荆门市2014年中考数学试题及答案
中考真题 2014年湖北省武汉市中考数学试卷及解析
2014年湖北省武汉市中考数学试卷一、单项选择题(共10小题,每小题3分,共30分)1.(3分)在实数﹣2,0,2,3中,最小的实数是()A.﹣2 B.0 C.2 D.32.(3分)若在实数范围内有意义,则x的取值范围是()A.x>0 B.x>3 C.x≥3 D.x≤33.(3分)光速约为300 000千米/秒,将数字300000用科学记数法表示为()A.3×104B.3×105C.3×106D.30×1044.(3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:那么这些运动员跳高成绩的众数是()A.4 B.1.75 C.1.70 D.1.655.(3分)下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.x3•x2=x5D.(x+1)2=x2+16.(3分)如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)7.(3分)如图是由4个大小相同的正方体搭成的几何体,其俯视图是()A. B.C.D.8.(3分)为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为()A.9 B.10 C.12 D.159.(3分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()A.31 B.46 C.51 D.6610.(3分)如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)计算:﹣2+(﹣3)=.12.(3分)分解因式:a3﹣a=.13.(3分)如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为.14.(3分)一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为米.15.(3分)如图,若双曲线y=与边长为5的等边△AOB的边OA、AB分别相交于C、D两点,且OC=2BD.则实数k的值为.16.(3分)如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.三、解答题(共9小题,满分72分,应写出文字说明、证明过程或演算步骤)17.(6分)解方程:=.18.(6分)已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.19.(6分)如图,AC和BD相交于点O,OA=OC,OB=OD.求证:DC∥AB.20.(7分)如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.21.(7分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.22.(8分)如图,AB是⊙O的直径,C,P是上两点,AB=13,AC=5.(1)如图(1),若点P是的中点,求PA的长;(2)如图(2),若点P是的中点,求PA的长.23.(10分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.24.(10分)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.25.(12分)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B两点.(1)直线AB总经过一个定点C,请直接出点C坐标;(2)当k=﹣时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.2014年湖北省武汉市中考数学试卷参考答案与试题解析一、单项选择题(共10小题,每小题3分,共30分)1.(3分)(2014•武汉)在实数﹣2,0,2,3中,最小的实数是()A.﹣2 B.0 C.2 D.3【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣2<0<2<3,最小的实数是﹣2,故选:A.【点评】本题考查了实数比较大小,正数大于0,0大于负数是解题关键.2.(3分)(2014•武汉)若在实数范围内有意义,则x的取值范围是()A.x>0 B.x>3 C.x≥3 D.x≤3【分析】先根据二次根式有意义的条件得出关于x的不等式,求出x的取值范围即可.【解答】解:∵使在实数范围内有意义,∴x﹣3≥0,解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.3.(3分)(2014•武汉)光速约为300 000千米/秒,将数字300000用科学记数法表示为()A.3×104B.3×105C.3×106D.30×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:将300 000用科学记数法表示为:3×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014•武汉)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:那么这些运动员跳高成绩的众数是()A.4 B.1.75 C.1.70 D.1.65【分析】根据众数的定义找出出现次数最多的数即可.【解答】解:∵1.65出现了4次,出现的次数最多,∴这些运动员跳高成绩的众数是1.65;故选:D.【点评】此题考查了众数,用到的知识点是众数的定义,众数是一组数据中出现次数最多的数.5.(3分)(2014•武汉)下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.x3•x2=x5D.(x+1)2=x2+1【分析】根据幂的乘方与积的乘方、同底数幂的乘法法则及完全平方公式,分别进行各选项的判断即可.【解答】解:A、(x3)2=x6,原式计算错误,故A选项错误;B、(2x)2=4x2,原式计算错误,故B选项错误;C、x3•x2=x5,原式计算正确,故C选项正确;D、(x+1)2=x2+2x+1,原式计算错误,故D选项错误;故选:C.【点评】本题考查了幂的乘方与积的乘方、同底数幂的运算,掌握各部分的运算法则是关键.6.(3分)(2014•武汉)如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)【分析】利用位似图形的性质结合两图形的位似比进而得出C点坐标.【解答】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,3).故选:A.【点评】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.7.(3分)(2014•武汉)如图是由4个大小相同的正方体搭成的几何体,其俯视图是()A. B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得到一行正方形的个数为3,故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.8.(3分)(2014•武汉)为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为()A.9 B.10 C.12 D.15【分析】先由折线统计图得出10天中在同一时段通过该路口的汽车数量超过200辆的天数,求出其频率,再利用样本估计总体的思想即可求解.【解答】解:由图可知,10天中在同一时段通过该路口的汽车数量超过200辆的有4天,频率为:=0.4,所以估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为:30×0.4=12(天).故选:C.【点评】本题考查了折线统计图及用样本估计总体的思想,读懂统计图,从统计图中得到必要的信息是解决问题的关键.9.(3分)(2014•武汉)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()A.31 B.46 C.51 D.66【分析】由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…由此规律得出第n个图有1+1×3+2×3+3×3+…+3n个点.【解答】方法一:解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…第n个图有1+1×3+2×3+3×3+…+3n个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故选:B.方法二:n=1,s=4;n=2,s=10;n=3,s=19,设s=an2+bn+c,∴,∴a=,b=,c=1,∴s=n2+n+1,把n=5代入,s=46.方法三:,,,,∴a5=19+12+15=46.【点评】此题考查图形的变化规律,找出图形之间的数字运算规律,利用规律解决问题.10.(3分)(2014•武汉)如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A.B.C.D.【分析】(1)连接OA、OB、OP,延长BO交PA的延长线于点F.利用切线求得CA=CE,DB=DE,PA=PB 再得出PA=PB=.利用Rt△BFP∽RT△OAF得出AF=FB,在RT△FBP中,利用勾股定理求出BF,再求tan∠APB的值即可.【解答】解:连接OA、OB、OP,延长BO交PA的延长线于点F.∵PA,PB切⊙O于A、B两点,CD切⊙O于点E∴∠OAF=∠PBF=90°,CA=CE,DB=DE,PA=PB,∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,∴PA=PB=.在Rt△PBF和Rt△OAF中,,∴Rt△PBF∽Rt△OAF.∴===,∴AF=FB,在Rt△FBP中,∵PF2﹣PB2=FB2∴(PA+AF)2﹣PB2=FB2∴(r+BF)2﹣()2=BF2,解得BF=r,∴tan∠APB===,故选:B.【点评】本题主要考查了切线的性质,相似三角形及三角函数的定义,解决本题的关键是切线与相似三角形相结合,找准线段及角的关系.二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2014•武汉)计算:﹣2+(﹣3)=﹣5.【分析】根据有理数的加法法则求出即可.【解答】解:(﹣2)+(﹣3)=﹣5,故答案为:﹣5.【点评】本题考查了有理数加法的应用,注意:同号两数相加,取原来的符号,并把绝对值相加.12.(3分)(2015•德阳)分解因式:a3﹣a=a(a+1)(a﹣1).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.13.(3分)(2014•武汉)如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为.【分析】由一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,红色的有3个扇形,直接利用概率公式求解即可求得答案.【解答】解:∵一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,红色的有3个扇形,∴指针指向红色的概率为:.故答案为:.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)(2014•武汉)一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为2200米.【分析】设小明的速度为a米/秒,小刚的速度为b米/秒,由行程问题的数量关系建立方程组求出其解即可.【解答】解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:,∴这次越野跑的全程为:1600+300×2=2200米.故答案为:2200.【点评】本题考查了行程问题的数量关系的运用,二元一次方程组的解法的运用,解答时由函数图象的数量关系建立方程组是关键.15.(3分)(2014•武汉)如图,若双曲线y=与边长为5的等边△AOB的边OA、AB分别相交于C、D 两点,且OC=2BD.则实数k的值为4.【分析】过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设OC=2x,则BD=x,分别表示出点C、点D的坐标,代入函数解析式求出k,继而可建立方程,解出x的值后即可得出k的值.【解答】解:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设OC=2x,则BD=x,在Rt△OCE中,∠COE=60°,则OE=x,CE=x,则点C坐标为(x,x),在Rt△BDF中,BD=x,∠DBF=60°,则BF=x,DF=x,则点D的坐标为(5﹣x,x),将点C的坐标代入反比例函数解析式可得:k=x2,将点D的坐标代入反比例函数解析式可得:k=x﹣x2,则x2=x﹣x2,解得:x1=2,x2=0(舍去),故k=x2=×4=4.故答案为:4.【点评】本题考查了反比例函数图象上点的坐标特征,解答本题关键是利用k的值相同建立方程,有一定难度.16.(3分)(2014•武汉)如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【分析】根据等式的性质,可得∠BAD与∠CAD′的关系,根据SAS,可得△BAD与△CAD′的关系,根据全等三角形的性质,可得BD与CD′的关系,根据勾股定理,可得答案.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=,∠D′DA+∠ADC=90°由勾股定理得CD′=,∴BD=CD′=,故答案为:.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,作出全等图形是解题关键.三、解答题(共9小题,满分72分,应写出文字说明、证明过程或演算步骤)17.(6分)(2014•武汉)解方程:=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3x﹣6,解得:x=6,经检验x=6是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.(6分)(2014•武汉)已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.【分析】把点(1,﹣1)代入直线y=2x﹣b得到b的值,再解不等式.【解答】解:把点(1,﹣1)代入直线y=2x﹣b得,﹣1=2﹣b,解得,b=3.函数解析式为y=2x﹣3解2x﹣3≥0得x≥.【点评】本题考查了一次函数与一元一次不等式,要知道,点的坐标符合函数解析式.19.(6分)(2014•武汉)如图,AC和BD相交于点O,OA=OC,OB=OD.求证:DC∥AB.【分析】根据边角边定理求证△ODC≌△OBA,可得∠C=∠A(或者∠D=∠B),即可证明DC∥AB.【解答】证明:∵在△ODC和△OBA中,∵,∴△ODC≌△OBA(SAS),∴∠C=∠A(或者∠D=∠B)(全等三角形对应角相等),∴DC∥AB(内错角相等,两直线平行).【点评】此题主要考查学生对全等三角形的判定与性质和平行线的判定的理解和掌握,解答此题的关键是利用边角边定理求证△ODC≌△OBA.20.(7分)(2014•武汉)如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.【分析】(1)①根据关于y轴对称的点的横坐标互为相反数确定出点B的位置,然后连接AB即可;②根据轴对称的性质找出点A关于直线x=3的对称点,即为所求的点D;(2)根据平行四边形的性质,平分四边形面积的直线经过中心,然后求出AC的中点,代入直线计算即可求出k值.【解答】解:(1)①如图所示;②直线CD如图所示;(2)∵由图可知,AD=BC,AD∥BC,∴四边形ABCD是平行四边形.∵A(0,4),C(3,0),∴平行四边形ABCD的中心坐标为(,2),代入直线得,k=2,解得k=.【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,还考查了平行四边形的判定与性质,是基础题,要注意平分四边形面积的直线经过中心的应用.21.(7分)(2014•武汉)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.【分析】(1)①首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第一次摸到绿球,第二次摸到红球的情况,再利用概率公式即可求得答案;②首先由①求得两次摸到的球中有1个绿球和1个红球的情况,再利用概率公式即可求得答案;(2)由先从袋中摸出1个球后不放回,再摸出1个球,共有等可能的结果为:4×3=12(种),且两次摸到的球中有1个绿球和1个红球的有8种情况,直接利用概率公式求解即可求得答案.【解答】解:(1)①画树状图得:∵共有16种等可能的结果,第一次摸到绿球,第二次摸到红球的有4种情况,∴第一次摸到绿球,第二次摸到红球的概率为:=;②∵两次摸到的球中有1个绿球和1个红球的有8种情况,∴两次摸到的球中有1个绿球和1个红球的为:=;(2)∵先从袋中摸出1个球后不放回,再摸出1个球,共有等可能的结果为:4×3=12(种),且两次摸到的球中有1个绿球和1个红球的有8种情况,∴两次摸到的球中有1个绿球和1个红球的概率是:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)(2014•武汉)如图,AB是⊙O的直径,C,P是上两点,AB=13,AC=5.(1)如图(1),若点P是的中点,求PA的长;(2)如图(2),若点P是的中点,求PA的长.【分析】(1)根据圆周角的定理,∠APB=90°,P是弧AB的中点,所以三角形APB是等腰三角形,利用勾股定理即可求得.(2)根据垂径定理得出OP垂直平分BC,得出OP∥AC,从而得出△ACB∽△0NP,根据对应边成比例求得ON、AN的长,利用勾股定理求得NP的长,进而求得PA.【解答】解:(1)如图(1)所示,连接PB,∵AB是⊙O的直径且P是的中点,∴∠PAB=∠PBA=45°,∠APB=90°,又∵在等腰三角形△APB中有AB=13,∴PA===.(2)如图(2)所示:连接BC.OP相交于M点,作PN⊥AB于点N,∵P点为弧BC的中点,∴OP⊥BC,∠OMB=90°,又因为AB为直径∴∠ACB=90°,∴∠ACB=∠OMB,∴OP∥AC,∴∠CAB=∠POB,又因为∠ACB=∠ONP=90°,∴△ACB∽△0NP∴=,又∵AB=13 AC=5 OP=,代入得ON=,∴AN=OA+ON=9∴在Rt△OPN中,有NP2=0P2﹣ON2=36在Rt△ANP中有PA===3∴PA=3.【点评】本题考查了圆周角的定理,垂径定理,勾股定理,等腰三角形判定和性质,相似三角形的判定和性质,作出辅助线是本题的关键.23.(10分)(2014•武汉)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,当x=45时,y=﹣2×452+180×45+2000=6050,最大当50≤x≤90时,y随x的增大而减小,=6000,当x=50时,y最大综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.24.(10分)(2014•武汉)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.【分析】(1)分两种情况讨论:①当△BPQ∽△BAC时,=,当△BPQ∽△BCA时,=,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(2)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出=,代入计算即可;(3)作PE⊥AC于点E,DF⊥AC于点F,先得出DF=,再把QC=4t,PE=8﹣CM=8﹣4t代入求出DF,过BC的中点R作直线平行于AC,得出RC=DF,D在过R的中位线上,从而证出PQ的中点在△ABC的一条中位线上.【解答】解:(1)∵AC=6cm,BC=8cm,∴AB==10cm,①当△BPQ∽△BAC时,∵=,BP=5t,QC=4t,AB=10cm,BC=8cm,∴=,∴t=1;②当△BPQ∽△BCA时,∵=,∴=,∴t=,∴t=1或时,△BPQ与△ABC相似;(2)如图所示,过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=PBsinB=3t,BM=4t,MC=8﹣4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM且∠ACQ=∠PMC=90°,∴△ACQ∽△CMP,∴=,∴=,解得:t=;(3)如图,作PM⊥BC于点M,PQ的中点设为D点,再作PE⊥AC于点E,DF⊥AC于点F,∵∠ACB=90°,∴DF为梯形PECQ的中位线,∴DF=,∵QC=4t,PE=8﹣BM=8﹣4t,∴DF==4,∵BC=8,过BC的中点R作直线平行于AC,∴RC=DF=4成立,∴D在过R的中位线上,∴PQ的中点在△ABC的一条中位线上.【点评】此题考查了相似形综合,用到的知识点是相似三角形的判定与性质、中位线的性质等,关键是画出图形作出辅助线构造相似三角形,注意分两种情况讨论.25.(12分)(2014•武汉)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B两点.(1)直线AB总经过一个定点C,请直接出点C坐标;(2)当k=﹣时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.【分析】方法一:(1)要求定点的坐标,只需寻找一个合适x,使得y的值与k无关即可.(2)只需联立两函数的解析式,就可求出点A、B的坐标.设出点P的横坐标为a,运用割补法用a的代数式表示△APB的面积,然后根据条件建立关于a的方程,从而求出a的值,进而求出点P的坐标.(3)设点A、B、D的横坐标分别为m、n、t,从条件∠ADB=90°出发,可构造k型相似,从而得到m、n、t的等量关系,然后利用根与系数的关系就可以求出t,从而求出点D的坐标.由于直线AB上有一个定点C,容易得到DC长就是点D到AB的最大距离,只需构建直角三角形,利用勾股定理即可解决问题.方法二:(1)因为直线AB:y=kx+2k+4,y=k(x+2)+4,所以x=﹣2时,与k无关.(2)利用三角形面积公式水平底与铅垂高乘积的一半可求解.(3)列出A,B,D三点参数坐标,结合两根之和,两根之积得出关于m的一元二次方程,求出与k无关的m的值,并求出D点坐标,当直线CD与直线AB垂直时距离最大.【解答】方法一:解:(1)∵当x=﹣2时,y=(﹣2)k+2k+4=4.∴直线AB:y=kx+2k+4必经过定点(﹣2,4).∴点C的坐标为(﹣2,4).(2)∵k=﹣,∴直线的解析式为y=﹣x+3.联立,解得:或.∴点A的坐标为(﹣3,),点B的坐标为(2,2).过点P作PQ∥y轴,交AB于点Q,过点A作AM⊥PQ,垂足为M,过点B作BN⊥PQ,垂足为N,如图1所示.设点P的横坐标为a,则点Q的横坐标为a.∴y P=a2,y Q=﹣a+3.∵点P在直线AB下方,∴PQ=y Q﹣y P=﹣a+3﹣a2∵AM+NB=a﹣(﹣3)+2﹣a=5.∴S=S△APQ+S△BPQ△APB=PQ•AM+PQ•BN=PQ•(AM+BN)=(﹣a+3﹣a2)•5=5.整理得:a2+a﹣2=0.解得:a1=﹣2,a2=1.当a=﹣2时,y P=×(﹣2)2=2.此时点P的坐标为(﹣2,2).当a=1时,y P=×12=.此时点P的坐标为(1,).∴符合要求的点P的坐标为(﹣2,2)或(1,).(3)过点D作x轴的平行线EF,作AE⊥EF,垂足为E,作BF⊥EF,垂足为F,如图2.∵AE⊥EF,BF⊥EF,∴∠AED=∠BFD=90°.∵∠ADB=90°,∴∠ADE=90°﹣∠BDF=∠DBF.∵∠AED=∠BFD,∠ADE=∠DBF,∴△AED∽△DFB.∴.设点A、B、D的横坐标分别为m、n、t,则点A、B、D的纵坐标分别为m2、n2、t2.AE=y A﹣y E=m2﹣t2.BF=y B﹣y F=n2﹣t2.ED=x D﹣x E=t﹣m,DF=x F﹣x D=n﹣t.∵,∴=.∴=.∵t≠m,t≠n,∴=去分母并整理得:mn+(m+n)t+t2+4=0.∵点A、B是直线AB:y=kx+2k+4与抛物线y=x2交点,∴m、n是方程kx+2k+4=x2即x2﹣2kx﹣4k﹣8=0两根.∴m+n=2k,mn=﹣4k﹣8.∴﹣4k﹣8+2kt+t2+4=0,即t2+2kt﹣4k﹣4=0.即(t﹣2)(t+2k+2)=0.∴t1=2,t2=﹣2k﹣2(舍).∴定点D的坐标为(2,2).过点D作x轴的平行线DG,过点C作CG⊥DG,垂足为G,如图3所示.∵点C(﹣2,4),点D(2,2),∴CG=4﹣2=2,DG=2﹣(﹣2)=4.∵CG⊥DG,∴DC====2.过点D作DH⊥AB,垂足为H,如图3所示,∴DH≤DC.∴DH≤2.∴当DH与DC重合即DC⊥AB时,点D到直线AB的距离最大,最大值为2.∴点D到直线AB的最大距离为2.方法二:(1)略.(2)当k=﹣时,直线AB:y=﹣x+3,又y=x2,∴x1=﹣3,x2=2,∴A(﹣3,),B(2,2),过点P作x轴垂线,交直线AB于Q,设P(t,),∴Q(t,﹣t+3),S△ABP=(Q Y﹣P Y)(B X﹣A X)=(﹣t+3﹣t2)(3+2)=5,∴t2+t﹣2=0,∴t1=﹣2,t2=1,∴P1(﹣2,2),P2(1,).(3)∵D为抛物线上一点,∴设D(m,m2),A(x1,),B(x2,),∵∠ADB=90°,∴AD⊥BD,∴K AD×K BD=﹣1,×=﹣1,∴m2+(x1+x2)m+x1x2=﹣4,∵y=kx+2k+4,y=x2,∴x2﹣2kx﹣4k﹣8=0,∴x1+x2=2k,x1x2=﹣4k﹣8,∴m2+2km﹣4k﹣8=﹣4,∴m2+2km﹣4k﹣4=0,∴当m=2时,此式与k无关,∴D(2,2)∵y=kx+2k+4经过定点C(﹣2,4),∴当CD⊥AB时,距离最大,∴CD=.【点评】本题考查了解方程组、解一元二次方程、一元二次方程根与系数的关系、勾股定理、相似三角形的性质与判定等知识,考查了通过解方程组求两函数交点坐标、用割补法表示三角形的面积等方法,综合性比较强.构造K型相似以及运用根与系数的关系是求出点D的坐标的关键,点C是定点又是求点D到直线AB的最大距离的突破口.参与本试卷答题和审题的老师有:2300680618;sjzx;gbl210;caicl;lanchong;HJJ;73zzx;wkd;zjx111;HLing;wdxwwzy;zcx;hdq123;守拙;sks;CJX;fxx;星期八;lantin;1160374(排名不分先后)菁优网2017年4月18日第31页(共31页)。
湖北省荆门市中考数学真题试题(含扫描答案)
