《数学史》朱家生版+课后题目参考答案+第五章

合集下载

数学史概论复习题及参考 答案[1]

数学史概论复习题及参考 答案[1]
7.玛雅数字(?):二十进制数系

二、 “河谷文明”指的是什么?P16
答:历史学家往往把兴起于埃及。美索不大 米亚、中国和印度等地域的古代文明称为 “河谷文明”。

三、 关于古埃及数学的知识主要依据哪两 部纸草书?P17,纸草书中问题绝大部分都是 实用性质,但有个别例外,请举例。P23
答:古埃及数学的知识主要依据莱茵德纸草 书和莫斯科纸草书两部纸草书。

二、什么使泰勒斯获得了第一位数学家和论证几 何学鼻祖的美名?P33
答:关于泰勒斯并没有确凿的传记资料留传下来。 但是以下命题记载却流传至今,使泰勒斯获得了 第一位数学家和论证几何学鼻祖的美名。泰勒斯 曾证明了下列四条定理:
1。圆的直径将圆分为两个相等的部分;
2。等腰三角形两底角相等;
3。两相交直线形成的对顶角相等;

二、 用圆圈符号“O”表示零,可以说是印 度数学的一大发明,印度人起初用什么表示 零,直到最后发展为圈号。
算术方面:方田、粟米、衰分、均输、盈不 足
代数方面:方程
几何方面:方田、商功、勾股

三、 刘徽的数学成就中最突出是什么?P78
答:刘徽的数学成就中最突出是 “割圆术” 和“体积理论”

四、 贾宪增乘开方法能否适用于开任意高次 方?P93
答:贾宪增乘开方法,是一个非常有效的和 高度机械化的算法,可适用于开任意高次方 。

《数学史》朱家生版+课后题目参考答案+第四章

《数学史》朱家生版+课后题目参考答案+第四章

1.作为世界四大文明古国之一,中国在公元前3000年至公元前1500 年间有哪些数学成就?试讲这些成就和其他文明古国做一比较.

据《易.系辞》记载:“上古结绳而治,后世圣人易之以书契” C 在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进位制的记数法,出现最大的数字为三万。

算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。

用算筹记数,有纵、横两种方式:表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间(法则是:一纵十横,百立千僵,千、十相望,万、百相当),并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。

筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学

就是在筹算的基础上取得其辉煌成就的。在几何学方面《史记.夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现“勾三股四弦五”这个勾股定理(西方称毕氏定理)的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题,例如:“圆,一中同长也”、

“平,同高也”等等。墨家还给出有穷和无穷的定义。《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如“至大无外谓之大一,至小无内谓之小一”、“一尺之棰,日取其半,万世不竭”等。这些许多几何概念的定义、极限思想和其他数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。

《数学史》朱家生版+课后题目参考答案+第六章

《数学史》朱家生版+课后题目参考答案+第六章

1.解析几何产生的背景是什么?在那个时期哪些问题导致了人们对运用代数方法处理几何问题的兴趣?

解析几何的实际背景更多的是来自对变量数学的需求.文艺复兴后的欧洲进入了一个生产迅速发展,思想普遍活跃的时代.机械的广泛使用,促使人们对机械性能进行研究,这需要运动学知识和相应的数学理论;建筑的兴盛、河道和堤坝的修建又提出了有关固体力学和

流体力学的问题,这些问题的合理解决需要正确的数学计算;航海事业的发展向天文学,实际上也是向数学提出了如何精确测定经纬度、计算各种不同形状船体的面积、体积以及确定重心的方法,望远镜与显微镜的发明,提出了研究凹凸透镜的曲面形状问题.在数学上就需要研究求曲线的切线问题.所有这些都难以仅用初等几何或仅用初等代数在常量数学的范围内解决,于是,人们就试图创设变量数学.作为代数与几何相结合的产物――解析几何,也就在这种背景下问世了.2、笛卡尔研究解析几何的出发点是什么?他又是怎么得到解析几何思想的?

