QC于E,当四边形PQP′C为菱形时,得出△APE∽△ABC,=,求出AE=﹣t+4,再根据QE=AE﹣AQ,QE=QC得出﹣t+4=﹣t+2,再求t即可;(3)由(1)知,PE=﹣t+3,与(2)同理得:QE=﹣t+4,从而求出PQ=,在△APQ中,分三种情况讨论:①当AQ=AP,即t=5﹣t,②当PQ=AQ,即=t,③当PQ=AP,即=5﹣t,再分别计算即可.【解答】解:(1)如图甲,过点P作PH⊥AC于H,∵∠C=90°,∴AC⊥BC,∴PH∥BC,∴△APH∽△ABC,∴=,∵AC=4cm,BC=3cm,∴AB=5cm,∴=,∴PH=3﹣t,∴△AQP的面积为:S=×AQ×PH=×t×(3﹣t)=﹣(t﹣)2+,∴当t为秒时,S最大值为cm2.(2)如图乙,连接PP′,PP′交QC于E,当四边形PQP′C为菱形时,PE垂直平分QC,即PE⊥AC,QE=EC,∴△APE∽△ABC,∴=,∴AE===﹣t+4QE=AE﹣AQ═﹣t+4﹣t=﹣t+4,QE=QC=(4﹣t)=﹣t+2,∴﹣t+4=﹣t+2,解得:t=,∵0<<4,∴当四边形PQP′C为菱形时,t的值是s;(3)由(1)知,PE=﹣t+3,与(2)同理得:QE=AE﹣AQ=﹣t+4∴PQ===,在△APQ中,①当AQ=AP,即t=5﹣t时,解得:t1=;②当PQ=AQ,即=t时,解得:t2=,t3=5;③当PQ=AP,即=5﹣t时,解得:t4=0,t5=;∵0<t<4,∴t3=5,t4=0不合题意,舍去,∴当t为s或s或s时,△APQ是等腰三角形.2017年4月13日。

2017年九年级中考一模考试数学试题参考答案及评分建议

2017年九年级中考一模考试数学试题参考答案及评分建议

2017年九年级中考一模考试数学试题参考答案及评分建议说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.41.410⨯ 10.2x ≠ 11.88 12.(2)a a +或22a a + 13.1k > 14.2 15.35 16.9π+ 17.50 18.17三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.(1) 解:原式=13++ (4)分=4+(结果错误扣1分) (4)分(2) 解: 3)1()3(22+---x x x 24x 2x =-+. …………………3分∵ 0142=--x x ,∴ 241x x -=,∴ 原式=1+2=3. …………………4分 20.(1)解:()522=+x …………………………………………2分∴1222x x =-+=-- (4)分(2)解:由①得: 2.x -≤…………1分 由②得: 0.x < …………3分∴ 2.x ≤- (4)分21.解:(1)1500,(图略); ……………………4分(2)108° …………………………………………6分(3)万人1000%502000=⨯ (8)分22. 解:画树状图如下:2 4 52 4 52 5 5554甲乙 4 5 52. (4)分∴57,1212P P ==(甲胜)(乙胜). (6)分∴甲、乙获胜的机会不相同. …………………………… 8分23.(1)证明:∵∠BAD =∠CAE ∴∠EAB =∠DAC ,在△ABE 和△ACD 中∵AB =AC ,∠EAB =∠DAC ,AE =AD ,∴△ABE ≌△ACD (SAS ) ……………………5分(2)∵△ABE ≌△ACD ∴BE =CD ,又DE =BC ,∴四边形BCDE 为平行四边形.…7分∵AB =AC ,∴∠ABC =∠ACB ,∵△ABE ≌△ACD ∴∠ABE =∠ACD ∴∠EBC =∠DCB ∵四边形BCDE 为平行四边形 ∴ EB ∥DC∴∠EBC +∠DCB =180°∴∠EBC =∠DCB =90° ……………………9分∴四边形BCDE 是矩形. ……………………10分(此题也可连接EC ,DB ,通过全等,利用对角线相等的平行四边形是矩形进行证明) 24.解:设小张骑公共自行车上班平均每小时行驶x 千米, (1)分根据题意列方程得:1010445xx =⨯+……………………5分解得:15x = ………………………8分 经检验15x =是原方程的解且符合实际意义. ………………………9分 答:小张用骑公共自行车方式上班平均每小时行驶15千米. ………10分 25.(1)证明:如图,联结BD∵ AD ⊥AB ,∴ DB 是⊙O 的直径,︒=∠+∠+∠9021D ∵∠D =∠C ,∠ABF =∠C ,∴∠D=∠ABF ∴︒=∠+∠+∠9021ABF 即OB ⊥BF∴ BF 是⊙O 的切线…………………………5分 (2)联结OA 交BC 于点G ,∵AC =AB ,∴弧AC =弧AB ∴∠D =∠2=∠ABF ,OA ⊥BC,BG =CG …………7分 ∴54cos 2cos cos=∠=∠=∠ABF D在△ABD 中,∠DAB=90°∴5c o s A DB D D==∴3A B == …8分在△ABG 中,∠AGB=90°∴12c o s 25B G A B =∠=g∴5242==BG BC ………………………10分26.解:(1)当0k >时,(1)(21)4k k +--+=,解得43k =.当0k <时,(21)(1)4k k -+-+=,解得43k =-. ………………5分(2)当2x =-时,4y =;当20m -<<,函数的界高为244m -<,不符合题意; …………6分当02m ≤≤,函数的最大值为4,最小值为0,界高4,符合题意. …9分 当2m >时,函数的界高为24m >,不符合题意. …………10分 综上所述,实数m 的取值范围为02m ≤≤.27.(1 ………………………………………3分 (2)过B 作BE ⊥l 1于点E ,反向延长BE 交l 4于点F .则BE =1,BF =3,∵四边形ABCD 是矩形, ∴∠ABC =90°,∴∠ABE +∠FBC =90°,l 1 l 2 l 3 l 4又∵直角△ABE中,∠ABE+∠EAB=90°,∴∠FBC=∠EAB,∴△AEB∽△BFC,当AB是较短的边时,如图(a),AB=BC,则AE=BF=,在直角△ABE中,AB==;………………………6分当AB是长边时,如图(b),同理可得:BC=;故BC=或………………………………………9分(3)过点E作ON垂直于l1分别交l1,l3于点O,N,由题意得∠OAE=30°,则∠ED′N=60°,由图1知,△AED≌△DGC ∴AE=DG=1,故EO=,EN=,ED′=,由勾股定理可知菱形的边长为:==. (12)分28.解:(1)y=.………………………………………3分(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,w=﹣x2+7x+48;当x≥8时,w=﹣x+48.∴w关于x的函数关系式为:w=.…………7分②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.…………9分(3)设用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,w=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;………11分②当x>8时,w=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.………12分综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.。