荆门市2015年初中毕业生学业水平考试数 学 试 题说明:1.全卷分两部分,第一部分为选择题,第二部分为非选择题,考试时间120分钟,满分120分.2.本卷试题,考生必须在答题卡上按规范作答;凡在试卷、草稿纸上作答的,其答案一律无效,答题卡必须保持清洁、不能折叠.3.选择题1—12题,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案;非选择题13—24题,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡对应的区域内.第一部分 选择题一、选择题(本题共12小题,每小题3分,共36分.每小题给出4个选项,有且只有一个答案是正确的)1.64的立方根为A .4B .4±C .8D .8±2.下列计算正确的是A .235a a a +=B .236a a a ⋅=C .235()a a =D .523a a a ÷=3.下列四个几何体中,俯视图为四边形的是4.某市2014年的国民生产总值为2073亿元,这个数用科学记数法表示为A .102.07310⨯元B .112.07310⨯元C .122.07310⨯元D .132.07310⨯元5.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为A .8或10B .8C .10D .6或126.如图,m ∥n ,直线l 分别交m 、n 于点A 、点B ,AC ⊥AB ,AC 交直线n 于点C ,若∠1=35°,则A∠2等于A .35°B .45°C .55°D .65°7.若关于x 的一元二次方程2450x x a -+-=有实数根,则a 的取值范围是A .1a ≥B .1a >C .1a ≤D .1a <8.当1<a <210a -=的值是A .1-B .1C .23a -D .32a -9.在一次800米的长跑比赛中,甲、乙两人所跑的路程s (米)与各自所用时间t (秒)之间的函数图象分别为线段OA 和折线OBCD ,则下列说法正确的是A .甲的速度随时间的增加而增大B .乙的平均速度比甲的平均速度大C .在起跑后第180秒时,两人相遇D .在起跑后第50秒时,乙在甲的前面 10.在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记为第一次传球).则经过三次传球后,球仍回到甲手中的概率是A .12B .14C .38D .58 11.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 为边AC 的中点,DE ⊥BC 于点E ,连接BD ,则tan DBC ∠的值为A .13 B1 C.2- D .1412.如图,点A ,B ,C 在一条直线上,△ABD ,△BCE 均为等边三角形,连接AE 和CD ,AE 分别交CD ,BD 于点M 、P ,CD 交BE 于点Q ,连接PQ ,BM .下列结论:①△ABE ≌△DBC ;②∠DMA =60°;③△BPQ 为等边三角形;④MB 平分∠AMC .其中结论正确的有A .1个B .2个C .3个D .4个nC 第12题图 MPQ E DC BA第二部分 非选择题二、填空题(本题共5小题,每小题3分,共15分)13.不等式组352,1212x x x x -⎧⎪⎨-+⎪⎩<≤的解集是 ▲ . 14.王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材购买了 ▲ 千克.15.已知关于x 的一元二次方程2(3)10x m x m ++++=的两个实数根为1x ,2x ,若22124x x +=,则m 的值为 ▲ .16.在矩形ABCD 中,AB =5,AD =12,将矩形ABCD 沿直线l 向右翻滚两次至如图所示位置,则点B 所经过的路线长是▲ (结果不取近似值).17.如图,点1A ,2A依次在0)y x >的图象上,点1B ,2B 依次在x 轴的正半轴上,若11A OB △,212A B B △均为等边三角形,则点2B 的坐标为▲ .三、解答题(本大题共7题,共69分)18.(本题满分8分)先化简,再求值: 22222a b a b a a b a ba ab b --⋅-+--+,其中1a =1b =-.19.(本题满分9分)已知,如图在四边形ABCD 中,AB ∥CD ,E ,F 为对角线AC 上两点,且AE =CF ,DF ∥BE ,AC 平分∠BAD .求证:四边形ABCD 为菱形.第16题图 D 'C 'B 'A 'D C B A lC A20.(本题满分10分)为了了解江城中学学生的身高情况,随机对该校男生、女生的身高进行抽样调查.已知抽取的样本中,男生、女生的人数相同,根据所得数据绘制如图所示的统计图表.根据图表中提供的信息,回答下列问题:(1)在样本中,男生身高的中位数落在_______组(填组别序号),女生身高在B 组的人数有 _______人;(2)在样本中,身高在150≤x <155之间的人数共有_______人,身高人数最多的在____组(填组别序号);(3)已知该校共有男生500人,女生480人,请估计身高在155≤x <165之间的学生约有多少人?21.(本题满分10分)如图,在一次军事演习中,蓝方在一条东西走向的公路上的A 处朝正南方向撤退,红方在公路上的B 处沿南偏西60°方向前进实施拦截.红方行驶1000 米到达C 处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D 处成功拦截蓝方.求拦截点D 处到公路的距离(结果不取近似值).女生身高情况扇形图男生身高情况直方图5%15%30%20%/cm E D C B A22.(本题满分10分)已知,如图,AB 是⊙O 的直径,点C 为⊙O 上一点,OF ⊥BC 于点F ,交⊙O 于点E ,AE 与BC 交于点H ,点D 为OE 的延长线上一点,且∠ODB =∠AEC .(1)求证:BD 是⊙O 的切线;(2)求证:2CE EH EA =⋅;(3)若⊙O 的半径为5,3sin 5A =,求BH 的长.23.(本题满分10分)甲经销商库存有1200套A 品牌服装,每套进价400元,每套售价500元,一年内可卖完.现市场上流行B 品牌服装,每套进价300元,每套售价600元,但一年内只允许经销商一次性订购B 品牌服装,一年内B 品牌服装销售无积压.因甲经销商无流动资金,只有低价转让A 品牌服装,用转让来的资金购进B 品牌服装,并销售.经与乙经销商协商,甲、乙双方达成转让协议,转让价格y (元/套)与转让数量x (套)之间的函数关系式为1360(1001200)10y x x =-+≤≤.若甲经销商转让x 套A 品牌服装,一年内所获总利润为w (元).(1)求转让后剩余的A 品牌服装的销售款1Q (元)与x (套)之间的函数关系式;(2)求B 品牌服装的销售款2Q (元)与x (套)之间的函数关系式;(3)求w (元)与x (套)之间的函数关系式,并求w 的最大值.第22题图B24.(本题满分12分)如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求OE的长及经过O,D,C三点的抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2 个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1 个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(1)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,Array请说明理由.。
荆门中考数学试题及答案.doc
2014年荆门中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
湖北省荆门市2014年中考数学试卷及答案(Word解析版)
湖北省荆门市2014年中考数学试卷一、选择题(本大题共12小题,每小题只有唯一正确答案.每小题3分,共36分)1.(3分)(2014年湖北荆门)若()×(﹣2)=1,则括号内填一个实数应该是()A.B. 2 C.﹣2 D.﹣分析:本题根据倒数的意义:乘积是1的两个数互为倒数.0没有倒数,1的倒数还是1.解答:解:(﹣)×(﹣2)=1,故答案选D.点评:本题考查的目的是理解倒数的意义,掌握求一个数的倒数的方法,明确:1的倒数是1,0没有倒数.2.(3分)(2014年湖北荆门)下列运算正确的是()A.3﹣1=﹣3 B.=±3 C.(ab2)3=a3b6D.a6÷a2=a3考点:同底数幂的除法;算术平方根;幂的乘方与积的乘方;负整数指数幂.分析:运用负整数指数幂的法则运算,开平方的方法,同底数幂的除法以及幂的乘方计算.解答:解:A、3﹣1=≠3a,故A选项错误;B、=3≠±3,故B选项错误;C、(ab2)3=a3b6故C选项正确;D、a6÷a2=a4≠a3,故D选项错误.故选:C.点评:此题考查了负整数指数幂的运算,开平方,同底数幂的除法以及幂的乘方等知识,解题要注意细心.3.(3分)(2014年湖北荆门)如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()A.155°B.145°C.110°D. 35°考点:平行线的性质.分析:首先,由平行线的性质得到∠BAC=∠ECF=70°;然后利用邻补角的定义、角平分线的定义来求∠FAG的度数.解答:解:如图,∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,∴∠FAB=180°﹣∠BAC=110°.又∵AG平分∠BAC,∴∠BAG=∠BAC=35°,∴∠FAG=∠FAB+∠BAG=145°.故选:B.点评:本题考查了平行线的性质.根据“两直线平行,内错角相等”求得∠BAC的度数是解题的难点.4.(3分)(2014年湖北荆门)将抛物线y=x2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是()A.y=(x﹣4)2﹣6 B.y=(x﹣4)2﹣2 C.y=(x﹣2)2﹣2 D.y=(x﹣1)2﹣3考点:二次函数图象与几何变换.专题:几何变换.分析:先把y=x2﹣6x+5配成顶点式,得到抛物线的顶点坐标为(3,﹣4),再把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),然后根据顶点式写出平移后的抛物线解析式.解答:解:y=x2﹣6x+5=(x﹣3)2﹣4,即抛物线的顶点坐标为(3,﹣4),把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),所以平移后得到的抛物线解析式为y=(x﹣4)2﹣2.故选B.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.(3分)(2014年湖北荆门)已知α是一元二次方程x2﹣x﹣1=0较大的根,则下面对α的估计正确的是()A.0<α<1 B.1<α<1.5 C.1.5<α<2 D. 2<α<3考点:解一元二次方程-公式法;估算无理数的大小.分析:先求出方程的解,再求出的范围,最后即可得出答案.解答:解:解方程x2﹣x﹣1=0得:x=,∵a是方程x2﹣x﹣1=0较大的根,∴a=,∵2<<3,∴3<1+<4,∴<<2,故选C.点评:本题考查了解一元二次方程,估算无理数的大小的应用,题目是一道比较典型的题目,难度适中.6.(3分)(2014年湖北荆门)如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是()A.∠ACD=∠DAB B.A D=DE C.A D2=BD•CD D.AD•AB=AC•BD考点:相似三角形的判定;圆周角定理.分析:由∠ADC=∠ADB,根据有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似,即可求得答案;注意排除法在解选择题中的应用.解答:解:如图,∠ADC=∠ADB,A、∵∠ACD=∠DAB,∴△ADC∽△BDA,故本选项正确;B、∵AD=DE,∴=,∴∠DAE=∠B,∴△ADC∽△BDA,故本选项正确;C、∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故本选项正确;D、∵AD•AB=AC•BD,∴AD:BD=AC:AB,但∠ADC=∠ADB不是公共角,故本选项错误.故选D.点评:此题考查了相似三角形的判定以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用.7.(3分)(2014年湖北荆门)如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.考点:一次函数与一元一次不等式;在数轴上表示不等式的解集.专题:数形结合.分析:观察函数图象得到当x>﹣1时,函数y=x+b的图象都在y=kx﹣1的图象上方,所以不等式x+b>kx﹣1的解集为x>﹣1,然后根据用数轴表示不等式解集的方法对各选项进行判断.解答:解:当x>﹣1时,x+b>kx﹣1,即不等式x+b>kx﹣1的解集为x>﹣1.故选A.点评:本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.8.(3分)(2014年湖北荆门)如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是()A.B.C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为:=.故选A.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)(2014年湖北荆门)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A.2种B.3种C.4种D. 5种考点:利用旋转设计图案;利用轴对称设计图案.分析:利用轴对称图形的性质以及中心对称图形的性质分析得出符合题意的图形即可.解答:解;如图所示:组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.故选:C.点评:此题主要考查了利用轴对称以及旋转设计图案,正确把握相关定义是解题关键.10.(3分)(2014年湖北荆门)已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A. 5 B. 1 C. 3 D.不能确定考点:解分式方程;关于原点对称的点的坐标.专题:计算题.分析:根据P关于原点对称点在第一象限,得到P横纵坐标都小于0,求出a的范围,确定出a的值,代入方程计算即可求出解.解答:解:∵点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,∴,解得:<a<2,即a=1,当a=1时,所求方程化为=2,去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解,则方程的解为3.故选C点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.11.(3分)(2014年湖北荆门)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75°B.()n﹣1•65°C.()n﹣1•75°D.()n•85°考点:等腰三角形的性质.专题:规律型.分析:先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的内角度数.解答:解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故选:C.点评:本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.12.(3分)(2014年湖北荆门)如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.4dm B.2dm C.2dm D.4dm考点:平面展开-最短路径问题.分析:要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.解答:解:如图,把圆柱的侧面展开,得到矩形,则则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=2,∴这圈金属丝的周长最小为2AC=4cm.故选A.点评:本题考查了平面展开﹣最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.二、填空题(本大题共5小题,每小题3分,共15分)13.(3分)(2014年湖北荆门)若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是2.考点:立方根;合并同类项;解二元一次方程组.分析:根据同类项的定义可以得到m,n的值,继而求出m﹣3n的立方根.解答:解:若﹣2x m﹣n y2与3x4y2m+n是同类项,∴,解方程得:.∴m﹣3n=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.点评:本题考查了同类项的概念以及立方根的求法,解体的关键是根据定义求出对应m、n 的值.14.(3分)(2014年湖北荆门)如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是(,).考点:位似变换;坐标与图形性质.分析:由题意可得OA:OD=1:,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.解答:解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,∴OA:OD=1:,∵点A的坐标为(1,0),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案为:(,).点评:此题考查了位似变换的性质与正方形的性质.此题比较简单,注意理解位似变换与相似比的定义是解此题的关键.15.(3分)(2014年湖北荆门)我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设=x,则x=0.3+x,解得x=,即=.仿此方法,将化成分数是.考点:一元一次方程的应用.分析:设x=,则x=0.4545…①,根据等式性质得:100x=45.4545…②,再由②﹣①得方程100x﹣x=45,解方程即可.解答:解:设x=,则x=0.4545…①,根据等式性质得:100x=45.4545…②,由②﹣①得:100x﹣x=45.4545…﹣0.4545…,即:100x﹣x=45,解方程得:x=.故答案为.点评:此题主要考查了一元一次方程的应用,关键是正确理解题意,看懂例题的解题方法.16.(3分)(2014年湖北荆门)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.考点:切线的性质;平行四边形的性质;弧长的计算;扇形面积的计算.分析:求图中阴影部分的面积,就要从图中分析阴影部分的面积是由哪几部分组成的.很显然图中阴影部分的面积=△ACD的面积﹣扇形ACE的面积,然后按各图形的面积公式计算即可.解答:解:连接AC,∵DC是⊙A的切线,∴AC⊥CD,又∵AB=AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CAD=∠ACB=45°,又∵AB=AC,∴∠ACB=∠B=45°,∴∠CAD=45°,∴∠CAD=45°,∵的长为,∴,解得:r=2,∴S阴影=S△ACD﹣S扇形ACD=.故答案为:.点评:本题主要考查了扇形的面积计算方法,不规则图形的面积通常转化为规则图形的面积的和差.17.(3分)(2014年湖北荆门)如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A 的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是﹣6.考点:反比例函数图象上点的坐标特征;等边三角形的性质;相似三角形的判定与性质;特殊角的三角函数值.专题:动点型.分析:连接OC,易证AO⊥OC,OC=OA.由∠AOC=90°想到构造K型相似,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,可证△AEO∽△OFC.从而得到OF=AE,FC=EO..设点A坐标为(a,b)则ab=2,可得FC•OF=6.设点C坐标为(x,y),从而有FC•OF=﹣xy=﹣6,即k=xy=﹣6.解答:解:∵双曲线y=关于原点对称,∴点A与点B关于原点对称.∴OA=OB.连接OC,如图所示.∵△ABC是等边三角形,OA=OB,∴OC⊥AB.∠BAC=60°.∴tan∠OAC==.∴OC=OA.过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,∵AE⊥OE,CF⊥OF,OC⊥OA,∴∠AEO=∠FOC,∠AOE=90°﹣∠FOC=∠OCF.∴△AEO∽△OFC.∴==.∵OC=OA,∴OF=AE,FC=EO.设点A坐标为(a,b),∵点A在第一象限,∴AE=a,OE=b.∴OF=AE=a,FC=EO=b.∵点A在双曲线y=上,∴ab=2.∴FC•OF=b•a=3ab=6设点C坐标为(x,y),∵点C在第四象限,∴FC=x,OF=﹣y.∴FC•OF=x•(﹣y)=﹣xy=6.∴xy=﹣6.∵点C在双曲线y=上,∴k=xy=﹣6.故答案为:﹣6.点评:本题考查了等边三角形的性质、反比例函数的性质、相似三角形的判定与性质、点与坐标之间的关系、特殊角的三角函数值等知识,有一定的难度.由∠AOC=90°联想到构造K 型相似是解答本题的关键.三、解答题(本大题共7题,共69分)18.(8分)(2014年湖北荆门)(1)计算:×﹣4××(1﹣)0;(2)先化简,再求值:(+)÷,其中a,b满足+|b﹣|=0.考点:二次根式的混合运算;非负数的性质:绝对值;非负数的性质:算术平方根;分式的化简求值;零指数幂.专题:计算题.分析:(1)根据二次根式的乘法法则和零指数幂的意义得到原式=﹣4××1=2﹣,然后合并即可;(2)先把分子和分母因式分解和除法运算化为乘法运算,再计算括号内的运算,然后约分得到原式=,再根据非负数的性质得到a+1=0,b﹣=0,解得a=﹣1,b=,然后把a和b 的值代入计算即可.解答:解:(1)原式=﹣4××1=2﹣=;(2)原式=[﹣]•=(﹣]•=•=,∵+|b﹣|=0,∴a+1=0,b﹣=0,解得a=﹣1,b=,当a=﹣1,b=时,原式=﹣=﹣点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、非负数的性质和分式的化简求值.19.(9分)(2014年湖北荆门)如图①,正方形ABCD的边AB,AD分别在等腰直角△AEF的腰AE,AF上,点C在△AEF内,则有DF=BE(不必证明).将正方形ABCD绕点A逆时针旋转一定角度α(0°<α<90°)后,连结BE,DF.请在图②中用实线补全图形,这时DF=BE 还成立吗?请说明理由.考点:全等三角形的判定与性质;等腰直角三角形;正方形的性质.分析:根据旋转角求出∠FAD=∠EAB,然后利用“边角边”证明△ABE和△ADF全等,根据全等三角形对应边相等可得BE=DF.解答:解:DF=BE还成立;理由:∵正方形ABCD绕点A逆时针旋转一定角度α,∴∠FAD=∠EAB,在△ADF与△ABE中∴△ADF≌△ABE(SAS)∴DF=BE.点评:本题考查了旋转的性质,正方形的性质,等腰直角三角形的性质,全等三角形的判定与性质,熟记各性质求出三角形全等是解题的关键.20.(10分)(2014年湖北荆门)钓鱼岛自古以来就是中国的领土.如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A处和正东方向的B处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向、位于B处北偏西44°方向.若甲、乙两船分别沿AC,BC方向航行,其平均速度分别是20海里/小时,18海里/小时,试估算哪艘船先赶到C处.(参考数据:cos59°≈0.52,sin46°≈0.72)考点:解直角三角形的应用-方向角问题.分析:作CD⊥AB于点D,由题意得:∠ACD=59°,∠DCB=44°,设CD的长为a海里,分别在Rt△ACD中,和在Rt△BCD中,用a表示出AC和BC,然后除以速度即可求得时间,比较即可确定答案解答:解:如图,作CD⊥AB于点D,由题意得:∠ACD=59°,∠DCB=44°,设CD的长为a海里,∵在Rt△ACD中,=cos∠ACD,∴AC==≈1.92a;∵在Rt△BCD中,=cos∠BCD,∴BC==≈1.39a;∵其平均速度分别是20海里/小时,18海里/小时,∴1.92a÷20=0.096a.1.39a÷18=0.077a,∵a>0,∴0.096a>0.077a,∴乙先到达.点评:本题考查了解直角三角形的应用,解决本题的关键在于设出未知数a,使得运算更加方便,难度中等.21.(10分)(2014年湖北荆门)我市某中学七、八年级各选派10名选手参加学校举办的“爱我荆门”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a,b.队别平均分中位数方差合格率优秀率七年级6.7 m 3.41 90% n八年级7.1 7.5 1.69 80% 10%(1)请依据图表中的数据,求a,b的值;(2)直接写出表中的m,n的值;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.考点:条形统计图;统计表;加权平均数;中位数;方差.专题:计算题.分析:(1)根据题中数据求出a与b的值即可;(2)根据(1)a与b的值,确定出m与n的值即可;(3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.解答:解:(1)根据题意得:a=5,b=1;(2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;优秀率为==20%,即n=20%;(3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,故八年级队比七年级队成绩好.点评:此题考查了条形统计图,扇形统计图,以及中位数,平均数,以及方差,弄清题意是解本题的关键.22.(10分)(2014年湖北荆门)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;(2)求售价x的范围;(3)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?考点:二次函数的应用.分析:(1)根据题中条件销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;(2)根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.(3)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w;解答:解:(1)根据题中条件销售价每降低10元,月销售量就可多售出50千克,则月销售量y(台)与售价x(元/台)之间的函数关系式;y=﹣5x+2200.(2)供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,则300≤x≤350.(3)W=(x﹣200)(﹣5x+2200),整理得:W=﹣5(x﹣320)2+72000.即当x=320时,最大值为72000.点评:本题主要考查对于一次函数的应用和掌握,而且还应用到将函数变形求函数极值的知识.23.(10分)(2014年湖北荆门)已知:函数y=ax2﹣(3a+1)x+2a+1(a为常数).(1)若该函数图象与坐标轴只有两个交点,求a的值;(2)若该函数图象是开口向上的抛物线,与x轴相交于点A(x1,0),B(x2,0)两点,与y轴相交于点C,且x2﹣x1=2.①求抛物线的解析式;②作点A关于y轴的对称点D,连结BC,DC,求sin∠DCB的值.考点:二次函数综合题.分析:(1)根据a取值的不同,有三种情形,需要分类讨论,避免漏解.(2)①函数与x轴相交于点A(x1,0),B(x2,0)两点,则x1,x2,满足y=0时,方程的根与系数关系.因为x2﹣x1=2,则可平方,用x1+x2,x1x2表示,则得关于a的方程,可求,并得抛物线解析式.②已知解析式则可得A,B,C,D坐标,求sin∠DCB,须作垂线构造直角三角形,结论易得.解答:解:(1)函数y=ax2﹣(3a+1)x+2a+1(a为常数),若a=0,则y=﹣x+1,与坐标轴有两个交点(0,1),(1,0);若a≠0且图象过原点时,2a+1=0,a=﹣,有两个交点(0,0),(1,0);若a≠0且图象与x轴只有一个交点时,令y=0有:△=(3a+1)2﹣4a(2a+1)=0,解得a=﹣1,有两个交点(0,﹣1),(1,0).综上得:a=0或﹣或﹣1时,函数图象与坐标轴有两个交点.(2)①∵函数与x轴相交于点A(x1,0),B(x2,0)两点,∴x1,x2为ax2﹣(3a+1)x+2a+1=0的两个根,∴x1+x2=,x1x2=,∵x2﹣x1=2,∴4=(x2﹣x1)2=(x1+x2)2﹣4x1x2=()2﹣4•,解得a=﹣(函数开口向上,a>0,舍去),或a=1,∴y=x2﹣4x+3.②∵函数y=x2﹣4x+3与x轴相交于点A(x1,0),B(x2,0)两点,与y轴相交于点C,且x1<x2,∴A(1,0),B(3,0),C(0,3),∵D为A关于y轴的对称点,∴D(﹣1,0).根据题意画图,如图1,过点D作DE⊥CB于E,∵OC=3,OB=3,OC⊥OB,∴△OCB为等腰直角三角形,∴∠CBO=45°,∴△EDB为等腰直角三角形,设DE=x,则EB=x,∵DB=4,∴x2+x2=42,∴x=2,即DE=2.在Rt△COD中,∵DO=1,CO=3,∴CD==,∴sin∠DCB==.点评:本题考查了二次函数图象交点性质、韦达定理、特殊三角形及三角函数等知识,题目考法新颖,但内容常规基础,是一道非常值得考生练习的题目.24.(12分)(2014年湖北荆门)如图①,已知:在矩形ABCD的边AD上有一点O,OA=,以O为圆心,OA长为半径作圆,交AD于M,恰好与BD相切于H,过H作弦HP∥AB,弦HP=3.若点E是CD边上一动点(点E与C,D不重合),过E作直线EF∥BD交BC于F,再把△CEF沿着动直线EF对折,点C的对应点为G.设CE=x,△EFG与矩形ABCD重叠部分的面积为S.(1)求证:四边形ABHP是菱形;(2)问△EFG的直角顶点G能落在⊙O上吗?若能,求出此时x的值;若不能,请说明理由;(3)求S与x之间的函数关系式,并直接写出FG与⊙O相切时,S的值.考点:圆的综合题;含30度角的直角三角形;菱形的判定;矩形的性质;垂径定理;切线的性质;切线长定理;轴对称的性质;特殊角的三角函数值专题:压轴题.分析:(1)连接OH,可以求出∠HOD=60°,∠HDO=30°,从而可以求出AB=3,由HP∥AB,HP=3可证到四边形ABHP是平行四边形,再根据切线长定理可得BA=BH,即可证到四边形ABHP是菱形.(2)当点G落到AD上时,可以证到点G与点M重合,可求出x=2.(3)当0≤x≤2时,如图①,S=S△EGF,只需求出FG,就可得到S与x之间的函数关系式;当2<x≤3时,如图④,S=S△GEF﹣S△SGR,只需求出SG、RG,就可得到S与x之间的函数关系式.当FG与⊙O相切时,如图⑤,易得FK=AB=3,KQ=AQ﹣AK=2﹣2+x.再由FK=KQ 即可求出x,从而求出S.解答:解:(1)证明:连接OH,如图①所示.∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,BC=AD,AB=CD.∵HP∥AB,∴∠ANH+∠BAD=180°.∴∠ANH=90°.∴HN=PN=HP=.∵OH=OA=,∴sin∠HON==.∴∠HON=60°∵BD与⊙O相切于点H,∴OH⊥BD.∴∠HDO=30°.∴OD=2.∴AD=3.∴BC=3.∵∠BAD=90°,∠BDA=30°.∴tan∠BDA===.∴AB=3.∵HP=3,∴AB=HP.∵AB∥HP,∴四边形ABHP是平行四边形.∵∠BAD=90°,AM是⊙O的直径,∴BA与⊙O相切于点A.∵BD与⊙O相切于点H,∴BA=BH.∴平行四边形ABHP是菱形.(2)△EFG的直角顶点G能落在⊙O上.如图②所示,点G落到AD上.∵EF∥BD,∴∠FEC=∠CDB.∵∠CDB=90°﹣30°=60°,∴∠CEF=60°.由折叠可得:∠GEF=∠CEF=60°.∴∠GED=60°.∵CE=x,∴GE=CE=x.ED=DC﹣CE=3﹣x.∴cos∠GED===.∴x=2.∴GE=2,ED=1.∴GD=.∴OG=AD﹣AO﹣GD=3﹣﹣=.∴OG=OM.∴点G与点M重合.此时△EFG的直角顶点G落在⊙O上,对应的x的值为2.∴当△EFG的直角顶点G落在⊙O上时,对应的x的值为2.(3)①如图①,在Rt△EGF中,tan∠FEG===.∴FG=x.∴S=GE•FG=x•x=x2.②如图③,ED=3﹣x,RE=2ED=6﹣2x,GR=GE﹣ER=x﹣(6﹣2x)=3x﹣6.∵tan∠SRG===,∴SG=(x﹣2).∴S△SGR=SG•RG=•(x﹣2)•(3x﹣6).=(x﹣2)2.∵S△GEF=x2,∴S=S△GEF﹣S△SGR=x2﹣(x﹣2)2.=﹣x2+6x﹣6.综上所述:当0≤x≤2时,S=x2;当2<x≤3时,S=﹣x2+6x﹣6.当FG与⊙O相切于点T时,延长FG交AD于点Q,过点F作FK⊥AD,垂足为K,如图④所示.∵四边形ABCD是矩形,∴BC∥AD,∠ABC=∠BAD=90°∴∠AQF=∠CFG=60°.∵OT=,∴OQ=2.∴AQ=+2.∵∠FKA=∠ABC=∠BAD=90°,京翰初中家教——专业对初中学生开设初三数学辅导补习班京翰教育北京家教辅导——全国中小学一对一课外辅导班 ∴四边形ABFK 是矩形.∴FK=AB=3,AK=BF=3﹣x . ∴KQ=AQ ﹣AK=(+2)﹣(3﹣x )=2﹣2+x . 在Rt △FKQ 中,tan ∠FQK==. ∴FK=QK .∴3=(2﹣2+x ). 解得:x=3﹣. ∵0≤3﹣≤2, ∴S=x 2=×(3﹣)2 =﹣6.∴FG 与⊙O 相切时,S 的值为﹣6. 点评: 本题考查了矩形的性质、菱形的性质、切线的性质、切线长定理、垂径定理、轴对称性质、特殊角的三角函数值、30°角所对的直角边等于斜边的一半、等腰三角形的性质等知识,综合性非常强.。