答:笛卡儿对数学方法的深入研究,是他断定数学可以有效地应用到其他科学上去。他分析了古代已有的几何学和当时已经定型的代数学的优缺点,批评希腊几何过于抽象,并且过多地依靠图形,而代数则使人受到某些规则和公式的约束。他提出“寻求另外一种包含这两门科学的好处而没有他们的缺点的方法。”当他看到代数具有作为一门普遍的科学方法的潜力,便着手把代数用到几何上去。

在《几何学》一书中,他仿造韦达的方法,用代数来解决几何作图的问题,比希腊人有了明显进展。(在变量的理解和应用上。希腊人无法处理三个以上变量的乘积。而笛卡儿是从纯数学方面考虑,所以可以处理三个以上的变量的乘积。)笛卡儿之所以能创立解析几何,主要是他勇于探索,勤于思考。运用科学方法的必然结果。

数学史试题参考答案

数学史试题参考答案

数学史试题参考答案

1、泥版文书代数

2、刘徽秦九韶

3、花拉子米一元二次方程的一般代数解法

4、斐波那契算经

5、牛顿《流数简论》

6、瑞士法国学派

7、第五公设罗巴切夫斯基

8、变量数学解析几何的创造

A B B D C D A B D C

1、解析几何得以建立的根本思想有两个:实数和平面上的一条直线上的点作成一一对应;有序实数对与平面上的点作成一一对应。很早以前人们就有了初步的坐标观念,例如古埃及人和罗马人用于测量的、希腊人用于绘制地图的坐标思想;奥雷姆(法国人,约1320一1382)在14世纪曾试图用图线来表示变量之间的关系。但是在明确提出上述两个原那么之前,无法用代数方法来研究几何学。笛卡儿解决了贯彻这两个原那么的方法问题,那就是建立坐标系。

2、《九章算术》共分九章,每一章都包括假设干道问题,共计有246道题。每道问题后给以答案,一些问题后给出“术”,即解题的方法。通过这种形式,对我国古代数学作了总结和开展,代表了中国古代数学的根本思想方法,它具有如下的特点。

(1)开放的归纳体系(2)算法化的内容(3)模型化的方法

3、一个正方体用它的两个中心轴线互相垂直的内切圆柱贯穿,所得到的相贯体;它是公元3世纪的刘徽在注“开立圆术”时提出的概念,并认识到它与其内切球的体积之比为 4 :,但是不会计算它的体积;6世纪的祖暅用“缘幂势既同,那么积不容异”的原理,求出了它的体积,进而求出了球体积。

4、两个整数a和b,假设a是b的因数之和而且b是a的因数之和,那么a和 b 互称为亲和数。如220和284互为亲和数。

《数学史》练习题库及答案

《数学史》练习题库及答案

《数学史论约》试题

一、填空

1、数学史的研究对象是();

2、数学史分期的依据主要有两大类,其一是根据()来分期,其一是根据()来分期;

3、17世纪产生了影响深远的数学分支学科,它们分别是()、()、()、()、();

4、18世纪数学的发展以()为主线;

5、整数458 用古埃及记数法可以表示为()。

6、研究巴比伦数学的主要历史资料是(),而莱因特纸草书和莫斯科纸草

书是研究古代()的主要历史资料;

7、古希腊数学发展历经1200多年,可以分为()时期和()时期;

8、17世纪创立的几门影响深远的数学分支学科,分别是笛卡儿和()创立了解析

几何,牛顿和()创立了微积分,()和帕斯卡创立了射影几何,

()和费马创立了概率论,费马创立了数论;

9、19世纪数学发展的特征是()精神和()精神都高度发扬;

10、整数458 用巴比伦的记数法可以表示为()。

11、数学史的研究内容,从宏观上可以分为两部分,其一是内史,即(),其一是外史,即();

12、19世纪数学发展的特征,可以用以下三方面的典型成就加以说明:

(1)分析基础严密化和(),

(2)()和射影几何的完善,

(3)群论和();

13、20世纪数学发展“日新月异,突飞猛进”,其显著趋势是:数学基础公理化,

数学发展整体化,()的挑战,应用数学异军突起,数学传播与()的社会化协作,()的导向;

14、《九章算术》的内容分九章,全书共()问,魏晋时期的数学家()曾为它作注;

15、整数458 用玛雅记数法可以表示为()。

16、数学史的研究对象是数学这门学科产生、发展的历史,既要研究其(历史进程),还要研究其();

数学史答案——精选推荐

数学史答案——精选推荐

数学史答案

四、简答题

1、阿基⽶德在数学上的主要贡献:

(1)研究⼤数:《沙粒计算》填满宇宙的沙粒数相当于,他还曾⽤过相当于

的⼤数。

(2)⼏何学⽅⾯:发现⼤量⽴体体积公式。

(3)数学⽅法论⽅⾯:他曾⽤“原⼦法”和“穷竭法”计算⾯积和体积;他⾸创⽤“平衡法”证明数学问题(如证明球体积公式);他还⽤“积分”求和法求⾯积和体积;他通过引⼊特征三⾓形找到求曲线的⼀般⽅法;他把求极值问题归结为求切线问题;他还采⽤类似现在的“插值法”计算螺线长度。他的这些思想⽅法使他成为微积分的先躯。后来微积分开创者的许多思想都源于阿基⽶德。