辽宁省大连市XX学校2017届中考数学一模试题含答案解析

辽宁省大连市XX学校2017届中考数学一模试题含答案解析

省市XX学校2017届中考数学一模试题一、选择题1.﹣的绝对值是()A.﹣3 B.3 C.﹣ D.2.下列几何体中,主视图是三角形的是()A.B.C.D.3.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.1,2,3 D.5,6,104.在平面直角坐标系中,点P(2,﹣3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.方程2x﹣(x+10)=5x+2(x+1)的解是()A.x= B.x=﹣C.x=﹣2 D.x=26.下列运算正确的是()A.a2•a3=a6B.(a2)4=a6C.a4÷a=a3D.(x+y)2=x2+y27.甲、乙两班分别由10名选手参加健美比赛,两班参赛选手身高的方差分别是S甲2=1.5,S乙2=2.5,则下列说确的是()A.甲班选手比乙班选手的身高整齐B.乙班选手比甲班选手的身高整齐C.甲、乙两班选手的身高一样整齐D.无法确定哪班选手的身高整齐8.如图,折叠直角三角形ABC纸片,使两锐角顶点A、C重合,设折痕为DE.若AB=4,BC=3,则BD的值是()A.B.1 C.D.二、填空题9.比较大小:﹣2 4.(填>、=或<)10.当a=9时,代数式a2+2a+1的值为.11.不等式组的解集是.12.如图,已知AB∥CD,∠A=49°,∠C=27°,则∠E的度数为.13.一个不透明的袋子中有3个白球、4个黄球和5个红球,这些球除了颜色不同外其他完全相同.从袋子里随机摸出一个球,则它是黄球的概率是.14.已知,在菱形ABCD中,AC=8,BD=6,则菱形的周长是.15.如图,从一艘船的点A处观测海岸上高为41m的灯塔BC(观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则观测点A到灯塔BC的距离为.(精确到1m)【参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7】16.点A(x1,y1)、B(x2,y2)分别在双曲线y=﹣的两支上,若y1+y2>0,则x1+x2的围是.三、解答题(17~19小题每题9分,20题12分.共39分)17.计算: +()﹣1﹣(+1)(﹣1)18.解方程:x2﹣2x﹣3=0.19.如图,▱ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O,求证:OA=OC.20.某校九年级(1)班所有学生参加2010年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有人;(2)将条形统计图补充完整;(3)在扇形统计图中,等级B部分所占的百分比是,等级C对应的圆心角的度数为;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有人.四、解答题(21、22小题每题9分,23题10分.共28分)21.市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?22.在平面直角坐标系中,已知反比例函数y=的图象经过点A(1,).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由.23.如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.(1)∠ACB= °,理由是:;(2)猜想△EAD的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD.四、解答题(本题共3道小题,其中24题11分,25、26题各12分.共35分)24.如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t 的值;′(3)当t为何值时,△APQ是等腰三角形?25.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.26.如图,已知抛物线y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点A、B,与y轴相交于点C,且点A在点B的左侧.(1)若抛物线过点G(2,2),数m的值;(2)在(1)的条件下,解答下列问题:①求出△ABC的面积;②在抛物线的对称轴上找一点H,使AH+CH最小,并求出点H的坐标;(3)在第四象限,抛物线上是否存在点M,使得以点A、B、M为顶点的三角形与△ACB相似?若存在,求m的值;若不存在,请说明理由.省市XX学校2017届中考数学一模试题参考答案与试题解析一、选择题1.﹣的绝对值是()A.﹣3 B.3 C.﹣ D.【考点】倒数.【专题】常规题型.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣的绝对值是.故选:D.【点评】负数的绝对值等于它的相反数.2.下列几何体中,主视图是三角形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】分别找出四个几何体从正面看所得到的视图即可.【解答】解:A、此几何体的主视图是矩形,故此选项错误;B、此几何体的主视图是等腰梯形,故此选项错误;C、此几何体的主视图是等腰梯形,故此选项错误;D、此几何体的主视图是等腰三角形,故此选项正确;故选:D.【点评】此题主要考查了简单几何体的三视图,关键是注意所有的看到的棱都应表现在三视图中.3.下列长度的三条线段能组成三角形的是()A.3,4,8 B.5,6,11 C.1,2,3 D.5,6,10【考点】三角形三边关系.【分析】根据三角形的三边关系进行分析判断.【解答】解:根据三角形任意两边的和大于第三边,得A中,3+4=7<8,不能组成三角形;B中,5+6=11,不能组成三角形;C中,1+2=3,不能够组成三角形;D中,5+6=11>10,能组成三角形.故选D.【点评】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.4.在平面直角坐标系中,点P(2,﹣3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据各象限点的坐标特征解答.【解答】解:点P(2,﹣3)在第四象限.故选D.【点评】本题考查了各象限点的坐标的符号特征,记住各象限点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.方程2x﹣(x+10)=5x+2(x+1)的解是()A.x= B.x=﹣C.x=﹣2 D.x=2【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程去括号,移项合并,将x系数化为1,即可求出解.【解答】解:去括号得:2x﹣x﹣10=5x+2x+2,移项合并得:﹣6x=12,解得:x=﹣2,故选C【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.6.下列运算正确的是()A.a2•a3=a6B.(a2)4=a6C.a4÷a=a3D.(x+y)2=x2+y2【考点】完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【专题】计算题.【分析】A、利用同底数幂的乘法法则计算得到结果,即可做出判断;B、利用幂的乘方运算法则计算得到结果,即可做出判断;C、利用同底数幂的除法法则计算得到结果,即可做出判断;D、利用完全平方公式展开得到结果,即可做出判断.【解答】解:A、a2•a3=a5,故A错误;B、(a2)4=a8,故B错误;C、a4÷a=a3,故C正确;D、(x+y)2=x2+2xy+y2,故D错误.故选:C.【点评】此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握公式及法则是解本题的关键.7.甲、乙两班分别由10名选手参加健美比赛,两班参赛选手身高的方差分别是S甲2=1.5,S乙2=2.5,则下列说确的是()A.甲班选手比乙班选手的身高整齐B.乙班选手比甲班选手的身高整齐C.甲、乙两班选手的身高一样整齐D.无法确定哪班选手的身高整齐【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=1.5,S乙2=2.5,∴S甲2<S乙2,则甲班选手比乙班选手身高更整齐.故选A.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.如图,折叠直角三角形ABC纸片,使两锐角顶点A、C重合,设折痕为DE.若AB=4,BC=3,则BD的值是()A.B.1 C.D.【考点】翻折变换(折叠问题);勾股定理.【分析】利用折叠的性质得出AD=DC,设DB=x,则AD=4﹣x,故DC=4﹣x,根据DB2+BC2=DC2,列出方程即可解决问题.【解答】解:连接DC,∵折叠直角三角形ABC纸片,使两个锐角顶点A、C重合,∴AD=DC,设DB=x,则AD=4﹣x,故DC=4﹣x,∵∠DBC=90°,∴DB2+BC2=DC2,即x2+32=(4﹣x)2,解得:x=,∴BD=.故选A.【点评】此题主要考查了翻折变换、勾股定理、一元二次方程等知识,解题的关键是学会用方程的思想思考问题,属于中考常考题型.二、填空题9.比较大小:﹣2 <4.(填>、=或<)【考点】有理数大小比较.【专题】推理填空题.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣2<4.故答案为:<.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.10.当a=9时,代数式a2+2a+1的值为100 .【考点】因式分解﹣运用公式法;代数式求值.【专题】计算题.【分析】直接利用完全平方公式分解因式进而将已知代入求出即可.【解答】解:∵a2+2a+1=(a+1)2,∴当a=9时,原式=(9+1)2=100.故答案为:100.【点评】此题主要考查了因式分解法以及代数式求值,正确分解因式是解题关键.11.不等式组的解集是x>3 .【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解不等式①得:x>3;解不等式②得:x>﹣2,所以不等式组的解集为:x>3.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.如图,已知AB∥CD,∠A=49°,∠C=27°,则∠E的度数为22°.【考点】平行线的性质.【分析】根据AB∥CD,求出∠DFE=49°,再根据三角形外角的定义性质求出∠E的度数.【解答】解:∵AB∥CD,∴∠DFE=∠A=49°,又∵∠C=27°,∴∠E=49°﹣27°=22°,故答案为22°.【点评】本题考查了平行线的性质、三角形的外角的性质,找到相应的平行线是解题的关键.13.一个不透明的袋子中有3个白球、4个黄球和5个红球,这些球除了颜色不同外其他完全相同.从袋子里随机摸出一个球,则它是黄球的概率是.【考点】概率公式.【分析】先求出球的总数,再根据概率公式求解即可.【解答】解:∵一个不透明的袋子中有3个白球、4个黄球和5个红球,∴球的总数是:3+4+5=12个,∴从袋子中随机摸出一个球,则它是黄球的概率=;故答案为:.【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.14.已知,在菱形ABCD中,AC=8,BD=6,则菱形的周长是20 .【考点】菱形的性质.【分析】根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中根据勾股定理,可以求得AB的长,即可得出菱形ABCD的周长.【解答】解:如图所示,∵在菱形ABCD中,AC=8,BD=6,∴∠AOB=90°,AO=4,BO=3,∴Rt△AOB中,AB=5,∴菱形ABCD的周长=5×4=20.故答案为:20.【点评】本题考查了菱形各边长相等的性质,以及勾股定理在直角三角形中的运用,根据勾股定理计算出菱形的边长是解题的关键.15.如图,从一艘船的点A处观测海岸上高为41m的灯塔BC(观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则观测点A到灯塔BC的距离为59m .(精确到1m)【参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7】【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据题意可以得到BC=41m,∠BAC=35°,∠ACB=90°,然后根据锐角三角函数即可求得AC 的值.【解答】解:由题意可得,BC=41m,∠BAC=35°,∠ACB=90°,∴tan∠BAC=,即tan35°=,∴0.7=,解得,AC≈59故答案为:59m.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解答此类问题的关键是明确题意,利用锐角三角函数解答,易错点是不注意题目要求,没有精确到1m.16.点A(x1,y1)、B(x2,y2)分别在双曲线y=﹣的两支上,若y1+y2>0,则x1+x2的围是x1+x2>0 .【考点】反比例函数图象上点的坐标特征.【专题】推理填空题.【分析】先把点A(x1,y1)、B(x2,y2)代入双曲线y=﹣,用y1、y2表示出x1,x2,再根据y1+y2>0即可得出结论.【解答】解:∵A(x1,y1)、B(x2,y2)分别在双曲线y=﹣的两支上,∴y1y2<0,y1=﹣,y2=﹣,∴x1=﹣,x2=﹣,∴x1+x2=﹣﹣=﹣,∵y1+y2>0,y1y2<0,∴﹣>0,即x1+x2>0.故答案为:x1+x2>0.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(17~19小题每题9分,20题12分.共39分)17.计算: +()﹣1﹣(+1)(﹣1)【考点】二次根式的混合运算;负整数指数幂.【专题】计算题.【分析】原式第一项化为最简二次根式,第二项利用负指数公式化简,第三项利用平方差公式化简,合并后即可得到结果.【解答】解: +()﹣1﹣(+1)(﹣1)=2+4﹣(5﹣1)=2+4﹣4=2.【点评】此题考查了二次根式的混合运算,涉及的知识有:二次根式的化简,负指数公式,以及平方差公式的运用,熟练掌握公式是解本题的关键.18.解方程:x2﹣2x﹣3=0.【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】通过观察方程形式,本题可用因式分解法进行解答.【解答】解:原方程可以变形为(x﹣3)(x+1)=0x﹣3=0,x+1=0∴x1=3,x2=﹣1.【点评】熟练运用因式分解法解一元二次方程.注意:常数项应分解成两个数的积,且这两个的和应等于一次项系数.19.如图,▱ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O,求证:OA=OC.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】证明题;压轴题.【分析】根据ED=BF,可得出AE=CF,结合平行线的性质,可得出∠AEO=∠CFO,∠FCO=∠EAO,继而可判定△AEO≌△CFO,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=CB,∠AEO=∠CFO,∠FCO=∠EAO,又∵ED=BF,∴AD﹣ED=BC﹣BF,即AE=CF,在△AEO和△CFO中,,∴△AEO≌△CFO,∴OA=OC.【点评】此题考查了平行四边形的性质,根据平行四边形的性质得出ED=BF及∠AEO=∠CFO,∠FCO=∠EAO是解答本题的关键.20.某校九年级(1)班所有学生参加2010年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有50 人;(2)将条形统计图补充完整;(3)在扇形统计图中,等级B部分所占的百分比是40% ,等级C对应的圆心角的度数为72°;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有595 人.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】(1)由A等的人数和比例,根据总数=某等人数÷所占的比例计算;(2)根据“总数=某等人数÷所占的比例”计算出D等的人数,总数﹣其它等的人数=C等的人数;(3)由总数=某等人数÷所占的比例计算出B等的比例,由总比例为1计算出C等的比例,对应的圆心角=360°×比例;(4)用样本估计总体.【解答】(1)总人数=A等人数÷A等的比例=15÷30%=50人;(2)D等的人数=总人数×D等比例=50×10%=5人,C等人数=50﹣20﹣15﹣5=10人,如图:(3)B等的比例=20÷50=40%,C等的比例=1﹣40%﹣10%﹣30%=20%,C等的圆心角=360°×20%=72°;(4)估计达到A级和B级的学生数=(A等人数+B等人数)÷50×850=(15+20)÷50×850=595人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.四、解答题(21、22小题每题9分,23题10分.共28分)21.市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?【考点】分式方程的应用.【分析】设原计划每天铺设管道x米,根据需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,根据等量关系:铺设120米管道的时间+铺设(300﹣120)米管道的时间=27天,可列方程求解.【解答】解:设原计划每天铺设管道x米,依题意得:,解得x=10,经检验,x=10是原方程的解,且符合题意.答:原计划每天铺设管道10米.【点评】本题考查理解题意的能力,关键是设出原计划每天铺设管道x米,以天数做为等量关系列方程求解.22.在平面直角坐标系中,已知反比例函数y=的图象经过点A(1,).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由.【考点】反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;勾股定理;坐标与图形变化﹣旋转.【专题】待定系数法.【分析】(1)根据反比例函数图象上点的坐标特征计算k的值;(2)过点A作x轴的垂线交x轴于点C,过点B作x轴的垂线交x轴于点D,在Rt△AOC中,根据勾股定理计算出OA=2,利用含30度的直角三角形三边的关系得到∠OAC=30°,则∠AOC=60°,再根据旋转的性质得∠AOB=30°,OB=OA=2,所以∠BOD=30°,在Rt△BOD 中,计算出BD=OB=1,OD=BD=,于是得到B点坐标为(,1),然后根据反比例函数图象上点的坐标特征判断B点在反比例函数图象上.【解答】解:(1)把A(1,)代入y=,得k=1×=,∴反比例函数的解析式为y=;(2)点B在此反比例函数的图象上.理由如下:过点A作x轴的垂线交x轴于点C,过点B作x轴的垂线交x轴于点D,如图,在Rt△AOC中,OC=1,AC=,OA==2,∴∠OAC=30°,∴∠AOC=60°,∵线段OA绕O点顺时针旋转30°得到线段OB,∴∠AOB=30°,OB=OA=2,∴∠BOD=30°,在Rt△BOD中,BD=OB=1,OD=BD=,∴B点坐标为(,1),∵当x=时,y==1,∴点B(,1)在反比例函数的图象上.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了旋转的性质和勾股定理.23.如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.(1)∠ACB= 90 °,理由是:直径所对的圆周角是直角;(2)猜想△EAD的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD.【考点】圆的综合题.【专题】综合题.【分析】(1)根据AB是⊙O的直径,点C在⊙O上利用直径所对的圆周角是直角即可得到结论;(2)根据∠ABC的平分线与AC相交于点D,得到∠CBD=∠ABE,再根据AE是⊙O的切线得到∠EAB=90°,从而得到∠CDB+∠CBD=90°,等量代换得到∠AED=∠EDA,从而判定△EAD是等腰三角形.(3)证得△CDB∽△AEB后设BD=5x,则CB=4x,CD=3x,从而得到CA=CD+DA=3x+6,然后在直角三角形ACB中,利用AC2+BC2=AB2得到(3x+6)2+(4x)2=82解得x后即可求得BD的长.【解答】解:(1)∵AB是⊙O的直径,点C在⊙O上,∴∠ACB=90°(直径所对的圆周角是直角)(2)△EAD是等腰三角形.证明:∵∠ABC的平分线与AC相交于点D,∴∠CBD=∠ABE∵AE是⊙O的切线,∴∠EAB=90°∴∠AEB+∠EBA=90°,∵∠EDA=∠CDB,∠CDB+∠CBD=90°,∵∠CBE=∠ABE,∴∠AED=∠EDA,∴AE=AD∴△EAD是等腰三角形.(3)解:∵AE=AD,AD=6,∴AE=AD=6,∵AB=8,∴在直角三角形AEB中,EB=10∵∠CDB=∠E,∠CBD=∠ABE∴△CDB∽△AEB,∴===∴设CB=4x,CD=3x则BD=5x,∴CA=CD+DA=3x+6,在直角三角形ACB中,AC2+BC2=AB2即:(3x+6)2+(4x)2=82,解得:x=﹣2(舍去)或x=∴BD=5x=【点评】本题考查了圆的综合知识,题目中涉及到了圆周角定理、等腰三角形的判定与性质及相似三角形的判定与性质,难度中等偏上.四、解答题(本题共3道小题,其中24题11分,25、26题各12分.共35分)24.如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t 的值;′(3)当t为何值时,△APQ是等腰三角形?【考点】相似形综合题.【专题】压轴题.【分析】(1)过点P作PH⊥AC于H,由△APH∽△ABC,得出=,从而求出AB,再根据=,得出PH=3﹣t,则△AQP的面积为:AQ•PH=t(3﹣t),最后进行整理即可得出答案;(2)连接PP′交QC于E,当四边形PQP′C为菱形时,得出△APE∽△ABC, =,求出AE=﹣t+4,再根据QE=AE﹣AQ,QE=QC得出﹣t+4=﹣t+2,再求t即可;(3)由(1)知,PE=﹣t+3,与(2)同理得:QE=﹣t+4,从而求出PQ=,在△APQ中,分三种情况讨论:①当AQ=AP,即t=5﹣t,②当PQ=AQ,即=t,③当PQ=AP,即=5﹣t,再分别计算即可.【解答】解:(1)如图甲,过点P作PH⊥AC于H,∵∠C=90°,∴AC⊥BC,∴PH∥BC,∴△APH∽△ABC,∴=,∵AC=4cm,BC=3cm,∴AB=5cm,∴=,∴PH=3﹣t,∴△AQP的面积为:S=×AQ×PH=×t×(3﹣t)=﹣(t﹣)2+,∴当t为秒时,S最大值为cm2.(2)如图乙,连接PP′,PP′交QC于E,当四边形PQP′C为菱形时,PE垂直平分QC,即PE⊥AC,QE=EC,∴△APE∽△ABC,∴=,∴AE===﹣t+4QE=AE﹣AQ═﹣t+4﹣t=﹣t+4,QE=QC=(4﹣t)=﹣t+2,∴﹣t+4=﹣t+2,解得:t=,∵0<<4,∴当四边形PQP′C为菱形时,t的值是s;(3)由(1)知,PE=﹣t+3,与(2)同理得:QE=AE﹣AQ=﹣t+4∴PQ===,在△APQ中,①当AQ=AP,即t=5﹣t时,解得:t1=;②当PQ=AQ,即=t时,解得:t2=,t3=5;③当PQ=AP,即=5﹣t时,解得:t4=0,t5=;∵0<t<4,∴t3=5,t4=0不合题意,舍去,∴当t为s或s或s时,△APQ是等腰三角形.【点评】此题主要考查了相似形综合,用到的知识点是相似三角形的判定与性质、勾股定理、三角形的面积公式以及二次函数的最值问题,关键是根据题意做出辅助线,利用数形结合思想进行解答.25.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.【考点】旋转的性质;全等三角形的判定与性质.【专题】探究型.【分析】(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得Rt△ADC≌Rt△CEB,所以AD=CE,DC=BE,即可得到DE=DC+CE=BE+AD.(2)根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,得到AD=CE,DC=BE,所以DE=CE ﹣CD=AD﹣BE.(3)DE、AD、BE具有的等量关系为:DE=BE﹣AD.证明的方法与(2)相同.【解答】(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)证明:在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CE﹣CD=AD﹣BE;(3)DE=BE﹣AD.易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD﹣CE=BE﹣AD.【点评】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了直角三角形全等的判定与性质.26.如图,已知抛物线y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点A、B,与y轴相交于点C,且点A在点B的左侧.(1)若抛物线过点G(2,2),数m的值;(2)在(1)的条件下,解答下列问题:①求出△ABC的面积;②在抛物线的对称轴上找一点H,使AH+CH最小,并求出点H的坐标;(3)在第四象限,抛物线上是否存在点M,使得以点A、B、M为顶点的三角形与△ACB相似?若存在,求m的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点G的坐标代入抛物线的解析式中可求得m的值;(2)①根据(1)中的m值写出抛物线的解析式,分别求抛物线与x轴和y轴的交点坐标,根据坐标特点写出AB和OC的长,利用三角形面积公式求△ABC的面积;②由对称性可知:x=1,点A和B关于抛物线的对称轴对称,所以由轴对称的最短路径可知:连接BC与对称轴的交点即为点H,依据待定系数法可求得直线BC的解析式,将x=1代入得:y=,则点H的坐标为(1,);(3)在第四象限,抛物线上存在点M,使得以点A、B、M为顶点的三角形与△ACB相似,根据∠ACB 与∠ABM为钝角,分两种情况考虑:①当△ACB∽△ABM时;②当△ACB∽△MBA时,利用相似三角形的判定与性质,确定出m的值即可.【解答】解:(1)把点G(2,2)代入抛物线y=﹣(x+2)(x﹣m)中得:2=﹣(2+2)(2﹣m),m=4;(2)①由(1)得抛物线的解析式为:y=﹣(x+2)(x﹣4),当x=0时,y=﹣(0+2)(0﹣4)=2,∴C(0,2),∴OC=2,当y=0时,﹣(x+2)(x﹣4)=0,x=﹣2或4,∴A(﹣2,0),B(4,0),∴AB=2+4=6,∴S△ABC=AB•OC=×6×2=6;则△ABC的面积是6;②∵A(﹣2,0),B(4,0),由对称性得:抛物线的对称轴为:x=1,∵点A和B关于抛物线的对称轴对称,∴连接BC与对称轴的交点即为点H,此时AH+CH为最小,设直线BC的解析式为:y=kx+b,把B(4,0),C(0,2)代入得:,解得:,∴直线BC的解析式为:y=﹣x+2,当x=1时,y=,∴H(1,);(3)存在符合条件的点M,由图形可知:∠ACB与∠ABM为钝角,分两种情况考虑:①当△ACB∽△ABM时,则有,即AB2=AC•AM,∵A(﹣2,0),C(0,2),即OA=OC=2,∴∠CAB=45°,∠BAM=45°,如图2,过M作MN⊥x轴于N,则AN=MN,∴OA+ON=2+ON=MN,设M(x,﹣x﹣2)(x>0),把M坐标代入抛物线解析式得:﹣x﹣2=﹣(x+2)(x﹣m),∵x>0,∴x+2>0,∵m>0,∴x=2m,即M(2m,﹣2m﹣2),∴AM==2(m+1),∵AB2=AC•AM,AC=2,AB=m+2,∴(m+2)2=2 •2(m+1),解得:m=2±2,∵m>0,∴m=2+2;②当△ACB∽△MBA时,则,即AB2=CB•MA,∵∠CBA=∠BAM,∠ANM=∠BOC=90°,∴△ANM∽△BOC,∴,∵OB=m,设ON=x,∴=,即MN=(x+2),令M[x,﹣(x+2)](x>0),把M坐标代入抛物线解析式得:﹣(x+2)=﹣(x+2)(x﹣m),同理解得:x=m+2,即M[m+2,﹣(m+4)],∵AB2=CB•MA,CB=,AN=m+4,MN=(m+4),∴(m+2)2=•,整理得: =0,显然不成立,综上,在第四象限,当m=2 +2时,抛物线上存在点M,使得以点A、B、M为顶点的三角形与△ACB 相似.【点评】本题是二次函数综合题,主要考查的是轴对称路径最短问题、待定系数法确定函数解析式、坐标与图形性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握相似三角形的判定与性质是解本题的关键.。

2017年上海中学中考数学一模试卷(含解析)

2017年上海中学中考数学一模试卷(含解析)