最新湖北省荆门市中考数学试卷(含答案解析)
湖北省荆门市中考数学试卷一、选择题(本题共12小题,每小题3分,共36分,每小题给出4个选项,有且只有一个答案是正确地)1.2地绝对值是()A.2 B.﹣2 C. D.﹣【考点】绝对值.【分析】计算绝对值要根据绝对值地定义求解.第一步列出绝对值地表达式;第二步根据绝对值定义去掉这个绝对值地符号.【解答】解:∵2>0,∴|2|=2.故选:A.2.下列运算正确地是()A.a+2a=2a2B.(﹣2ab2)2=4a2b4C.a6÷a3=a2D.(a﹣3)2=a2﹣9【考点】同底数幂地除法;合并同类项;幂地乘方与积地乘方;完全平方公式.【分析】根据合并同类项系数相加字母及指数不变,积地乘方等于乘方地积,同底数幂地除法底数不变指数相减,差地平方等余平方和减积地二倍,可得答案.【解答】解:A、合并同类项系数相加字母及指数不变,故A错误;B、积地乘方等于乘方地积,故B正确;C、同底数幂地除法底数不变指数相减,故C错误;D、差地平方等余平方和减积地二倍,故D错误;故选:B.3.要使式子有意义,则x地取值范围是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1【考点】二次根式有意义地条件.【分析】直接利用二次根式有意义地条件进而得出x﹣1≥0,求出答案.【解答】解:要使式子有意义,故x﹣1≥0,解得:x≥1.则x地取值范围是:x≥1.故选:C.4.如图,△ABC中,AB=AC,AD是∠BAC地平分线.已知AB=5,AD=3,则BC地长为()A.5 B.6 C.8 D.10【考点】勾股定理;等腰三角形地性质.【分析】根据等腰三角形地性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC地平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选C.5.在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在地象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点地坐标.【分析】根据各象限内点地坐标特征解答即可.【解答】解:∵点A(a,﹣b)在第一象限内,∴a>0,﹣b>0,∴b<0,∴点B(a,b)所在地象限是第四象限.故选D.6.由5个大小相同地小正方体拼成地几何体如图所示,则下列说法正确地是()A.主视图地面积最小 B.左视图地面积最小C.俯视图地面积最小 D.三个视图地面积相等【考点】简单组合体地三视图.【分析】根据从正面看得到地图形是主视图,从左边看得到地图形是左视图,从上边看得到地图形是俯视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,主视图地面积是4;从左边看第一层是两个小正方形,第二层左边一个小正方形,左视图地面积为3;从上边看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,俯视图地面积是4,左视图面积最小,故B正确;故选:B.7.化简地结果是()A. B. C.x+1 D.x﹣1【考点】分式地混合运算.【分析】原式括号中两项通分并利用同分母分式地减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=,故选A8.如图,正方形ABCD地边长为2cm,动点P从点A出发,在正方形地边上沿A→B→C地方向运动到点C停止,设点P地运动路程为x(cm),在下列图象中,能表示△ADP地面积y(cm2)关于x(cm)地函数关系地图象是()A. B. C. D.【考点】动点问题地函数图象.【分析】△ADP地面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系地图象.【解答】解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,当P点由B运动到C点时,即2<x<4时,y=×2×2=2,符合题意地函数关系地图象是A;故选:A.9.已知3是关于x地方程x2﹣(m+1)x+2m=0地一个实数根,并且这个方程地两个实数根恰好是等腰△ABC地两条边地边长,则△ABC地周长为()A.7 B.10 C.11 D.10或11【考点】解一元二次方程-因式分解法;一元二次方程地解;三角形三边关系;等腰三角形地性质.【分析】把x=3代入已知方程求得m地值;然后通过解方程求得该方程地两根,即等腰△ABC 地两条边长,由三角形三边关系和三角形地周长公式进行解答即可.【解答】解:把x=3代入方程得9﹣3(m+1)+2m=0,解得m=6,则原方程为x2﹣7x+12=0,解得x1=3,x2=4,因为这个方程地两个根恰好是等腰△ABC地两条边长,①当△ABC地腰为4,底边为3时,则△ABC地周长为4+4+3=11;②当△ABC地腰为3,底边为4时,则△ABC地周长为3+3+4=10.综上所述,该△ABC地周长为10或11.故选:D.10.若二次函数y=x2+mx地对称轴是x=3,则关于x地方程x2+mx=7地解为()A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=7【考点】二次函数地性质;解一元二次方程-因式分解法.【分析】先根据二次函数y=x2+mx地对称轴是x=3求出m地值,再把m地值代入方程x2+mx=7,求出x地值即可.【解答】解:∵二次函数y=x2+mx地对称轴是x=3,∴﹣=3,解得m=﹣6,∴关于x地方程x2+mx=7可化为x2﹣6x﹣7=0,即(x+1)(x﹣7)=0,解得x1=﹣1,x2=7.故选D.11.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确地是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF【考点】矩形地性质;全等三角形地判定.【分析】先根据已知条件判定判定△AFD≌△DCE(AAS),再根据矩形地对边相等,以及全等三角形地对应边相等进行判断即可.【解答】解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故(A)正确;(B)∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD地一半,故(B)错误;(C)由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故(C)正确;(D)由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故(D)正确;故选(B)12.如图,从一块直径为24cm地圆形纸片上剪出一个圆心角为90°地扇形ABC,使点A,B,C 在圆周上,将剪下地扇形作为一个圆锥地侧面,则这个圆锥地底面圆地半径是()A.12cm B.6cm C.3cm D.2cm【考点】圆锥地计算.【分析】圆地半径为2,那么过圆心向AC引垂线,利用相应地三角函数可得AC地一半地长度,进而求得AC地长度,利用弧长公式可求得弧BC地长度,圆锥地底面圆地半径=圆锥地弧长÷2π.【解答】解:作OD⊥AC于点D,连接OA,∴∠OAD=45°,AC=2AD,∴AC=2(OA×cos45°)=12cm,∴=6π∴圆锥地底面圆地半径=6π÷(2π)=3cm.故选C.二、填空题(本题共5小题,每小题3分,共15分)13.分解因式:(m+1)(m﹣9)+8m= (m+3)(m﹣3).【考点】因式分解-运用公式法.【分析】先利用多项式地乘法运算法则展开,合并同类项后再利用平方差公式分解因式即可.【解答】解:(m+1)(m﹣9)+8m,=m2﹣9m+m﹣9+8m,=m2﹣9,=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).14.为了改善办学条件,学校购置了笔记本电脑和台式电脑共100台,已知笔记本电脑地台数比台式电脑地台数地还少5台,则购置地笔记本电脑有16 台.【考点】一元一次方程地应用.【分析】设购置地笔记本电脑有x台,则购置地台式电脑为台.根据笔记本电脑地台数比台式电脑地台数地还少5台,可列出关于x地一元一次方程,解方程即可得出结论.【解答】解:设购置地笔记本电脑有x台,则购置地台式电脑为台,依题意得:x=﹣5,即20﹣x=0,解得:x=16.∴购置地笔记本电脑有16台.故答案为:16.15.荆楚学校为了了解九年级学生“一分钟内跳绳次数”地情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女地概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能地结果与刚好抽到一男一女地情况,再利用概率公式即可求得答案.【解答】解:画树状图如下:由树状图可知共有20种等可能性结果,其中抽到一男一女地情况有12种,所以抽到一男一女地概率为P(一男一女)=,故答案为:.16.两个全等地三角尺重叠放在△ACB地位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE地位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF= 2cm.【考点】旋转地性质.【分析】利用旋转地性质得出DC=AC,∠D=∠CAB,再利用已知角度得出∠AFC=90°,再利用直角三角形地性质得出FC地长.【解答】解:∵将其中一个三角尺绕着点C按逆时针方向旋转至△DCE地位置,使点A恰好落在边DE上,∴DC=AC,∠D=∠CAB,∴∠D=∠DAC,∵∠ACB=∠DCE=90°,∠B=30°,∴∠D=∠CAB=60°,∴∠DCA=60°,∴∠ACF=30°,可得∠AFC=90°,∵AB=8cm,∴AC=4cm,∴FC=4cos30°=2(cm).故答案为:2.17.如图,已知点A(1,2)是反比例函数y=图象上地一点,连接AO并延长交双曲线地另一分支于点B,点P是x轴上一动点;若△PAB是等腰三角形,则点P地坐标是(﹣3,0)或(5,0)或(3,0)或(﹣5,0).【考点】反比例函数图象上点地坐标特征;等腰三角形地性质.【分析】由对称性可知O为AB地中点,则当△PAB为等腰三角形时只能有PA=AB或PB=AB,设P点坐标为(x,0),可分别表示出PA和PB,从而可得到关与x地方程,可求得x,可求得P点坐标.【解答】解:∵反比例函数y=图象关于原点对称,∴A、B两点关于O对称,∴O为AB地中点,且B(﹣1,﹣2),∴当△PAB为等腰三角形时有PA=AB或PB=AB,设P点坐标为(x,0),∵A(1,2),B(﹣1,﹣2),∴AB==2,PA=,PB=,当PA=AB时,则有=2,解得x=﹣3或5,此时P点坐标为(﹣3,0)或(5,0);当PB=AB时,则有=2,解得x=3或﹣5,此时P点坐标为(3,0)或(﹣5,0);综上可知P点地坐标为(﹣3,0)或(5,0)或(3,0)或(﹣5,0),故答案为:(﹣3,0)或(5,0)或(3,0)或(﹣5,0).三、解答题(本题共7小题,共69分)18.(1)计算:|1﹣|+3tan30°﹣()0﹣(﹣)﹣1.(2)解不等式组.【考点】解一元一次不等式组;实数地运算;零指数幂;负整数指数幂;特殊角地三角函数值.【分析】(1)首先去掉绝对值符号,计算乘方,代入特殊角地三角函数值,然后进行加减计算即可;(2)首先解每个不等式,两个不等式地解集地公共部分就是不等式组地解集.【解答】解:(1)原式=﹣1+3×﹣1﹣(﹣3)=﹣1++3=2;(2)解①得x>﹣,解②得x≤0,则不等式组地解集是﹣<x≤0.19.如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.【考点】旋转地性质.【分析】(1)根据题意补全图形,如图所示;(2)由旋转地性质得到∠DCF为直角,由EF与CD平行,得到∠EFC为直角,利用SAS得到三角形BDC与三角形EFC全等,利用全等三角形对应角相等即可得证.【解答】解:(1)补全图形,如图所示;(2)由旋转地性质得:∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠DCE+∠BCD=90°,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=180°,∴∠EFC=90°,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=90°.20.秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”地情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生地成绩,整理并制作成了如下不完整地图表:分数段频数频率60≤x<70 9 a70≤x<80 36 0.480≤x<90 27 b90≤x≤100 c 0.2(1)在表中,a= 0.1 ,b= 0.3 ,c= 18 ;(2)补全频数直方图;(3)根据以上选取地数据,计算七年级学生地平均成绩.(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级地800名学生中,“优秀”等次地学生约有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;加权平均数.【分析】(1)根据表格中地数据可以求得抽查地学生数,从而可以求得a、b、c地值;(2)根据(1)中c地值,可以将频数分布直方图补充完整;(3)根据平均数地定义和表格中地数据可以求得七年级学生地平均成绩;(4)根据表格中地数据可以求得“优秀”等次地学生数.【解答】解:(1)抽查地学生数:36÷0.4=90,a=9÷90=0.1,b=27÷90=0.3,c=90×0.2=18,故答案为:0.1,0.3,18;(2)补全地频数分布直方图如右图所示,(3)∵=81,即七年级学生地平均成绩是81分;(4)∵800×(0.3+0.2)=800×0.5=400,即“优秀”等次地学生约有400人.21.如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山地西端地坡角是45°,东端地坡角是30°,小军地行走速度为米/秒.若小明与小军同时到达山顶C处,则小明地行走速度是多少?【考点】解直角三角形地应用-坡度坡角问题.【分析】过点C作CD⊥AB于点D,设AD=x米,小明地行走速度是a米/秒,根据直角三角形地性质用x表示出AC与BC地长,再根据小明与小军同时到达山顶C处即可得出结论.【解答】解:过点C作CD⊥AB于点D,设AD=x米,小明地行走速度是a米/秒,∵∠A=45°,CD⊥AB,∴AD=CD=x米,∴AC=x.在Rt△BCD中,∵∠B=30°,∴BC===2x,∵小军地行走速度为米/秒.若小明与小军同时到达山顶C处,∴=,解得a=1米/秒.答:小明地行走速度是1米/秒.22.如图,AB是⊙O地直径,AD是⊙O地弦,点F是DA延长线地一点,AC平分∠FAB交⊙O于点C,过点C作CE⊥DF,垂足为点E.(1)求证:CE是⊙O地切线;(2)若AE=1,CE=2,求⊙O地半径.【考点】切线地判定;角平分线地性质.【分析】(1)证明:连接CO,证得∠OCA=∠CAE,由平行线地判定得到OC∥FD,再证得OC⊥CE,即可证得结论;(2)证明:连接BC,由圆周角定理得到∠BCA=90°,再证得△ABC∽△ACE,根据相似三角形地性质即可证得结论.【解答】(1)证明:连接CO,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠FAB,∴∠OCA=∠CAE,∴OC∥FD,∵CE⊥DF,∴OC⊥CE,∴CE是⊙O地切线;(2)证明:连接BC,在Rt△ACE中,AC===,∵AB是⊙O地直径,∴∠BCA=90°,∴∠BCA=∠CEA,∵∠CAE=∠CAB,∴△ABC∽△ACE,∴=,∴,∴AB=5,∴AO=2.5,即⊙O地半径为2.5.23.A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36天,从A城往C,D两乡运送农机地费用分别为250元/台和200元/台,从B城往C,D两乡运送农机地费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机地总费用为W元,求W关于x地函数关系式,并写出自变量x地取值范围;(2)现该运输公司要求运送全部农机地总费用不低于16460元,则有多少种不同地调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡地农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?【考点】一次函数地应用;一元一次不等式地应用.【分析】(1)A城运往C乡地化肥为x吨,则可得A城运往D乡地化肥为30﹣x吨,B城运往C乡地化肥为34﹣x吨,B城运往D乡地化肥为40﹣(34﹣x)吨,从而可得出W与x大地函数关系.(2)根据题意得140x+12540≥16460求得28≤x≤30,于是得到有3种不同地调运方案,写出方案即可;(3)根据题意得到W=x+12540,所以当a=200时,y最小=﹣60x+12540,此时x=30时y最小=10740元.于是得到结论.【解答】解:(1)W=250x+200(30﹣x)+150(34﹣x)+240(6+x)=140x+12540(0<x≤30);(2)根据题意得140x+12540≥16460,∴x≥28,∵x≤30,∴28≤x≤30,∴有3种不同地调运方案,第一种调运方案:从A城调往C城28台,调往D城2台,从,B城调往C城6台,调往D城34台;第二种调运方案:从A城调往C城29台,调往D城1台,从,B城调往C城5台,调往D城35台;第三种调运方案:从A城调往C城30台,调往D城0台,从,B城调往C城4台,调往D城36台,(3)W=x+200(30﹣x)+150(34﹣x)+240(6+x)=x+12540,=10740元.所以当a=200时,y最小=﹣60x+12540,此时x=30时y最小此时地方案为:从A城调往C城30台,调往D城0台,从,B城调往C城4台,调往D城36台.24.如图,直线y=﹣x+2与x轴,y轴分别交于点A,点B,两动点D,E分别从点A,点B 同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和个单位长度/秒,设运动时间为t秒,以点A为顶点地抛物线经过点E,过点E作x轴地平行线,与抛物线地另一个交点为点G,与AB相交于点F.(1)求点A,点B地坐标;(2)用含t地代数式分别表示EF和AF地长;(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.(4)是否存在t地值,使△AGF为直角三角形?若存在,求出这时抛物线地解析式;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)在直线y=﹣x+2中,分别令y=0和x=0,容易求得A、B两点坐标;(2)由OA、OB地长可求得∠ABO=30°,用t可表示出BE,EF,和BF地长,由勾股定理可求得AB地长,从而可用t表示出AF地长;(3)利用菱形地性质可求得t地值,则可求得AF=AG地长,可得到=,可判定△AFG与△AGB相似;(4)若△AGF为直角三角形时,由条件可知只能是∠FAG=90°,又∠AFG=∠OAF=60°,由(2)可知AF=4﹣2t,EF=t,又由二次函数地对称性可得到EG=2OA=4,从而可求出FG,在Rt△AGF 中,可得到关于t地方程,可求得t地值,进一步可求得E点坐标,利用待定系数法可求得抛物线地解析式.【解答】解:(1)在直线y=﹣x+2中,令y=0可得0=﹣x+2,解得x=2,令x=0可得y=2,∴A为(2,0),B为(0,2);(2)由(1)可知OA=2,OB=2,∴tan∠ABO==,∴∠ABO=30°,∵运动时间为t秒,∴BE=t,∵EF∥x轴,∴在Rt△BEF中,EF=BE•tan∠ABO=BE=t,BF=2EF=2t, 在Rt△ABO中,OA=2,OB=2,∴AB=4,∴AF=4﹣2t;(3)相似.理由如下:当四边形ADEF为菱形时,则有EF=AF,即t=4﹣2t,解得t=,∴AF=4﹣2t=4﹣=,OE=OB﹣BE=2﹣×=, 如图,过G作GH⊥x轴,交x轴于点H,则四边形OEGH为矩形,∴GH=OE=,又EG∥x轴,抛物线地顶点为A,∴OA=AH=2,在Rt△AGH中,由勾股定理可得AG2=GH2+AH2=()2+22=, 又AF•AB=×4=,∴AF•AB=AG2,即=,且∠FAG=∠GAB,∴△AFG∽△AGB;(4)存在,∵EG∥x轴,∴∠GFA=∠BAO=60°,又G点不能在抛物线地对称轴上,∴∠FGA≠90°,∴当△AGF为直角三角形时,则有∠FAG=90°,又∠FGA=30°,∴FG=2AF,∵EF=t,EG=4,∴FG=4﹣t,且AF=4﹣2t,∴4﹣t=2(4﹣2t),解得t=,即当t地值为秒时,△AGF为直角三角形,此时OE=OB﹣BE=2﹣t=2﹣×=, ∴E点坐标为(0,),∵抛物线地顶点为A,∴可设抛物线解析式为y=a(x﹣2)2,把E点坐标代入可得=4a,解得a=,∴抛物线解析式为y=(x﹣2)2,即y=x2﹣x+.。
湖北省2014年中考数学试卷汇总(12份)
湖北省2014年中考数学试卷汇总(12份)湖北省鄂州市2014年中考数学试卷学校:________考生姓名:________准考证号:注意事项:1.本试卷共6页,满分120分,考试时间120分钟。
2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试题卷上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
6.考生不准使用计算器。