阿基⽶德数学研究的主要特点:

①注重联系实际,将数学与⼒学、物理学等实际问题结合;

②注重⽅法论,其⽅法中体现了数学思想的深度;

③注重论述的精确性、严谨性,成为他那个时代的典范。

2、刘徽的主要数学贡献:

(1)算术⽅⾯:

①⾸次使⽤⼗进⼩数;

②完善齐同术;

③其它:刘徽明确提出分数的基本性质:“法实俱长,意亦等也”;他对求最⼤公约数

的⽅法进⾏了理论说明;对化带分数为假分数的⽅法进⼀步明确;他还研究了各种⽐例算法。

(2)代数⽅⾯:

①⾸次给出正负数定义、记法及性质;

②改进解线性⽅程组的“直除法”;

③提出解⽅程组的新⽅法;

④研究等差数列,并给出求和公式。

(3)⼏何⽅⾯:

①提出“割圆术”;

②开始⼏何定理的证明;

③研究了球体体积;

(4)极限思想;

(5)创⽴重差术。

3、⽂艺复兴时期欧洲数学的主要进展

1.代数⽅程论的发展;

2. 符号代数的产⽣;

3.三⾓学的确⽴;

4.⼏何学的新突破;

5. 计算技术的重⼤进步

数学史习题及答案

数学史习题及答案

第六讲思考题解析几何产生的时代背景是什么

解析几何的实际背景更多的是来自对变量数学的需求。文艺复兴后的欧洲进入了一个生产迅速发展,思想普遍活跃的时代。机械的广泛使用,促使人们对机械性能进行研究,这需要运动学知识和相应的数学理论;建筑的兴盛、河道和堤坝的修建又提出了有关固体力学和流体力学的问题,这些问题的合理解决需要正确的数学计算;航海事业的发展向天文学,实际上也是向数学提出了如何精确测定经纬度、计算各种不同形状船体的面积、体积以及确定重心的方法,望远镜与显微镜的发明,提出了研究凹凸透镜的曲面形状问题。在数学上就需要研究求曲线的切线问题。所有这些都难以仅用初等几何或仅用初等代数在常量数学的范围内解决,于是,人们就试图创设变量数学。作为代数与几何相结合的产物――解析几何,也就在这种背景下问世了。

解析几何的实际背景更多的是来自对变量数学的需求。从16世纪开始,欧洲资本主义逐渐发展起来,进入了一个生产迅速发展,思想普遍活跃的时代。生产实践积累了大量的新经验,并提出了大量的新问题。可是,对于机械、建筑、水利、航海、造船、显微镜和火器制造等领域的许多数学问题,已有的常量数学已无能为力,人们迫切地寻求解决变量问题的新数学方法。

第七讲思考题谈谈您对于“读读欧拉,他是我们大家的老师”(拉普拉斯语)的看法

莱昂哈德·欧拉(Leonhard Euler ,1707年4月5日~1783年9月18日)是瑞士数学家和物理学家。他被一些数学史学者称为历史上最伟大的两位数学家之一(另一位是卡尔·弗里德里克·高斯)。欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x) (函数的定义由莱布尼兹在1694年给出)。他是把微积分应用于物理学的先驱者之一。他的全部创造在整个物理学和许多工程领域里都有着广泛的应用。欧拉的数学和科学成果简直多得令人难以相信。他写了三十二部足本著作,其中有几部不止一卷,还写下了许许多多富有创造性的数学和科学论文。总计起来,他的科学论著有七十多卷。欧拉的天才使纯数学和应用数学的每一个领域都得到了充实,他的数学物理成果有着无限广阔的应用领域。

数学史朱家生习题答案

数学史朱家生习题答案

数学史朱家生习题答案

数学史朱家生习题答案

数学作为一门古老而又重要的学科,其历史可以追溯到古代文明的起源。在数学的发展过程中,许多数学家都做出了重要的贡献,其中朱家生是中国数学史上的一位重要人物。本文将通过回答一些与朱家生相关的习题,来探讨他的数学思想和贡献。

1. 朱家生是谁?他的数学成就有哪些?