2017年上海中学中考数学一模试卷一、选择题(本大题共有10个小题,每小题3分,共30分.)1.(3分)的相反数是()A.2016 B.﹣2016 C.D.2.(3分)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.3.(3分)一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A.0.1008×106 B.1.008×106C.1.008×105D.10.08×1044.(3分)计算(﹣2x2)3的结果是()A.﹣8x6B.﹣6x6C.﹣8x5D.﹣6x55.(3分)如图,下面几何体的俯视图不是圆的是()A.B.C.D.6.(3分)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC7.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=158.(3分)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分9.(3分)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°10.(3分)如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1)B.(1,﹣2)C.(,﹣1)D.(﹣1,)二.填空题(每小题3分,共24分)11.(3分)分解因式:x2y﹣y=.12.(3分)如图,直线a、b与直线c相交,且a∥b,∠α=55°,则∠β=.13.(3分)化简:﹣=.14.(3分)已知,则2016+x+y=.15.(3分)一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则男生当选组长的概率是.16.(3分)抛物线y=(x﹣1)2+2的对称轴是.17.(3分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.18.(3分)如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于.三、解答题(本大题共有3个小题,每小题8分,共24分)19.(8分)计算:()﹣1+20160﹣|﹣4|20.(8分)解不等式组,并写出它的所有正整数解.21.(8分)如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=3cm,BC=5cm,∠B=60°,当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)四、应用题(本大题共有3个小题,每小题8分,共24分)22.(8分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)23.(8分)某社区计划对面积为1800m2的区域进行绿化,经投标,由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)当甲、乙两个工程队完成绿化任务时,甲队施工了10天,求乙队施工的天数.24.(8分)如图,是矗立在高速公路地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌CD的高度.(参考数据:=1.41,=1.73).五、综合题(本大题有2个小题,其中25题8分,26题10分,共18分)25.(8分)如图,一组抛物线的顶点A1(x1,y1),A2(x2,y2),…A n(x n,y n)(n为正整数)依次是反比例函数y=图象上的点,第一条抛物线以A1(x1,y1)为顶点且过点O(0,0),B1(2,0),等腰△A1OB1为第一个三角形;第二条抛物线以A2(x2,y2)为顶点且经过点B1(2,0),B2(4,0),等腰△A2B1B2为第二个三角形;第三条抛物线以A3(x3,y3)为顶点且过点B2(4,0),B3(6,0),等腰△A3B2B3为第三个三角形;按此规律依此类推,…;第n条抛物线以A n(x n,y n)为顶点且经过点B n﹣1,B n,等腰△A n B n﹣1B n为第n个三角形.(1)求出A1的坐标;(2)求出第一条抛物线的解析式;(3)请直接写出A n的坐标.26.(10分)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DE⊥AB,垂足为E,连接AD,将△DEB沿直线DE翻折得到△DEF,点B落在射线BA上的F处.(1)求证:△DEB∽△ACB;(2)当点F与点A重合时(如图①),求线段BD的长;(3)设BD=x,AF=y,求y关于x的函数解析式,并判断是否存在这样的点D,使AF=FD?若存在,请求出x的值;若不存在,请说明理由.2017年上海中学中考数学一模试卷参考答案与试题解析一、选择题(本大题共有10个小题,每小题3分,共30分.)1.(3分)(2016•益阳)的相反数是()A.2016 B.﹣2016 C.D.【分析】直接利用相反数的定义分析得出答案.【解答】解:∵﹣+=0,∴﹣的相反数是.故选:C.【点评】此题主要考查了相反数的定义,正确把握定义是解题关键.2.(3分)(2015•北京)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,B、不是轴对称图形,C、不是轴对称图形,D、是轴对称图形,故选:D.【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.(3分)(2015•福建)一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A.0.1008×106 B.1.008×106C.1.008×105D.10.08×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:100800=1.008×105.故故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2008•邵阳)计算(﹣2x2)3的结果是()A.﹣8x6B.﹣6x6C.﹣8x5D.﹣6x5【分析】根据积的乘方计算即可.【解答】解:(﹣2x2)3=(﹣2)3•(x2)3=﹣8x6.故选A.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.5.(3分)(2016•邵阳县一模)如图,下面几何体的俯视图不是圆的是()A.B.C.D.【分析】俯视图是从几何体的正面看所得到的视图,分别找出四个几何体的俯视图可得答案.【解答】解:A、正方体的俯视图是正方形,故此选项符合题意;B、球的俯视图是圆形,故此选项不符合题意;C、圆锥的俯视图是圆形,故此选项不符合题意;D、圆柱的俯视图是圆形,故此选项不符合题意;故选:A.【点评】此题主要考查了简单几何体的三视图,关键是掌握俯视图是从几何体的正面看所得到的视图.6.(3分)(2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.(3分)(2015•兰州)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.8.(3分)(2015•安徽)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【分析】结合表格根据众数、平均数、中位数的概念求解.【解答】解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选D.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.9.(3分)(2015•泸州)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°【分析】由PA与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB 垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C的度数求出∠AOB的度数,在四边形PABO中,根据四边形的内角和定理即可求出∠P的度数.【解答】解:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.【点评】本题主要考查了切线的性质,四边形的内角与外角,以及圆周角定理,熟练运用性质及定理是解本题的关键.10.(3分)(2015•曲靖)如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1)B.(1,﹣2)C.(,﹣1)D.(﹣1,)【分析】根据自变量的值,可得相应的函数值,根据待定系数法,可得反比例函数的解析式,根据解方程组,可得答案.【解答】解:当x=﹣2时,y=﹣×(﹣2)=1,即A(﹣2,1).将A点坐标代入y=,得k=﹣2×1=﹣2,反比例函数的解析式为y=,联立双曲线、直线,得,解得,,B(2,﹣1).故选:A.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法求双曲线函数的解析式,又利用解方程组求图象的交点.二.填空题(每小题3分,共24分)11.(3分)(2014•宁夏)分解因式:x2y﹣y=y(x+1)(x﹣1).【分析】观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.【解答】解:x2y﹣y,=y(x2﹣1),=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(3分)(2014•泰州)如图,直线a、b与直线c相交,且a∥b,∠α=55°,则∠β=125°.【分析】根据两直线平行,同位角相等可得∠1=∠α,再根据邻补角的定义列式计算即可得解.【解答】解:∵a∥b,∴∠1=∠α=55°,∴∠β=180°﹣∠1=125°.故答案为:125°.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.13.(3分)(2016•常州)化简:﹣=.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.14.(3分)(2016•邵阳县一模)已知,则2016+x+y=2018.【分析】方程组两方程相减求出x+y的值,代入原式计算即可得到结果.【解答】解:,①﹣②得:x+y=2,则原式=2016+2=2018.故答案为:2018.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.15.(3分)(2017•邵阳县校级一模)一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则男生当选组长的概率是.【分析】由一个学习兴趣小组有4名女生,6名男生,直接利用概率公式求解即可求得答案.【解答】解:∵一个学习兴趣小组有4名女生,6名男生,∴从这10名学生中选出一人担任组长,则男生当选组长的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(2016•邵阳县一模)抛物线y=(x﹣1)2+2的对称轴是x=1.【分析】抛物线y=a(x﹣h)2+k是抛物线的顶点式,抛物线的顶点是(h,k),对称轴是x=h.【解答】解:y=(x﹣1)2+2,对称轴是x=1.故答案是:x=1.【点评】本题考查的是二次函数的性质,题目是以二次函数顶点式的形式给出,可以根据二次函数的性质直接写出对称轴.17.(3分)(2014•梅州)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=55°.【分析】根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.【解答】解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.【点评】此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.18.(3分)(2012•德州)如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于π.【分析】由“凸轮”的外围是以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成,得到∠A=∠B=∠C=60°,AB=AC=BC=1,然后根据弧长公式计算出三段弧长,三段弧长之和即为凸轮的周长.【解答】解:∵△ABC为正三角形,∴∠A=∠B=∠C=60°,AB=AC=BC=1,∴====,根据题意可知凸轮的周长为三个弧长的和,即凸轮的周长=++=3×=π.故答案为:π【点评】此题考查了弧长的计算以及等边三角形的性质,熟练掌握弧长公式是解本题的关键.三、解答题(本大题共有3个小题,每小题8分,共24分)19.(8分)(2016•邵阳县一模)计算:()﹣1+20160﹣|﹣4|【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=2+1﹣4=3﹣4=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2016•邵阳县一模)解不等式组,并写出它的所有正整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式4(x+1)≤7x+10,得:x≥﹣2,解不等式x﹣5<,得:x<3.5,故不等式组的解集为:﹣2≤x<3.5,所以其正整数解有:1、2、3,【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2016•邵阳县一模)如图,平行四边形ABCD中,G是CD的中点,E 是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=3cm,BC=5cm,∠B=60°,当AE=2cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)【分析】(1)易证得△CFG≌△EDG,推出FG=EG,根据平行四边形的判定即可证得结论;(2)由∠B=60°,易得当△CED是等边三角形时,四边形CEDF是菱形,继而求得答案.【解答】(1)证明:四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△CFG≌△EDG(ASA),∴FG=EG,∴四边形CEDF是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴AD=BC=5cm,CD=AB=3cm,∠ADC=∠B=60°,∵当DE=CE时,四边形CEDF是菱形,∴当△CED是等边三角形时,四边形CEDF是菱形,∴DE=CD=3cm,∴AE=AD﹣DE=2cm,即当AE=2cm时,四边形CEDF是菱形.故答案为:2.【点评】此题考查了菱形的性质与判定、平行四边形的性质以及全等三角形的判定与性质.注意证得△CFG≌△EDG,△CED是等边三角形是关键.四、应用题(本大题共有3个小题,每小题8分,共24分)22.(8分)(2016•河南模拟)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了50天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为72°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)【分析】(1)根据4级的天数数除以4级所占的百分比,可得答案;(2)根据有理数的减法,可得5级的天数,根据5级的天数,可得答案;(3)根据圆周角乘以3级所占的百分比,可得答案;(4)根据样本数据估计总体,可得答案.【解答】解:(1)本次调查共抽取了24÷48%=50(天),故答案为:50;(2)5级抽取的天数50﹣3﹣7﹣10﹣24=6天,空气质量等级天数统计图;(3)360°×=72°,故答案为:72;(4)365××100%=219(天),答:2015年该城市有219天不适宜开展户外活动.【点评】本题考查了条形统计图,观察函数图象获得有效信息是解题关键.23.(8分)(2016•邵阳县一模)某社区计划对面积为1800m2的区域进行绿化,经投标,由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)当甲、乙两个工程队完成绿化任务时,甲队施工了10天,求乙队施工的天数.【分析】(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;(2)用总工作量减去甲队的工作量,然后除以乙队的工作效率即可求解【解答】解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=4,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲工程队每天能完成绿化的面积是100m2,乙工程队每天能完成绿化的面积是50m2;(2)=16(天).答:乙队施工了16天.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解决问题.24.(8分)(2016•邵阳县一模)如图,是矗立在高速公路地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌CD的高度.(参考数据:=1.41,=1.73).【分析】首先根据等腰直角三角形的性质可得DM=AM=4m,再根据勾股定理可得MC2+MB2=(2MC)2,代入数可得答案.【解答】解:由题意可得:∵AM=4米,∠MAD=45°,∴DM=4m,∵AM=4米,AB=8米,∴MB=12米,∵∠MBC=30°,∴BC=2MC,∴MC2+MB2=(2MC)2,MC2+122=(2MC)2,∴MC=4,则DC=4﹣4≈2.9(米).【点评】此题主要考查了勾股定理得应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.五、综合题(本大题有2个小题,其中25题8分,26题10分,共18分)25.(8分)(2016•邵阳县一模)如图,一组抛物线的顶点A1(x1,y1),A2(x2,y2),…A n(x n,y n)(n为正整数)依次是反比例函数y=图象上的点,第一条抛物线以A1(x1,y1)为顶点且过点O(0,0),B1(2,0),等腰△A1OB1为第一个三角形;第二条抛物线以A2(x2,y2)为顶点且经过点B1(2,0),B2(4,0),等腰△A2B1B2为第二个三角形;第三条抛物线以A3(x3,y3)为顶点且过点B2(4,0),B3(6,0),等腰△A3B2B3为第三个三角形;按此规律依此类推,…;第n条抛物线以A n(x n,y n)为顶点且经过点B n,B n,等腰△A n B n﹣1B n为第n个三角﹣1形.(1)求出A1的坐标;(2)求出第一条抛物线的解析式;(3)请直接写出A n的坐标(2n﹣1,).【分析】(1)根据抛物线的对称性和反比例函数图象上点的坐标特征易求得到A1(1,9);(2)设第一个抛物线解析式为y=a(x﹣1)2+9,把O(0,0)代入该函数解析式即可求得a的值;(2)根据抛物线的对称性和反比例函数图象上点的坐标特征易求得到A2(3,3),A3(5,),根据规律即可得出A n的坐标.【解答】解:(1)∵第一条抛物线过点O(0,0),B1(2,0),∴该抛物线的对称轴是x=1.又∵顶点A1(x1,y1)在反比例函数y=图象上,∴y1=9,即A1(1,9);(2)设第一个抛物线为y=a(x﹣1)2+9(a≠0),把点O(0,0)代入,得到:0=a+9,解得a=﹣9.所以第一条抛物线的解析式是y=﹣9(x﹣1)2+9;(3)第一条抛物线的顶点坐标是A1(1,9),第二条抛物线的顶点坐标是A2(3,3),第三条抛物线的顶点坐标是A3(5,),由规律可知A n(2n﹣1,).故答案为:(2n﹣1,).【点评】本题综合考查了待定系数法求二次函数解析式,反比例函数图象上点的坐标特征.整个解题过程,利用抛物线的对称轴和反比例函数图象上的坐标特征来求相关点的坐标和相关线段的长度是解题的关键,此题综合性强,有一定的难度.26.(10分)(2016•邵阳县一模)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DE⊥AB,垂足为E,连接AD,将△DEB沿直线DE翻折得到△DEF,点B落在射线BA上的F处.(1)求证:△DEB∽△ACB;(2)当点F与点A重合时(如图①),求线段BD的长;(3)设BD=x,AF=y,求y关于x的函数解析式,并判断是否存在这样的点D,使AF=FD?若存在,请求出x的值;若不存在,请说明理由.【分析】(1)根据垂直的定义得到∠DEB=90°,证明∠ACB=∠DEB,根据相似三角形的判定定理证明即可;(2)根据勾股定理求出AB的长,根据相似三角形的性质得到比例式,代入计算即可;(3)分点F在线段AB上和点F在线段BA的延长线上两种情况,根据相似三角形的性质计算即可.【解答】(1)证明:∵DE⊥AB,∴∠DEB=90°,∴∠ACB=∠DEB,又∠B=∠B,∴△DEB∽△ACB;(2)∵∠ACB=90°,AC=6,BC=8,∴AB==10,由翻转变换的性质可知,BE=AE=AB=5,∵△DEB∽△ACB,∴=,即=,解得BD=.答:线段BD的长为;(3)当点F在线段AB上时,如图2,∵△DEB∽△ACB,∴=,即=,解得BE=x,∵BE=EF,∴AF=AB﹣2BE,∴y=﹣x+10;当点F在线段BA的延长线上时,如图3,AF=2BE﹣AB,∴y=x﹣10,当点F在线段AB上时,∵DE⊥AB,BE=EF,∴DF=DB要使AF=FD,只要AF=BD即可,即x=﹣x+10,解得x=,当点F在线段BA的延长线上时,AF=FD不成立,则当BD=时,AF=FD.【点评】本题考查的是相似三角形的判定和性质以及翻转变换的性质,掌握相似三角形的判定定理和性质定理以及翻转变换的性质是解题的关键,注意分情况讨论思想的应用.。

江苏省南京市联合体2017年中考一模数学试题(有解析)+(答案)

江苏省南京市联合体2017年中考一模数学试题(有解析)+(答案)

2017年中考数学模拟试题(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效. 4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.计算41-+的结果是 的结果是 的结果是( ). A .5- B .3-C .3D .5【答案】C【解析】14111313-+=-=.2.计算23()xy -的结果是 的结果是( ). A .36x y B .36x y -C .45x y -D .45x y【答案】B【解析】2333233()(1)6xy x y x y ⨯-=-⋅⋅=-.3 ). A .2 B .3C .4D .5【答案】C【解析】22=345=44.如图,直线123l l l ∥∥,直线AC 分别交1l ,2l ,3l 于点A ,B ,C ;直线DF ;分别交1l ,2l ,3l 于点D ,E ,F .AC 与DF 相交于点H ,且 2AH =, 1HB =, 5BC =,则DEEF的值为( ).l 3l 2l 1H FE ABCDA .23B .25C .13D .35【答案】D【解析】∵123l l l ∥∥. ∴D AH ABE ∠=∠. ∴ADH DEB ∠=∠. ∴ADH BEH ∽△△. ∴12EH HB DH AH ==. ∴2DH EH =.同理可证得ADH CFH ∽△△. ∴2163DH AH AH HF HC HB BC ====+. ∴36HF DH EH ==. ∴3355DEDH EH EH EF HF EH EH +===-.5.若一组数据2,4,6,8,x 的方差比另一组数据5,7,9,11,13的方差,则x 的值可以为( ). A .12 B .10C .2D .0【答案】A【解析】5、7、9、11、13,方差2222242024=5++++.当10x =时,第一组数据方差2222242024=5++++,与第二组数据方差相等.当0x =时,第一组数据方差2222242024=5++++,与第二组数据方差相等.当2x =时,第一组数据方差22222(2.2)(2.2)(0.4)(1.6)(3.6)=5++++,小于第二组数据方差.当12x =时,第一组数据方差22222(4.4)(2.4)(0.4)(1.6)(3.6)=5++++,大于第二组数据方差.6.如图,在Rt ABC △中,90C ∠=︒,AD 是ABC △的角平分线,若4CD =,12AC =,则ABC △的面积为( ).ABCDA .48B .50C .54D .60【答案】C 【解析】441212ABCDM∵AD 为A ∠的平分交CB 于D 点. ∴过点D 向AB 作垂线交AB 于M . ∴4CD DM ==.又∵CAD DAM ∠=∠,90C AMD ∠=∠=︒. ∴ADC △≌ADM △. ∴12AM AC ==. 设MB 长为x .则DB .又∵B B ∠=∠,90DMB C ∠=∠=︒. ∴DMB ACB ∽△△. ∴DM MBAC CB=.13=,解得3x =. ∴5DB =. ∴9CB =. ∴1=129=542ABC S ⨯⨯△.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.9的平方根是__________;9的立方根__________.【答案】3±【解析】∵2(3)9±=. ∴9的平方根为3±.求一个数的立方根的运算,则开立方a8有意义的x 的取值范围是__________. 【答案】1x -≥ 【解析】∵10x +≥. ∴1x -≥.9.2016年南京全市完成社会固定资产投约55000000万元,将55000000用科学记数法表示为__________. 【答案】75.510⨯【解析】把一个数字记为10n a ⨯的形式(1<10a ≤,n 为整数),这种记数法叫做科学计数法.10.分解因式3269x x x ++的结果是__________. 【答案】2(3)x x + 【解析】3269x x x ++.2=(69)x x x ++. 2=(3)x x +.11-__________.-.12.已知关于x 的方程230x x m -+=的一个根是2,则它的另一个根是__________,m 的值是__________. 【答案】1,2【解析】230x x m -+=,一个根是2. ∴23m x x =-+.=2.∴m 值为2. ∴2320x x -+=.(2)(1)0x x --=.1221x x =⎧⎨=⎩ ∴另一个x 值为1.13.如图,A C ∠=∠,只需补充一个条件__________,就可得ABD △≌CDB △.DCBA【答案】答案不唯一【解析】只要可以得到ABD CDB ∽△△即可,如DD AB ∥或AD BC ∥或CDB DBA ∠=∠等条件.14.如图,在ABC △中,AB 、AC 的垂直平分线1l 、2l 相交于点O ,若BAC ∠等于82︒,则OBC ∠=__________︒.2B【答案】8 【解析】l 2l 1ABC连接AO .∵1l 、2l 分别为AB 、AC 的中垂线. ∴OB OA =,OA OC =. ∴OB OC =. ∴OAB ABO ∠=∠.O A CA C O ∠=.O B C O C B ∠=∠.∴=180OBC BAC ABO ACO OCB ∠︒-∠-∠-∠-∠.=180()BAC ABO ACO OBC ︒-∠-∠+∠-∠.180BAC BAC OBC =︒-∠-∠-∠.∴2180OBC BAC BAC ∠=︒-∠-∠.1808888=︒-︒-︒. 16=︒.∴8OBC ∠=︒.15.已知点(1,2)A --在反比例函数ky x=的图像上,则当1x >时,y 的取值范围是__________. 【答案】0<<2y【解析】∵(1,2)A --,在ky x=上. ∴(1)(2)2k =-⨯-=.∴2y x=.当1x =时,2y =. ∴0<<2y .16.如图,在半径为2的⊙O 中,弦2AB =,⊙O 上存在点C ,使得弦AC =,则B O C =∠________︒.B【答案】30︒或150︒ 【解析】MOABC连接OB .∵半径2OA =,2AB =,2OB =. ∴60AOB ∠=︒.过O 点向AC 做垂线,交AC 于M 点.又AC =∵.∴MC∴OM . ∴45MOC ∠=︒. ∴90COA ∠=︒.∴906030BOC ∠=︒-︒=︒.60°O ABC同理可求得=90AOC ∠︒.BOC BOA AOC ∠=∠+∠. =6090︒+︒. =150︒.三、解答题(本大共11小题,共88分。