一、选择题(每小题3分,共30分)1.的绝对值的相反数是()A.B.C.D.2.下列运算正确的是()A.B.C.D.3.如图所示,几何体是由一些正方体组合而成的立体图形,则这个几何体的左视图是()第3题图ABCD4.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°]5.点A为双曲线上一点,B为x轴上一点,且△AOB为等边三角形,△AOB的边长为2,则k的值为()A.B.±C.D.±6.圆锥体的底面半径为2,侧面积为8,则其侧面展开图的圆心角为()A.90°B.120°C.150°D.180°第4题图7.在矩形ABCD中,AD=3AB,点G、H分别在AD、BC上,连BG、DH,且BG∥DH,当()时,四边形BHDG为菱形.A.B.C.D.第7题图8.近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2011年月退休金为1500元,2013年达到2160元.设李师傅的月退休金从2011年到2013年年平均增长率为x,可列方程为()A.B.C.D.9.如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形,再顺次连接四边形各边中点,得到四边形,如此进行下去,得到四边形.下列结论正确的是()①四边形是菱形②四边形是矩形③四边形周长为④四边形面积为A.①②③B.②③④C.①③④D.①②③④第9题图10.已知抛物线的顶点为的顶点为,点在该抛物线上,当恒成立时,的最小值为()A.1B.2C.4D.3二、填空题:(每小题3分,共18分)11.的算术平方根为.12.小林同学为了在体育中考获得好成绩,每天早晨坚持练习跳绳,临考前,体育老师记载了他5次练习成绩,分别为143、145、144、146、a,这五次成绩的平均数为144.小林自己又记载了两次练习成绩为141、147,则他七次练习成绩的平均数为.13.如图,直线过A(-1,2)、B(-2,0)两点,则的解集为第13题图第15题图第16题图14.在平面直角坐标中,已知点A(2,3)、B(4,7),直线与线段AB 有交点,则k的取值范围为.15.如图,正方形ABCD的边长为2,四条弧分别以相应顶点为圆心,正方形ABCD的边长为半径.求阴影部分的面积.16.如图,正方形ABCD边长为1,当M、N分别在BC,CD上,使得△CMN的周长为2,则△AMN的面积的最小值为.三.解答题(17-20每题8分,21-22每题9分,23题10分,24题12分,共72分)17.(本题满分8分)先化简,再求值:,其中18.(本题满分8分)在平面内正方形ABCD与正方形CEFH如图放置,连DE,BH,两线交于M.求证:(1)(4分)BH=DE.(2)(4分)BH⊥DE.第18题图19.(本题满分8分)学校举行“文明环保,从我做起”征文比赛.现有甲、乙两班各上交30篇作文,现将两班的各30篇作文的成绩(单位:分)统计如下:甲班:乙班:等级成绩(S)频数A90<S≤100xB80<S≤9015C70<S≤8010DS≤703合计30第19题图根据上面提供的信息回答下列问题⑴(3分)表中x=,甲班学生成绩的中位数落在等级中,扇形统计图中等级D部分的扇形圆心角n=.⑵(5分)现学校决定从两班所有A等级成绩的学生中随机抽取2名同学参加市级征文比赛.求抽取到两名学生恰好来自同一班级的概率(请列树状图或列表求解).20.(本题满分8分)一元二次方程⑴(4分)若方程有两实数根,求的范围.⑵(4分)设方程两实根为,且,求m.21.(本题满分9分)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°. (1)(5分)求AD的长.(2)(4分)求树长AB.第21题图22.(本题满分9分)如图,以AB为直径的⊙O交∠BAD的角平分线于C,过C作CD⊥AD于D,交AB的延长线于E.(1)(5分)求证:CD为⊙O的切线.(2)(4分)若,求cos∠DAB.第22题图23.(本题满分10分)大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天)123 (50)p(件)118116114 (20)销售单价q(元/件)与x满足:当.(1)(2分)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)(4分)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)(4分)这50天中,该超市第几天获得利润最大?最大利润为多少?24.(本题满分12分)如图,在平面直角坐标系xoy中,一次函数的图象与x轴交于A(-1,0),与y轴交于点C.以直线x=2为对称轴的抛物线经过A、C两点,并与x轴正半轴交于点B.(1)(3分)求m的值及抛物线的函数表达式.(2)(5分)设点,若F是抛物线对称轴上使得△ADF的周长取得最小值的点,过F任意作一条与y轴不平行的直线交抛物线于两点,试探究是否为定值?请说明理由.(3)(4分)将抛物线C1作适当平移,得到抛物线,若当时,恒成立,求m的最大值.鄂州市2014年中考数学参考答案一、选择题(30分)1——5BCDAD6——10DCBAD二、填空题(18分)11、12、14413、14、15、16、17、原式=…………………………………………………5′当时,原式=…………………………8′18、(1)证明△BCH△DCE,则BH=DE…………………5′(2)设CD与BH相交于G,则∠MBC+∠CGB=90°又∵∠CDE=∠MBC,∠DGH=∠BGC∵∠CDE+∠DGH=90°∴∠GMD=90°∴DE⊥BH……………8′19、(1)X=2Bn=36°……………………………………………3′(2)………………………………………8′20、(1)∴>0………………4′(2)x1+x2=2若x1>x2则x1-x2=1∴∴=8若x1<x2则x2-x1=1∴∴=8∴=8………………8′21、(1)过A作AH⊥CB于H,设AH=x,CH=x,DH=x,∵CH-DH=CD∴x-x=10∴x=……………………………3′∴AD=x=……………………………5′(2)过B作BM⊥AD于M∵∠1=75°,∠ADB=45°,∴∠DAB=30°设MB=m∴AM=mDM=m∵AD=AM+DM∴=m+m∴m=…………………7′∴AB=2m=……………………9′22、(1)连CO,证OC∥AD则OC⊥CD即可………………………………………5′(2)设AD交圆O于F,连BFBC在直角△ACD中,设CD=3k,AD=4k∴AC=5k△ACD~△ABC∴,∴AB=又BF⊥AD,∴OC⊥BF,∴BF=2CD=6k在直角△ABF中AF=,∴∠DAB=……………………………………9′23、(1)……………………………………………………………………3′(2)…………………7′(3)∴x=20时,y的最大值为3200元x=25时,y的最大值为3150元∴该超市第20天获得最大利润为3200元…………………………………10′24、(1),抛物线……………………………………3′(2)要使△ADF周长最小,只需AD+FD最小,∵A与B关于x=2对称∴只需BF+DF最小又∵BF+DF≥BD∴F为BD与x=2的交点BD直线为,当x=2时∴∵∴同理∴又∵∴∴∴………………………………8′(3)法一:设的两根分别为∵抛物线可以看成由左右平移得到,观察图象可知,随着图象向右移,的值不断增大∴当学习恒成立时,最大值在处取得∴当时,对应的即为的最大值将代入得∴10′将代入有∴∴的最大值为9…………………………………12′法二:恒成立化简得,,恒成立设,如图则有10′即∴∴的最大值为9…………………………。
2014数学试卷及答案
湖北省襄阳市2014年中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)在每小题给出的四个选项总,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答. 1.(3分)(2014•襄阳)有理数﹣的倒数是( )B3.(3分)(2014•襄阳)我市今年参加中考人数约为42000人,将42000用科学记数法表示4.(3分)(2014•襄阳)如图几何体的俯视图是( )B6.(3分)(2014•襄阳)五箱梨的质量(单位:kg )分别为:18,20,21,18,19,则这五8.(3分)(2014•襄阳)若方程mx+ny=6的两个解是,,则m ,n 的值为( ) 9.(3分)(2014•襄阳)用一条长40cm 的绳子围成一个面积为64cm 的长方形.设长方形的长为xcm ,则可列方程为( )10.(3分)(2014•襄阳)如图,梯形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°,则∠A等于()B12.(3分)(2014•襄阳)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()二、填空题(本大题共5个小题,每小题3分,共15分)请把答案填在答题卡的相应位置上13.(3分)(2014•襄阳)计算:÷=___________14.(3分)(2014•襄阳)从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是__________.15.(3分)(2014•襄阳)如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B的俯角为30°,已知平台CD的高度为5m,则大树的高度为m(结果保留根号)16.(3分)(2014•襄阳)若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是.17.(3分)(2014•襄阳)在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于.三、解答题(本大题共9小题,共69分)解答应写出文字说明,证明过程或演算步骤,并且写出在答题卡上每题对应的答题区域内.18.(5分)(2014•襄阳)已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.19.(6分)(2014•襄阳)甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?20.(7分)(2014•襄阳)“端午节”吃粽子是我国流传了上千年的习俗.某班学生在“端午节”前组织了一次综合实践活动,购买了一些材料制作爱心粽,每人从自己制作的粽子中随机选取两个献给自己的父母,其余的全部送给敬老院的老人们.统计全班学生制作粽子的个数,将制作粽子数量相同的学生分为一组,全班学生可分为A,B,C,D四个组,各组每人制作的粽子个数分别为4,5,6,7.根据如图不完整的统计图解答下列问题:(1)请补全上面两个统计图;(不写过程)(2)该班学生制作粽子个数的平均数是6个;(3)若制作的粽子有红枣馅(记为M)和蛋黄馅(记为N)两种,该班小明同学制作这两种粽子各两个混放在一起,请用列表或画树形图的方法求小明献给父母的粽子馅料不同的概率.21.(6分)(2014•襄阳)如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE 交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.22.(6分)(2014•襄阳)如图,一次函数y1=﹣x+2的图象与反比例函数y2=的图象相交于A,B两点,与x轴相交于点C.已知tan∠BOC=,点B的坐标为(m,n).(1)求反比例函数的解析式;(2)请直接写出当x<m时,y2的取值范围.23.(7分)(2014•襄阳)如图,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上点F处,点C落在点A处.再将线段AF 绕点F顺时针旋转90°得线段FG,连接EF,CG.(1)求证:EF∥CG;(2)求点C,点A在旋转过程中形成的,与线段CG所围成的阴影部分的面积.24.(10分)(2014•襄阳)我市为创建“国家级森林城市”政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,.某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:(1)设y与x之间的函数关系式,并写出自变量取值范围;(2)承包商要获得不低于中标价16%的利润,应如何选购树苗?(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补载;若成活率达到94%以上(含94%),则城府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少?25.(10分)(2014•襄阳)如图,A,P,B,C是⊙O上的四个点,∠APC=∠BPC=60°,过点A作⊙O的切线交BP的延长线于点D.(1)求证:△ADP∽△BDA;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)若AD=2,PD=1,求线段BC的长.26.(12分)(2014•襄阳)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C (3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为(1,4);抛物线的解析式为y=﹣(x﹣1)2+4.(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q 在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P 做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?。
湖北荆门市中考数学试卷(含答案)
机密★启用前荆门市初中毕业生学业水平及升学考试试卷数 学本试题卷共6页。
满分120分,考试时间120分钟。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,将准考证条形码粘贴在答题卡上的指定位置,并认真核对条形码上的姓名、准考证号是否正确。
2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,必须先用橡皮擦干净后,再选涂另一个答案标号。
答案写在试题卷上一律无效。
3.填空题和解答题用0.5毫米黑色签字笔写在答题卡上每题对应的答题区域内。
答案写在试题卷上一律无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12小题,每小题只有唯一正确答案,每小题3分,共36分) 1.-6的倒数是 A .6B .-6C .61 D .-61 2.小明上网查得H7N9禽流感病毒的直径大约是0.00000008米,用科学记数法表示为 A .0.8×107-米 B .8×107-米 C .8×108-米3俯视图为A.数学试题卷 第2页 (共11页)4.下列运算正确的是 A .8a ÷2a =4a B .325)(a a a -=--C .523)(a a a =-⋅D .ab b a 835=+5.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名 学生参赛成绩统计如图所示. 对于这10名学生的参赛成 绩,下列说法中错误..的是 A .众数是90 B .中位数是90C .平均数是90D .极差是156.若反比例函数y =xk的图象过点(-2, 1)则一次函数k kx y -=的图象过A .第一、二、四象限B .第一、三、四象限C .第二、三、四象限D .第一、二、三象限7.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件: ①AD ∥BC②AD=BC ③OA=OC ④OB=OD从中任选两个条件,能使四边形ABCD 为平行四边形的选法有 A .3种B .4种C .5种D .6种8.若圆锥的侧面展开图为半圆,则该圆锥的母线l 与底面半径r 的关系是 A .r l 2=B .r l 3=C .r l =D .r l 23=9.若关于x 的一元一次不等式组 有解,则m 的取值范围为A .32->m B .m ≤32 C . 32>m D .m ≤ 32-10.在平面直角坐标系中,线段OP 的两个端点坐标分别是O (0,0),P (4,3),将线段OP 绕点O 逆时针旋转90°到OP ′位置,则点P ′的坐标为A .(3,4)B .(-4,3)C .(-3,4)D .(4,-3)11.如图,在半径为1的⊙O 中,∠AOB =45°,则sin C 的值为A .22 B .222-2<-m x 2>+m x人数 (第5题)(第11题)数学试题卷 第3页 (共11页)C .222+ D .42 12.如图所示,已知等腰梯形ABCD ,AD ∥BC ,若动直线l 垂直于BC ,且向右平移,设扫过的阴影部分的面积为S ,BP 为x ,则S 关于x 的函数图象大致是二、填空题(本大题共5小题,每小题3分,共15分) 13.分解因式:=-642x ▲ .14.若等腰三角形的一个内角为50°,则它的顶角为 ▲ .15.如图,在Rt ∆ABC 中,∠ACB =90°,D 是AB 的中点,过D 点作AB 的垂线交AC 于点E ,BC =6,53sin =A ,则DE = ▲ .16.设1x ,2x 是方程x 2-x -2013=0的两实数根,则=-+20132014231x x ▲ . 17.若抛物线c bx x y ++=2与x 轴只有一个交点,且过点)(n m A ,,)6(n m B ,+.则=n ▲ .BAC ED(第15题)A.…B.(第12题)数学试题卷 第4页 (共11页)三、解答题(本大题共7小题,共69分) 18.(本题满分8分)(1)计算:︒--++-60tan 3)1(8)5(201330π;(2)化简求值:⋅+-÷++-2344922a a a a a 31+a ,其中25-=a .19.(本题满分9分)如图1,在∆ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上.(1)求证:BE =CE ;(2)若BE 的延长线交AC 于点F ,且BF ⊥AC ,垂足为F ,(如图2),∠BAC =45°,原题设其它条件不变. 求证:∆AEF ≌∆BCF .20.(本题满分10分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时: (1)求三辆车全部同向而行的概率; (2)求至少有两辆车向左转的概率;(第19题图1)(第19题图2)数学试题卷 第5页 (共11页)(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为52,向左转和直行的频率均为103.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.21.(本题满分10分)A 、B 两市相距150千米,分别从A 、B 处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C 为圆心,45千米为半径的圆,tan α=1.627,tan β=1.373.为了开发旅游,有关部门设计修建连接A 、B 两市的高速公路.问连接AB 高速公路是否穿过风景区,请说明理由.22.(本题满分10分)为了节约资源,科学指导居民改善居住条件,小王向房管部门提出根据这个购房方案:(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;(2)设该家庭购买商品房的人均面积为x 平方米,缴纳房款y 万元,请求出y 关于x的函数关系式;(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y 万元,且 57<y ≤60 时,求m 的取值范围.βα北北CAB(第21题)数学试题卷 第6页 (共11页)23.(本题满分10分)如图1,正方形ABCD 的边长为2,点M 是BC 的中点,P 是线段MC 上的一个动点(不与M 、C 重合),以AB 为直径作⊙O ,过点P 作⊙O 的切线, 交AD 于点F ,切点为E . (1)求证:OF ∥BE ;(2)设BP =x ,AF =y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围; (3)延长DC 、FP 交于点G ,连接OE 并延长交直线DC 与H (图2),问是否存在点P ,使∆EFO ∽∆EHG (E 、F 、O 分别与E 、H 、G 为对应点),如果存在,试求(2)中x 和y 的值,如果不存在,请说明理由.24.(本题满分12分)已知关于x 的二次函数m m mx x y ++-=222的图象与关于x 的函数1+=kx y 的图象交于两点),(11y x A 、),(22y x B ;)(21x x < (1)当==m k ,10,1时,求AB 的长;(2)当m k ,1=为任何值时,猜想AB 的长是否不变?并证明你的猜想. (3)当m =0,无论k 为何值时,猜想∆AOB 的形状. 证明你的猜想. (平面内两点间的距离公式212212)()(y y x x AB -+-=).数学试题卷 第7页 (共11页)荆门市初中毕业生学业水平及升学考试数学考答案与评分说明一、选择题(每小题3分,共36分) 1~6 DCBCCA 7~12 BACCBA 二、填空题(每小题3分,共15分) 13.(x -8)(x +8); 14.50°或80°;15.415;16.2014;17.9. 三、解答题(本题包括7个小题,共69分)18.解:(1)原式=1+2-1-3×3 = -1; ………………………4(分)(2)原式=21+a , 代入a 值得原式=55. ………………………8(分) 19.证明:(1)∵AB =AC ,D 是BC 的中点,∴∠BAE =∠EAC .在∆ABE 和∆ACE 中,∵AB =AC , ∠BAE =∠EAC ,AE =AE , ∴∆ABE ≌∆ACE.∴BE =CE. ………………………5(分)(2) ∵∠BAC =45°,BF ⊥AF ,∴∆ABF 为等腰直角三角形,∴AF =BF . 由(1)知AD ⊥BC , ∴∠EAF =∠CBF .在∆AEF 和∆BCF 中,AF =BF , ∠AFE =∠BFC =90°,∠EAF =∠CBF , ∴∆AEF ≌∆BCF . ………………………9(分)数学试题卷 第8页 (共11页)20.(1)根据题意,画出树形图P (三车全部同向而行)=91. ………………………4(分) (2)P (至少两辆车向左转)=277. ………………………7(分)(3)由于汽车向右转、向左转、直行的概率分别为103,103,52,在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮时间为90×103=27(秒);直行绿灯亮时间为90×103=27(秒);右转绿灯亮的时间为90×52=36(秒). ………………………10(分)21.AB 不穿过风景区.如图,过C 作CD ⊥AB 于D , ∴AD =CD ·tan α;BD =CD ·tan β, ……………4(分) 由AD +DB =AB ,得CD ·tan α+CD ·tan β=AB , ……………6(分)∴CD =βαtan tan +AB =503150373.1627.1150==+(千米). ………………………9(分) ∵CD =50>45,∴高速公路AB 不穿过风景区. ………………………10(分)22.解:(1)三口之家应缴购房款为0.3×90+0.5×30=42(万元);…………………4(分)(2)①当0≤x ≤30时,y =0.3×3x =0.9x ;②当30<x ≤m 时,y =0.9×30+0.5×3×(x -30)=1.5x -18; ③当x >m 时,y=1.5m -18+0.7×3×(x -m )=2.1x -18-0.6m , 0.9x ; (0≤x ≤30)1.5x -18; ( 30<x ≤m ) (45≤m ≤60) ………7(分)2.1x -18-0.6m . (x >m )(3) ①当50≤m ≤60时,y =1.5×50-18=57(舍去) ;②当45≤m ﹤50时,y =2.1×50-0.6m -18=87-0.6m ,y= 第一辆 第二辆 第三辆数学试题卷 第9页 (共11页)∵57<87-0.6m ≤60 , ∴45≤m <50.综合①②得45≤m <50. ………………………10(分)23.(1)证明:连接OE ,∵FE 、F A 是⊙O 的两条切线, ∴∠F AO =∠FEO =90°. 又∵FO =FO ,OA =EO , ∴Rt △F AO ≌Rt △FEO.∴∠AOF =∠EOF=21∠AOE . 而∠ABE=21∠AOE , ∴∠AOF =∠ABE .∴OF ∥BE . ………………………4(分) (2)过F 作FQ ⊥BC 于Q ,∴PQ =BP -BQ =x -y .∴PF =EF +EP =F A +BP =x +y. ∵在Rt △PFQ 中,∴2FQ +22PF QP =.∴222)()(2y x y x +=-+化简得xy 1=,(1<x <2). ……………………7(分) (3)存在这样的P 点.∵∠EOF =∠AOF ,∴∠EHG =∠EOA =2∠EOF .又∵OH ⊥FG ,∴∠EOF=∠HEG =90°. 当∠EFO =∠EHG =2∠EOF 时,即∠EOF =30°时,Rt △EFO ∽Rt △EHG .此时Rt △AFO 中,y =AF =OA ·tan30°=33, ∴31==yx . ∴当33,3==y x 时,△EFO ∽△EHG . ………………………10(分) 24.解:(1)当k =1,m =0时,2x y =,联立得012=--x x .y = x 2;y = x +1.数学试题卷 第10页 (共11页)∴x 1+x 2=1,x 1·x 2=-1. ∴AB =2AC =2| x 2- x 1|=2212124)(x x x x -+=10.同理,当k =1,m =1时,AB =10. ………………………4(分)(2)猜想:当k =1,m 为任何值时,AB 的长不变,即AB =10.下面证明:联立消y 整理得:x 2-(2m +1)x +m 2+m -1=0. ∴x 1+x 2=2m+1 ,x 1·x 2= m 2+m -1. ∴AB =2AC =2| x 2- x 1|=2212124)(x x x x -+=10. ………8(分)(3)当m =0,k 为任意常数时,∆AOB 为直角三角形.①当k =0时,则函数的图象为直线y =1, 则由得A (-1,1),B (1,1).显然∆AOB 为直角三角形.②当k =1时,则一次函数为直线y =x +1, 则由 得x 2-x -1=0,∴x 1+x 2=1,x 1·x 2=-1. ∴AB =2AC=2| x 2- x 1|=2212124)(x x x x -+=10 .∴AB ²=10.∵A (x 1,y 1) 、 B (x 2,y 2),∴OA ²+OB ²=21x +21y +22x +22y =10. ∴AB ²=OA ²+OB ².∴∆AOB 为直角三角形.(3)当k 为任意实数,∆AOB 仍为直角三角形 . 联立y = x 2y = 1 y = x 2;y = x +1,y = x 2;y = kx +1, y =x 2-2mx +m 2+m ;y = x +1.数学试题卷 第11页 (共11页) 得x 2-kx -1=0,∴x 1+x 2=k , x 1·x 2= -1.∴AB ²=(x 1-x 2)²+ (y 1-y 2)²=k 4+5k ²+4.∴OA ²+OB ²=21x +21y +22x +22y =k 4+5k ²+4.∴AB ²=OA ²+OB ².∴ AOB 为直角三角形.………………………(12分)。
2014年湖北中考数学真题卷含答案解析
2014年武汉市初中毕业生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的.1.在实数-2、0、2、3中,最小的实数是( )A.-2B.0C.2D.32.若代数式√x-3在实数范围内有意义,则x的取值范围是( )A.x≥-3B.x>3C.x≥3D.x≤33.光速约为300000千米/秒,将数字300000用科学记数法表示为( )A.3×104B.3×105C.3×106D.30×1044.在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数124332那么这些运动员跳高成绩的众数是( )A.4B.1.75C.1.70D.1.655.下列代数运算正确的是( )A.(x3)2=x5B.(2x)2=2x2C.x3·x2=x5D.(x+1)2=x2+16.如图,线段AB两个端点的坐标分别为A(6,6)、B(8,2),以原点O为位似中心,在第一象限后得到线段CD,则端点C的坐标为( )内将线段AB缩小为原来的12A.(3,3)B.(4,3)C.(3,1)D.(4,1)7.下图是由4个大小相同的正方体组合而成的几何体.其俯视图是( )8.为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为( )A.9B.10C.12D.159.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…….按此规律第5个图中共有点的个数是( )A.31B.46C.51D.6610.如图,PA、PB切☉O于A、B两点,CD切☉O于点E,交PA、PB于C、D,若☉O的半径为r,△PCD 的周长等于3r,则tan∠APB的值是( )A.512√13 B.125C.35√13 D.23√13第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)11.计算:-2+(-3)= .12.分解因式:a3-a= .13.如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为.14.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图所示,则这次越野跑的全程为米.15.如图,若双曲线y=kx与边长为5的等边△AOB的边OA、AB分别相交于C、D两点,且OC=3BD,则实数k的值为.16.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.三、解答题(共9小题,共72分)下列各题解答应写出文字说明、证明过程或演算步骤.17.(本小题满分6分)解方程:2x-2=3 x .18.(本小题满分6分)已知直线y=2x-b经过点(1,-1),求关于x的不等式2x-b≥0的解集.19.(本小题满分6分)如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.20.(本小题满分7分)如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称的线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.21.(本小题满分7分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回..,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回...,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.22.(本小题满分8分)⏜上两点,AB=13,AC=5.如图,AB是☉O的直径,C,P是AB⏜的中点,求PA的长;(1)如图①,若点P是AB⏜的中点,求PA的长.(2)如图②,若点P是BC图①图②23.(本小题满分10分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.24.(本小题满分10分)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm 的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连结PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连结AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.25.(本小题满分12分)x2交于A、B两点.如图,已知直线AB:y=kx+2k+4与抛物线y=12(1)直线AB总经过一个定点C,请直接写出点C的坐标;时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;(2)当k=-12(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.