朱家生(1916-2004)是中国著名的数学家,他在数学教育和研究领域做出了重要的贡献。他曾任教于北京大学,并担任中国数学会主席。朱家生的数学成就包括但不限于:在数论和代数几何方面作出了重要的研究,提出了朱家生猜想,并在数学教育改革中起到了重要的推动作用。

2. 朱家生猜想是什么?它为数学界带来了什么影响?

朱家生猜想是一个关于数论中的整数分拆问题的猜想。具体来说,它猜测了任何一个正整数都可以表示为不同奇素数的和。这个猜想在数论领域引起了广泛的关注,并且至今尚未被证明或者推翻。朱家生猜想的提出激发了许多数学家对整数分拆问题的研究,推动了相关领域的发展。

3. 朱家生如何影响了数学教育改革?

朱家生在中国的数学教育改革中起到了重要的推动作用。他提倡“数学思维”的培养,强调数学教育应该注重培养学生的创造力和解决问题的能力。他主张通过培养学生的数学素养来提高整个国家的科学技术水平。朱家生的观点对中国的数学教育产生了深远的影响,推动了数学教育的改革和发展。

4. 朱家生的数学思想有哪些特点?

朱家生的数学思想具有以下几个特点:

首先,他注重数学的实际应用。他认为数学应该与实际问题相结合,通过解决实际问题来推动数学的发展。

《数学史》朱家生版+课后题目参考答案+第二章

《数学史》朱家生版+课后题目参考答案+第二章

1、试从数学科学发展的角度,探讨古希腊把逻辑学中的演绎证明引入数学的理由,并进一步论述数学与逻辑的关系。

答:一般认为,数学是研究空间形式和数量关系的一门科学,逻辑是研究思维形式及其规律和方法的一门科学,但它们都完全撇开其内容,仅仅从形式方面加以研究,因而均具有高度的抽象性,所以在分类上它们同属于形式科学。同时,数学和逻辑的应用都十分广泛,往往成为研究其它科学的工具,因此常常同被人们称为工具性科学。围绕逻辑与数学的关系讨论下去,曾经形成三种意见──逻辑主义、形式主义和直觉主义。其中逻辑主义、直觉主义,过多强调了数学和逻辑的同一性,而忽视了数学与逻辑的差异性。因此,认识数学和逻辑的关系,在于把握二者关系的辩证性──同一、差异又互补。研究中国传统数学中逻辑思想与方法的必要性一直以来,不论是在逻辑史学界,还是在数学史学界,对于中国传统数学中逻辑思想与方法的研究没有得到应有的重视。但从下面我们简单论述来看,加强这方面的研究却具有显明的必要性。一、从逻辑与数学的关系看数学与逻辑的研究对象虽各不相同,但它们的性质、特点却有很多共同和类似的地方,正因为如此,才使得它们关系十分密切,在内容和方法上可以互相运用和相互渗透。一般认为,数学是研究空间形式和数量关系的一门科学,逻辑是研究思维形式及其规律和方法的一门科学,但它们都完全撇开其内容,仅仅从形式方面加以研究,因而均具有高度的抽象性,所以在分类上它们同属于形式科学。同时,数学和逻辑的应用都十分广泛,往往成为研究其它科学的工具,因此常常同被人们称为工具性科学。

数学史 答案

数学史 答案

1.勾股定理的证明方法来源

毕达哥拉斯树是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明[1]。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。

1.关于勾股定理的证明:

(利用相似三角形性质证明)

如图,在RtΔABC中,设直角边AC、BC的长度分别为a、b,斜边AB的长为c,过点C作CD⊥AB,垂足是D.

在ΔADC和ΔACB中,

∵∠ADC = ∠ACB = 90º,∠CAD = ∠BAC,

∴ΔADC ∽ΔA CB.

∴AD∶AC = AC ∶AB,即.

同理可证,ΔCDB ∽ΔACB,

从而有.

∴,即

】(欧几里得证明)

做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B 三点在一条直线上,连结BF、CD. 过C作CL⊥DE,交AB于点M,交DE于点L.

∵AF = AC,AB = AD,∠FAB = ∠GAD,

∴ΔFAB ≌ΔGAD,

∵ΔFAB的面积等于,ΔGAD的面积等于矩形ADLM的面积的一半,

∴矩形ADLM的面积=.同理可证,矩形MLEB的面积=.

∵正方形ADEB的面积= 矩形ADLM的面积+ 矩形MLEB的面积

∴,即.

2. 论述数学史对数学教育的意义和作用.