2017年济南市市中区中考数学一模试卷含答案解析

2017年济南市市中区中考数学一模试卷含答案解析

2017年山东省济南市市中区中考数学一模试卷一、选择题(本大题共15小题,每小题3分,共45分)1.﹣2的绝对值等于()A.﹣ B.C.﹣2 D.22.数字3300用科学记数法表示为()A.0.33×104B.3.3×103C.3.3×104D.33×1033.如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()A.24°B.34°C.56°D.124°4.若2(a+3)的值与4互为相反数,则a的值为()A.B.﹣5 C.﹣ D.﹣15.如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()A.B.C.D.6.下列运算正确的是()A.x2+x3=x5B.(x﹣2)2=x2﹣4 C.(x3)4=x7D.2x2⋅x3=2x57.下面四个手机应用图标中是中心对称图形的是()A.B.C.D.8.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5 B.5,4 C.4,4 D.5,59.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向下平移2个单位10.化简÷是()A.m B.﹣m C.D.﹣11.如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m 的取值范围在数轴上表示为()A.B.C.D.12.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O 的切线交AB的延长线于点E,则sin∠E的值是()A.B.C.D.13.已知关于x的二元一次方程组,若x+y>3,则m的取值范围是()A.m>1 B.m<2 C.m>3 D.m>514.对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82 []=9 []=3 []=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1()A.1 B.2 C.3 D.415.如图,直线y=与y轴交于点A,与直线y=﹣交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2B.﹣2≤h≤1 C.﹣1D.﹣1二、填空题(本大题共6小题,每小题3分,共18分)16.因式分解:xy2﹣4x=.17.计算﹣(﹣1)2=.18.小明把如图所示的平行四边形纸板挂在墙上,完飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是.19.方程=的解是.20.如图,A.B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为.21.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为C′,再将所折得的图形沿EF折叠,使得点D和点A重合.若AB=3,BC=4,则折痕EF的长为.三、解答题(本大题共8小题,共57分)22.(1)先化简,再求值:(x+1)2+x(2﹣x),其中x=(2)解不等式组,并把解集表示在数轴上.23.如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.24.如图,⊙O是△ABC的外接圆,∠A=45°,BD是直径,且BC=2,连接CD,求BD的长.25.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?26.商店只有雪碧、可乐、果汁、奶汁四种饮料,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是多少?(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.27.如图1,已知双曲线y=(k>0)与直线y=k′x交于A、B两点,点A在第一象限,试回答下列问题:(1)若点A的坐标为(3,1),则点B的坐标为;当x满足:时,≤k′x;(2)如图2,过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限.①四边形APBQ一定是;②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.(3)设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.28.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,①当∠EAC=90°时,求PB的长;②直接写出旋转过程中线段PB长的最小值与最大值.29.如图,二次函数y=x2+bx﹣的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.(1)请直接写出点D的坐标:;(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.2017年山东省济南市市中区中考数学一模试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分)1.﹣2的绝对值等于()A.﹣ B.C.﹣2 D.2【考点】绝对值.【分析】根据绝对值的性质:一个负数的绝对值是它的相反数解答即可.【解答】解:根据绝对值的性质,|﹣2|=2.故选D.2.数字3300用科学记数法表示为()A.0.33×104B.3.3×103C.3.3×104D.33×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3300用科学记数法可表示为:3.3×103,故选:B.3.如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()A.24°B.34°C.56°D.124°【考点】平行线的性质.【分析】根据对顶角相等求出∠3,根据平行线的性质得出∠2=∠3,即可得出答案.【解答】解:∵∠1=56°,∴∠3=∠1=56°,∵直线a∥b,∴∠2=∠3=56°,故选C.4.若2(a+3)的值与4互为相反数,则a的值为()A.B.﹣5 C.﹣ D.﹣1【考点】相反数.【分析】依据相反数的定义列出关于a的方程求解即可.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)=﹣4,解得:a=﹣5.故选:B.5.如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上面看得到的图形,可得答案.【解答】解:从上面看外边是一个矩形,里面是一个圆,故选:C.6.下列运算正确的是()A.x2+x3=x5B.(x﹣2)2=x2﹣4 C.(x3)4=x7D.2x2⋅x3=2x5【考点】幂的乘方与积的乘方;合并同类项;完全平方公式.【分析】根据合并同类项法则、幂的乘方、单项式乘以单项式、完全平方公式分别求出每个式子的值,再判断即可.【解答】解:A、x2和x3不能合并,故本选项不符合题意;B、结果是x2﹣4x+4,故本选项不符合题意;C、结果是x12,故本选项不符合题意;D、结果是2x5,故本选项符合题意;故选D.7.下面四个手机应用图标中是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,故选:B.8.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5 B.5,4 C.4,4 D.5,5【考点】众数;中位数.【分析】根据众数及中位数的定义,结合所给数据即可作出判断.【解答】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4.故选A.9.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是()A.先向左平移5个单位,再向下平移2个单位B.先向右平移5个单位,再向下平移2个单位C.先向左平移5个单位,再向上平移2个单位D.先向右平移5个单位,再向下平移2个单位【考点】坐标与图形变化﹣平移.【分析】根据网格结构,可以利用一对对应点的平移关系解答.【解答】解:根据网格结构,观察对应点A、D,点A向左平移5个单位,再向下平移2个单位即可到达点D的位置,所以平移步骤是:先把△ABC向左平移5个单位,再向下平移2个单位.故选:A.10.化简÷是()A.m B.﹣m C.D.﹣【考点】分式的乘除法.【分析】原式利用除法法则变形,约分即可得到结果.【解答】解:原式=﹣•=﹣m,故选B.11.如图,直线l经过第二、三、四象限,l的解析式是y=(m﹣2)x+n,则m 的取值范围在数轴上表示为()A.B.C.D.【考点】一次函数图象与系数的关系;在数轴上表示不等式的解集.【分析】根据一次函数图象与系数的关系得到m﹣2<0且n<0,解得m<2,然后根据数轴表示不等式的方法进行判断.【解答】解:∵直线y=(m﹣2)x+n经过第二、三、四象限,∴m﹣2<0且n<0,∴m<2且n<0.故选:C.12.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O 的切线交AB的延长线于点E,则sin∠E的值是()A.B.C.D.【考点】切线的性质;解直角三角形.【分析】连接OC,如图,利用圆周角定理得到∠BOC=∠CDB=30°,再根据切线的性质得∠OCE=90°,所以∠E=30°,然后根据特殊角的三角函数值求解.【解答】解:连接OC,如图,∠BOC=∠CDB=30°,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,∴∠E=30°,∴sinE=sin30°=.故选A.13.已知关于x的二元一次方程组,若x+y>3,则m的取值范围是()A.m>1 B.m<2 C.m>3 D.m>5【考点】二元一次方程组的解;解一元一次不等式.【分析】将m看做已知数表示出x与y,代入x+y>3计算即可求出m的范围.【解答】解:,①+②得:4x=4m﹣6,即x=,①﹣②×3得:4y=﹣2,即y=﹣,根据x+y>3得:﹣>3,去分母得:2m﹣3﹣1>6,解得:m>5.故选D14.对于实数x ,我们规定[x ]表示不大于x 的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82 []=9 []=3 []=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )A .1B .2C .3D .4【考点】估算无理数的大小.【分析】[x ]表示不大于x 的最大整数,依据题目中提供的操作进行计算即可.【解答】解:121 []=11 []=3 []=1,∴对121只需进行3次操作后变为1,故选:C .15.如图,直线y=与y 轴交于点A ,与直线y=﹣交于点B ,以AB 为边向右作菱形ABCD ,点C 恰与原点O 重合,抛物线y=(x ﹣h )2+k 的顶点在直线y=﹣上移动.若抛物线与菱形的边AB 、BC 都有公共点,则h 的取值范围是( )A .﹣2B .﹣2≤h ≤1C .﹣1D .﹣1【考点】二次函数综合题.【分析】将y=与y=﹣联立可求得点B 的坐标,然后由抛物线的顶点在直线y=﹣可求得k=﹣,于是可得到抛物线的解析式为y=(x ﹣h )2﹣h ,由图形可知当抛物线经过点B 和点C 时抛物线与菱形的边AB 、BC 均有交点,然后将点C和点B的坐标代入抛物线的解析式可求得h的值,从而可判断出h的取值范围.【解答】解:∵将y=与y=﹣联立得:,解得:.∴点B的坐标为(﹣2,1).由抛物线的解析式可知抛物线的顶点坐标为(h,k).∵将x=h,y=k,代入得y=﹣得:﹣h=k,解得k=﹣,∴抛物线的解析式为y=(x﹣h)2﹣h.如图1所示:当抛物线经过点C时.将C(0,0)代入y=(x﹣h)2﹣h得:h2﹣h=0,解得:h1=0(舍去),h2=.如图2所示:当抛物线经过点B时.将B(﹣2,1)代入y=(x﹣h)2﹣h得:(﹣2﹣h)2﹣h=1,整理得:2h2+7h+6=0,解得:h1=﹣2,h2=﹣(舍去).综上所述,h的范围是﹣2≤h≤.故选A.二、填空题(本大题共6小题,每小题3分,共18分)16.因式分解:xy2﹣4x=x(y+2)(y﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣4x,=x(y2﹣4),=x(y+2)(y﹣2).17.计算﹣(﹣1)2=4.【考点】实数的运算.【分析】先分别根据数的开方法则、有理数乘方的法则求出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=5﹣1=4.故答案为:4.18.小明把如图所示的平行四边形纸板挂在墙上,完飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是.【考点】中心对称图形;平行四边形的性质.【分析】先根据平行四边形的性质求出平行四边形对角线所分的四个三角形面积相等,再求出S1=S2即可.【解答】解:根据平行四边形的性质可得:平行四边形的对角线把平行四边形分成的四个面积相等的三角形,根据平行线的性质可得S1=S2,则阴影部分的面积占,则飞镖落在阴影区域的概率是.故答案为:.19.方程=的解是x=6.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣6=2x,解得:x=6,经检验x=6是分式方程的解.故答案为:x=620.如图,A.B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为.【考点】反比例函数系数k的几何意义.【分析】过点B作BE⊥x轴于点E,根据D为OB的中点可知CD是△OBE的中位线,即CD=BE,设A(x,),则B(2x,),故CD=,AD=﹣,再由△ADO的面积为1求出y的值即可得出结论.【解答】解:过点B作BE⊥x轴于点E,∵D为OB的中点,∴CD是△OBE的中位线,即CD=BE.设A(x,),则B(2x,),CD=,AD=﹣,∵△ADO的面积为1,∴AD•OC=1,(﹣)•x=1,解得k=,故答案是:.21.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为C′,再将所折得的图形沿EF折叠,使得点D和点A重合.若AB=3,BC=4,则折痕EF的长为.【考点】翻折变换(折叠问题);矩形的性质.【分析】首先由折叠的性质与矩形的性质,证得△BND是等腰三角形,则在Rt △ABN中,利用勾股定理,借助于方程即可求得AN的长,又由△ANB≌△C′ND,易得:∠FDM=∠ABN,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解.【解答】解:设BC′与AD交于N,EF与AD交于M,根据折叠的性质可得:∠NBD=∠CBD,AM=DM=AD,∠FMD=∠EMD=90°,∵四边形ABCD是矩形,∴AD∥BC,AD=BC=4,∠BAD=90°,∴∠ADB=∠CBD,∴∠NBD=∠ADB,∴BN=DN,设AN=x,则BN=DN=4﹣x,∵在Rt△ABN中,AB2+AN2=BN2,∴32+x2=(4﹣x)2,∴x=,即AN=,∵C′D=CD=AB=3,∠BAD=∠C′=90°,∠ANB=∠C′ND,∴△ANB≌△C′ND(AAS),∴∠FDM=∠ABN,∴tan∠FDM=tan∠ABN,∴,∴,∴MF=,由折叠的性质可得:EF⊥AD,∴EF∥AB,∵AM=DM,∴ME=AB=,∴EF=ME+MF=+=.故答案为:.三、解答题(本大题共8小题,共57分)22.(1)先化简,再求值:(x+1)2+x(2﹣x),其中x=(2)解不等式组,并把解集表示在数轴上.【考点】整式的混合运算—化简求值;在数轴上表示不等式的解集;解一元一次不等式组.【分析】(1)先算乘法,再合并同类项,最后代入求出即可;(2)先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:(1)原式=x2+2x+1+2x﹣x2=4x+1,当x=时,原式=4+1;(2)∵解不等式①:x<4,解不等式②:x<3,∴原不等式组的解集是:x<3,原不等式组的解集在数轴上表示为:.23.如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.【考点】全等三角形的判定与性质.【分析】根据中点定义求出AC=BC,然后利用“SSS”证明△ACD和△BCE全等,再根据全等三角形对应角相等证明即可.【解答】证明:∵C是AB的中点,∴AC=BC,在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B.24.如图,⊙O是△ABC的外接圆,∠A=45°,BD是直径,且BC=2,连接CD,求BD的长.【考点】三角形的外接圆与外心.【分析】根据圆周角定理求出∠D=∠A=45°,BD是直径,根据勾股定理计算即可.【解答】解:∵∠A和∠D所对的弧都是弧BC,∴∠D=∠A=45°,∵BD是直径,∴∠DCB=90°,∴∠D=∠DBC=45°,∴CB=CD=2,由勾股定理得:BD==2.25.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【考点】一元二次方程的应用.【分析】设AB的长度为x米,则BC的长度为米;然后根据矩形的面积公式列出方程.【解答】解:设AB的长度为x米,则BC的长度为米.根据题意得x=400,解得x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20.答:羊圈的边长AB,BC分别是20米、20米.26.商店只有雪碧、可乐、果汁、奶汁四种饮料,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是多少?(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.【考点】列表法与树状图法.【分析】(1)由商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他恰好买到雪碧和奶汁的情况,再利用概率公式即可求得答案.【解答】解:(1)∵商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同,∴他去买一瓶饮料,则他买到奶汁的概率是:;(2)画树状图得:∵共有12种等可能的结果,他恰好买到雪碧和奶汁的有2种情况,∴他恰好买到雪碧和奶汁的概率为:=.27.如图1,已知双曲线y=(k>0)与直线y=k′x交于A、B两点,点A在第一象限,试回答下列问题:(1)若点A的坐标为(3,1),则点B的坐标为(﹣3,﹣1);当x满足:﹣3≤x<0或x≥3时,≤k′x;(2)如图2,过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限.①四边形APBQ一定是平行四边形;②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.(3)设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.【考点】反比例函数综合题.【分析】(1)根据正比例函数与反比例函数的图象的交点关于原点对称,即可解决问题,利用图象根据正比例函数的图象在反比例函数的图象的上方,即可确定自变量x的范围.(2)①利用对角线互相平分的四边形是平行四边形证明即可.②利用分割法求面积即可.(3)根据矩形的性质、正方形的性质即可判定.【解答】解:(1)∵A、B关于原点对称,A(3,1),∴点B的坐标为(﹣3,﹣1).由图象可知,当﹣3≤x<0或x≥3时,≤k′x.故答案为(﹣3,﹣1),﹣3≤x<0或x≥3(2)①∵A、B关于原点对称,P、Q关于原点对称,∴OA=OB,OP=OQ,∴四边形APBQ是平行四边形.故答案为:平行四边形;②∵点A的坐标为(3,1),∴k=3×1=3,∴反比例函数的解析式为y=,∵点P的横坐标为1,∴点P的纵坐标为3,∴点P的坐标为(1,3),由双曲线关于原点对称可知,点Q的坐标为(﹣1,﹣3),点B的坐标为(﹣3,﹣1),如图2,过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,则四边形CDEF是矩形,CD=6,DE=6,DB=DP=4,CP=CA=2,则四边形APBQ的面积=矩形CDEF的面积﹣△ACP的面积﹣△PDB的面积﹣△BEQ的面积﹣△AFQ的面积=36﹣2﹣8﹣2﹣8=16.(3)mn=k时,四边形APBQ是矩形,不可能是正方形.理由:当AB⊥PQ时四边形APBQ是正方形,此时点A、P在坐标轴上,由于点A,P可能达到坐标轴故不可能是正方形,即∠POA≠90°.28.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,①当∠EAC=90°时,求PB的长;②直接写出旋转过程中线段PB长的最小值与最大值.【考点】三角形综合题.【分析】(1)欲证明BD=CE,只要证明△ABD≌△ACE即可.(2)①分两种情形a、如图2中,当点E在AB上时,BE=AB﹣AE=1.由△PEB∽△AEC,得=,由此即可解决问题.b、如图3中,当点E在BA延长线上时,BE=3.解法类似.②a、如图4中,以A为圆心AD为半径画圆,当CE在⊙A下方与⊙A相切时,PB的值最小.b、如图5中,以A为圆心AD为半径画圆,当CE在⊙A上方与⊙A相切时,PB的值最大.分别求出PB即可.【解答】(1)证明:如图1中,∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE,在△ADB和△AEC中,∴△ADB≌△AEC,∴BD=CE.(2)①解:a、如图2中,当点E在AB上时,BE=AB﹣AE=1.∵∠EAC=90°,∴CE==,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=,∴PB=b、如图3中,当点E在BA延长线上时,BE=3.∵∠EAC=90°,∴CE==,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC,∴=,∴=,∴PB=,综上,PB=或.②解:a、如图4中,以A为圆心AD为半径画圆,当CE在⊙A下方与⊙A相切时,PB的值最小.理由:此时∠BCE最小,因此PB最小,(△PBC是直角三角形,斜边BC为定值,∠BCE最小,因此PB最小)∵AE⊥EC,∴EC===,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=1,∴PB=BD﹣PD=﹣1.b、如图5中,以A为圆心AD为半径画圆,当CE在⊙A上方与⊙A相切时,PB 的值最大.理由:此时∠BCE最大,因此PB最大,(△PBC是直角三角形,斜边BC为定值,∠BCE最大,因此PB最大)∵AE⊥EC,∴EC===,由(1)可知,△ABD≌△ACE,∴∠ADB=∠AEC=90°,BD=CE=,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴PD=AE=1,∴PB=BD+PD=+1.综上所述,PB长的最小值是﹣1,最大值是+1.29.如图,二次函数y=x2+bx﹣的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.(1)请直接写出点D的坐标:(﹣3,4);(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将点A的坐标代入二次函数的解析式求得其解析式,然后求得点B 的坐标即可求得正方形ABCD的边长,从而求得点D的纵坐标;(2)PA=t,OE=l,利用△DAP∽△POE得到比例式,从而得到有关两个变量的二次函数,求最值即可;(3)分点P位于y轴左侧和右侧两种情况讨论即可得到重叠部分的面积.【解答】解:(1)(﹣3,4);(2)设PA=t,OE=l由∠DAP=∠POE=∠DPE=90°得△DAP∽△POE∴∴l=﹣+=﹣(t﹣)2+∴当t=时,l有最大值即P 为AO 中点时,OE 的最大值为;(3)存在.①点P 点在y 轴左侧时,DE 交AB 于点G , P 点的坐标为(﹣4,0),∴PA=OP ﹣AO=4﹣3=1,由△PAD ≌△EOP 得OE=PA=1∵△ADG ∽△OEG∴AG :GO=AD :OE=4:1∴AG==∴重叠部分的面积==②当P 点在y 轴右侧时,P 点的坐标为(4,0),此时重叠部分的面积为2017年4月9日。