备用图答案全解全析:一、选择题1.A∵-2<0<2<3,∴最小的实数是-2,故选A.评析本题考查了实数的大小比较,属容易题.2.C要使√x-3在实数范围内有意义,则需x-3≥0,解得x≥3.故选C.评析本题考查二次根式有意义的条件,即被开方数大于等于零,属容易题.3.B300000用科学记数法可表示为3×105.故选B.评析本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,属容易题.4.D∵1.65出现了4次,出现的次数最多,∴这些运动员跳高成绩的众数是1.65,故选D.评析本题考查了众数的定义,众数是一组数据中出现次数最多的数,属容易题.5.C(x3)2=x6,故A选项错误;(2x)2=4x2,故B选项错误;x3·x2=x5,故C选项正确;(x+1)2=x2+2x+1,故D选项错误.故选C.6.A∵线段AB两个端点的坐标分别为A(6,6)、B(8,2),以原点O为位似中心,在第一象限后得到线段CD,∴端点C的坐标为(3,3).故选A.内将线段AB缩小为原来的12评析本题主要考查位似图形的性质,属容易题.7.C从上面看可得到一行正方形,其个数为3,故选C.评析本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,属容易题.8.C由题图可知,10天中在同一时段通过该路口的汽车数量超过200辆的有4天,频率为4=0.4,所以估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为1030×0.4=12,故选C.评析 本题考查了折线统计图及用样本估计总体的思想,属容易题.9.B 第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…,第n 个图中有1+1×3+2×3+3×3+…+3n 个点. 所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故选B. 评析 本题是规律探索题,属容易题.10.B 连结OA 、OB 、OP,延长BO 交PA 的延长线于点F.∵PA、PB 切☉O 于A 、B 两点,CD 切☉O 于点E, ∴∠OAP=∠OBP=90°,CA=CE,DB=DE,PA=PB.∵△PCD 的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,∴PA=PB=32r. 在Rt △OAF 和Rt △BFP 中,{∠FAO =∠FBP,∠OFA =∠PFB,∴Rt △AFO ∽Rt △BFP. ∴AF FB =AO BP =r 32r =23,∴AF=23FB. 在Rt △FBP 中,PF 2-PB 2=FB 2, ∴(PA+AF)2-PB 2=FB 2,∴(32r +23BF)2-(32r)2=BF 2,解得BF=185r,∴tan ∠APB=BFPB =185r 32r=125,故选B.评析 本题主要考查切线的性质,相似三角形的判定及三角函数的定义,属难题.二、填空题 11.答案 -5解析 -2+(-3)=-(2+3)=-5.评析 本题考查有理数加法的运算,属容易题. 12.答案 a(a+1)(a-1)解析 a 3-a=a(a 2-1)=a(a+1)(a-1).评析 本题考查利用提公因式法和公式法分解因式,属容易题. 13.答案 37解析 ∵一个转盘被分成7个相同的扇形,红色的有3个,∴指针指向红色的概率为37. 14.答案 2 200解析 设小明的速度为a 米/秒,小刚的速度为b 米/秒,由题意,得{1 600+100a =1 400+100b,1 600+300a =1 400+200b,解得{a =2,b =4,∴这次越野跑的全程为1 600+300×2=2 200(米).评析 本题考查了行程问题的数量关系及二元一次方程组的解法,属容易题.15.答案9√34解析 过点C 作CE ⊥x 轴于点E,过点D 作DF ⊥x 轴于点F, 设BF=x,则DF=√3x,BD=2x.因为OC=3BD,所以OE=3x,CE=3√3x, 所以C(3x,3√3x),D(5-x,√3x). 因为点C 、D 都在双曲线上,所以3x ·3√3x=√3x ·(5-x), 解得x 1=12,x 2=0(舍去),所以C (32,3√32), 故k=3√32×32=9√34.评析 本题考查了反比例函数图象上点的坐标特征,解答本题的关键是利用k 的值相同建立方程,属中等偏难题. 16.答案 √41解析 作AD'⊥AD,且使AD'=AD,连结CD',DD',如图.由已知条件可得∠BAC+∠CAD=∠DAD'+∠CAD,即∠BAD=∠CAD'. 在△BAD 与△CAD'中,{BA =CA,∠BAD =∠CAD',AD =AD',∴△BAD ≌△CAD'(SAS), ∴BD=CD'.又∠DAD'=90°,由勾股定理得DD'=√AD 2+(AD')2 =√32=4√2,易知∠D'DA+∠ADC=90°,由勾股定理得CD'=√DC 2+(DD')2=√9+32=√41, ∴BD=CD'=√41.评析 本题考查了等腰直角三角形的性质、勾股定理、全等三角形的判定与性质,属难题. 三、解答题17.解析 方程两边同乘以x(x-2),得2x=3(x-2). 解得x=6.检验:当x=6时,x(x-2)≠0. ∴x=6是原分式方程的解.评析 本题考查了解分式方程,解分式方程一定要注意验根,属容易题. 18.解析 ∵直线y=2x-b 经过点(1,-1), ∴-1=2×1-b. ∴b=3.∴不等式2x-b ≥0即为2x-3≥0,解得x ≥32.19.证明 在△AOB 和△COD 中,{OA =OC,∠AOB =∠COD,OB =OD,∴△AOB ≌△COD. ∴∠A=∠C,∴AB ∥CD. 20.解析 (1)如图所示:(2)43.评析 本题考查利用旋转、轴对称变换作图,属容易题.21.解析 (1)分别用R 1,R 2表示2个红球,G 1,G 2表示2个绿球,列表如下:第二次第一次 R 1 R 2 G 1 G 2R 1 R 1R 1 R 1R 2 R 1G 1 R 1G 2 R 2 R 2R 1 R 2R 2 R 2G 1 R 2G 2 G 1 G 1R 1 G 1R 2 G 1G 1 G 1G 2 G 2 G 2R 1 G 2R 2 G 2G 1 G 2G 2由上表可知,有放回地摸2个球共有16个等可能结果. ①其中第一次摸到绿球,第二次摸到红球的结果有4个. ∴第一次摸到绿球,第二次摸到红球的概率P=416=14;②其中两次摸到的球中有1个绿球和1个红球的结果有8个. ∴两次摸到的球中有1个绿球和1个红球的概率P=816=12. 画树形图法按步骤给分(略). (2)23.22.解析 (1)如图,连结PB,BC.∵AB 是☉O 的直径,P 是AB⏜的中点, ∴PA=PB,∠APB=90°. ∵AB=13,∴PA=√22AB=13√22.(2)如图,连结PB,BC.连结OP 交BC 于D 点.∵P 是BC⏜的中点,∴OP ⊥BC 于D,BD=CD. ∵OA=OB,∴OD=12AC=52.∵OP=12AB=132,∴PD=OP -OD=132-52=4.∵AB 是☉O 的直径,∴∠ACB=90°.∵AB=13,AC=5,∴BC=12,∴BD=12BC=6.∴PB=√PD 2+BD 2=2√13.∵AB 是☉O 的直径,∴∠APB=90°,∴PA=√AB 2-PB 2=3√13.23.解析 (1)y={-2x 2+180x +2 000(1≤x <50),-120x +12 000(50≤x ≤90).(2)当1≤x<50时,y=-2x 2+180x+2 000=-2(x-45)2+6 050.∵-2<0,∴当x=45时,y 有最大值,最大值为6 050元.当50≤x ≤90时,y=-120x+12 000,∵-120<0,∴y 随x 的增大而减小.当x=50时,y 有最大值,最大值为6 000元.∴当x=45时,当天的销售利润最大,最大利润为6 050元.(3)41天.评析 本题考查利用函数的性质解决实际问题,属中等难度题.24.解析 (1)由题意知,BP=5t cm,CQ=4t cm,∴BQ=(8-4t)cm.当△PBQ ∽△ABC 时,有BP AB =BQ BC .即5t 10=8-4t 8,解得t=1. 当△QBP ∽△ABC 时,有BQ AB =BP BC .即8-4t 10=5t 8,解得t=3241.∴△PBQ 与△ABC 相似时,t=1或3241.(2)如图,过点P 作PD ⊥BC 于D.依题意,得BP=5t cm,CQ=4t cm.则PD=PB ·sin B=3t cm,∴BD=4t cm,CD=(8-4t)cm.∵AQ ⊥CP,∠ACB=90°,∴tan ∠CAQ=tan ∠DCP.∴CQ AC =PD CD .∴4t 6=3t 8-4t ,∴t=78.(3)证明:如图,过点P 作PD ⊥AC 于D,连结DQ 、BD,BD 交PQ 于M,则PD=AP ·cos ∠APD=AP ·cos ∠ABC=(10-5t)×810=(8-4t)cm.而BQ=(8-4t)cm,∴PD=BQ,又PD ∥BQ,∴四边形PDQB 是平行四边形.∴点M 是PQ 和BD 的中点. 过点M 作EF ∥AC 交BC,BA 于E,F 两点.则BE EC =BM MD =1,即E 为BC 的中点.同理,F 为BA 的中点.∴PQ 的中点M 在△ABC 的中位线EF 上.25.解析 (1)(-2,4).(2)如图,直线y=-12x+3与y 轴交于点N(0,3).在y 轴上取点Q(0,1),易得S △ABQ =5. 过点Q 作PQ ∥AB 交抛物线于点P.则PQ 的解析式为y=-12x+1,由{y =-12x +1,y =12x 2,解得{x =-2,y =2,或{x =1,y =12, ∴P 点坐标为(-2,2)或(1,12).(3)如图,设A (x 1,12x 12),B (x 2,12x 22),D (m,12m 2). 联立{y =kx +2k +4,y =12x 2,消去y 得x 2-2kx-4k-8=0. ∴x 1+x 2=2k,x 1·x 2=-4k-8.过点D 作EF ∥x 轴,过点A 作y 轴的平行线交EF 于点E,过点B 作y 轴的平行线交EF 于点F. 由△ADE ∽△DBF,得AE DF =DE BF . ∴12x 12-12m 2x 2-m =m -x 112x 22-12m 2,整理,得x 1x 2+m(x 1+x 2)+m 2=-4.∴2k(m -2)+m 2-4=0. 当m-2=0,即m=2时,点D 的坐标与k 无关,∴点D 的坐标为(2,2).又∵C(-2,4),所以CD=2√5,过点D 作DM ⊥AB,垂足为M.则DM ≤CD.当CD ⊥AB 时,点D 到直线AB 的距离最大,最大距离为2√5.评析本题考查解方程组、一元二次方程、一元二次方程根与系数的关系、勾股定理、相似三角形的判定与性质等知识,考查了通过解方程组求两函数图象交点坐标等,综合性比较强,属难题.。
2014年湖北省荆州市中考数学试卷(有答案)
湖北省荆州市2014年中考数学试卷一、选择题(本大题共10小题,每小题只有唯一正确答案.每小题3分,共30分)1.(3分)(2014•荆州)若□×(﹣2)=1,则□内填一个实数应该是()A.B.2C.﹣2 D.﹣考点:有理数的乘法分析:根据乘积是1的两个数互为倒数解答.解答:解:∵﹣×(﹣2)=1,∴□内填一个实数应该是﹣.故选D.点评:本题考查了有理数的乘法,是基础题,注意利用了倒数的定义.2.(3分)(2014•荆州)下列运算正确的是()A.3﹣1=﹣3 B.=±3 C.(ab2)3=a3b6D.a6÷a2=a3考点:同底数幂的除法;算术平方根;幂的乘方与积的乘方;负整数指数幂分析:运用负整数指数幂的法则运算,开平方的方法,同底数幂的除法以及幂的乘方计算.解答:解:A、3﹣1=≠3a,故A选项错误;B、=3≠±3,故B选项错误;C、(ab2)3=a3b6故C选项正确;D、a6÷a2=a4≠a3,故D选项错误.故选:C.点评:此题考查了负整数指数幂的运算,开平方,同底数幂的除法以及幂的乘方等知识,解题要注意细心.3.(3分)(2014•荆州)如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()A.155°B.145°C.110°D.35°考点:平行线的性质.分析:首先,由平行线的性质得到∠BAC=∠ECF=70°;然后利用邻补角的定义、角平分线的定义来求∠FAG的度数.解答:解:如图,∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,∴∠FAB=180°﹣∠BAC=110°.又∵AG平分∠BAC,∴∠BAG=∠BAC=35°,∴∠FAG=∠FAB+∠BAG=145°.故选:B.点评:本题考查了平行线的性质.根据“两直线平行,内错角相等”求得∠BAC的度数是解题的难点.4.(3分)(2014•荆州)将抛物线y=x2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是()A.y=(x﹣4)2﹣6 B.y=(x﹣4)2﹣2 C.y=(x﹣2)2﹣2 D.y=(x﹣1)2﹣3考点:二次函数图象与几何变换.专题:几何变换.分析:先把y=x2﹣6x+5配成顶点式,得到抛物线的顶点坐标为(3,﹣4),再把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),然后根据顶点式写出平移后的抛物线解析式.解答:解:y=x2﹣6x+5=(x﹣3)2﹣4,即抛物线的顶点坐标为(3,﹣4),把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),所以平移后得到的抛物线解析式为y=(x﹣4)2﹣2.故选B.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.(3分)(2014•荆州)已知α是一元二次方程x2﹣x﹣1=0较大的根,则下面对α的估计正确的是()A.0<α<1 B.1<α<1.5 C.1.5<α<2 D.2<α<3考点:解一元二次方程-公式法;估算无理数的大小.分析:先求出方程的解,再求出的范围,最后即可得出答案.解答:解:解方程x2﹣x﹣1=0得:x=,∵a是方程x2﹣x﹣1=0较大的根,∴a=,∵2<<3,∴3<1+<4,∴<<2,故选C.点评:本题考查了解一元二次方程,估算无理数的大小的应用,题目是一道比较典型的题目,难度适中.6.(3分)(2014•荆州)如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD 相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是()A.∠ACD=∠DAB B.A D=DE C.A D2=BD•CD D.A D•AB=AC•BD考点:相似三角形的判定;圆周角定理.分析:由∠ADC=∠ADB,根据有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似,即可求得答案;注意排除法在解选择题中的应用.解答:解:如图,∠ADC=∠ADB,A、∵∠ACD=∠DAB,∴△ADC∽△BDA,故本选项正确;B、∵AD=DE,∴=,∴∠DAE=∠B,∴△ADC∽△BDA,故本选项正确;C、∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故本选项正确;D、∵AD•AB=AC•BD,∴AD:BD=AC:AB,但∠ADC=∠ADB不是公共角,故本选项错误.故选D.点评:此题考查了相似三角形的判定以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用.7.(3分)(2014•荆州)如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.考点:一次函数与一元一次不等式;在数轴上表示不等式的解集.专题:数形结合.分析:观察函数图象得到当x>﹣1时,函数y=x+b的图象都在y=kx﹣1的图象上方,所以不等式x+b>kx﹣1的解集为x>﹣1,然后根据用数轴表示不等式解集的方法对各选项进行判断.解答:解:当x>﹣1时,x+b>kx﹣1,即不等式x+b>kx﹣1的解集为x>﹣1.故选A.点评:本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.8.(3分)(2014•荆州)已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A.5B.1C.3D.不能确定考点:解分式方程;关于原点对称的点的坐标.专题:计算题.分析:根据P关于原点对称点在第一象限,得到P横纵坐标都小于0,求出a的范围,确定出a的值,代入方程计算即可求出解.解答:解:∵点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,∴,解得:<a<2,即a=1,当a=1时,所求方程化为=2,去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解,则方程的解为3.故选C点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.(3分)(2014•荆州)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75°B.()n﹣1•65°C.()n﹣1•75°D.()n•85°考点:等腰三角形的性质.专题:规律型.分析:先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的内角度数.解答:解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故选:C.点评:本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.10.(3分)(2014•荆州)如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.4dm B.2dm C.2dm D.4dm考点:平面展开-最短路径问题.分析:要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.解答:解:如图,把圆柱的侧面展开,得到矩形,则则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=2,∴这圈金属丝的周长最小为2AC=4cm.故选A.点评:本题考查了平面展开﹣最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2014•荆州)化减×﹣4××(1﹣)0的结果是.考点:二次根式的混合运算;零指数幂.专题:计算题.分析:先把各二次根式化为最简二次根式,再根据二次根式的乘法法则和零指数幂的意义计算得到原式=2﹣,然后合并即可.解答:解:原式=2×﹣4××1=2﹣=.故答案为.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.12.(3分)(2014•荆州)若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是2.考点:立方根;合并同类项;解二元一次方程组.分析:根据同类项的定义可以得到m,n的值,继而求出m﹣3n的立方根.解答:解:若﹣2x m﹣n y2与3x4y2m+n是同类项,∴,解方程得:.∴m﹣3n=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.点评:本题考查了同类项的概念以及立方根的求法,解体的关键是根据定义求出对应m、n 的值.13.(3分)(2014•荆州)如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是(,).考点:位似变换;坐标与图形性质.分析:由题意可得OA:OD=1:,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.解答:解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,∴OA:OD=1:,∵点A的坐标为(1,0),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案为:(,).点评:此题考查了位似变换的性质与正方形的性质.此题比较简单,注意理解位似变换与相似比的定义是解此题的关键.14.(3分)(2014•荆州)我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设=x,则x=0.3+x,解得x=,即=.仿此方法,将化成分数是.考点:一元一次方程的应用.分析:设x=,则x=0.4545…①,根据等式性质得:100x=45.4545…②,再由②﹣①得方程100x﹣x=45,解方程即可.解答:解:设x=,则x=0.4545…①,根据等式性质得:100x=45.4545…②,由②﹣①得:100x﹣x=45.4545…﹣0.4545…,即:100x﹣x=45,解方程得:x=.故答案为.点评:此题主要考查了一元一次方程的应用,关键是正确理解题意,看懂例题的解题方法.15.(3分)(2014•荆州)如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(2014•荆州)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.考点:利用旋转设计图案;利用轴对称设计图案.分析:利用轴对称图形以及中心对称图形的性质与定义,进而得出符合题意的答案.解答:解:如图所示:这个格点正方形的作法共有4种.故答案为:4.点评:此题主要考查了利用轴对称以及旋转设计图案,正确把握中心对称以及轴对称图形的定义是解题关键.17.(3分)(2014•荆州)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.考点:切线的性质;平行四边形的性质;弧长的计算;扇形面积的计算.分析:求图中阴影部分的面积,就要从图中分析阴影部分的面积是由哪几部分组成的.很显然图中阴影部分的面积=△ACD的面积﹣扇形ACE的面积,然后按各图形的面积公式计算即可.解答:解:连接AC,∵DC是⊙A的切线,∴AC⊥CD,又∵AB=AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CAD=∠ACB=45°,又∵AB=AC,∴∠ACB=∠B=45°,∴∠CAD=45°,∴∠CAD=45°,∵的长为,∴,解得:r=2,∴S阴影=S△ACD﹣S扇形ACD=.故答案为:.点评:本题主要考查了扇形的面积计算方法,不规则图形的面积通常转化为规则图形的面积的和差.18.(3分)(2014•荆州)如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是﹣6.考点:反比例函数图象上点的坐标特征;等边三角形的性质;相似三角形的判定与性质;特殊角的三角函数值.专题:动点型.分析:连接OC,易证AO⊥OC,OC=OA.由∠AOC=90°想到构造K型相似,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,可证△AEO∽△OFC.从而得到OF=AE,FC=EO..设点A坐标为(a,b)则ab=2,可得FC•OF=6.设点C坐标为(x,y),从而有FC•OF=﹣xy=﹣6,即k=xy=﹣6.解答:解:∵双曲线y=关于原点对称,∴点A与点B关于原点对称.∴OA=OB.连接OC,如图所示.∵△ABC是等边三角形,OA=OB,∴OC⊥AB.∠BAC=60°.∴tan∠OAC==.∴OC=OA.过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,∵AE⊥OE,CF⊥OF,OC⊥OA,∴∠AEO=∠FOC,∠AOE=90°﹣∠FOC=∠OCF.∴△AEO∽△OFC.∴==.∵OC=OA,∴OF=AE,FC=EO.设点A坐标为(a,b),∵点A在第一象限,∴AE=a,OE=b.∴OF=AE=a,FC=EO=b.∵点A在双曲线y=上,∴ab=2.∴FC•OF=b•a=3ab=6设点C坐标为(x,y),∵点C在第四象限,∴FC=x,OF=﹣y.∴FC•OF=x•(﹣y)=﹣xy=6.∴xy=﹣6.∵点C在双曲线y=上,∴k=xy=﹣6.故答案为:﹣6.点评:本题考查了等边三角形的性质、反比例函数的性质、相似三角形的判定与性质、点与坐标之间的关系、特殊角的三角函数值等知识,有一定的难度.由∠AOC=90°联想到构造K型相似是解答本题的关键.三、解答题(本大题共7题,共66分)19.(7分)(2014•荆州)先化简,再求值:()÷,其中a,b满足+|b ﹣|=0.考点:分式的化简求值;非负数的性质:绝对值;非负数的性质:算术平方根.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.解答:解:原式=[﹣]•=•=,∵+|b﹣|=0,∴,解得:a=﹣1,b=,则原式=﹣.点评:此题考查了分式的化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.20.(8分)(2014•荆州)如图①,正方形ABCD的边AB,AD分别在等腰直角△AEF的腰AE,AF上,点C在△AEF内,则有DF=BE(不必证明).将正方形ABCD绕点A逆时针旋转一定角度α(0°<α<90°)后,连结BE,DF.请在图②中用实线补全图形,这时DF=BE还成立吗?请说明理由.考点:全等三角形的判定与性质;等腰直角三角形;正方形的性质.分析:根据旋转角求出∠FAD=∠EAB,然后利用“边角边”证明△ABE和△ADF全等,根据全等三角形对应边相等可得BE=DF.解答:解:DF=BE还成立;理由:∵正方形ABCD绕点A逆时针旋转一定角度α,∴∠FAD=∠EAB,在△ADF与△ABE中∴△ADF≌△ABE(SAS)∴DF=BE.点评:本题考查了旋转的性质,正方形的性质,等腰直角三角形的性质,全等三角形的判定与性质,熟记各性质求出三角形全等是解题的关键.21.(8分)(2014•荆州)钓鱼岛自古以来就是中国的领土.如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A处和正东方向的B处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向、位于B处北偏西44°方向.若甲、乙两船分别沿AC,BC方向航行,其平均速度分别是20海里/小时,18海里/小时,试估算哪艘船先赶到C 处.(参考数据:cos59°≈0.52,sin46°≈0.72)考点:解直角三角形的应用-方向角问题.分析:作CD⊥AB于点D,由题意得:∠ACD=59°,∠DCB=44°,设CD的长为a海里,分别在Rt△ACD中,和在Rt△BCD中,用a表示出AC和BC,然后除以速度即可求得时间,比较即可确定答案解答:解:如图,作CD⊥AB于点D,由题意得:∠ACD=59°,∠DCB=44°,设CD的长为a海里,∵在Rt△ACD中,=cos∠ACD,∴AC==≈1.92a;∵在Rt△BCD中,=cos∠BCD,∴BC==≈1.39a;∵其平均速度分别是20海里/小时,18海里/小时,∴1.92a÷20=0.096a.1.39a÷18=0.077a,∵a>0,∴0.096a>0.077a,∴乙先到达.点评:本题考查了解直角三角形的应用,解决本题的关键在于设出未知数a,使得运算更加方便,难度中等.22.(9分)(2014•荆州)我市某中学七、八年级各选派10名选手参加学校举办的“爱我荆门”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a,b.队别平均分中位数方差合格率优秀率七年级6.7 m 3.41 90% n八年级7.1 7.5 1.69 80% 10%(1)请依据图表中的数据,求a,b的值;(2)直接写出表中的m,n的值;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.考点:条形统计图;统计表;加权平均数;中位数;方差.专题:计算题.分析:(1)根据题中数据求出a与b的值即可;(2)根据(1)a与b的值,确定出m与n的值即可;(3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.解答:解:(1)根据题意得:a=5,b=1;(2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;优秀率为==20%,即n=20%;(3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,故八年级队比七年级队成绩好.点评:此题考查了条形统计图,扇形统计图,以及中位数,平均数,以及方差,弄清题意是解本题的关键.23.(10分)(2014•荆州)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?考点:二次函数的应用.