《数学史》朱家生版+课后题目参考答案+第四章

《数学史》朱家生版+课后题目参考答案+第四章

1.作为世界四大文明古国之一,中国在公元前3000年至公元前1500年间有哪些数学成就?试讲这些成就和其他文明古国做一比较.

据《易.系辞》记载:“上古结绳而治,后世圣人易之以书契”。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进位制的记数法,出现最大的数字为三万。

算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。

用算筹记数,有纵、横两种方式:表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间(法则是:一纵十横,百立千僵,千、十相望,万、百相当),并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。

筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。在几何学方面《史记.夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现“勾三股四弦五”这个勾股定理(西方称毕氏定理)的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题,例如:“圆,一中同长也”、“平,同高也”等等。墨家还

给出有穷和无穷的定义。《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如“至大无外谓之大一,至小无内谓之小一”、“一尺之棰,日取其半,万世不竭”等。这些许多几何概念的定义、极限思想和其他数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。

数学史朱家生版+课后题目参考答案解析+第五章

数学史朱家生版+课后题目参考答案解析+第五章

1.导致欧洲中世纪黑暗时期出现的主要原因是什么

因为中世纪时期是欧洲最为混乱的时期,也是其经济、政治、文化、军事等全面停滞发展的时期,当时的欧洲居民生活在水深火热之中,所以被称为黑暗时期.

1、政治的黑暗、政权的分散:自罗马帝国衰亡后,中欧、西欧被来自东欧的日耳曼民族统治,日耳曼民族又有很多种族,因此相互征伐不断,如法兰克帝国、神圣罗马帝国、英格兰王国、教皇国等等,这些国家相互征伐、动乱不已,而且中世纪时期虽然是欧洲的封建时期,但却不集权、不统一,类似分封制的封建制度导致封建国家缺乏强有力的基础,例如神圣罗马帝国、皇帝仅仅是一个称号而已.而封建地主又对百姓盘剥,加之战乱不断、瘟疫横行,民不聊生.

2、宗教的干涉:这一时期的基督教对各国的干扰极强,甚至对政权的建立、稳定都十分重要.宗教严格的控制文化教育、人们的生活:一方面他们严格要求中下层教士及普通百姓,另一方面,上层教士又和封建势力相勾结,腐败没落,压榨百姓和人民,中世纪的宗教裁判所又有极大的权力,可以处死他们所认为的异端分子,由于思想、科学被严格控制,这一时期的欧洲思想、文化、科学鲜有成就.

3、经济的没落,由于盘剥严重、科技落后,这一时期的经济几乎没有发展,没有进步就代表了落后;

4、瘟疫盛行:宗教的干涉,科技的落后,医学的不发达,导致瘟疫的盛行,540年~590年查士丁尼瘟疫导致东地中海约2500万人死亡;1346

年到1350的鼠疫导致欧洲约2500万人死亡,灾难极大地打击的了欧洲的经济、政治甚至人口的发展.

简而言之,这一时期的欧洲百姓生活在一种暗无天日,毫无希望的生活里,所以被称为黑暗时期.

数学史概论复习题及参考答案1 ppt课件

数学史概论复习题及参考答案1 ppt课件
(1)古代希腊数学(公元前6世纪-6世纪) (2)中世纪东方数学(3世纪一15世纪) (3)欧洲文艺复兴时期(15世纪一16世纪) 3、近代数学时期(变量数学,17世纪-18世 纪)
数学史概论复习题及参考答案1
4、现代数学时期(1820年一现在) (1)现代数学酝酿时期(1820’一1870) (2)现代数学形成时期(1870—1940’) (3)现代数学繁荣时期(当代数学时期,1950
数学史概论复习题及参考答案1
四、希腊数学学派主要有哪些学派?P39
答:希腊数学也随之走向繁荣,学派林立, 主要有: 1、伊利亚学派; 2、诡辩学派; 3、雅典学院(柏拉图学派); 4、亚里士多德学派;
数学史概论复习题及参考答案1
五、 古希腊三大著名几何问题是什么?P40 (Z) 答:(1)化圆为方,即作一个给定的圆面 积相等的正方形。
数学史概论总复习
主讲:
wkw-
TEL:0994-2347343
数学史概论复习题及参考答案1
考试题型
一、填空题(每空1分,共30分)
二、简答题(每小题5分,共50分)
三、简述20世纪十例现代数学成果的内容 (10分)
四、谈学习的心得体会(10分)
数学史概论复习题及参考答案1
第0章 数学史—人类 文明的重要篇章
数学史概论复习题及参考答案1
三、毕达哥拉斯学派认为宇宙万物皆依赖于 整数的信条由于什么发现而受到动摇?这个 “第一次数学危机”是由于什么人提出的新 比例理论而暂时消除,P38