2017中考数学一模试题及答案(精练)

2017中考数学一模试题及答案(精练)

2017年中考数学一模试题及答案(精练)A级基础题1.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出1个小球,其标号大于2的概率为()A.15B.25C.35D.452.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取1张,那么取到字母e的概率为____________.3.2012~2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小4.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出1个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A.3个B.不足3个C.4个D.5个或5个以上5.有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是________.6.在一个不透明的盒子中,共有“一白三黑”四个围棋子,它们除了颜色之外没有其他区别.(1)随机地从盒中提出一子,则提出白子的概率是多少?(2)随机地从盒中提出一子,不放回再提第二子.请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.B级中等题7.从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.8.襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是________.9.在一个口袋中有4个完全相同的小球,把它们分别标上1,2,3,4.小明先随机地摸出1个小球,小强再随机的摸出1个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时,小明获胜,否则小强获胜.(1)若小明摸出的球不放回,求小明获胜的概率;(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.10如图7­2­3,大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A1,A2),(B1,B2)].(1)若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;(2)若从这四只拖鞋中随机地取出两11.(2013年江西)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是()A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物参考答案:1.C2.273.A4.D5.236.解:(1)∵共有“一白三黑”四个围棋子,∴P(白子)=14.(2)画树状图如图73.∵共有12种等可能的结果,恰好提出“一黑一白”子的有6种情况,∴P(一黑一白)=612=12.图737.258.199.解:(1)画树状图如图74.∵共有12种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,∴小明获胜的概率为:12.(2)画树状图如图75.图75∵共有16种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,∴P(小明获胜)=38,P(小强获胜)=58,∵P(小明获胜)≠P(小强获胜),∴他们制定的游戏规则不公平.10.解:(1)∵若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,有A1A2,A1B2,B1B2,B1A2四种情况,恰好匹配的有A1A2,B1B2两种情况,∴P(恰好匹配)=24=12.(2)方法一,画树状图如图76.图76∵所有可能的结果为A1A2,A1B1,A1B2,A2A1,A2B1,A2B2,B1A1,B1A2,B1B2,B2A1,B2A2,B2B1,∴从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.∴P(恰好匹配)=412=13.方法二,列表格如下:A1B2A2B2B1B2-A1B1A2B1-B2B1A1A2-B1A2B2A2-A2A1B1A1B2A1可见,从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.∴P(恰好匹配)=412=13.11.解:(1)A(2)设甲、乙、丙三人的礼物分别记为a,b,c,根据题意画出树状图如图77.一共有6种等可能的情况,三人抽到的礼物分别为abc,acb,bac,bca,cab,cba,3人抽到的都不是自己带来的礼物的情况有bca,cab有2种,所以,P(A)=26=13.中考数学一模试题的内容,希望符合大家的实际需要。

安徽省2017届中考数学一模试卷(解析版)

安徽省2017届中考数学一模试卷(解析版)

2017年安徽省中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确答案的代号天下下表中1.若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2 B.2 C.﹣D.2.二次函数y=x2﹣2x的顶点为()A.(1,1)B.(2,﹣4)C.(﹣1,1)D.(1,﹣1)3.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.B.C.D.14.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A. B.C.D.5.从分别标有数﹣3,﹣2,﹣1,1,2,3的六张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝大于﹣2的概率是()A.B.C.D.6.某人沿斜坡坡度i=1:2的斜坡向上前进了6米,则他上升的高度为()A.3米B.米C.2米D.米7.已知二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≥3 B.k<3 C.k≤3且k≠2 D.k<28.如图,在矩形ABCD中,AB=6,BC=8,点E在对角线BD上,且BE=6,连接AE并延长交DC于点F,则CF等于()A.2 B.3 C.4 D.59.如图,在扇形AOB 中,∠AOB=90°,=,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为2时,则阴影部分的面积为( )A .2π﹣4B .4π﹣8C .2π﹣8D .4π﹣410.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,其对称轴为x=1,则下列结论中错误的是( )A .abc <0B .a ﹣b +c <0C .b 2﹣4ac >0D .3a +c >0二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)二次函数y=x 2+1的最小值是 .12.(5分)如图,点A 、B 、C 在⊙O 上,∠A=36°,则∠O= .13.(5分)如图,△ABC 与△A ′B ′C ′都是等腰三角形,且AB=AC=5,A ′B ′=A ′C ′=3,若∠B +∠B ′=90°,则△ABC 与△A ′B ′C ′的面积比为 .14.(5分)如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后,折痕DE 分别交AB ,AC 于点E 、G ,连接GF ,有下列结论:①∠AGD=112.5°;②tan ∠AED=+1;③四边形AEFG 是菱形;④S △ACD =S △OCD .其中正确结论的序号是 .(把所有正确结论的序号都填在横线上)三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)计算:2cos60°﹣|﹣4sin45°|16.(8分)如图,在△ABC中,∠BAC=45°,AB=AC,D为△ABC内一点,AD=4,如果把△ABD绕点A按逆时针方向旋转,使AB与AC重合,求点D运动的路径长.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)如图,⊙O的半径为2,弦AB=2,点C在弦AB上,AC=AB,求OC的长.18.(8分)某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)要在宽为36m的公路的绿化带MN(宽为4m)的中央安装路灯,路灯的灯臂AD的长为3m,且与灯柱CD成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直.当灯罩的轴线通过公路路面一侧的中间时(除去绿化带的路面部分),照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,参考数据≈1.732)20.(10分)如图,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=.(1)求A、B、C三点的坐标;(2)若将菱形向右平移,菱形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求菱形的平移距离和反比例函数的解析式.六、解答题(本题满分12分)21.(12分)如图,OA是⊙M的直径,点B在x轴上,连接AB交⊙M于点C.(1)若点A的坐标为(0,2),∠ABO=30°,求点B的坐标.(2)若D为OB的中点,求证:直线CD是⊙O的切线.七、解答题(本题满分12分)22.(12分)如图,抛物线的顶点为C(1,﹣2),直线y=kx+m与抛物线交于A、B来两点,其中A点在x轴的正半轴上,且OA=3,B点在y轴上,点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.(1)求直线AB的解析式.(2)设点P的横坐标为x,求点E的坐标(用含x的代数式表示).(3)求△ABE面积的最大值.八、解答题(本题满分14分)23.(14分)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),点B 的坐标为(﹣8,6),直线BC∥x轴,交y轴于点C,将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.(1)四边形OABC的形状是,当α=90°时,的值是.(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值;②如图3,当四边形OA′B′C′的顶点B′落在BC的延长线上时,求△OPB′的面积.(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.2017年安徽省滁州市全椒县中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确答案的代号天下下表中1.若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2 B.2 C.﹣D.【考点】反比例函数图象上点的坐标特征.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(2,﹣1)代入解析式得﹣1=,解得k=﹣2.故选A.【点评】此题主要考查了反比例函数图象上点的坐标特征.把已知点的坐标代入可求出k值,即得到反比例函数的解析式.2.二次函数y=x2﹣2x的顶点为()A.(1,1)B.(2,﹣4)C.(﹣1,1)D.(1,﹣1)【考点】二次函数的性质.【分析】把二次函数化成顶点式,可得出二次函数的顶点坐标.【解答】解:∵y=x2﹣2x=(x﹣1)2﹣1,∴其顶点坐标为(1,﹣1),故选D.【点评】本题主要考查二次函数的顶点坐标,掌握二次函数的顶点式y=a(x﹣h)2+k的顶点坐标为(h,k)是解题的关键.3.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.B.C.D.1【考点】特殊角的三角函数值.【分析】根据AB=2BC直接求sinB的值即可.【解答】解:∵Rt△ABC中,∠C=90°,AB=2BC,∴sinA===;∴∠A=30°∴∠B=60°∴sinB=故选C.【点评】本题考查了锐角三角函数的定义,解决本题时,直接利用正弦的定义求解即可.4.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上边看得到的图形,可得答案.【解答】解:从上边看是一个实线的同心圆,故选:C.【点评】本题考查了简单组合体的三视图,俯视图是从上边看得到的图形.5.从分别标有数﹣3,﹣2,﹣1,1,2,3的六张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝大于﹣2的概率是()A.B.C.D.【考点】概率公式.【分析】根据概率公式可得答案.【解答】解:∵﹣3,﹣2,﹣1,1,2,3的六张卡片中,大于﹣2的有﹣1,1,2,3这4张,∴所抽卡片上的数大于﹣2的概率是=,故选:D.【点评】本题主要考查概率公式,掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数是解题的关键.6.某人沿斜坡坡度i=1:2的斜坡向上前进了6米,则他上升的高度为()A.3米B.米C.2米D.米【考点】解直角三角形的应用﹣坡度坡角问题.【分析】由坡度定义可得位置升高的高度即为坡角所对的直角边.根据题意可得tan∠A=,AB=10m,可解出直角边BC,即得到位置升高的高度.【解答】解:由题意得,BC:AC=1:2.∴BC:AB=1:.∵AB=6m,∴BC=m.故选B.【点评】本题主要考查坡度的定义和解直角三角形的应用,注意画出示意图会使问题具体化.7.已知二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≥3 B.k<3 C.k≤3且k≠2 D.k<2【考点】抛物线与x轴的交点.【分析】根据二次函数图象与x轴有交点可得出关于x的一元二次方程有解,根据根的判别式结合二次项系数非零即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,∴一元二次方程(k﹣2)x2+2x+1=0有解,∴,解得:k≤3且k≠2.故选:C.【点评】本题考查了抛物线与x轴的交点、根的判别式以及解一元一次不等式组,根据根的判别式△≥0结合二次项系数非零找出关于k的一元一次不等式组是解题的关键.8.如图,在矩形ABCD中,AB=6,BC=8,点E在对角线BD上,且BE=6,连接AE并延长交DC于点F,则CF等于()A.2 B.3 C.4 D.5【考点】相似三角形的判定与性质;矩形的性质.【分析】根据勾股定理求出BD,得到DE的长,根据相似三角形的性质得到比例式,代入计算即可求出DF的长,求出CF的长度.【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,又AB=CD=6,BC=AD=8,∴BD==10,∵BE=6,∴DE=10﹣6=4,∵AB∥CD,∴=,即=,解得,DF=4,则CF=CD﹣DF=6﹣4=2,故选:A.【点评】本题考查的是矩形的性质、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的判定定理、性质定理是解题的关键.9.如图,在扇形AOB中,∠AOB=90°,=,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()A.2π﹣4 B.4π﹣8 C.2π﹣8 D.4π﹣4【考点】扇形面积的计算;正方形的性质.【分析】连接OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积﹣△ODC的面积,依此列式计算即可求解.【解答】解:连接OC,如图所示:∵在扇形AOB中∠AOB=90°,=,∴∠COD=45°,∴OD=CD,∴OC==4,∴阴影部分的面积=扇形BOC的面积﹣△ODC的面积=﹣×(2)2=2π﹣4.故选:A.【点评】此题考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,则下列结论中错误的是()A.abc<0 B.a﹣b+c<0 C.b2﹣4ac>0 D.3a+c>0【考点】二次函数图象与系数的关系.【分析】A.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,由a与0的关系并结合抛物线的对称轴判断b与0的关系,即可得出abc与0的关系;B.由二次函数的图象可知当x=﹣1时y<0,据此分析即可;C.利用抛物线与x轴的交点的个数进行分析即可;D.由对称轴x=﹣=1,可得b=﹣2a,又由B知a﹣b+c<0,可得3a+c<0,可判断.【解答】解:A、由抛物线开口向下,可得a<0,由抛物线与y轴的交点在x轴的上方,可得c>0,由抛物线的对称轴为x=1,可得﹣>0,则b>0,∴abc<0,故A正确,不符合题意;B.当x=﹣1时,y<0,则a﹣b+c<0,故B正确,不符合题意;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故C正确,不符合题意;D.∵对称轴x=﹣=1,∴b=﹣2a,∵a﹣b+c<0,∴3a+c<0,故D错误,符合题意;故选D.【点评】本题考查了二次函数图象与系数的关系.关键是熟记二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.二、填空题(本大题共4小题,每小题5分,满分20分)11.二次函数y=x2+1的最小值是1.【考点】二次函数的最值.【分析】根据二次函数解析式得特点可知,当x=0时取得最小值1.【解答】解:由二次函数y=x2+1得到:该抛物线的开口方向向上,且顶点坐标是(0,1).所以二次函数y=x2+1的最小值是1.故答案是:1.【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.12.如图,点A、B、C在⊙O上,∠A=36°,则∠O=72°.【考点】圆周角定理.【分析】根据同弧所对的圆心角是圆周角的2倍得出结论.【解答】解:由图形得:∠O=2∠A=2×36°=72°;故答案为:72°,【点评】本题考查了圆周角与圆心角的关系,属于基础题,比较简单,明确在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.13.如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为25:9.【考点】解直角三角形;等腰三角形的性质.【分析】先根据等腰三角形的性质得到∠B=∠C,∠B′=∠C′,根据三角函数的定义得到AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,然后根据三角形面积公式即可得到结论.【解答】解:过A作AD⊥BC于D,过A′作A′D′⊥B′C′于D′,∵△ABC与△A′B′C′都是等腰三角形,∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,∴AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,∵∠B+∠B′=90°,∴sinB=cosB′,sinB′=cosB,∵S△BAC=AD•BC=AB•sinB•2AB•cosB=25sinB•cosB,S△A′B′C′=A′D′•B′C′=A′B′•cosB′•2A′B′•sinB′=9sinB′•cosB′,∴S△BAC :S△A′B′C′=25:9,故答案为:25:9.【点评】本题考查了互余两角的关系,解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和三角形面积公式.14.如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD 落在BD上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB,AC于点E、G,连接GF,有下列结论:①∠AGD=112.5°;②tan∠AED=+1;③四边形AEFG是菱形;④S△ACD=S△OCD.其中正确结论的序号是①②③.(把所有正确结论的序号都填在横线上)【考点】翻折变换(折叠问题);菱形的性质;解直角三角形.【分析】根据翻转变换的性质、正方形的性质进行计算,判断即可.【解答】解:∵四边形ABCD是正方形,∴∠ADB=45°,由折叠的性质可知,∠ADE=∠BDE=22.5°,∴∠AGD=180°﹣90°﹣22.5°=112.5°,①正确;设AE=x,∵△BEF是等腰直角三角形,∴BE=EF=AE=x,∴x+x=1,解得,x=﹣1,∴tan∠AED==+1,②正确;由同位角相等可知,GF∥AB,EF∥AC,∴四边形AEFG是平行四边形,由折叠的性质可知,EA=EF,∴四边形AEFG是菱形,③正确;=2S△OCD,④错误,由正方形的性质可知,S△ACD故答案为:①②③.【点评】本题考查的是翻转变换的性质、菱形的性质、解直角三角形的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.三、解答题(本大题共2小题,每小题8分,满分16分)15.计算:2cos60°﹣|﹣4sin45°|【考点】实数的运算;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简即可得到结果.【解答】解:原式=2×﹣=1﹣.【点评】此题考查了实数的运算,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.如图,在△ABC中,∠BAC=45°,AB=AC,D为△ABC内一点,AD=4,如果把△ABD绕点A 按逆时针方向旋转,使AB与AC重合,求点D运动的路径长.【考点】轨迹;等腰三角形的性质;旋转的性质.【分析】由△ABD绕点A按逆时针方向旋转,AB与AC重合知旋转角为45°,根据弧长公式可得答案.【解答】解:∵△ABD绕点A按逆时针方向旋转,AB与AC重合,∴旋转角为45°,∴的长为=π.【点评】本题主要考查旋转的性质、弧长公式,熟练掌握旋转的性质得出旋转角度数是解题的关键.四、解答题(本大题共2小题,每小题8分,满分16分)17.如图,⊙O的半径为2,弦AB=2,点C在弦AB上,AC=AB,求OC的长.【考点】垂径定理;勾股定理.【分析】作OH⊥AB于H,根据垂径定理得AH=BH=AB=,再在Rt△BOH中,根据勾股定理得OH=1,由AC=AB得AC=,则CH=AH﹣AC=,然后根据勾股定理可计算出OC的长.【解答】解:作OH⊥AB于H,如图,∵OH⊥AB,∴AH=BH,∴AH=BH=AB=×2=,在Rt△BOH中,OB=2,BH=,∴OH==1,∵AC=AB=×2=,∴CH=AH﹣AC=﹣=,在Rt△OHC中,OC==.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.18.某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.【考点】列表法与树状图法.【分析】(1)由已确定A打第一场,再从其余三队中随机选取一队,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中B、C两队进行比赛的情况,再利用概率公式即可求得答案.【解答】解:(1)∵已确定A打第一场,再从其余三队中随机选取一队,∴恰好选中D队的概率;(2)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,∴P(B、C两队进行比赛)==.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)(2017•全椒县一模)要在宽为36m的公路的绿化带MN(宽为4m)的中央安装路灯,路灯的灯臂AD的长为3m,且与灯柱CD成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直.当灯罩的轴线通过公路路面一侧的中间时(除去绿化带的路面部分),照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,参考数据≈1.732)【考点】解直角三角形的应用.【分析】延长BA,CD交于点P,解直角三角形得到AP=PD•cos30°和BC的长,通过△PAD∽△PCB,得出=,代入数据即可得到结论.【解答】解:如图,延长BA,CD交于点P,∵∠PAD=∠PCB=90°,∠ADC=120°,∴∠P=30°,∵AD=3,∴PD=6,AP=PD•cos30°=3,BC=(18﹣2)÷2+2=10.∵∠P=∠P,∠PAD=∠PCB=90°,∴△PAD∽△PCB,∴=,∴PC==10m,∴CD=PC﹣PD=10﹣6≈11.32m.则应设计11.32m高的灯柱,才能取得最理想的照明效果.【点评】本题考查了相似三角形的性质,直角三角形的性质,锐角三角函数的概念,正确的作出辅助线构造相似三角形是解题的关键.20.(10分)(2017•全椒县一模)如图,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=.(1)求A、B、C三点的坐标;(2)若将菱形向右平移,菱形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求菱形的平移距离和反比例函数的解析式.【考点】待定系数法求反比例函数解析式;菱形的性质;坐标与图形变化﹣平移;解直角三角形.【分析】(1)根据菱形性质得出AC⊥OB,OD=BD,AD=CD,解直角三角形即可得出答案;(2)设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),得出k=2(6﹣x)=6(4﹣x),求出x,即可得出矩形平移后A的坐标,代入反比例函数的解析式求出即可.【解答】解:(1)连接AC,交y轴于D,∵四边形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD,∵OB=4,tan∠BOC=.∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2);(2)B、C落在反比例函数的图象上,设菱形平移后B的坐标是(x,4),C的坐标是(1+x,2),∵B、C落在反比例函数的图象上,∴k=4x=2(1+x),解得x=1,即菱形平移后B的坐标是(1,4),代入反比例函数的解析式得:k=1×4=4,即B、C落在反比例函数的图象上,菱形的平移距离是1,反比例函数的解析式是y=.【点评】本题考查了矩形性质,用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的计算能力.六、解答题(本题满分12分)21.(12分)(2017•全椒县一模)如图,OA是⊙M的直径,点B在x轴上,连接AB交⊙M 于点C.(1)若点A的坐标为(0,2),∠ABO=30°,求点B的坐标.(2)若D为OB的中点,求证:直线CD是⊙O的切线.【考点】切线的判定;坐标与图形性质.【分析】(1)由点A的坐标可知OA的长度,根据∠ABO的度数可知,AB的长度为4,利用勾股定理即可求出OB的长度,从而求出B的坐标.(2)连接OC、MC、证明∠OCB为直角,根据D为OB的中点,可知∠DCO=∠DOC,易知∠OCM=∠COM,所以∠MCO+∠DCO=∠MCD=90°,即可求证MC⊥CD.【解答】解:(1)∵A的坐标为(0,2)∴OA=2,∵∠ABO=30°,∠AOB=90°,∴AB=2OA=4,∴由勾股定理可知:OB=2,∴B(2,0)(2)连接OC,MC∵OA是⊙M的直径,∴∠ACO=90°,∴∠OCB=90°,在Rt△OCB中,D为OB的中点,∴CD=OB=OD,∴∠DCO=∠DOC,∵MC=MO,∴∠OCM=∠COM∵∠MOC+∠DOC=∠AOB=90°,∴∠MCO+∠DCO=∠MCD=90°即MC⊥CD∴直线CD是⊙M的切线.【点评】本题考查切线的判定,解题的关键是连接MC、OC、根据直角三角形斜边上中线的性质,圆周角定理,等腰三角形的性质求出MC⊥CD,本题属于中等题型.七、解答题(本题满分12分)22.(12分)(2017•全椒县一模)如图,抛物线的顶点为C(1,﹣2),直线y=kx+m与抛物线交于A、B来两点,其中A点在x轴的正半轴上,且OA=3,B点在y轴上,点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.(1)求直线AB的解析式.(2)设点P的横坐标为x,求点E的坐标(用含x的代数式表示).(3)求△ABE面积的最大值.【考点】二次函数综合题.【分析】(1)由条件可先求得抛物线解析式,则可求得B点坐标,再利用待定系数法可求得直线AB解析式;(2)由条件可知P、E的横坐标相同,又点E在抛物线上,则可表示出E点坐标;(3)由(2)可用x表示出PE的长,则可用x表示出△ABE的面积,再利用二次函数的性质可求得其最大值.【解答】解:(1)∵抛物线顶点坐标为(1,﹣2),∴可设抛物线解析式为y=a(x﹣1)2﹣2,∵OA=3,且点A在x轴的正半轴上,∴A(3,0),∴0=a(3﹣1)2﹣2,解得a=,∴抛物线解析式为y=(x﹣1)2﹣2=x2﹣x﹣,当x=0时可得y=﹣,∴B(0,﹣),设直线AB解析式为y=kx+b,把A、B坐标代入可得,解得,∴y=x﹣;(2)∵点P为线段AB上的一个动点,且PE⊥x轴,∴点E的横坐标为x,∵点E在抛物线上,∴E点的坐标为(x, x2﹣x﹣);(3)∵点P为线段AB上的一点,∴P(x, x﹣),则E(x, x2﹣x﹣),∴PE=x﹣﹣(x2﹣x﹣)=﹣x2+x,由(2)可知点B到PE的距离x,点A以PE的距离为3﹣x,=PE•x+PE•(3﹣x)=PE•(x+3﹣x)=PE=(﹣x2+x)=﹣x2+x=﹣(x﹣∴S△ABE)2+,∵﹣<0,∴当x=时,S有最大值,最大值为,△ABE∴△ABE面积的最大值为.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、三角形的面积及方程思想等知识.在(1)中求得B点坐标是解题的关键,在(2)中注意E点横坐标与P点横坐标相同是解题的关键,在(3)中用P点坐标表示出△ABE的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.八、解答题(本题满分14分)23.(14分)(2017•全椒县一模)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),点B的坐标为(﹣8,6),直线BC∥x轴,交y轴于点C,将四边形OABC 绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.(1)四边形OABC的形状是矩形,当α=90°时,的值是.(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值;②如图3,当四边形OA′B′C′的顶点B′落在BC的延长线上时,求△OPB′的面积.(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.【考点】几何变换综合题.【分析】(1)根据有一个角是直角的平行四边形进行判断当α=90°时,就是长与宽的比;(2)①利用相似三角形求得CP的比,就可求得BP,PQ的值;②根据勾股定理求得PB′的长,再根据三角形的面积公式进行计算.(3)构造全等三角形和直角三角形,运用勾股定理求得PC的长,进一步求得坐标【解答】解:(1)图1,四边形OA′B′C′的形状是矩形;∵点A的坐标为(﹣8,0),点B(﹣8,6),∴AB∥OC,∵BC∥x轴,∴四边形OABC是平行四边形.又OC⊥OA,∴平行四边形OABC的形状是矩形;当α=90°时,P与C重合,如图1,BP=8,BQ=BP+OC=8+6=14,∴,即是矩形的长与宽的比,则.故答案为矩形,;(2)①图2,∵∠POC=∠B′OA′,∠PCO=∠OA′B′=90°,∴△COP∽△A′OB′.∴,即,∴CP=,BP=BC﹣CP=.同理△B′CQ∽△B′C′O,∴,∴∴CQ=3,BQ=BC+CQ=11.∴,∴;②图3,在△OCP和△B′A′P中,,∴△OCP≌△B′A′P(AAS).∴OP=B′P.设B′P=x,在Rt△OCP中,(8﹣x)2+62=x2,解得x=.=××6=.∴S△OPB′(3)存在这样的点P和点Q,使BP=BQ.点P的坐标是P1(﹣9﹣,6),P2(﹣,6).理由:过点Q作QH⊥OA′于H,连接OQ,则QH=OC′=OC,∵S △POQ =PQ •OC ,S △POQ =OP •QH ,∴PQ=OP .设BP=x ,∵BP=BQ ,∴BQ=2x ,如图4,当点P 在点B 左侧时,OP=PQ=BQ +BP=3x ,在Rt △PCO 中,(8+x )2+62=(3x )2,解得x 1=1+,x 2=1﹣(不符实际,舍去). ∴PC=BC +BP=9+,∴P (﹣9﹣,6).如图5,当点P 在点B 右侧时,∴OP=PQ=BQ ﹣BP=x ,PC=8﹣x .在Rt △PCO 中,(8﹣x )2+62=x 2,解得x=.∴PC=BC ﹣BP=8﹣=, ∴P (﹣,6),综上可知,存在点P (﹣9﹣,6)或(﹣,6),使BP=BQ .。