分析:(1)根据题中条件销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w;解答:解:(1)根据题中条件销售价每降低10元,月销售量就可多售出50千克,则月销售量y(台)与售价x(元/台)之间的函数关系式:y=200+50×,化简得:y=﹣5x+2200;供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,则,解得:300≤x≤350.∴y与x之间的函数关系式为:y=﹣5x+2200(300≤x≤350);(2)W=(x﹣200)(﹣5x+2200),整理得:W=﹣5(x﹣320)2+72000.∵x=320在300≤x≤350内,∴当x=320时,最大值为72000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.点评:本题主要考查对于一次函数的应用和掌握,而且还应用到将函数变形求函数极值的知识.24.(12分)(2014•荆州)已知:函数y=ax2﹣(3a+1)x+2a+1(a为常数).(1)若该函数图象与坐标轴只有两个交点,求a的值;(2)若该函数图象是开口向上的抛物线,与x轴相交于点A(x1,0),B(x2,0)两点,与y轴相交于点C,且x2﹣x1=2.①求抛物线的解析式;②作点A关于y轴的对称点D,连结BC,DC,求sin∠DCB的值.考点:二次函数综合题.分析:(1)根据a取值的不同,有三种情形,需要分类讨论,避免漏解.(2)①函数与x轴相交于点A(x1,0),B(x2,0)两点,则x1,x2,满足y=0时,方程的根与系数关系.因为x2﹣x1=2,则可平方,用x1+x2,x1x2表示,则得关于a的方程,可求,并得抛物线解析式.②已知解析式则可得A,B,C,D坐标,求sin∠DCB,须作垂线构造直角三角形,结论易得.解答:解:(1)函数y=ax2﹣(3a+1)x+2a+1(a为常数),若a=0,则y=﹣x+1,与坐标轴有两个交点(0,1),(1,0);若a≠0且图象过原点时,2a+1=0,a=﹣,有两个交点(0,0),(1,0);若a≠0且图象与x轴只有一个交点时,令y=0有:△=(3a+1)2﹣4a(2a+1)=0,解得a=﹣1,有两个交点(0,﹣1),(1,0).综上得:a=0或﹣或﹣1时,函数图象与坐标轴有两个交点.(2)①∵函数与x轴相交于点A(x1,0),B(x2,0)两点,∴x1,x2为ax2﹣(3a+1)x+2a+1=0的两个根,∴x1+x2=,x1x2=,∵x2﹣x1=2,∴4=(x2﹣x1)2=(x1+x2)2﹣4x1x2=()2﹣4•,解得a=﹣(函数开口向上,a>0,舍去),或a=1,∴y=x2﹣4x+3.②∵函数y=x2﹣4x+3与x轴相交于点A(x1,0),B(x2,0)两点,与y轴相交于点C,且x1<x2,∴A(1,0),B(3,0),C(0,3),∵D为A关于y轴的对称点,∴D(﹣1,0).根据题意画图,如图1,过点D作DE⊥CB于E,∵OC=3,OB=3,OC⊥OB,∴△OCB为等腰直角三角形,∴∠CBO=45°,∴△EDB为等腰直角三角形,设DE=x,则EB=x,∵DB=4,∴x2+x2=42,∴x=2,即DE=2.在Rt△COD中,∵DO=1,CO=3,∴CD==,∴sin∠DCB==.点评:本题考查了二次函数图象交点性质、韦达定理、特殊三角形及三角函数等知识,题目考法新颖,但内容常规基础,是一道非常值得考生练习的题目.25.(12分)(2014•荆州)如图①,已知:在矩形ABCD的边AD上有一点O,OA=,以O为圆心,OA长为半径作圆,交AD于M,恰好与BD相切于H,过H作弦HP∥AB,弦HP=3.若点E是CD边上一动点(点E与C,D不重合),过E作直线EF∥BD交BC于F,再把△CEF沿着动直线EF对折,点C 的对应点为G.设CE=x,△EFG与矩形ABCD重叠部分的面积为S.(1)求证:四边形ABHP是菱形;(2)问△EFG的直角顶点G能落在⊙O上吗?若能,求出此时x的值;若不能,请说明理由;(3)求S与x之间的函数关系式,并直接写出FG与⊙O相切时,S的值.考点:圆的综合题;含30度角的直角三角形;菱形的判定;矩形的性质;垂径定理;切线的性质;切线长定理;轴对称的性质;特殊角的三角函数值.专题:压轴题.分析:(1)连接OH,可以求出∠HOD=60°,∠HDO=30°,从而可以求出AB=3,由HP∥AB,HP=3可证到四边形ABHP是平行四边形,再根据切线长定理可得BA=BH,即可证到四边形ABHP是菱形.(2)当点G落到AD上时,可以证到点G与点M重合,可求出x=2.(3)当0≤x≤2时,如图①,S=S△EGF,只需求出FG,就可得到S与x之间的函数关系式;当2<x≤3时,如图④,S=S△GEF﹣S△SGR,只需求出SG、RG,就可得到S与x之间的函数关系式.当FG与⊙O相切时,如图⑤,易得FK=AB=3,KQ=AQ﹣AK=2﹣2+x.再由FK=KQ即可求出x,从而求出S.解答:解:(1)证明:连接OH,如图①所示.∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,BC=AD,AB=CD.∵HP∥AB,∴∠ANH+∠BAD=180°.∴∠ANH=90°.∴HN=PN=HP=.∵OH=OA=,∴sin∠HON==.∴∠HON=60°∵BD与⊙O相切于点H,∴OH⊥BD.∴∠HDO=30°.∴OD=2.∴AD=3.∴BC=3.∵∠BAD=90°,∠BDA=30°.∴tan∠BDA===.∴AB=3.∵HP=3,∴AB=HP.∵AB∥HP,∴四边形ABHP是平行四边形.∵∠BAD=90°,AM是⊙O的直径,∴BA与⊙O相切于点A.∵BD与⊙O相切于点H,∴BA=BH.∴平行四边形ABHP是菱形.(2)△EFG的直角顶点G能落在⊙O上.如图②所示,点G落到AD上.∵EF∥BD,∴∠FEC=∠CDB.∵∠CDB=90°﹣30°=60°,∴∠CEF=60°.由折叠可得:∠GEF=∠CEF=60°.∴∠GED=60°.∵CE=x,∴GE=CE=x.ED=DC﹣CE=3﹣x.∴cos∠GED===.∴x=2.∴GE=2,ED=1.∴GD=.∴OG=AD﹣AO﹣GD=3﹣﹣=.∴OG=OM.∴点G与点M重合.此时△EFG的直角顶点G落在⊙O上,对应的x的值为2.∴当△EFG的直角顶点G落在⊙O上时,对应的x的值为2.(3)①如图①,在Rt△EGF中,tan∠FEG===.∴FG=x.∴S=GE•FG=x•x=x2.②如图③,ED=3﹣x,RE=2ED=6﹣2x,GR=GE﹣ER=x﹣(6﹣2x)=3x﹣6.∵tan∠SRG===,∴SG=(x﹣2).∴S△SGR=SG•RG=•(x﹣2)•(3x﹣6).=(x﹣2)2.∵S△GEF=x2,∴S=S△GEF﹣S△SGR=x2﹣(x﹣2)2.=﹣x2+6x﹣6.综上所述:当0≤x≤2时,S=x2;当2<x≤3时,S=﹣x2+6x﹣6.当FG与⊙O相切于点T时,延长FG交AD于点Q,过点F作FK⊥AD,垂足为K,如图④所示.∵四边形ABCD是矩形,∴BC∥AD,∠ABC=∠BAD=90°∴∠AQF=∠CFG=60°.∵OT=,∴OQ=2.∴AQ=+2.∵∠FKA=∠ABC=∠BAD=90°,∴四边形ABFK是矩形.∴FK=AB=3,AK=BF=3﹣x.∴KQ=AQ﹣AK=(+2)﹣(3﹣x)=2﹣2+x.在Rt△FKQ中,tan∠FQK==.∴FK=QK.∴3=(2﹣2+x).解得:x=3﹣.∵0≤3﹣≤2,∴S=x2=×(3﹣)2=﹣6.∴FG与⊙O相切时,S的值为﹣6.点评:本题考查了矩形的性质、菱形的性质、切线的性质、切线长定理、垂径定理、轴对称性质、特殊角的三角函数值、30°角所对的直角边等于斜边的一半、等腰三角形的性质等知识,综合性非常强.。
湖北省荆门市2014年中考数学真题试题(含答案)
湖北省荆门市2014年中考数学真题试题满分120分 考试时间120分钟一、选择题(本大题共12小题,每小题只有唯一正确答案.每小题3分,共36分) 1.若( )×(-2)=1,则括号内填一个实数应该是( ) A .12 B .2 C .-2 D .-122.下列运算正确的是( )A .3-1=-3 B .9=±3 C .(ab 2)3=a 3b 6D .a 6÷a 2=a 33.如图,AB ∥ED ,AG 平分∠BAC ,∠ECF =70°,则∠FAG 的度数是( ) A .155° B .145° C .110° D .35°4.将抛物线y =x 2-6x +5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( )A .y =(x -4)2-6 B .y =(x -4)2-2 C .y =(x -2)2-2 D .y =(x -1)2-3 5.已知α是一元二次方程x 2-x -1=0较大的根,则下面对α的估计正确的是( ) A .0<α<1 B .1<α<1.5 C .1.5<α<2 D .2<α<36.如图,AB 是半圆O 的直径,D ,E 是半圆上任意两点,连结AD ,DE ,AE 与BD 相交于点C ,要使△ADC 与△ABD 相似,可以添加一个条件.下列添加的条件其中错误..的是( ) A .∠ACD =∠DAB B .AD =DE C .AD 2=BD ·CD D .AD ·AB =AC ·BD7.如图所示,直线y 1=x +b 与y 2=kx -1相交于点P ,点P 的横坐标为-1,则关于x 的不等式x +b >kx -1的解集在数轴上表示正确的是( )8.如图,电路图上有四个开关A 、B 、C 、D 和一个小灯泡,闭合开关D 或同时闭合开关A 、B 、C 都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( ) A .12 B .13C .14D .16 9.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有AO B ED第6题图C -10 1 -1 0 1 -2 0 -1 -2 0-1 A . B . C . D .xO y-1 -1P1y x b=+21y kx =-第7题图第9题图A B CD 第8题图EC D FABG 第3题图A .2种B .3种C .4种D .5种10.已知:点P (1-2a ,a -2)关于原点的对称点在第一象限内,且a 为整数,则关于x 的分式方程1x x a+-=2的解是( ) A .5 B .1 C .3 D .不能确定11.如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是( ) A .(12)n ·75° B .(12)n -1·65° C .(12)n -1·75° D .(12)n·85°12.如图,已知圆柱底面的周长为4dm ,圆柱高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( )A .42dmB .22dmC .25dmD .45dm 二、填空题(本大题共5小题,每小题3分,共15分) 13.若-2xm -n y 2与3x 4y 2m +n 是同类项,则m -3n 的立方根是 ▲ .14.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,相似比为1∶2,点A 的坐标为(0,1),则点E 的坐标是 ▲ .15.我们知道,无限循环小数都可以转化为分数.例如:将0.3转化为分数时,可设0.3=x ,则x=0.3+110x ,解得x =13,即0.3=13.仿此方法,将0.45化成分数是 ▲ . 16.如图,在□ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙A 相交于点F .若EF 的长为2π,则图中阴影部分的面积为 ▲ .17.如图,已知:点是双曲线=2在第一象限的分支上的一个动点,连结并延长交另一分ABC第12题图A 1A A 3ACBDEF… 第11题图x yOA B C第17题图ABCDE F第16题图x O y ABC D E F 第14题图支于点B ,以AB 为边作等边△ABC ,点C 在第四象限.随着点A 的运动,点C 的位置也不断变化,但点C 始终在双曲线y =kx(k >0)上运动,则k 的值是 ▲ . 三、解答题(本大题共7题,共69分) 18.(本题满分8分)(1)计算:24×13-4×18×(1-2)0;(2)先化简,再求值:222222()2a b a b b a a ab b a ab-+÷--+-, 其中a ,b 满足1a ++|b -3|=0.19.(本题满分9分)如图①,正方形ABCD 的边AB ,AD 分别在等腰直角△AEF 的腰AE ,AF 上,点C 在△AEF 内,则有DF =BE (不必证明).将正方形ABCD 绕点A 逆时针旋转一定角度α(0°<α<90°)后,连结BE ,DF .请在图②中用实线补全图形,这时DF =BE 还成立吗?请说明理由.20.(本题满分10分)钓鱼岛自古以来就是中国的领土.如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A 处和正东方向的B 处,这时两船同时接到立即赶往C 处海域巡查的任务,并测得C 处位于A 处北偏东59°方向、位于B 处北偏西44°方向.若甲、乙两船分别沿AC ,BC 方向航行,其平均速度分别是20海里/小时,18海里/小时,试估算哪艘船先赶到C 处. (参考数据:cos59°≈0.52,sin46°≈0.72) AEFA E FBCD 图① 图②第19题图ABC北北59°第20题图44°钓鱼岛21.(本题满分10分)我市某中学七、八年级各选派10名选手参加学校举办的“爱我荆门”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下所示,其中七年级代表队得6分、10分的选手人数分别为a ,b .队别 平均分 中位数 方差 合格率 优秀率 七年级 6.7 m3.41 90% n八年级7.17.51.6980%10%(1)请依据图表中的数据,求a ,b 的值; (2)直接写出....表中的m ,n 的值; (3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.22.(本题满分10分)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y (台)与售价x (元/台)之间的函数关系式; (2)求售价x 的范围;(3)当售价x (元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w (元)最大?最大利润是多少? 039 58610 7 1 1 1 1 1 1 2 2 4ab选手/人数成绩/分七年级队 八年级队23.(本题满分10分)已知:函数y =ax 2-(3a +1)x +2a +1(a 为常数). (1)若该函数图象与坐标轴只有两个交点,求a 的值;(2)若该函数图象是开口向上的抛物线,与x 轴相交于点A (x 1,0),B (x 2,0)两点,与y 轴相交于点C ,且x 2-x 1=2. ①求抛物线的解析式;②作点A 关于y 轴的对称点D ,连结BC ,DC ,求sin ∠DCB 的值.24.(本题满分12分)如图①,已知:在矩形ABCD 的边AD 上有一点O ,OA =3,以O 为圆心,OA 长为半径作圆,交AD 于M ,恰好与BD 相切于H ,过H 作弦HP ∥AB ,弦HP =3.若点E 是CD 边上一动点(点E 与C ,D 不重合),过E 作直线EF ∥BD 交BC 于F ,再把△CEF 沿着动直线EF 对折,点C 的对应点为G .设CE =x ,△EFG 与矩形ABCD 重叠部分的面积为S . (1)求证:四边形ABHP 是菱形;(2)问△EFG 的直角顶点G 能落在⊙O 上吗?若能,求出此时x 的值;若不能,请说明理由; (3)求S 与x 之间的函数关系式,并直接写出....FG 与⊙O 相切时,S 的值.ABC DF E O PH MG ABCD O HM图① 图②(备用图)湖北省荆门市2014年初中毕业生学业水平及升学考试试卷数学考试答案及评分说明一、选择题(每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D C B B C D A A C C C A7.解:当x>-1时,x+b>kx-1,即不等式x+b>kx-1的解集为x>-1.故选A.8.解:第一个开关第二个开关结果:任意闭合其中两个开关的情况共有12种,其中能使小灯泡发光的情况有6种,小灯泡发光的概率是12.故选A.9.解:如图,组成的图形是轴对称图形,又是中心对称图形,这个格点正方形的作法共有4种.故选C.10.解:根据题意,点P在第三象限内,∵120;20,aa-<⎧⎨-<⎩解得122a<<,∵a为整数,∴a=1.解方程121xx+=-得3x=.故选C.11.解:∵A1B=CB,∠B=30°,∴∠C=∠C A1B=12(180°-∠B)=75°.又∵A1A2=A1D,∴∠A1D A2=∠A1 A2D=12∠C A1B.也就是说:自A1以后,这样得来的每一个角都等于前一个角的12.∴∠A n=(12)n-1·75°.故选C.12.解:过点A沿直径BC将圆柱纵向切开,得到半圆柱,并将半圆柱,第9题图A∴AC=22,∴属丝周长的最小值为2AC=42.故选A . 二、填空题(本大题共5小题,每小题3分,共15分) 13.解:∵-2xm -n y 2与3x 4y2m +n是同类项,∴4;22,m n m n -=⎧⎨=+⎩解得2,2.m n =⎧⎨=-⎩∴m -3n =8. ∴382=.14.解:根据题意,∵相似比为1∶2,∴OA :OD =1∶2, ∵点A 的坐标为(0,1),即OA =1,∴OD =2, ∵四边形ODEF 是正方形,∴DE = EF =OD =2. ∴E 点的坐标为(2,2).15.解:设x =0.45=0.454545……,那么100x =45.4545……,而45.4545……=45+0.4545……, ∴100x =45+x 化简得99x =45,解得4599x =, ∴0.45=4599.16.解:连接AC ,∵DC 是⊙A 的切线,∴AC ⊥CD .又∵AB =AC =CD ,∴△ACD 是等腰直角三角形,∴∠CAD =45°. 又∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠CAD =∠ACB =45°. 又∵AB =AC ,∴∠ACB =∠B =45°,∴∠FAD =45°. ∵EF 的长为2π,∴452180r ππ=,解得:2r =. ∴21452===22223602ACD ACE S S S ππ∆⨯⨯⨯-=-阴影扇形.17.解:设A 2()a a,,∵点A 与点B 关于原点对称,∴OA =OB .∵△ABC 为等边三角形,∴AB ⊥OC ,OC=3AO , ∵AO =222()a a +,∴CO =22123a a+. 过点C 作CD ⊥x 轴于点D ,则可得∠AOD =∠OCD (都是∠COD 的余角),设点C 的坐标为()x y ,,则tan ∠AOD =tan ∠OCD ,即2x a a y=-,解得:22a y x =-. 第16题图在Rt △COD 中,222CD OD OC +=,即2222123y x a a +=+. 将22a y x =-代入,可得:2212x a =,故23x a =, ∴22332a y a a =-⨯=-,则23(3)6xy a a=⨯-=-.三、解答题(本题包括7个小题,共69分)18.解:(1)原式=26×33-4×24×1 ················· 1分=22-2 ······························· 2分 =2. ································· 3分 (2)原式=22()()()[]()a b a b a a b a a b a b b -+----=2()a a b ba b b --=ab . ·························· 5分 ∵1a +≥0,|b -3|≥0,1a ++|b -3|=0,∴a +1=0且b -3=0.∴a =-1,b =3. ················ 7分∴原式=13-=-33. ··························8分19.解:补全图形如图所示. ························ 3分DF =BE 还成立,理由是: ························· 4分∵正方形ABCD 和等腰△AEF ,∴AD =AB ,AF =AE ,∠FAE =∠DAB =90°. ·················· 6分 ∴∠FAD =∠EAB . ····························· 7分在△ADF 和△ABE 中,,,.AD AB FAD EAB AF AE =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△ABE (SAS).∴DF =BE . ····················· 9分20.解:过C 作CD ⊥AB 于D ,设CD =h (海里),两船从A ,B 到C 的时间分别是t 甲、t 乙(小时), 则∠ACD =59°,∠CBD =90°-44°=46°.A DBC北北59°20题答案图44°A EFB CD α19题答案图在Rt △ACD 中,cos59°=CD AC =h AC =0.52,则AC =0.52h .·········· 3分在Rt △BCD 中,sin46°=CD BC =h BC=0.72,则BC =0.72h.∴t 甲=20AC =0.5220h ⨯=10.4h ,t 乙=18BC =0.7218h ⨯=12.96h. ∵12.96>10.4,∴t 甲>t 乙,即乙船先到达C 处. ····················· 10分21.解:(1)依题意得:31671819110 6.710,11190%10111110.a b a b a b ⨯++⨯+⨯+⨯+=⨯⎧⎨++++=⨯+++++=⎩或 ···· 4分解得5,1.a b =⎧⎨=⎩······························· 6分(2)m =6, n =20%; ···························· 8分 (3)①八年级队平均分高于七年级队;②八年级队的成绩比七年级队稳定;③八年级队的成绩集中在中上游,所以支持八年级队成绩好.(注:任说两条即可) ·········· 10分 22.解:(1)依题意得:y =200+50×40010x -. ·························· 2分化简得:y =-5x +2200. ························· 3分 (2)依题意有:∵300,52200450.x x ⎧⎨-+⎩≥≥ ··························· 5分解得300≤x ≤350. ···························· 6分 (3)由(1)得:w =(-5x +2200)(x -200)=-5x 2+3200x -440000=-5(x -320)2+72000. ··············· 8分 ∵x =320在300≤x ≤350内,∴当x =320时,w 最大=72000.即售价定为320元/台时,可获得最大利润为72000元. ··········· 10分 23.解:(1)①当a =0时,y =-x +1,有两个交点(0,1),(1,0); ······ 1分 ②当a ≠0且图象过原点时,2a +1=0,a =-12,有两个交点(0,0),(1,0); ·· 2分 ③当a ≠0且图象与x 轴只有一个交点时,令y =0有:△=(3a +1)2-4a (2a +1)=0.解得a =-1,有两个交点(0,-1),(1,0); 综上得:a =0或-12或-1时,函数图象与坐标轴有两个交点. ········· 3分 (2)①依题意令y =0时,x 1+x 2=31a a +,x 1x 2=21a a +. ············ 4分 由x 2-x 1=2得:(x 2-x 1)2=4,则(31a a +)2-4(21)a a+=4.化简得:3a 2-2a -1=0.解得:a 1=-13,a 2=1. ·············· 5分∵△=(3a +1)2-4a (2a +1)=(a +1)2>0,且a >0,∴a =-13应舍去.a =1符合题意.∴抛物线的解析式为y =x 2-4x +3.(注:其它方法,请参照给分) ······· 6分 ②令y =0得:x 2-4x +3=0.解得:x =1或3.由x 2-x 1=2>0知x 2>x 1,∴A (1,0),B (3,0),D (-1,0),C (0,3). 如图,过D 作DE ⊥BC 于E ,则有OB =OC =3,OD =1. ∴DE =BD ·sin45°=22. 而CD =22OC OD =10, ∴在Rt △CDE 中,sin ∠DCB =DE CD =2210=255. ············· 10分24.(1)连结OH ,如图①.∵AB ∥HP ,∠BAD =90°,∴AQ ⊥HP .而AM 是直径, ∴HQ =12HP =32. 在Rt △OHQ 中,sin ∠HOQ =HQ OH =32×13=32,∴∠HOQ =60°,则∠OHQ =30°,∠APH =60°.又BD 与⊙O 相切,∴∠QHD =90°-∠OHQ =60°.∴∠APH =∠QHD . ∴AP ∥BH .又∵AB ∥HP ,∴四边形ABHP 是平行四边形. ················· 3分 由AB ⊥AM ,AM 是直径知AB 是⊙O 的切线,而BD 也是⊙O 的切线, ∴AB =BH .∴四边形ABHP 是菱形.(注:其它方法,请参照给分) ············· 4分xO y AB CD Ex =2 -1123题答案图(2)G 点能落在⊙O 上,如图①.方法一:过C 作射线CR ⊥EF 交EF 于R ,交AD 于M 1,交BD 于R 1,交AP 于P 1,则C 关于EF 对称点G 在射线CR 上.当G 点落在M 1上时,M 1E =CE =x ,AB =CD =HP =3,AD =AB ·tan60°=33,ED =CD -CE =3-x .在Rt △M 1DE 中,cos60°=1ED M E =3x x -=12.解得x =2. ··········· 6分 sin60°=11M D M E =1M D x =32,∴M 1D =3. 而MD =AD -AM =3,∴M 1与M 重合. ···················· 7分 ∴M 在CP 1上,则MP 1⊥AP ,而MP ⊥AP ,∴P 与P 1重合,这校射线CR 与⊙O 交于M ,P .由AP ∥BD ,CP ⊥AP ,CR 1=PR 1,知C 与P 关于BD 对称.由于点E 不与点D 重合,故点G 不可能落在P 点.∴点G 只能落在⊙O 的M 点上,此时x =2. ·················· 8分 方法二:连结CM ,PM ,如图①,由(1)知∠AMP =∠APH =60°,tan ∠CMD =CD MD =33=3.∴∠CMD =∠AMP =60°.∴C ,M ,P 三点共线.∵∠BDA =30°,∴CM ⊥BD .而BD ∥EF ,∴CM ⊥EF ,点C 关于EF 的对称点G 落在CP 上.又∵点P 到BD 的距离等于点C 到BD 的距离(即点A 到BD 的距离),EF 与BD 不重合,∴点G 不能落在P 点,可以落在⊙O 上的M 点. ····················· 6分 当点G 落在⊙O 上的M 点时,ME =CE =x ,在Rt △MDE 中,x =sin 60MD ︒=3×23=2. ∴点G 落在床⊙O 上的M 点,此时x =2. ··················· 8分 方法三:证法略.提示:过C 作C ′P ⊥AP 于P ′,交BD 于R ′,可求CP ′=2CR ′=33,PM +CM =33,则CP ′=CM +MP ,从而C ,M ,P 三点共线,x 的值求法同上.(3)由(2)知:①当点G 在CM 上运动时,0<x ≤2,S =12x ·3x =32x 2. ·························· 9分 P (P 1)A B CD FE O H R R 1 Q M (M 1)24题答案图①②当点G 在PM 上运动时,2<x <3,设FG 交AD 于T ,EG 交AD 于N ,如图②,则:EG =CE =x ,ED =3-x ,S △EFG =12CE ·CF =32x 2.NE =sin 30ED︒=6-2x ,GN =GE -NE =3x -6.∵TG =GN ·tan30°=(3x -6)×33=3x -23.S =S △EFG -S △TGN =32x 2-332x 2+63x -63 =-3x 2+63x -63. ·······················11分 综上所述,S =223(02),236363(23).x x x x x ⎧<⎪⎨⎪-+-<<⎩≤当FG 与⊙O 相切时,S =3136-6. ····················12分A B CDF EO PHM T G N24题答案图②。
荆门市中考数学试卷及答案
湖北省荆门市2013年初中毕业生学业水平及升学考试数学试题卷本试题卷共6页。