数学史朱家生版课后题目参考答案第

数学史朱家生版课后题目参考答案第

数学史朱家生版课后题目参考答案第

1.数学的起源于世界xxxx产生的关系

11数本(1)班郭奇2011041047

“数学”这个词在我们的生活中可谓是无处不在,他作为人类思维的表达形式,反映了人们的积极进取的意志、缜密周详的推理及对完美境界的追求。“数学”与我们身边的其他学科也有着密切联系。

例如在天文学方面、医学方面、经济学方面等等。大到天文地理,小到生活琐事,数学的魅力可谓是发挥的淋漓尽致。

然而关于数学的起源,却有着一个古老而神奇的传说。相传在非常非常遥远的古代,有一天在黄河的波涛中突然跳出一匹“龙马”来,马背上驮着一幅图,图上画着许多神秘的数学符号,后来,从波澜不惊的河水中又爬出一只“神龟”来,龟背上也驮着一卷书,书中则阐述了数的排列方法。马背上的图叫“河图”,乌龟背上的书叫做“洛书”,当“河图洛书”出现后,数学也就诞生了。

当然,这个也只不过是个传说罢了。数学作为最古老的一门学科,他的起源可以上溯到一万多年以前。但是,公元1000年以前的资料留存下来的极少,迄今所知,只有在古代埃及和巴比伦发现了比较系统的数学文献。

远在一万五千年以前,人类就可以相当逼真的描绘出人和动物的形象,这是萌发图形意识的最早证据。后来就开始逐渐对圆形和直线型的追求,从而成为数学图形的最早的原型。在日常的生活实践中又逐渐产生了记数的意识和系统。人类摸索过许多种记数的方法,例如用石块记数,结绳记数等,最后逐步发展到现在我们所用的数字。图形意识和记数意识发展到一定阶段,又产生了度量的意识。

从人类社会的发展史来看,人们对数学本质特征的认识也在不断变化和深化着。欧几里得说过“数学的根源在于普通的常识,最显著的例子是非负整数。”他的算术来自于普通常识中的非负整数。而且直到十九世纪中叶,对于数的科学探索还停留在普通的常识。因此,十九世纪以前,人们普遍认为数学是一门自然学科,经验学科,因为

《数学史》朱家生版+课后题目参考答案+第四章

《数学史》朱家生版+课后题目参考答案+第四章

1.作为世界四大文明古国之一,中国在公元前3000年至公元前1500年间有哪些数学成就?试讲这些成就和其他文明古国做一比较.

据《易.系辞》记载:“上古结绳而治,后世圣人易之以书契”。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进位制的记数法,出现最大的数字为三万。

算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。

用算筹记数,有纵、横两种方式:表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间(法则是:一纵十横,百立千僵,千、十相望,万、百相当),并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。

筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。在几何学方面《史记.夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现“勾三股四弦五”这个勾股定理(西方称毕氏定理)的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题,例如:“圆,一中同长也”、“平,同高也”等等。墨家还

给出有穷和无穷的定义。《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如“至大无外谓之大一,至小无内谓之小一”、“一尺之棰,日取其半,万世不竭”等。这些许多几何概念的定义、极限思想和其他数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。

《数学史》习题

《数学史》习题

《数学史》习题

总体要求

每一讲写一600字左右的读书笔记,30% 记录学期总成绩。

第一讲数学的起源与早期发展

1、您对《数学史》课程的期望。

2、谈谈您的理解:数学是什么?

3、数学崇拜与数学忌讳。

4、从数学的起源简述人类活动对文化发展的贡献。

5、数的概念的发展给我们的启示。

6、探讨古代埃及和古代巴比伦的数学知识在现实生活中的意义。

第二讲古代希腊数学

1、试分析芝诺悖论:飞矢不动。

2、欧几里得《原本》对数学以及整个科学的发展有什么意义?

3、简述欧几里得《原本》的现代意义?

4、以“化圆为方”问题为例,说明未解决问题在数学中的重要性。

5、体验阿基米德方法:通过计算半径为1的圆内接和外切正96边形的周长,计算圆周率的近似值,计算到小数点后3位数。

6、毕达哥拉斯学派是怎样引起第一次数学危机的?他们为什么要对这次数学危机采取回避的态度?