中考数学一模试卷(含答案)2017

中考数学一模试卷(含答案)2017

2016-2017学年度第二学期九年第一次质量调查一 选择题:1.计算(-3)-(-6)的结果等于( )A.3B.-3C.9D.18 2.计算tan60°的值等于( ) A .33B.23C.1D.33.下列图形中,是中心对称图形但不是轴对称图形的为( )4.将57000000用科学记数法表示应为( )A.570×105B.57×106C.5.7×107D.0.57×1085.如图,是一个由4个相同的正方体组成的立体图形,它的左视图是( )6.分式方程1212=--x x 的解为( ) A.x=-1 B.x=0.5 C.x=1 D.x=2 7.实数a 、b 在数轴上的对应点的位置如图所示,则正确的结论是( )A.a>-2B.a<-3C.a>-bD.a<-b 8.如图,在⊙O 中,OA ⊥BC ,∠AOB=50°,则∠ADC 等于( )A.15°B.25°C.30°D.50°9.将五边形纸片ABCDE 按如图方式折叠,折痕为AF ,点E ,D 分别落在E /,D /点.已知∠AFC=76°,则∠CFD /等于( )A.15°B.25°C.28°D.31°10.将函数y=x 2+x 的图象向右平移a(a>0)个单位,得到函数y=x 2-3x+2的图象,则a 的值为( ) A.1 B.2 C.3 D.411.科学证实:近视眼镜的度数y(度)与镜片焦距x(m)成反比例关系,如果500度近视眼镜片的焦距为0.2m ,则表示y 与x 函数关系的图象大致是( )12.已知抛物线y=x2-(2m-1)x+2m 不经过第三象限,且当x>2时,函数值y 随x 的增大而增大,则实数m 的取值范围是( )A.0≤m ≤1.5B.m ≥1.5C.0≤m ≤1D.0<m ≤1.5 二 填空题:13.计算(x2)4的结果等于 ; 14.化简399622---++x xx x x 的结果是 ; 15.一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面数字是5的概率为 ;16.如图,一次函数3432+-=x y 的图象与反比例函数y=)0(<x xk的图象交于点A ,与x 轴交于点B ,△AOB 的面积为2,则k 的值等于 ;17.如图为等边三角形ABC 与正方形DEFG 的重叠情形,其中D 、E 两点分别在AB ,BC 上,且BD=BE ,若AC=19,GF=6,则点F 到AC 的距离为 ;18.如图①,如图②是由边长相等的小正方形组成的网格.(1)如图①,点A ,B ,C ,D 均在格点上,连接AC ,BD ,CD ,则tan ∠ACD 的值等于 ; (2)如图②,点M ,N 均落在格点上,在网格中,用无刻度的直尺,画出MON ,需满足以下两个条件: ①tan ∠MON=3;②角的顶点O 不在网格线上;并简要说明点O 的位置时如何找到的(不要求证明) .三 解答题: 19.解不等式组:⎩⎨⎧≥--≥+)2(153)1(123x x x ,请结合题意填空,完成本题的解答:(1)解不等式①,得: ; (2)解不等式②,得: ; (3)把不等式①和②的解集在数轴上表示出来:(4)原不等式的解集为: .20.甲、乙两校参加区举办的学生英语口语竞赛,两校参赛人人数相等,比赛结束后,对学生的乘积进行了统计,并绘制了如下尚不完全的统计图表.(1)在图1中,“7分”所在扇形的圆心角度数等于;(2)甲校参赛人数为;(3)请求出甲校的平均分、中位数;21.已知AB为⊙O的直径,C为⊙O上一点,AB=2AC.(1)如图1,点P时弧BC上一点,求∠APC的大小;(2)如图2,过点C作ɑO的切线MC,过点B作BD⊥MC于点D,BD与⊙O交于点E,若AB=4,求CE的长.22.如图,某幢大楼顶部有一块广告牌CD,在A处测得D点的仰角为45°,在B处测得C点的仰角为60°,A,B,E三点在一条直线上,且与地面平行,若AB=8m,BE=15m,求这块广告牌CD的高度.(取733 ,计算结果保.1留整数)23.A市和B市分别有库存某种机器12台和6台,现决定支援C市10台,D市8台,已知A市调动一台机器到C 市、D市的运费分别为400元和800元;从B市调动一台机器到C市、D市的运费分别为300元和500元.(1)设从B市运往C市机器x台,填写下表.表一:表二:(2)求使总运费最低的调运方案,最低总运费是多少?24.如图,在平面直角坐标系中,直角三角形OAB的顶点O在坐标原点,A(2,0),B(0,32),将△OAB沿y轴翻折,得△OCB.(1)求OCB的度数;(2)动点P在线段CA上从点C向点A运动,PDBC于点D,把△PCD沿y轴翻折,得△QAE,设△ABC被△PCD和△QAE盖住部分的面积为S1,未被盖住的部分的面积为S2.①设CP=a(a>0),用含a的代数式分别表示S1,S2;②直接写出当S1=S2时点P的坐标.25.已知O点为坐标原点,抛物线y1=ax2+bx+c(a≠0)与y轴交于点C,且O,C两点间的距离为3.(1)求点C的坐标;(2)抛物线y1=ax2+bx+c(a≠0)与x轴交于点A(x1,0),B(x2,0),x1∙x2<0,|x1|+|x2|=4.点A,C在直线y2=-3x+t上.①求该抛物线的顶点坐标;②将抛物线y1=ax2+bx+c(a≠0)向左平移n(n>0)个单位,记平移后y随x的增大而增大的部分为P,直线y2=-3x+t 向下平移n个单位,当平移后的直线与P有公共点,求2n2-5n的最小值.。