满分120分,考试时间120分钟。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,将准考证条形码粘贴在答题卡上的指定位置,并认真核对条形码上的姓名、准考证号是否正确。
2.选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,必须先用橡皮擦干净后,再选涂另一个答案标号。
答案写在试题卷上一律无效。
3.填空题和解答题用0.5毫米黑色签字笔写在答题卡上每题对应的答题区域内。
答案写在试题卷上一律无效。
3.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12小题,每小题只有唯一正确答案,每小题3分,共36分)1.-6的倒数是A.6 B.-6 C.61D.-612.小明上网查得H7N9禽流感病毒的直径大约是0.00000008米,用科学记数法表示为A.0.8×107-米B.8×107-米C.8×108-米D.8×109-米3.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为A.4.下列运算正确的是A.8a÷2a=4a B.325)(aaa-=--C.523)(aaa=-⋅D.abba835=+机密★启用前5.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名 学生参赛成绩统计如图所示. 对于这10名学生的参赛成 绩,下列说法中错误..的是 A .众数是90 B .中位数是90C .平均数是90D .极差是156.若反比例函数y =xk的图象过点(-2, 1)则一次函数k kx y -=的图象过 A .第一、二、四象限 B .第一、三、四象限C .第二、三、四象限D .第一、二、三象限7.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件:①AD ∥BC ②AD=BC ③OA=OC ④OB=OD 从中任选两个条件,能使四边形ABCD 为平行四边形的选法有A .3种B .4种C .5种D .6种8.若圆锥的侧面展开图为半圆,则该圆锥的母线l 与底面半径r 的关系是A .r l 2=B .r l 3=C .r l =D .r l 23=9.若关于x 的一元一次不等式组有解,则m 的取值范围为A .32->mB .m ≤32 C . 32>m D.m ≤ 32-10.在平面直角坐标系中,线段OP 的两个端点坐标分别是O (0,0),P (4,3),将线段OP 绕点O 逆时针旋转90°到OP ′位置,则点P ′的坐标为 A .(3,4) B .(-4,3)C .(-3,4)D .(4,-3)11.如图,在半径为1的⊙O 中,∠AOB =45°,则sin C 的值为A .22 B .222-C .222+ D .4212.如右图所示,已知等腰梯形ABCD,AD ∥BC ,若动直 线l 垂直于BC ,且向右平移,设扫过的阴影部分的面人数 02<-m x 2>+m x积为S ,BP 为x ,则S 关于x 的函数图象大致是二、填空题(本大题共5小题,每小题3分,共15分) 13.分解因式:=-642x .14.若等腰三角形的一个内角为50°,则它的顶角为 .15.如图,在Rt ∆ABC 中,∠ACB =90°,D 是AB 的中点,过D 点作AB 的垂线 交AC 于点E ,BC =6,53sin =A , 则DE = .16.设1x ,2x 是方程020132=--x x 的两实数根,则=-+20132014231x x . 17.若抛物线c bx x y ++=2与x 轴只有一个交点,且过点)(n m A ,,)6(n m B ,+.则=n .三、解答题(本大题共7小题,共69分) 18.(本题满分8分)⑴计算:︒--++-60tan 3)1(8)5(201330π⑵化简求值:⋅+-÷++-2344922a a a a a 31+a ,其中25-=aBAC EDA.…B.19.(本题满分9分)如图,在∆ABC 中,AB =AC ,点D是BC 的中点,点E 在AD 上. ⑴求证:BE =CE ;⑵若BE 的延长线交AC 于点F ,且BF ⊥AC ,垂足为 F ,∠BAC =45°,原题设其它条件不变. 求证:∆AEF ≌∆BCF .20.(本题满分10分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时: ⑴求三辆车全部同向而行的概率; ⑵求至少有两辆车向左转的概率;⑶由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时 段对车流量作了统计,发现汽车在此十字路口向右转的频率为52,向左转和直行的频 率均为103.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿 灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向 的绿灯亮的时间做出合理的调整.21.(本题满分10分)A 、B 两市相距150千米,分别从A 、B 处测得国家级风景区中心C 处的方位角如图所示,风景区区域是以C 为圆心,45千米为半径的圆,tan α=1.627, tan β=1.373.为了开发旅游,有关部门设计修建连接AB 两市的高速公路.问连接AB 高速 公路是否穿过风景区,请说明理由.B βα北北CA B22.(本题满分10分)为了节约资源,科学指导居民改善居住条件,小王向房管部门提出 了一个购买商品房的政策性方案.单根据这个购房方案:⑴若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;⑵设该家庭购买商品房的人均面积为x 平方米,缴纳房款y 万元,请求出y 关于x 的函数关系式;⑶若该家庭购买商品房的人均面积为50平方米,缴纳房款为y 万元,且 57<y ≤60 时, 求m 的取值范围.23.(本题满分10分)如图1,正方形ABCD 的边长为2,点M 是BC 的中点,P 是线段MC 上的一个动点(不与M 、C 重合),以AB 为直径作⊙O ,过点P 作⊙O 的切线, 交AD 于点F ,切点为E . ⑴求证:OF ∥BE ;⑵设BP =x ,AF =y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围;⑶延长DC 、FP 交于点G ,连接OE 并延长交直线DC 与H (图2),问是否存在点P , 使∆EFO ∽∆EHG (E 、F 、O 与E 、H 、G 为对应点),如果存在,试求⑵中x 和y 的值,如果不存在,请说明理由.24.(本题满分12分)已知关于x 的二次函数m m mx x y ++-=222的图象与关于x 的函数1+=kx y 的图象交于两点),(11y x A 、),(22y x B ;)(21x x <A DMF (图1) (图2)⑴当==m k ,10,1时,求AB 的长;⑵当m k ,1=为任何值时,猜想AB 的长是否不变?并证明你的猜想. ⑶当m =0,无论k 为何值时,猜想∆AOB 的形状. 证明你的猜想. (平面内两点间的距离公式212212)()(y y x x AB -+-=).荆门市2013年初中毕业生学业水平及升学考试数学参考答案及评分标准一、 选择题(每小题3分,共36分) 1~6 DCBCCA 7~12 BACCBA 二、 填空题(每小题3分,共15分)13、(x -8)•(x +8) 14、50°或80° 15、41516、2014 17、9 三、 解答题(本题包括7个小题,共69分) 18、(共8分)解:(1)原式=1+2-1-3×3 = -1 ………………………4'(2)原式=21+a 代入a 值得原式=55………………………4'19、证明:(1)∵AB =AC ,D 是BC 的中点∴∠BAE =∠EAC 在∆ABE 和∆ACE 中, ∵AB =AC , ∠BAE =∠EAC ,AE =AE ∴∆ABE ≌∆ACE∴BE =CE ………………………5' (2) ∵∠BAC =45°,BF ⊥AF∴∆ABF 为等腰直角三角形,∴AF =BF , 由(1)知AD ⊥BC ∴∠EAF =∠CBF在∆AEF 和∆BCF 中,AF =BF , ∠AFE =∠BFC =90°∠EAF =∠CBF ∴∆AEF ≌∆BCF ………………………4'20、根据题意,画出树形图P (三车全部同向而行)=91………………………4' (2)P (至少两辆车向左转)=277………………………3'(3)由于汽车向右转、向左转、直行的概率分别为103,103,52,在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮时间为90×3/10=27(秒),直行绿灯亮时间为90×3/10=27(秒) 右转绿灯亮的时间为90×2/5=36(秒) ………………………3'21、AB 不穿过风景区.如图,过C 作CD ⊥AB 与D ,AD =CD ·tan α;BD =CD ·tan β ………………………4' 由AD +DB =AB ,得CD ·tan α+CD ·tan β=AB ………………………2' CD =βαtan tan +AB =503150373.1627.1150==+(千米) ……………………3'∵CD =50>45 ∴高速公路AB 不穿过风景区. ………………………1' 22、解:(1)三口之家应缴购房款为0.3×90+0.5×30=42(万元)…………………4' (2)①当0≤x ≤30时,y=0.3×3x=0.9x②当30<x ≤m 时,y=0.9×30+0.5×3×(x-30)=1.5x-18 ③当x >m 时,y=1.5m-18+0.7×3×(x-m)=2.1x-18-0.6m0.9x (0≤x ≤30)1.5x-18 ( 30<x ≤m ) (45≤m ≤60) ………3'2.1x -18-0.6m (x >m )(3) ①当50≤m ≤60时,y=1.5×50-18=57(舍)②当45≤m ﹤50时,y=2.1×50-0.6m-18=87-0.6m ∵57<87-0.6m ≤60 ∴45≤m <50综合①②得45≤m <50. ……………3'23、(1)证明:连接OEFE 、FA 是⊙O 的两条切线 ∴∠FA O =∠FEO =90° FO =FO ,OA =EO ∴Rt △FAO ≌Rt △FEO ∴∠AOF =∠EOF=21∠AOE ∴∠AOF =∠ABE∴OF ∥BE ………………4'(2)、过F 作FQ ⊥BC 于Q∴PQ =BP -BQ =x -yy=PF =EF +EP =FA +BP =x +y ∵在Rt △PFQ 中 ∴2FQ +22PF QP=∴222)()(2y x y x +=-+化简得xy 1=,(1<x <2) ………………3' (3)、存在这样的P 点∵∠EOF =∠AOF∴∠EHG =∠EOA =2∠EOF 当∠EFO =∠EHG =2∠EOF 时即∠EOF =30°时,Rt △EFO ∽Rt △EHG 此时Rt △AFO 中,y =AF =OA ·tan30°=33 31==y x ∴当33,3x ==y 时,△EFO ∽△EHG ………………3'24、解:(1)当m=0时,2x y =联立得012=--x x∴x 1+x 2=1 x 1·x 2=-1AB =2AC =2| x 2- x 1|=2212124)(x x x x -+=10同理,当k =1,m =1时,AB =10 ………………4'(2)猜想:当k =1,m 为任何值时,AB 的长不变,即AB =10 下面证明: 联立 y =x2-2mx +m 2+my =x +1消y 整理得 x2-(2m +1)x +m 2+m -1=0∴x 1+x 2=2m+1 ,x 1·x 2= m2+m -1AB =2AC =2| x 2- x 1|=2212124)(x x x x -+=10, ………………4'(3)当m =0,k 为任意常数时,三角形AOB 为直角三角形,①当k=0时,则函数的图像为直线y=1, 则由y=x2y=1得A(-1,1),B(1,1)显然∆AOB为直角三角形②当k=1时,则一次函数为直线y=x+1,则由y=x2y=x+1x2-x-1=0x1+x2=1 x1·x2=-1AB=2AC=2| x2- x1|=2212124)(xxxx-+=10A(x1,y1) 、B(x2,y2)∴AB²=10OA²+OB²=x1²+ y1²+x2²+ y2²=10∴AB²=OA²+OB²(3)当k为任意实数,∆AOB仍为直角三角形联立y=x2y=kx+1得x2-kx-1=0x1+x2=k x1·x2= -1AB²=(x1-x2)²-+ (y1-y2)²=k4+5k ²+4OA ²+OB ²=x1²+ y1²+x2²+ y2²=k4+5k ²+4∴AB²=OA²+OB ²∴∆AOB为直角三角形……………4'。
2014年全国中考数学真题解析--38.规律探索(54页)
规律探索一、选择题1.(2014湖北荆门,第11题3分)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()第1题图A.()n75°B.()n﹣165°C.()n﹣175°D.()n85°考点:等腰三角形的性质.专题:规律型.分析:先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的内角度数.解答:解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故选:C.点评:本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.2.(2014重庆A,第11题4分)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.40考点:规律型:图形的变化类.分析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n=,进一步求得第(6)个图形中面积为1的正方形的个数即可.解答:解:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选:B.点评:此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.1. (2014山东威海,第12题3分)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA=OC,OA=OC,OA=OC…,则依此规律,点A的纵坐标为()C.(2)2014D.3×()2013 A.0B.﹣3×()2013考点:规律型:点的坐标专题:规律型.分析:根据含30度的直角三角形三边的关系得OA=OC2=3×;2OA3=OC3=3×()2;OA4=OC4=3×()3,于是可得到OA2014=3×()2013,由于而2014=4×503+2,则可判断点A2014在y轴的正半轴上,所以点A2014的纵坐标为3×()2013.解答:解:∵∠A2OC2=30°,OA1=OC2=3,∴OA2=OC2=3×;∵OA2=OC3=3×,∴OA3=OC3=3×()2;∵OA3=OC4=3×()2,∴OA4=OC4=3×()3,∴OA2014=3×()2013,而2014=4×503+2,∴点A2014在y轴的正半轴上,∴点A2014的纵坐标为3×()2013.故选D.点评:本题考查了规律型:点的坐标:通过从一些特殊的点的坐标发现不变的因素或按规律变化的因素,然后推广到一般情况.也考查了含30度的直角三角形三边的关系.2. (2014山东潍坊,第12题3分)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为( )A.(—2012,2) B.(一2012,一2) C. (—2013,—2) D. (—2013,2)考点:坐标与图形变化-对称;坐标与图形变化-平移.专题:规律型.分析:首先求出正方形对角线交点坐标分别是(2,2),然后根据题意求得第1次、2次、3次变换后的点M的对应点的坐标,即可得规律.解答:∵正方形ABCD,点A(1,3)、B(1,1)、C(3,1).∴M的坐标变为(2,2)∴根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第2014次变换后的点M的对应点的为坐标为(2-2014,2),即(-2012,2)故答案为A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2)是解此题的关键.3. (2014山东烟台,第9题3分)将一组数,,3,2,,…,3,按下面的方式进行排列:,,3,2,;3,,2,3,;…若2的位置记为(1,4),2的位置记为(2,3),则这组数中最大的有理数的位置记为()A.(5,2)B.(5,3)C.(6,2)D.(6,5)考点:规律探索.分析:根据观察,可得,根据排列方式,可得每行5个,根据有序数对的表示方法,可得答案.解答:3=,3得被开方数是得被开方数的30倍,3在第六行的第五个,即(6,5),故选:D.点评:本题考查了实数,利用了有序数对表示数的位置,发现被开方数之间的关系是解题关键.4.(2014十堰7.(3分))根据如图中箭头的指向规律,从2013到2014再到2015,箭头的A.B.C.D.考点:规律型:数字的变化类分析:观察不难发现,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.解答:解:由图可知,每4个数为一个循环组依次循环,2013÷4=503…1,∴2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选D.点评:本题是对数字变化规律的考查,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.5.(2014四川宜宾,第7题,3分)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1D.n考点:正方形的性质;全等三角形的判定与性质专题:规律型.分析:根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n﹣1)个阴影部分的和.解答:解:由题意可得一个阴影部分面积等于正方形面积的,即是×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n﹣1.故选:B.点评:此题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.6.(2014四川内江,第12题,3分)如图,已知A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1、A2、A3、…、A n、A n+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,连接A1B2、B1A2、B2A3、…、A n B n+1、B n A n+1,依次相交于点P1、P2、P3、…、P n.△A1B1P1、△A2B2P2、△A n B n P n的面积依次记为S1、A.B.C.D.考点:一次函数图象上点的坐标特征.专题:规律型.分析:根据图象上点的坐标性质得出点B1、B2、B3、…、B n、B n+1各点坐标,进而利用相似三角形的判定与性质得出S1、S2、S3、…、S n,进而得出答案.解答:解:∵A1、A2、A3、…、A n、A n+1是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1、A2、A3、…、A n、A n+1作x轴的垂线交直线y=2x于点B1、B2、B3、…、B n、B n+1,∴B1的横坐标为:1,纵坐标为:2,则B1(1,2),同理可得:B2的横坐标为:2,纵坐标为:4,则B2(2,4),B3(2,6)…∵A1B1∥A2B2,∴△A1B1P1∽△A2B2P1,∴=,∴△A1B1C1与△A2B2C2对应高的比为:1:2,∴A1B1边上的高为:,∴=××2==,同理可得出:=,=,∴S n=.故选;D.点评:此题主要考查了一次函数函数图象上点的坐标性质得出B点坐标变化规律进而得出S 的变化规律,得出图形面积变化规律是解题关键.2.(2014武汉,第9题3分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()A.31 B.46 C.51 D.66考点:规律型:图形的变化类分析:由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…由此规律得出第n个图有1+1×3+2×3+3×3+…+3n个点.解答:解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,3. (2014株洲,第8题,3分)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)考点:坐标确定位置;规律型:点的坐标.分析:根据走法,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,用100除以3,然后根据商和余数的情况确定出所处位置的横坐标与纵坐标即可.解答:解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选C.点评:本题考查了坐标确定位置,点的坐标的规律变化,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键.二、填空题1. (2014湘潭,16题,3分)如图,按此规律,第6行最后一个数字是16,第672行最后一个数是2014.考点:规律型:数字的变化类.分析:每一行的最后一个数字构成等差数列1,4,7,10…,易得第n行的最后一个数字为1+3(n﹣1)=3n﹣2,由此求得第6行最后一个数字,建立方程求得最后一个数是2014在哪一行.解答:解:每一行的最后一个数字构成等差数列1,4,7,10…,第n行的最后一个数字为1+3(n﹣1)=3n﹣2,∴第6行最后一个数字是3×6﹣2=16;3n﹣2=2014解得n=672.因此第6行最后一个数字是16,第672行最后一个数是2014.故答案为:16,672.点评:此题考查数字的排列规律,找出数字之间的联系,得出运算规律解决问题.1. (2014上海,第17题4分)一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中y表示的数为﹣9.考点:规律型:数字的变化类分析:根据“从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b”,首先建立方程2×3﹣x=7,求得x,进一步利用此规定求得y即可.解答:解:∵从第三个数起,前两个数依次为a、b,紧随其后的数就是2a﹣b ∴2×3﹣x=7∴x=﹣1则7×2﹣y=23解得y=﹣9.故答案为:﹣9.点评:此题考查数字的变化规律,注意利用定义新运算方法列方程解决问题.1.(2014黑龙江龙东,第10题3分)如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=1342+672.考点:旋转的性质.专题:规律型.分析:由已知得AP1=,AP2=1+,AP3=2+;再根据图形可得到AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;每三个一组,由于2013=3×671,则AP2013=(2013﹣761)+671,然后把AP2013加上即可.解答:解:AP1=,AP2=1+,AP3=2+;AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;∵2013=3×671,∴AP2013=(2013﹣761)+671=1342+671,∴AP2014=1342+671+=1342+672.故答案为:1342+672.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.2.(2014黑龙江绥化,第10题3分)如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是(﹣1,﹣1).考点:规律型:点的坐标.分析:根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.解答:解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2014÷10=201…4,∴细线另一端在绕四边形第202圈的第4个单位长度的位置,即线段BC的中间位置,点的坐标为(﹣1,﹣1).故答案为:(﹣1,﹣1).点评:本题主要考查了点的变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2014个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.3.(2014湖南衡阳,第20题3分)如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为21007.考点:规律型:点的坐标.专题:规律型.分析:根据点M0的坐标求出OM0,然后判断出△OM0M1是等腰直角三角形,然后根据等腰直角三角形的性质求出OM1,同理求出OM2,OM3,然后根据规律写出OM2014即可.解答:解:∵点M0的坐标为(1,0),∴OM0=1,∵线段OM0绕原点O逆时针方向旋转45°,M1M0⊥OM0,∴△OM0M1是等腰直角三角形,∴OM1=OM0=,同理,OM2=OM1=()2,OM3=OM2=()3,…,OM2014=OM2013=()2014=21007.故答案为:21007.点评:本题是对点的坐标变化规律的考查,主要利用了等腰直角三角形的判定与性质,读懂题目信息,判断出等腰直角三角形是解题的关键.4.(2014湖南永州,第16题3分)小聪,小玲,小红三人参加“普法知识竞赛”,其中前5题是选择题,每题10分,每题有A、B两个选项,且只有一个选项是正确的,三人的答案和得分如下表,试问:这五道题的正确答案(按1~5题的顺序排列)是BABBA.题号答案选手1 2 3 4 5 得分小聪 B A A B A 40小玲 B A B A A 40小红 A B B B A 30考点:推理与论证.分析:根据得分可得小聪和小玲都是只有一个错,小红有2个错误,首先从三人答案相同的入手分析,然后从小聪和小玲不同的题目入手即可分析.解答:解:根据得分可得小聪和小玲都是只有一个错,小红有2个错误.第5题,三人选项相同,若不是选A,则小聪和小玲的其它题目的答案一定相同,与已知矛盾,则第5题的答案是A;第3个第4题小聪和小玲都不同,则一定在这两题上其中一人有错误,则第1,2正确,则1的答案是:B,2的答案是:A;则小红的错题是1和2,则3和4正确,则3的答案是:B,4的答案是:B.总之,正确答案(按1~5题的顺序排列)是BABBA.故答案是:BABBA.点评:本题考查了命题的推理与论证,正确确定问题的入手点,理解题目中每个题目只有A和B两个答案是关键.5. (2014黔南州,第18题5分)已知==3,==10,==15,…观察以上计算过程,寻找规律计算=56.考点:规律型:数字的变化类.分析:对于C a b (b<a)来讲,等于一个分式,其中分母是从1到b的b个数相乘,分子是从a开始乘,乘b的个数.解答:解:∵==3,==10,==15,∴==56.故答案为56.点评:此题主要考查了数字的变化规律,利用已知得出分子与分母之间的规律是解题关键.6.(2014年广西钦州,第18题3分)甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2014时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是336分.考点:规律型:数字的变化类.分析:根据题意得甲报出的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n个数为1+3(n﹣1),由于1+3(n﹣1)=2014,解得n=672,则甲报出了672个数,再观察甲报出的数总是一奇一偶,所以偶数有672÷2=336个,由此得出答案即可.解答:解:甲报的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n个数为1+3(n﹣1)=3n﹣2,3n﹣2=2014,则n=672,甲报出了672个数,一奇一偶,所以偶数有672÷2=336个,得336分.故答案为:336.点评:本题考查数字的变化规律:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.7.(2014年贵州安顺,第17题4分)如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11,…的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S1,S2,S3,S4,….观察图中的规律,第n(n为正整数)个黑色梯形的面积是S n= 8n﹣4.