第三讲:中世纪的东西方数学I

1、简述刘徽的数学贡献。

2、用数列极限证明:圆内椄正6•2^{n}边形的周长的极限是圆周长。

3、《九章算术》在中国数学发展史上的地位和意义如何?

4、试比较阿基米德证明体积计算公式的方法与中国古代数学家的球体积计算公式的推导方法的异同。

5、更精确地计算圆周率是否有意义?谈谈您的理由。

6、分析宋元时期中国传统数学兴盛的社会条件。

第四讲:中世纪的东西方数学II

1、印度数学对世界数学发展最重要的贡献是什么?他们的数学发展有何重要贡献?

2、有关零号“0”的历史。

3、简述阿尔·花拉子米的数学贡献。

4、论述阿拉伯数学对保存希腊数学、传播东方数学的作用。

5、试说明:古代东方数学的特点之一是以计算为中心的实用化数学。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.导致欧洲中世纪黑暗时期出现的主要原因是什么?

因为中世纪时期是欧洲最为混乱的时期,也是其经济、政治、文化、军事等全面停滞发展的时期,当时的欧洲居民生活在水深火热之中,所以被称为黑暗时期.

1、政治的黑暗、政权的分散:自罗马帝国衰亡后,中欧、西欧被来自东欧的日耳曼民族统治,日耳曼民族又有很多种族,因此相互征伐不断,如法兰克帝国、神圣罗马帝国、英格兰王国、教皇国等等,这些国家相互征伐、动乱不已,而且中世纪时期虽然是欧洲的封建时期,但却不集权、不统一,类似分封制的封建制度导致封建国家缺乏强有力的基础,例如神圣罗马帝国、皇帝仅仅是一个称号而已.而封建地主又对百姓盘剥,加之战乱不断、瘟疫横行,民不聊生.

2、宗教的干涉:这一时期的基督教对各国的干扰极强,甚至对政权的建立、稳定都十分重要.宗教严格的控制文化教育、人们的生活:一方面他们严格要求中下层教士及普通百姓,另一方面,上层教士又和封建势力相勾结,腐败没落,压榨百姓和人民,中世纪的宗教裁判所又有极大的权力,可以处死他们所认为的异端分子,由于思想、科学被严格控制,这一时期的欧洲思想、文化、科学鲜有成就.

3、经济的没落,由于盘剥严重、科技落后,这一时期的经济几乎没有发展,没有进步就代表了落后;

4、瘟疫盛行:宗教的干涉,科技的落后,医学的不发达,导致瘟疫的盛行,540年~590年查士丁尼瘟疫导致东地中海约2500万人死亡;1346

年到1350的鼠疫导致欧洲约2500万人死亡,灾难极大地打击的了欧洲的经济、政治甚至人口的发展.

简而言之,这一时期的欧洲百姓生活在一种暗无天日,毫无希望的生活里,所以被称为黑暗时期.

2、在欧洲中世纪黑暗时期曾经出现过那些知名的数学家,他们在当时那样的背景下各自做了哪些数学工作?

答:罗马人博伊西斯(罗马贵族),曾不顾禁令用拉丁文从古希腊著作的片段中编译了一些算术、几何、音乐、天文的初级读物,他把这些内容称为“四大科”,其中的数学著作还被教会学校作为标准课本使用了近千年之久,但博伊西斯本人还是遭受政治迫害被捕入狱并死在狱中。

7世纪,在英格兰的北部出现了一位博学多才的神学家,这就是被称为“英格兰文化之父”的比德。在数学方面,比德曾写过一些算术著作,研究过历法及指头计算方法。当时,对耶稣复活期的推算是教会讨论最热烈的课题之一,据说,这位比德大师就是最先求得复活节的人。

培根是英格兰人(贵族),曾在牛津大学和巴黎大学任教,会多种语言,对当时几乎所有的知识感兴趣,号称“万能博士”。他提倡科学,重视现实,反抗权威(应为不惧权威)。他认为,数学的思想方法是与生俱来的,并且是与自然规律相一致的。在他看来,数学是一切科学的基础,科学真理之所以是珍贵的,是因为它们是在数学的形成中被反映出来,即用数量和尺规刻画的。培根认为:“寻找和发

现真理有两条路,也只有两条路,一种方法是通过感觉和特例飞跃到普遍的公理,然后通过这些原则及一劳永逸的真理发现和判断派生的公理。另一种方法是从感觉和特例收集公理,不断地逐步上升,这样最后达到更普遍的公理。这后一种方法是真实的,但尚未有人使用过。”他号召人们面向自然,进行有目的的试验,去了解自然,征服自然。虽然培根成为了那个时代的牺牲品,但他的呐喊还是在漫漫黑夜中点燃了人们复苏的愿望。