2017年河北省石家庄市中考数学一模试卷附答案解析

2017年河北省石家庄市中考数学一模试卷附答案解析

2017年河北省石家庄市中考数学一模试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分)1.﹣7的相反数是()A.7 B.﹣7 C.D.﹣2.下列图形中,∠2>∠1的是()A.B.C.D.3.若两个非零的有理数a、b,满足:|a|=a,|b|=﹣b,a+b<0,则在数轴上表示数a、b的点正确的是()A.B.C. D.4.在6×6方格中,将图1中的图形N平移后位置如图2所示,则图形N的平移方法中,正确的是()A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格5.下列运算中,正确的是()A.4m﹣m=3 B.﹣(m﹣n)=m+n C.(m2)3=m6D.m2÷m2=m6.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()A.80°B.50°C.40°D.20°7.关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出p,则p的值是()A.﹣ B.C.﹣ D.8.如图,己知△ABC,任取一点O,连AO,BO,CO,并取它们的中点D,E,F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF的周长比为1:2;④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.49.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④10.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分11.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是()A.B.C. D.12.某农场开挖一条长480米的渠道,开工后每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时所列方程正确的是()A.﹣=4 B.﹣=20C.﹣=4 D.﹣=413.在平面直角坐标系中,点A、B、C、D是坐标轴上的点且点C坐标是(0,﹣1),AB=5,点(a,b)在如图所示的阴影部分内部(不包括边界),已知OA=OD=4,则a的取值范围是()A.B.C.D.14.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.15.如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.4016.如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段PD B.线段PC C.线段PE D.线段DE二、填空题(本大题共3个小题,每小题3分,共9分)17.若m、n互为倒数,则mn2﹣(n﹣1)的值为.18.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为.19.对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)(t 为常数)称为这两个函数的“再生二次函数”.其中t是不为零的实数,其图象记作抛物线F,现有点A(2,0)和抛物线F上的点B(﹣1,n),下列结论正确的有.①n的值为6;②点A在抛物线F上;③当t=2时,“再生二次函数”y在x>2时,y随x的增大而增大④当t=2时,抛物线F的顶点坐标是(1,2)三、解答题(本大题共7小题,共69分,解答时应写出文字说明、证明过程或演算步骤)20.请你阅读小明和小红两名同学的解题过程,并回答所提出的问题.计算: +问:小明在第步开始出错,小红在第步开始出错(写出序号即可);请你给出正确解答过程.21.某学校为了丰富学生课余生活,决定开设以下体育课外活动项目:A.版画B.保龄球C.航模D.园艺种植,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的保龄球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加保龄球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)22.在学习三角形中位线的性质时,小亮对课本给出的解集办法进行了认真思考:小亮发现:可能证法的实质是用中心对称的方法来构造全等三角形请你利用小亮的发现解决下列问题:(1)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF.请你帮助小亮写出辅助线作法并完成论证过程;证明:.(2)解决问题:如图3,在△ABC中,∠B=45°,AB=10,BC=8,DE是△ABC的中位线,过点D、E作DF∥EG,分别交BC于F、G,过点A作MN∥BC,分别与FD、GE的延长线交于M、N,则四边形MFGN周长的最小值是.23.小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y (℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤8时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明在通电开机后即外出散步,请你预测小明散步45分钟回到家时,饮水机内的温度约为多少℃?24.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,种植花卉的利润y2与投资量x的平方成正比例关系,并得到了表格中的数据.(1)分别求出利润y1与y2关于投资量x的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和数目共获利利润W万元,直接写出W关于m的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?(3)若该专业户想获利不低于22万,在(2)的条件下,直接写出投资种植花卉的金额m的范围.25.如图所示,点A为半圆O直径MN所在直线上一点,射线AB垂直于MN,垂足为A,半圆绕M点顺时针转动,转过的角度记作a;设半圆O的半径为R,AM的长度为m,回答下列问题:探究:(1)若R=2,m=1,如图1,当旋转30°时,圆心O′到射线AB的距离是;如图2,当a=°时,半圆O与射线AB相切;(2)如图3,在(1)的条件下,为了使得半圆O转动30°即能与射线AB相切,在保持线段AM 长度不变的条件下,调整半径R的大小,请你求出满足要求的R,并说明理由.(3)发现:(3)如图4,在0°<α<90°时,为了对任意旋转角都保证半圆O与射线AB能够相切,小明探究了cosα与R、m两个量的关系,请你帮助他直接写出这个关系;cosα=(用含有R、m的代数式表示)拓展:(4)如图5,若R=m,当半圆弧线与射线AB有两个交点时,α的取值范围是,并求出在这个变化过程中阴影部分(弓形)面积的最大值(用m表示)26.如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,BD=8cm.点M从点A出发,沿AC的方向匀速运动,同时直线PQ由点B出发,沿BA的方向匀速运动,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒(0<t≤5).线段CM的长度记作y甲,线段BP的长度记作y乙,y甲和y乙关于时间t的函数变化情况如图所示.(1)由图2可知,点M的运动速度是每秒cm,当t为何值时,四边形PQCM是平行四边形?在图2中反映这一情况的点是;(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;=S△ABC?若存在,求出t的值;若不存在,说明理由;(3)是否存在某一时刻t,使S四边形PQCM(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.2017年河北省石家庄市中考数学一模试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分)1.﹣7的相反数是()A.7 B.﹣7 C.D.﹣【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣7的相反数是7,故选:A.2.下列图形中,∠2>∠1的是()A.B.C.D.【考点】平行四边形的性质;对顶角、邻补角;平行线的性质;三角形的外角性质.【分析】根据对顶角相等、平行四边形的性质、三角形外角的性质以及平行线的性质求解,即可求得答案.【解答】解:A、∠1=∠2(对顶角相等),故本选项错误;B、∠1=∠2(平行四边形对角相等),故本选项错误;C、∠2>∠1(三角形的一个外角大于和它不相邻的任何一个内角),故本选项正确;D、如图,∵a∥b,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2.故本选项错误.故选C.3.若两个非零的有理数a、b,满足:|a|=a,|b|=﹣b,a+b<0,则在数轴上表示数a、b的点正确的是()A.B.C. D.【考点】数轴;绝对值.【分析】根据|a|=a得出a是正数,根据|b|=﹣b得出b是负数,根据a+b<0得出b的绝对值比a大,在数轴上表示出来即可.【解答】解:∵a、b是两个非零的有理数满足:|a|=a,|b|=﹣b,a+b<0,∴a>0,b<0,∵a+b<o,∴|b|>|a|,∴在数轴上表示为:故选B.4.在6×6方格中,将图1中的图形N平移后位置如图2所示,则图形N的平移方法中,正确的是()A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格【考点】生活中的平移现象.【分析】根据题意,结合图形,由平移的概念求解.【解答】解:观察图形可知:从图1到图2,可以将图形N向下移动2格.故选:D.5.下列运算中,正确的是()A.4m﹣m=3 B.﹣(m﹣n)=m+n C.(m2)3=m6D.m2÷m2=m【考点】整式的混合运算.【分析】根据合并同类项的法则,只把系数相加减,字母与字母的次数不变;去括号法则,括号前面是负号,去掉括号和负号,括号里的各项都变号;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、应为4m﹣m=3m,故本选项错误;B、应为﹣(m﹣n)=﹣m+n,故本选项错误;C、应为(m2)3=m2×3=m6,正确;D、m2÷m2=1,故本选项错误.故选C.6.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=()A.80°B.50°C.40°D.20°【考点】圆周角定理.【分析】先根据平行线的性质得∠BCD=∠ABC=40°,然后根据圆周角定理求解.【解答】解:∵AB∥CD,∴∠BCD=∠ABC=40°,∴∠BOD=2∠BCD=80°.故选A.7.关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出p,则p的值是()A.﹣ B.C.﹣ D.【考点】二元一次方程组的解.【分析】将x=1代入方程x+y=3求得y的值,将x、y的值代入x+py=0,可得关于p的方程,可求得p.【解答】解:根据题意,将x=1代入x+y=3,可得y=2,将x=1,y=2代入x+py=0,得:1+2p=0,解得:p=﹣,故选:A.8.如图,己知△ABC,任取一点O,连AO,BO,CO,并取它们的中点D,E,F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF的周长比为1:2;④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.4【考点】位似变换.【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【解答】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.9.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④B.②③C.①②④D.①③④【考点】估算无理数的大小;算术平方根;无理数;实数与数轴;正方形的性质.【分析】先利用勾股定理求出a=3,再根据无理数的定义判断①;根据实数与数轴的关系判断②;利用估算无理数大小的方法判断③;利用算术平方根的定义判断④.【解答】解:∵边长为3的正方形的对角线长为a,∴a===3.①a=3是无理数,说法正确;②a可以用数轴上的一个点来表示,说法正确;③∵16<18<25,4<<5,即4<a<5,说法错误;④a是18的算术平方根,说法正确.所以说法正确的有①②④.故选C.10.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【考点】众数;统计表;加权平均数;中位数.【分析】结合表格根据众数、平均数、中位数的概念求解.【解答】解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选D.11.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是()A.B.C.D.【考点】等腰三角形的判定.【分析】如果一个三角形有两个角相等,那么这两个角所对的边也相等,据此进行判断即可.【解答】解:A、如图所示,△ACD和△BCD都是等腰三角形;B、如图所示,△ABC不能够分成两个等腰三角形;C、如图所示,△ACD和△BCD都是等腰三角形;D、如图所示,△ACD和△BCD都是等腰三角形;故选:B.12.某农场开挖一条长480米的渠道,开工后每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时所列方程正确的是()A.﹣=4 B.﹣=20C.﹣=4 D.﹣=4【考点】由实际问题抽象出分式方程.【分析】本题的关键描述语是:“提前4天完成任务”;等量关系为:原计划用时﹣实际用时=4.【解答】解:设原计划每天挖x米,那么原计划用时为:,实际用时为:.根据题意,得:﹣=4,故选D.13.在平面直角坐标系中,点A、B、C、D是坐标轴上的点且点C坐标是(0,﹣1),AB=5,点(a,b)在如图所示的阴影部分内部(不包括边界),已知OA=OD=4,则a的取值范围是()A.B.C.D.【考点】两条直线相交或平行问题;在数轴上表示不等式的解集.【分析】根据勾股定理即可得出OB的长度,由此可得出点B的坐标,由OA、OD的长度可得出点A、D的坐标,根据点A、D、B、C的坐标利用待定系数法即可求出直线AD、BC的解析式,联立两直线解析式成方程组,通过解方程组即可求出其交点的坐标,再根据点(a,b)在如图所示的阴影部分内部(不包括边界)结合点B以及交点的横坐标即可得出结论.【解答】解:∵AB=5,OA=4,∴OB==3,∴点B(﹣3,0).∵OA=OD=4,∴点A(0,4),点D(4,0).设直线AD的解析式为y=kx+b,将A(0,4)、D(4,0)代入y=kx+b,,解得:,∴直线AD的解析式为y=﹣x+4;设直线BC的解析式为y=mx+n,将B(﹣3,0)、C(0,﹣1)代入y=mx+n,,解得:,∴直线BC的解析式为y=﹣x﹣1.联立直线AD、BC的解析式成方程组,,解得:,∴直线AD、BC的交点坐标为(,﹣).∵点(a,b)在如图所示的阴影部分内部(不包括边界),∴﹣3<a<.故选D.14.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.【考点】作图—基本作图.【分析】根据过直线外一点作已知直线的垂线作图即可求解.【解答】解:A、根据垂径定理作图的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;B、根据直径所对的圆周角是直角的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;C、根据相交两圆的公共弦的性质可知,CD是Rt△ABC斜边AB上的高线,不符合题意;D、无法证明CD是Rt△ABC斜边AB上的高线,符合题意.故选:D.15.如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40【考点】反比例函数与一次函数的交点问题;反比例函数图象上点的坐标特征;菱形的性质.【分析】过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可=S菱形OBCA,结合菱形的面积公式即可得出结论.得出S△AOF【解答】解:过点A作AM⊥x轴于点M,如图所示.设OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM==a,∴点A的坐标为(a,a).∵点A在反比例函数y=的图象上,∴a×a==48,解得:a=10,或a=﹣10(舍去).∴AM=8,OM=6,OB=OA=10.∵四边形OACB是菱形,点F在边BC上,=S菱形OBCA=OB•AM=40.∴S△AOF故选D.16.如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段PD B.线段PC C.线段PE D.线段DE【考点】动点问题的函数图象.【分析】设出等边三角形的边长,根据等边三角形的性质确定各个线段取最小值时,x的范围,结合图象得到答案.【解答】解:设边长AC=a,则0<x<a,根据题意和等边三角形的性质可知,当x=a时,线段PE有最小值;当x=a时,线段PC有最小值;当x=a时,线段PD有最小值;线段DE的长为定值.故选:C.二、填空题(本大题共3个小题,每小题3分,共9分)17.若m、n互为倒数,则mn2﹣(n﹣1)的值为1.【考点】代数式求值;倒数.【分析】由m,n互为倒数可知mn=1,代入代数式即可.【解答】解:因为m,n互为倒数可得mn=1,所以mn2﹣(n﹣1)=n﹣(n﹣1)=1.18.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为2π.【考点】圆锥的计算.【分析】先利用三角函数计算出BO,再利用勾股定理计算出AB,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算圆锥的侧面积.【解答】解:如图,∠BAO=30°,AO=,在Rt△ABO中,∵tan∠BAO=,∴BO=tan30°=1,即圆锥的底面圆的半径为1,∴AB==2,即圆锥的母线长为2,∴圆锥的侧面积=•2π•1•2=2π.故答案为2π.19.对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)(t 为常数)称为这两个函数的“再生二次函数”.其中t是不为零的实数,其图象记作抛物线F,现有点A(2,0)和抛物线F上的点B(﹣1,n),下列结论正确的有①②③.①n的值为6;②点A在抛物线F上;③当t=2时,“再生二次函数”y在x>2时,y随x的增大而增大④当t=2时,抛物线F的顶点坐标是(1,2)【考点】二次函数的性质;一次函数的性质;一次函数图象上点的坐标特征.【分析】①已知点B在抛物线E上,将该点坐标代入抛物线E的解析式中直接求解,即可得到n 的值.②将点A的坐标代入抛物线E上直接进行验证即可;③代入t=2得到二次函数,从而确定其增减性即可.④将t的值代入“再生二次函数”中,通过配方可得到顶点的坐标.【解答】解:①将x=﹣1代入抛物线E的解析式中,得:n=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=6,正确.②将x=2代入y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4),得y=0,∴点A(2,0)在抛物线E上,正确.③当t=2时,y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=2x2﹣4x=2(x﹣1)2﹣2,对称轴为x=1,开口向上,∴当x>2时,y随x的增大而增大,正确;④将t=2代入抛物线E中,得:y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)=2x2﹣4x=2(x﹣1)2﹣2,∴此时抛物线的顶点坐标为:(1,﹣2),错误;故答案为:①②③三、解答题(本大题共7小题,共69分,解答时应写出文字说明、证明过程或演算步骤)20.请你阅读小明和小红两名同学的解题过程,并回答所提出的问题.计算: +问:小明在第②步开始出错,小红在第②步开始出错(写出序号即可);请你给出正确解答过程.【考点】分式的加减法.【分析】根据分式的加减,可得答案.【解答】(1)②,②原式=﹣=.21.某学校为了丰富学生课余生活,决定开设以下体育课外活动项目:A.版画B.保龄球C.航模D.园艺种植,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200人;(2)请你将条形统计图(2)补充完整;(3)在平时的保龄球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加保龄球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由A类有20人,所占扇形的圆心角为36°,即可求得这次被调查的学生数;(2)首先求得C项目对应人数,即可补全统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式即可求得答案.【解答】解:(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷=200(人);故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人);补充如图.(3)画树状图得:∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)==.22.在学习三角形中位线的性质时,小亮对课本给出的解集办法进行了认真思考:小亮发现:可能证法的实质是用中心对称的方法来构造全等三角形请你利用小亮的发现解决下列问题:(1)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF.请你帮助小亮写出辅助线作法并完成论证过程;证明:延长AD至点M,使MD=FD,连接MC,在△BDF和△CDM中,,∴△BDF≌△CDM(SAS).∴MC=BF,∠M=∠BFM.∵EA=EF,∴∠EAF=∠EFA,∵∠AFE=∠BFM,∴∠M=∠MAC,∴AC=MC,∴AC=BF;.(2)解决问题:如图3,在△ABC中,∠B=45°,AB=10,BC=8,DE是△ABC的中位线,过点D、E作DF∥EG,分别交BC于F、G,过点A作MN∥BC,分别与FD、GE的延长线交于M、N,则四边形MFGN周长的最小值是10+8.【考点】三角形综合题.【分析】(1)先判断出△BDF≌△CDM进而得出MC=BF,∠M=∠BFM.再判断出∠M=∠MAC得出AC=MC即可得出结论;(2)先判断出四边形MFGN是平行四边形,再判断出MN=FG=DE=4,进而判断出MF⊥BC时,四边形MFGN的周长最小,最后构造出直角三角形求出AH即可得出结论.【解答】(1)延长AD至点M,使MD=FD,连接MC,在△BDF和△CDM中,,∴△BDF≌△CDM(SAS).∴MC=BF,∠M=∠BFM.∵EA=EF,∴∠EAF=∠EFA,∵∠AFE=∠BFM,∴∠M=∠MAC,∴AC=MC,∴BF=AC;故答案为:延长AD至点M,使MD=FD,连接MC,在△BDF和△CDM中,,∴△BDF≌△CDM(SAS).∴MC=BF,∠M=∠BFM.∵EA=EF,∴∠EAF=∠EFA,∵∠AFE=∠BFM,∴∠M=∠MAC,∴AC=MC,∴BF=AC;(2)如图,∵MN∥BC,FM∥GN,∴四边形MFGN是平行四边形,∴MF=NG,MN=FG,∵DE是△ABC的中位线,∴DE=BC=4,DE∥BC,∴MN=FG=BC=4,∴四边形MFGN周长=2(MF+FG)=2MF+8,∴MF⊥BC时,MF最短,即:四边形MFGN的周长最小,过点A作AH⊥BC于H,∴FM=AH在Rt△ABH中,∠B=45°,AB=10,∴AH==5,∴四边形MFGN的周长最小为2MF+8=10+8.故答案为10+8.23.小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y (℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤8时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明在通电开机后即外出散步,请你预测小明散步45分钟回到家时,饮水机内的温度约为多少℃?【考点】反比例函数的应用.【分析】(1)利用待定系数法代入函数解析式求出即可;(2)首先求出反比例函数解析式进而得出t的值;(3)利用已知由x=5代入求出饮水机内的温度即可.【解答】解:(1)当0≤x≤8时,设水温y(℃)与开机时间x(分)的函数关系为:y=kx+b,依据题意,得,解得:,故此函数解析式为:y=10x+20;(2)在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为:y=,依据题意,得:100=,即m=800,故y=,当y=20时,20=,解得:t=40;(3)∵45﹣40=5≤8,∴当x=5时,y=10×5+20=70,答:小明散步45分钟回到家时,饮水机内的温度约为70℃.24.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,种植花卉的利润y2与投资量x的平方成正比例关系,并得到了表格中的数据.(1)分别求出利润y1与y2关于投资量x的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和数目共获利利润W万元,直接写出W关于m的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?(3)若该专业户想获利不低于22万,在(2)的条件下,直接写出投资种植花卉的金额m的范围.【考点】二次函数的应用.【分析】(1)根据题意设y1=kx、y2=ax2,将表格中数据分别代入求解可得;(2)由种植花卉m万元(0≤m≤8),则投入种植树木(8﹣m)万元,根据“总利润=花卉利润+树木利润”列出函数解析式,利用二次函数的性质求得最值即可;(3)根据获利不低于22万,列出不等式求解可得.【解答】解:(1)设y1=kx,由表格数据可知,函数y1=kx的图象过(2,4),∴4=k•2,解得:k=2,故利润y1关于投资量x的函数关系式是y1=2x(x≥0);∵设y2=ax2,由表格数据可知,函数y2=ax2的图象过(2,2),∴2=a•22,解得:a=,故利润y2关于投资量x的函数关系式是:y2=x2(x≥0);(2)因为种植花卉m万元(0≤m≤8),则投入种植树木(8﹣m)万元,w=2(8﹣m)+m2=m2﹣2m+16=(m﹣2)2+14,∵a=0.5>0,0≤m≤8,∴当m=2时,w的最小值是14,∵a=>0,∴当m>2时,w随m的增大而增大∵0≤m≤8,∴当m=8时,w的最大值是32,答:他至少获得14万元利润,他能获取的最大利润是32万元.(3)根据题意,当w=22时,(m﹣2)2+14=22,解得:m=﹣2(舍)或m=6,故:6≤m≤8.25.如图所示,点A为半圆O直径MN所在直线上一点,射线AB垂直于MN,垂足为A,半圆绕M点顺时针转动,转过的角度记作a;设半圆O的半径为R,AM的长度为m,回答下列问题:探究:(1)若R=2,m=1,如图1,当旋转30°时,圆心O′到射线AB的距离是+1;如图2,当a=60°时,半圆O与射线AB相切;(2)如图3,在(1)的条件下,为了使得半圆O转动30°即能与射线AB相切,在保持线段AM 长度不变的条件下,调整半径R的大小,请你求出满足要求的R,并说明理由.(3)发现:(3)如图4,在0°<α<90°时,为了对任意旋转角都保证半圆O与射线AB能够相切,小明探究了cosα与R、m两个量的关系,请你帮助他直接写出这个关系;cosα=(用含有R、m的代数式表示)拓展:(4)如图5,若R=m,当半圆弧线与射线AB有两个交点时,α的取值范围是90°<α≤120°,并求出在这个变化过程中阴影部分(弓形)面积的最大值(用m表示)【考点】圆的综合题.【分析】(1)如图1中,作O′E⊥AB于E,MF⊥O′E于F.则四边形AMFE是矩形,EF=AM=1.如。

2017中考数学一模模拟试题(含答案)

2017中考数学一模模拟试题(含答案)

2017中考数学一模模拟试题(含答案) A级基础题1.要使分式1x-1有意义,则x的取值范围应满足( )A.x=1B.x≠0C.x≠1D.x=02.(2013年贵州黔西南州)分式x2-1x+1的值为零,则x的值为( )A.-1B.0C.±1D.13.(2013年山东滨州)化简a3a,正确结果为( )A.aB.a2C.a-1D.a-24.约分:56x3yz448x5y2z=________;x2-9x2-2x-3=________.5.已知a-ba+b=15,则ab=__________.6.当x=______时,分式x2-2x-3x-3的值为零.7.(2013年广东汕头模拟)化简:1x-4+1x+4÷2x2-16.8.(2012年浙江衢州)先化简x2x-1+11-x,再选取一个你喜欢的数代入求值.9.先化简,再求值:m2-4m+4m2-1÷m-2m-1+2m-1,其中m=2.B级中等题10.(2012年山东泰安)化简:2mm+2-mm-2÷mm2-4=________.11.(2013年河北)若x+y=1,且x≠0,则x+2xy+y2x÷x+yx的值为________.12.(2013年贵州遵义)已知实数a满足a2+2a-15=0,求1a+1-a+2a2-1÷a+1a+2a2-2a+1的值.C级拔尖题13.(2012年四川内江)已知三个数x,y,z满足xyx+y=-2,yzz+y=34,zxz+x=-34,则xyzxy+yz+zx的值为________.14.先化简再求值:ab+ab2-1+b-1b2-2b+1,其中b-2+36a2+b2-12ab=0.参考答案1.C2.D3.B4.7z36x2y x+3x+15.326.-17.解:原式=x+4+x-4x+4x-4•x+4x-4 2=x+4+x-42=x.8.解:原式=x2-1x-1=x+1,当x=2时,原式=3(除x=1外的任何实数都可以).9.解:原式=m-22m+1m-1•m-1m-2+2m-1=m-2m+1+2m-1=m-2m-1+2m+1m+1m-1=m2-m+4m+1m-1,当m=2时,原式=4-2+43=2.10.m-6 11.112.解:原式=1a+1-a+2a+1a-1•a-12a+1a+2=1a+1-a-1a+12=2a+12,∵a2+2a-15=0,∴(a+1)2=16.∴原式=216=18.13.-4 解析:由xyx+y=-2,得x+yxy=-12,裂项得1y+1x=-12.同理1z+1y=43,1x+1z=-43.所以1y+1x+1z+1y+1x+1z=-12+43-43=-12,1z+1y+1x=-14.于是xy+yz+zxxyz=1z+1y+1x= -14,所以xyzxy+yz+zx=-4.14.解:原式=a b+1b+1b-1+b-1b-12=ab-1+1b-1=a+1b-1.由b-2+36a2+b2-12ab=0,得b-2+(6a-b)2=0,∴b=2,6a=b,即a=13,b=2.∴原式=13+12-1=43.精心整理,仅供学习参考。

2017中考数学模拟考试题含答案(精选5套)

2017中考数学模拟考试题含答案(精选5套)

2017年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B.23C.2D.32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×1010 4. 估计8-1的值在( ) A. 0到1之间 B. 1到2之间 C. 2到3之间 D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名 C. 400名 D. 300名8. 用配方法解一元二次方程x 2 + 4x – 5 = 0,此方程可变形为( )A. (x + 2)2 = 9B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2 =1 9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( )A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x -1=(x - 1)2B. - x 2 +(-2)2 =(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2 = x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A.3 B. 23C.23D. 1圆弧 角 扇形菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)12. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 .15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22nm m -.20. (本小题满分6分)3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°. 小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF = 1米,从E处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度. (参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(第21题图)(第23题图)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ; (2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(第24题图)(第26题图)2017年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分∴原不等式组的解是x≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD平分∠ABC,∠ABC = 72°,∴∠ABD =21∠ABC = 36°,…………4分∵AB = AC,∴∠C =∠ABC = 72°,…………5分∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分22. 解:(1)观察条形统计图,可知这组样本数据的平均数是_x=50551841737231⨯+⨯+⨯+⨯+⨯ =3.3,…………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多,∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+= 3.∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900.∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt△BDC中,∠BDC = 90°,BC = 63米,∠BCD = 30°,∴DC = BC·cos30°……………………1分3= 9,……………………2分= 63×2∴DF = DC + CF = 9 + 1 = 10,…………………3分∴GE = DF = 10. …………………4分在Rt△BGE中,∠BEG = 20°,∴BG = CG·tan20°…………………5分=10×0.36=3.6,…………………6分在Rt△AGE中,∠AEG = 45°,∴AG = GE = 10,……………………7分∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB的高度约为6.4米. ……………8分24. 解(1)如图,连接OA,则OA⊥AP. ………………1分∵MN⊥AP,∴MN∥OA. ………………2分∵OM∥AP,∴四边形ANMO是矩形.∴OM = AN. ………………3分(2)连接OB,则OB⊥AP,∵OA = MN,OA = OB,OM∥BP,∴OB = MN,∠OMB =∠NPM.∴Rt△OBM≌Rt△MNP. ………………5分∴OM = MP.设OM = x,则NP = 9- x. ………………6分在Rt△MNP中,有x2 = 32+(9- x)2.∴x = 5. 即OM = 5 ……………8分25. 解:(1)设A型每套x元,则B型每套(x + 40)元. ……………1分∴4x + 5(x + 40)=1820. ………………………………………2分∴x = 180,x + 40 = 220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元. ……………3分(2)设购买A型课桌凳a套,则购买B型课桌凳(200 - a)套.2(200 - a),a≤3∴……………4分180 a + 220(200- a)≤40880.解得78≤a≤80. ……………5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. ……………7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2017年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、 数1,5,0,2-中最大的数是( ) A 、1- B 、5 C 、0 D 、22、9的立方根是( )A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=( ) A 、4 B 、3 C 、-4 D 、-34、如图是某几何题的三视图,下列判断正确的是( )A 、几何体是圆柱体,高为2B 、几何体是圆锥体,高为2C 、几何体是圆柱体,半径为2D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( )A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>,则一定成立的是( )BDECA22 主视图左视图俯视图OBOA ‘A、120y y>>B、12y y>>C、120y y>>D、21y y>>10、如图,⊙O和⊙O′相交于A、B两点,且OO’=5,OA=3,O’B=4,则AB=( )A、5B、2.4C、2.5D、4.8二、填空题11、正五边形的外角和为12、计算:3m m-÷=13、分解因式:2233x y-=14、如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A到控制点B的距离约为。

2017中考数学一模测试卷(含答案)

2017中考数学一模测试卷(含答案)

2017中考数学一模测试卷(含答案)中考数学是历年“拉分”科目,很多学生与自己心仪的高中失之交臂,主要原因就是数学“失手”。

下文为大家准备了中考数学一模测试卷的内容。

A级基础题1.在数0,2,-3,-1.2中,属于负整数的是( )A.0B.2C.-3D.-1.22.下列四个实数中,绝对值最小的数是( )A.-5B.-2C.1D.43.-2是2的( )A.相反数B.倒数C.绝对值D.算术平方根4.-3的倒数是( )A.3B.-3C.13D.-135.下列各式,运算结果为负数的是( )A.-(-2)-(-3)B.(-2)×(-3)C.(-2)2D.(-3)-36.计算:12-7×(-4)+8÷(-2)的结果是( )A.-24B.-20C.6D.367.如果+30m表示向东走30m,那么向西走40m表示为______________.8.计算:-(-3)=______,|-3|=______,(-3)-1=______,(-3)2=______.9.若a=1.9×105,b=9.1×104,则a______b(填“”).10.计算:|-5|-(2-3)0+6×13-12+(-1)2.B级中等题11.实数a,b在数轴上的位置如图1-1-4所示,以下说法正确的是( )图1-1-4A.a+b=0B.b0D.|b| 12.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.0000016秒.这里的0.0000016秒用科学记数法表示__________秒.13.观察下列顺序排列的等式:a1=1-13,a2=12-14,a3=13-15,a4=14-16……试猜想第n个等式(n为正整数):an=__________.14.计算:|1-3|+-12-3-2cos30°+(π-3)0.C级拔尖题15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=2013,且AO=2BO,则a+b的值为________.16.观察下列等式:第1个等式:a1=11×3=12×1-13;第2个等式:a2=13×5=12×13-15;第3个等式:a3=15×7=12×15-17;第4个等式:a4=17×9=12×17-19;……请解答下列问题:(1)按以上规律列出第5个等式:a5=__________________=__________________;(2)用含有n的代数式表示第n个等式:an=__________________=__________________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.1.C2.C3.A4.D5.D6.D7.-40m 8.3 3 -13 9 9.>10.解:原式=5-1+(2-3)+1=4.11.D 12.1.6×10-6 13.1n-1n+214.解:原式=3-1-8-2×32+1=-8.15.-67116.解:(1)19×1112×19-111(2)12n-1×2n+112×12n-1-12n+1(3)a1+a2+a3+a4+...+a100=12×1-13+12×13-15+12×15-17+...+12×1199-1201=12×1-13+13-15+15-17+ (1199)1201=12×1-1201=12×200201=100201.精心整理,仅供学习参考。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年云南省曲靖市中考数学一模试卷 参考答案与试题解析 一、选择题(本大题共8个小题,每小题4分,共32分) 1.下列交通标志中既是中心对称图形,又是轴对称图形的是( ) A. B. C. D. 【考点】中心对称图形;轴对称图形. 【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:根据轴对称图形与中心对称图形的概念,知: A:是轴对称图形,而不是中心对称图形; B、C:两者都不是; D:既是中心对称图形,又是轴对称图形. 故选D. 2.下列关于x的方程有实数根的是( ) A.x2�x+1=0 B.x2+2x+2=0 C.(x�1)2+1=0 D.(x�1)(x+2)=0 【考点】根的判别式. 【分析】计算判别式的值,可对A、B进行判断;根据非负数的性质可对C进行判断;利用因式分解法解方程可对D进行判断. 【解答】解:A、△=(�1)2�4×1×1=�3<0,方程没有实数解,所以A选项错误; B、△=22�4×1×2=�4<0,方程没有实数解,所以B选项错误; C、(x�1)2≥0,则(x�1)2+1>0,方程没有实数解,所以C选项错误; D、x�1=0或x+2=0,解得x1=1,x2=�2,所以D选项正确. 故选D. 3.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为100元的药品进行连续两次降价后为81元.设平均每次降价的百分率为x,则下列方程正确的是( ) A.100(1�x)2=81 B.81(1�x)2=100 C.100(1�2x)=81 D.81(1�2x)=100 【考点】由实际问题抽象出一元二次方程. 【分析】设平均每次的降价率为x,则经过两次降价后的价格是100(1�x)2,根据关键语句“连续两次降价后为81元,”可得方程100(1�x)2=81. 【解答】解:由题意得:100(1�x)2=81, 故选:A. 4.如图,AB是⊙O的弦,BC与⊙O相切于点B,连接OA,OB,若∠ABC=65°,则∠A等于( ) A.20° B.25° C.35° D.75° 【考点】切线的性质. 【分析】先根据切线的性质得∠OBC=90°,则利用互余得到∠OBA=25°,然后根据等腰三角形的性质求出∠A的度数. 【解答】解:∵BC与⊙O相切于点B, ∴OB⊥BC, ∴∠OBC=90°, ∴∠OBA=90°�∠ABC=90°�65°=25°, 而OA=OB, ∴∠A=∠OBA=25°. 故选B. 5.已知二次函数y=ax2+bx�1(a≠0)的图象经过点(1,1),则代数式1�a�b的值为( ) A.�1 B.2 C.�3 D.5 【考点】二次函数图象上点的坐标特征. 【分析】把点(1,1)代入函数解析式求出a+b�1,然后即可得解. 【解答】解:∵二次函数y=ax2+bx�1(a≠0)的图象经过点(1,1), ∴a+b�1=1, ∴1�a�b=�1. 故选A. 6.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP逆时针旋转后,与△ACP′重合,如果AP=4,那么P,P′两点间的距离为( ) A.4 B.4 C.4 D.8 【考点】旋转的性质;等腰直角三角形. 【分析】根据旋转的性质知:旋转角度是90°,根据旋转的性质得出AP=AP′=4,即△PAP′是等腰直角三角形,腰长AP=4,则可用勾股定理求出斜边PP′的长. 【解答】解:连接PP′, ∵△ABP绕点A逆时针旋转后与△ACP′重合, ∴△ABP≌△ACP′, 即线段AB旋转后到AC, ∴旋转了90°, ∴∠PAP′=∠BAC=90°,AP=AP′=4, ∴PP′= = =4 , 故选B. 7.若方程x2�4x�1=0的两根分别是x1,x2,则x12+x22的值为( ) A.6 B.�6 C.18 D.�18 【考点】根与系数的关系. 【分析】根据根与系数的关系可得出x1+x2=4、x1•x2=�1,利用配方法将x12+x22变形为�2x1•x2,代入数据即可得出结论. 【解答】解:∵方程x2�4x�1=0的两根分别是x1,x2, ∴x1+x2=4,x1•x2=�1, ∴x12+x22=�2x1•x2=42�2×(�1)=18. 故选C. 8.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象是( ) A. B. C. D. 【考点】二次函数的图象;一次函数的图象. 【分析】可先根据一次函数的图象判断a、b的符号,再判断二次函数图象与实际是否相符,判断正误
2017年云南省曲靖市中考数学一模试卷 一、选择题(本大题共8个小题,每小题4分,共32分) 1.下列交通标志中既是中心对称图形,又是轴对称图形的是( ) A. B. C. D. 2.下列关于x的方程有实数根的是( ) A.x2�x+1=0 B.x2+2x+2=0 C.(x�1)2+1=0 D.(x�1)(x+2)=0 3.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为100元的药品进行连续两次降价后为81元.设平均每次降价的百分率为x,则下列方程正确的是( ) A.100(1�x)2=81 B.81(1�x)2=100 C.100(1�2x)=81 D.81(1�2x)=100 4.如图,AB是⊙O的弦,BC与⊙O相切于点B,连接OA,OB,若∠ABC=65°,则∠A等于( ) A.20° B.25° C.35° D.75° 5.已知二次函数y=ax2+bx�1(a≠0)的图象经过点(1,1),则代数式1�a�b的值为( ) A.�1 B.2 C.�3 D.56.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP逆时针旋转后,与△ACP′重合,如果AP=4,那么P,P′两点间的距离为( ) A.4 B.4 C.4 D.8 7.若方程x2�4x�1=0的两根分别是x1,x2,则x12+x22的值为( ) A.6 B.�6 C.18 D.�18 8.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象是( ) A. B. C. D. 二、填空题(本大题共6个小题,每小题3分,共18分) 9.在平面直角坐标系中,点P(2,�1)关于原点的对称点在第 象限. 10.若k为整数,且关于x的方程(x+1)2=1�k没有实根,则满足条件的k的值为 (只需写一个) 11.若关于x的方程(a�1) =1是一元二次方程,则a的值是 . 12.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC和∠BOC互补,则弦BC的长度为 . 13.等腰三角形的边长是方程x2�6x+8=0的解,则这个三角形的周长是 . 14.如图,已知菱形OABC的两个顶点O(0,0),B(2,2),若将菱形绕点O以每秒45°的速度逆时针旋转,则第2017秒时,菱形两对角线交点D的坐标为 . 三、解答题(本大题共9小题,满分70分) 15.计算:|�2|+(�1)2017×(π�3)0�+( )�2. 16.解下列方程: (1)2x2�5x+1=0 (2)(x+4)2=2(x+4) 17.先化简,再求值:(1+ )÷ ,其中x=�1. 18.抛物线L:y=ax2+bx+c与已知抛物线y= x2的图象的形状相同,开口方向也相同,且顶点坐标为(�2,�4) (1)求L的解析式; (2)若L与x轴的交点为A,B(A在B的左侧),与y轴的交点为C,求△ABC的面积. 19.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上. (1)求n的值; (2)若F是DE的中点,判断四边形ACFD的形状,并说明理由. 20.如图,若要建一个长方形鸡场,鸡场的一边靠墙,墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米. (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)围成鸡场的面积可能达到200平方米吗? 21.某校九年级(1)、(2)两个班分别有一男一女4名学生报名参加全市中学生运动会. (1)若从两班报名的学生中随机选1名,树状图的方法求出这2名学生来自不同班的概率. 22.如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,且BD=CD,过D作DF⊥AC,垂足为F. (1)求证:DF是⊙O的切线; (2)若AD=5 ,∠CDF=30°,求⊙O的半径. 23.如图,直线y=�x+3与x轴,y轴分别交于B,C两点,抛物线y=ax2+bx+c过A(1,0),B,C三点. (1)求抛物线的解析式; (2)若点M是抛物线在x轴下方图形上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值. (3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是以BN为腰的等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.
相关文档
最新文档