意大利的列昂纳多.斐波那契是欧洲黑暗时期最出色的数学家。1202年,斐波那契综合阿拉伯和希腊资料著成一部重要著作《算盘书》,这部著作共15章,主要介绍算术与代数,内容非常丰富,包括:印度—阿拉伯数码的读法与写法;整数与分数的计算;平方根与立方根的求法;线性方程组和二次方程的解法等,给出了数学在实物交易、合股、比例法和测量几何中的应用。这部著作还给出一个有趣的所谓“兔子问题”。

斐波那契还写过一部纯几何著作《实用几何》,书中运用欧几里得等人的方法介绍了直线型的面积、圆的度量、球和圆柱等。

3.导致欧洲文艺复兴的因素有哪些?在欧洲文艺复兴时期主要出现了哪些数学成绩?

1、城市是文艺复兴的摇篮

中世纪晚期意大利由一些重要的和独立城邦国家组成,拥有欧洲最先进的城市社会(有名的如佛罗伦萨、米兰、威尼斯、热那亚和那不勒斯等)。城市是财富的聚集地,城市是文明的向导。意大利的贵族通常生活在城市中心,完全参与城市的公共事务。贵族从事银行业或商业活动,以致到了14世纪和15世纪贵族与上级资产阶级之间实际上已没有什么明显界限了,例:梅蒂奇家族。工商业和城市的发展,使资产阶级的力量壮大起来,有些与贵族合流,使得上流社会更喜爱文化,更热爱生活,也要求在文化中加入自己喜欢的精神。图:当时的木屐,反映着时尚的变化。图:精美的梳子表明了主人的追求。图:虽是16世纪的城市景象,也反映了时代的变迁,人们热爱生活。

2、意大利地区与古典文明区有着紧密的联系

与西欧任何其他地区相比,该地区对古典过去有着强烈得多的感情联系。此外,在14和15世纪意大利人尤为热衷于重新利用他们的古代遗产,因为此时意大利正想方设法建立一种独立的文化特性,以与和法国关系十分密切的经院哲学相对立。不仅教皇机构在14世纪大部分时间里迁到了阿维尼翁(从1309年起),随后自1378 至 1415年旷日持久的大分裂加剧了意大利和法国之间的敌对情绪,而且在14世纪在各个领域都出现了反经院哲学的思想文化潮流,这使得意大利人自然而然地偏爱古典文献资料提供的另一种文化选择。罗马模式有助于意大利人创造一个取代法国的哥特建筑艺术风格的艺术选择。3、意大利经济的繁荣,具有投资文化的财富基础

在中世纪晚期的意大利,人们之所以异乎寻常地大量投资于文化事业,是因为城市荣誉感的增强和人均财富的集中。在第一个阶段,最富有的一些城市竞相兴建辉煌的公共纪念性建筑并资助作家,约1250年

出现于意大利。第二阶段也即在15世纪初到中叶,投资文化成了个人的行为。在15世纪一百年间,随着多数意大利城市国家屈从于王

公家族的世袭统治(最初城市是由行会控制的),资助文化事业便为王公贵族所专擅。如米兰的维斯孔蒂家族和斯福扎家族;佛罗伦萨的梅迪奇家族(图为梅迪奇家族的洛伦佐);费拉拉的埃斯特家族和罗马教皇等。

4、一些因祸得福的因素

在文艺复兴前的200年里,意大利遭受了一系列沉重的打击。在13

世纪,神圣罗马帝国与罗马教廷战火不断,意大利国土遭到严重破坏。在一场战役中,神圣罗马帝国战败,霍亨斯陶芬王朝在意大利的统治终结。而教皇无力填补权力的真空,战争同时削弱了他们道德规范和政治力量。意大利处在分裂状态,但就局部地区来说,却非常有利于思想的自由创造和发挥。14世纪中叶,欧洲黑死病流行,但瘟疫摧

毁的仅仅是人,而非财物,而劫后余生的人们却更懂得了生命的宝贵和人的价值,更懂得享受人生。

代数学在文艺复兴时期取得了重要发展,三、四次方程的解法被发现。意大利人卡尔达诺在他的著作《大术》中发表了三次方程的求根公式,但这一公式的发现实应归功于另一学者塔塔利亚。四次方程的解法由

相关文档
最新文档