考点:直角梯形.专题:压轴题;规律型.分析:由∠AOB=45°及题意可得出图中的三角形都为等腰直角三角形,且黑色梯形的高都是2;根据等腰直角三角形的性质,分别表示出黑色梯形的上下底,找出第n个黑色梯形的上下底,利用梯形的面积公式即可表示出第n个黑色梯形的面积.解答:解:∵∠AOB=45°,∴图形中三角形都是等腰直角三角形,从图中可以看出,黑色梯形的高都是2,第一个黑色梯形的上底为:1,下底为:3,第2个黑色梯形的上底为:5=1+4,下底为:7=1+4+2,第3个黑色梯形的上底为:9=1+2×4,下底为:11=1+2×4+2,则第n个黑色梯形的上底为:1+(n﹣1)×4,下底为:1+(n﹣1)×4+2,故第n个黑色梯形的面积为:×2×[1+(n﹣1)×4+1+(n﹣1)×4+2]=8n﹣4.故答案为:8n﹣4.点评:此题考查了直角梯形的性质与等腰直角三角形的性质.此题属于规律性题目,难度适中,注意找到第n个黑色梯形的上底为:1+(n﹣1)×4,下底为1+(n﹣1)×4+2是解此题的关键.8.(2014莱芜,第17题4分)如图在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1,B2,B3,…,则B2014的坐标为(1342,0).考点:规律型:点的坐标;等边三角形的判定与性质;菱形的性质.专题:规律型.分析:连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2014=335×6+4,因此点B4向右平移1340(即335×4)即可到达点B2014,根据点B4的坐标就可求出点B2014的坐标.解答:解:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=90°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2014=335×6+4,∴点B4向右平移1340(即335×4)到点B2014.∵B4的坐标为(2,0),∴B2014的坐标为(2+1340,0),∴B2014的坐标为(1342,0).点评:本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.9.(2014黑龙江牡丹江, 第20题3分)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上且坐标是(0,2),点C1、E1、E2、C2、E3、E4、C3在x 轴上,C1的坐标是(1,0).B1C1∥B2C2∥B3C3,以此继续下去,则点A2014到x轴的距离是.考点:全等三角形的判定与性质;规律型:点的坐标;正方形的性质.分析:根据勾股定理可得正方形A1B1C1D1的边长为=,根据相似三角形的性质可得后面正方形的边长依次是前面正方形边长的,依次得到第2014个正方形和第2014个正方形的边长,进一步得到点A2014到x轴的距离.解答:解:如图,∵点C1、E1、E2、C2、E3、E4、C3在x轴上,B1C1∥B2C2∥B3C3,∴△B1OC1∽△B2E2C2∽B3E4C3…,△B1OC1≌△1CE1D1,…,∴B2E2=1,B3E4=,B4E6=,B5E8=…,∴B2014E4016=,作A1E⊥x轴,延长A1D1交x轴于F,则△C1D1F∽△C1D1E1,∴=,在Rt△OB1C1中,OB1=2,OC1=1,正方形A1B1C1D1的边长为为=,∴D1F=,∴A1F=,∵A1E∥D1E1,∴=,∴A1E=3,∴=,∴点A2014到x轴的距离是×=点评:此题主要考查了正方形的性质以及解直角三角形的知识,得出正方形各边长是解题关键.10. (2014湖北黄石,第16题3分)观察下列等式:第一个等式:a1==﹣;第二个等式:a2==﹣;第三个等式:a3==﹣;第四个等式:a4==﹣.按上述规律,回答以下问题:(1)用含n的代数式表示第n个等式:a n==;(2)式子a1+a2+a3+…+a20=.考点:规律型:数字的变化类.分析:(1)由前四个等是可以看出:是第几个算式,等号左边的分母的第一个因数是就是几,第二个因数是几加1,第三个因数是2的几加1次方,分子是几加2;等号右边分成分子都是1的两项差,第一个分母是几乘2的几次方,第二个分母是几加1乘2的几加1次方;由此规律解决问题;(2)把这20个数相加,化为左边的形式相加,正好抵消,剩下第一个数分裂的第一项和最后一个数分裂的后一项,得出答案即可.解答:解:(1)用含n的代数式表示第n个等式:a n==﹣.(2)a1+a2+a3+…+a20=﹣+﹣+﹣+﹣+…+﹣=﹣.故答案为:(1),﹣;(2)﹣.点评:此题考查数字的变化规律,从简单情形入手,找出一般规律,利用规律解决问题.11.(2014四川绵阳,第18题4分)将边长为1的正方形纸片按图1所示方法进行对折,记第1次对折后得到的图形面积为S1,第2次对折后得到的图形面积为S2,…,第n次对折后得到的图形面积为S n,请根据图2化简,S1+S2+S3+…+S2014=1﹣.考点:规律型:图形的变化类分析:观察图形的变化发现每次折叠后的面积与正方形的关系,从而写出面积和的通项公式.解答:解:观察发现S1+S2+S3+…+S2014=+++…+=1﹣,故答案为:1﹣.点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形的变化,并找到图形的变化规律.12.(2014浙江绍兴,第15题5分)如图,边长为n的正方形OABC的边OA,OC在坐标轴上,点A1,A2…A n﹣1为OA的n等分点,点B1,B2…B n﹣1为CB的n等分点,连结A1B1,A2B2,…A n﹣1B n﹣1,分别交曲线y=(x>0)于点C1,C2,…,C n﹣1.若C15B15=16C15A15,则n的值为17.(n为正整数)考点:反比例函数图象上点的坐标特征.专题:规律型.分析:先根据正方形OABC的边长为n,点A1,A2…A n﹣1为OA的n等分点,点B1,B2…B n为CB的n等分点可知OA15=15,OB15=15,再根据C15B15=16C15A15表示出C15﹣1的坐标,代入反比例函数的解析式求出n的值即可.解答:解:∵正方形OABC的边长为n,点A1,A2…A n﹣1为OA的n等分点,点B1,B2…B n为CB的n等分点∴OA15=15,OB15=15,﹣1∵C15B15=16C15A15,∴C15(15,),∵点C15在曲线y=(x>0)上,∴15×=n﹣2,解得n=17.故答案为:17.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上k=xy为定值是解答此题的关键.13.(2014四川成都,第23题4分)在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L,例如,图中三角形ABC是格点三角形,其中S=2,N=0,L=6;图中格点多边形DEFGHI所对应的S,N,L分别是7,3,10.经探究发现,任意格点多边形的面积S可表示为S=aN+bL+c,其中a,b,c为常数,则当N=5,L=14时,S=11.(用数值作答)考点:规律型:图形的变化类;三元一次方程组的应用.分析:(1)观察图形,即可求得第一个结论;(2)根据格点多边形的面积S=aN+bL+c,结合图中的格点三角形ABC及多边形DEFGHI中的S,N,L数值,代入建立方程组,求出a,b,c即可求得S.解答:解:(1)观察图形,可得S=7,N=3,L=10;(2)不妨设某个格点四边形由四个小正方形组成,此时,S=4,N=1,L=8,∵格点多边形的面积S=aN+bL+c,∴结合图中的格点三角形ABC及格点四边形DEFG可得,解得,∴S=N+L﹣1,将N=5,L=14代入可得S=5+14×﹣1=11.故答案为:(Ⅰ)7,3,10;(Ⅱ)11.点评:此题考查格点图形的面积变化与多边形内部格点数和边界格点数的关系,从简单情况分析,找出规律解决问题.14.(2014河北,第20题3分)如图,点O,A在数轴上表示的数分别是0,.将线段OA分成100等份,其分点由左向右依次为M1,M2,…,M99;再将线段OM1,分成100等份,其分点由左向右依次为N1,N2,…,N99;继续将线段ON1分成100等份,其分点由左向右依次为P1,P2.…,P99.则点P37所表示的数用科学记数法表示为×10﹣6.考点:规律型:图形的变化类;科学记数法—表示较小的数.分析:由题意可得M1表示的数为×=10﹣3,N1表示的数为0×10﹣3=10﹣5,P1表示的数为10﹣5×=10﹣7,进一步表示出点P37即可.解答:解:M1表示的数为×=10﹣3,N1表示的数为0×10﹣3=10﹣5,P1表示的数为10﹣5×=10﹣7,P37=37×10﹣7=×10﹣6.故答案为:×10﹣6.点评:此题考查图形的变化规律,结合图形,找出数字之间的运算方法,找出规律,解决问题.2. (2014四川巴中,第20题3分)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如,(a+b)2=a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;再如,(a+b)3=a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出(a+b)4的展开式,(a+b)4=.考点:规律探索.分析:由(a+b)=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n 的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n﹣1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1.解答:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.故答案为:a4+4a3b+6a2b2+4ab3+b4.点评:本题考查了完全平方公式,学生的观察分析逻辑推理能力,读懂题意并根据所给的式子寻找规律,是快速解题的关键.3.(2014遵义16.(4分))有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是3.考点:专题:正方体相对两个面上的文字;规律型:图形的变化类.分析:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.解答:解:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2014÷4=503…2,∴滚动第2014次后与第二次相同,∴朝下的点数为3,故答案为:3.点评:本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.4.(2014娄底19.(3分))如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由3n+1个▲组成.考点:规律型:图形的变化类.分析:仔细观察图形,结合三角形每条边上的三角形的个数与图形的序列数之间的关系发现图形的变化规律,利用发现的规律求解即可.解答:解:观察发现:第一个图形有3×2﹣3+1=4个三角形;第二个图形有3×3﹣3+1=7个三角形;第一个图形有3×4﹣3+1=10个三角形;…第n个图形有3(n+1)﹣3+1=3n+1个三角形;故答案为:3n+1.点评:考查了规律型:图形的变化类,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.5. (2014年湖北咸宁14.(3分))观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).考点:算术平方根.专题:规律型.分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)1+1×0,(﹣1)2+1,(﹣1)3+1…(﹣1n+1),可以得到第16个的答案.解答:解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1n+1),∴第16个答案为:.故答案为:.点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.6. (2014江苏盐城,第18题3分)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则S n的值为24n﹣5.(用含n的代数式表示,n为正整数)考点:正方形的性质;一次函数图象上点的坐标特征.专题:规律型.分析:根据直线解析式判断出直线与x轴的夹角为45°,从而得到直线与正方形的边围成的三角形是等腰直角三角形,再根据点A的坐标求出正方形的边长并得到变化规律表示出第n个正方形的边长,然后根据阴影部分的面积等于一个等腰直角三角形的面积加。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省荆门市2014年初中毕业生学业水平及升学考试试卷数学满分120分考试时间120分钟一、选择题(本大题共12小题,每小题只有唯一正确答案.每小题3分,共36分) 1.若( )³(-2)=1,则括号内填一个实数应该是( )A.12B.2 C.-2 D.-122.下列运算正确的是( )A.3-1=-3 B3 C.(a b2)3=a3b6D.a6÷a2=a33.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠F AG的度数是( )A.155°B.145°C.110°D.35°4.将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( )A.y=(x-4)2-6 B.y=(x-4)2-2 C.y=(x-2)2-2 D.y=(x-1)2-3 5.已知α是一元二次方程x2-x-1=0较大的根,则下面对α的估计正确的是( )A.0<α<1 B.1<α<1.5 C.1.5<α<2 D.2<α<36.如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误..的是( ) A.∠ACD=∠DAB B.AD=DE C.AD2=BD²CD D.AD²AB=AC²BD7.如图所示,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确的是()8.如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( )A.12B.13C.14D.16第6题图A.B.C.D.b+1-第7题图第9题图第8题图EFA BG第3题图9.如图,在4³4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A .2种B .3种C .4种D .5种10.已知:点P (1-2a ,a -2)关于原点的对称点在第一象限内,且a 为整数,则关于x 的分式方程1x x a+-=2的解是( ) A .5 B .1 C .3 D .不能确定11.如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是( ) A .(12)n ²75° B .(12)n -1²65° C .(12)n -1²75° D .(12)n ²85°12.如图,已知圆柱底面的周长为4dm ,圆柱高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( ) A .B .C .D .二、填空题(本大题共5小题,每小题3分,共15分)13.若-2x m -n y 2与3x 4y 2m+n是同类项,则m -3n 的立方根是 ▲ .14.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,相似比为1,点A 的坐标为(0,1),则点E 的坐标是 ▲ .ABC第12题图A 1A A 3ACBDEF… 第11题图第16题图第14题图15.我们知道,无限循环小数都可以转化为分数.例如:将0.3转化为分数时,可设0.3=x ,则x =0.3+1x ,解得x =13,即0.3=13.仿此方法,将0.45化成分数是 ▲ . 16.如图,在□A BCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙A 相交于点F .若EF 的长为2π,则图中阴影部分的面积为 ▲ .17.如图,已知:点A 是双曲线y =2x在第一象限的分支上的一个动点,连结AO 并延长交另一分支于点B ,以AB 为边作等边△ABC ,点C 在第四象限.随着点A 的运动,点C 的位置也不断变化,但点C 始终在双曲线y =k x(k >0)上运动,则k 的值是 ▲ . 三、解答题(本大题共7题,共69分)18.(本题满分8分) (1)4(10;(2)先化简,再求值:222222()2a b a b a ab b a ab-+÷-+-, 其中a ,b+|b=0.19.(本题满分9分)如图①,正方形ABCD 的边AB ,AD 分别在等腰直角△AEF 的腰AE ,AF 上,点C 在△AEF 内,则有DF =BE (不必证明).将正方形ABCD 绕点A 逆时针旋转一定角度α(0°<α<90°)后,连结BE ,DF .请在图②中用实线补全图形,这时DF =BE 还成立吗?请说明理由.AEFAE FBC D图① 图②第19题图20.(本题满分10分)钓鱼岛自古以来就是中国的领土.如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A 处和正东方向的B 处,这时两船同时接到立即赶往C 处海域巡查的任务,并测得C 处位于A 处北偏东59°方向、位于B 处北偏西44°方向.若甲、乙两船分别沿AC ,BC 方向航行,其平均速度分别是20海里/小时,18海里/小时,试估算哪艘船先赶到C 处. (参考数据:cos59°≈0.52,sin46°≈0.72)21.(本题满分10分)我市某中学七、八年级各选派10名选手参加学校举办的“爱我荆门”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下所示,其中七年级代表队得6分、10分的选手人数分别为a ,b .(1)请依据图表中的数据,求a ,b 的值; (2)直接写出....表中的m ,n 的值; (3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由./分第20题图22.(本题满分10分)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;(2)求售价x的范围;(3)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?23.(本题满分10分)已知:函数y=ax2-(3a+1)x+2a+1(a为常数).(1)若该函数图象与坐标轴只有两个交点,求a的值;(2)若该函数图象是开口向上的抛物线,与x轴相交于点A(x1,0),B(x2,0)两点,与y轴相交于点C,且x2-x1=2.①求抛物线的解析式;②作点A关于y轴的对称点D,连结BC,DC,求sin∠DCB的值.24.(本题满分12分)如图①,已知:在矩形ABCD 的边AD 上有一点O ,OAO 为圆心,OA 长为半径作圆,交AD 于M ,恰好与BD 相切于H ,过H 作弦HP ∥AB ,弦HP =3.若点E 是CD 边上一动点(点E 与C ,D 不重合),过E 作直线EF ∥BD 交BC 于F ,再把△CEF 沿着动直线EF 对折,点C 的对应点为G .设CE =x ,△EFG 与矩形ABCD 重叠部分的面积为S .(1)求证:四边形ABHP 是菱形;(2)问△EFG 的直角顶点G 能落在⊙O 上吗?若能,求出此时x 的值;若不能,请说明理由;(3)求S 与x 之间的函数关系式,并直接写出....FG 与⊙O 相切时,S 的值.B DB C图① 图②(备用图)第24题图湖北省荆门市2014年初中毕业生学业水平及升学考试试卷数学考试答案及评分说明一、选择题(每小题3分,共36分)7.解:当x>-1时,x+b>kx-1,即不等式x+b>kx-1的解集为x>-1.故选A.8.解:第一个开关第二个开关结果:任意闭合其中两个开关的情况共有12种,其中能使小灯泡发光的情况有6种,小灯泡发光的概率是12.故选A.9.解:如图,组成的图形是轴对称图形,又是中心对称图形,这个格点正方形的作法共有4种.故选C.10.解:根据题意,点P在第三象限内,∵120;20,aa-<⎧⎨-<⎩解得122a<<,∵a为整数,∴a=1.解方程121xx+=-得3x=.故选C.11.解:∵A1B=CB,∠B=30°,∴∠C=∠C A1B=12(180°-∠B)=75°.又∵A1A2=A1D,∴∠A1D A2=∠A1 A2D=12∠C A1B.也就是说:自A1以后,这样得来的每一个角都等于前一个角的12.∴∠A n=(12)n-1²75°.故选C.12.解:过点A沿直径BC将圆柱纵向切开,得到半圆柱,并将半圆柱,并将展开为矩形(如图),由题意可知RT△ABC中,AB=BC=2,∴AC=2AC=A.二、填空题(本大题共5小题,每小题3分,共15分)13.解:∵-2x m-n y2与3x4y2m+n是同类项,∴4;22,m nm n-=⎧⎨=+⎩解得2,2.mn=⎧⎨=-⎩∴m-3n=8. 2=.第9题图CBA第12题图14.解:根据题意,∵相似比为1OA :OD =1∵点A 的坐标为(0,1),即OA =1,∴OD, ∵四边形ODEF 是正方形,∴DE = EF =OD∴E).15.解:设x =0.45=0.454545……,那么100x =45.4545……,而45.4545……=45+0.4545……, ∴100x =45+x 化简得99x =45,解得4599x =, ∴0.45=4599.16.解:连接AC ,∵DC 是⊙A 的切线,∴AC ⊥CD .又∵AB =AC =CD ,∴△ACD 是等腰直角三角形,∴∠CAD =45°. 又∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠CAD =∠ACB =45°. 又∵AB =AC ,∴∠ACB =∠B =45°,∴∠F AD =45°. ∵EF 的长为2π,∴452180rππ=,解得:2r =. ∴21452===22223602ACD ACE S S S ππ∆⨯⨯⨯-=-阴影扇形.17.解:设A 2()a a,,∵点A 与点B 关于原点对称,∴OA =OB .第17题图第16题图三、解答题(本题包括7个小题,共69分)18.解:(1)原式=-4 1 ·····································································1分=·····················································································································2分·······························································································································3分(2)原式=22()()()[]()a b a b a a baa ba b b-+----=2()a a bba b b--=ab. ·····································································································5分0,|b≥0+|b=0,∴a+1=0且b0.∴a=-1,b······························································7分.·····································································································8分19.解:补全图形如图所示. ···························································································3分DF=BE还成立,理由是:································································································4分∵正方形ABCD和等腰△AEF,∴AD=AB,AF=AE,∠F AE=∠DAB=90°.·································································6分∴∠F AD=∠EAB.············································································································7分在△ADF和△ABE中,,,.AD ABFAD EABAF AE=⎧⎪∠=∠⎨⎪=⎩∴△ADF≌△ABE(SAS).∴DF=BE.·············································································9分20.解:过C作CD⊥AB于D,设CD=h(海里),两船从A,B到C的时间分别是t甲、t乙(小时),则∠ACD=59°,∠CBD=90°-44°=46°.在Rt△ACD中,cos59°=CDAC=hAC=0.52,则AC=h.······································3分20题答案图AEFBCDα19题答案图在Rt △BCD 中,sin46°=CD =h =0.72,则BC =0.72h .∴t 甲=20AC =0.5220h ⨯=10.4h ,t 乙=18BC =0.7218h ⨯=12.96h .∵12.96>10.4,∴t 甲>t 乙,即乙船先到达C 处. ····················································································· 10分21.解:(1)依题意得:31671819110 6.710,11190%10111110.a b a b a b ⨯++⨯+⨯+⨯+=⨯⎧⎨++++=⨯+++++=⎩或··················· 4分解得5,1.a b =⎧⎨=⎩························································································································· 6分(2)m =6,n =20%; ··········································································································· 8分 (3)①八年级队平均分高于七年级队;②八年级队的成绩比七年级队稳定;③八年级队的成绩集中在中上游,所以支持八年级队成绩好.(注:任说两条即可) ······························ 10分 22.解:(1)依题意得: y =200+50³40010x -. ····································································································· 2分化简得:y =-5x +2200. ·································································································· 3分 (2)依题意有:∵300,52200450.x x ⎧⎨-+⎩≥≥ ·········································································································· 5分解得300≤x ≤350. ············································································································ 6分 (3)由(1)得:w =(-5x +2200)(x -200)=-5x 2+3200x -440000=-5(x -320)2+72000. ·························································· 8分 ∵x =320在300≤x ≤350内,∴当x =320时,w 最大=72000.即售价定为320元/台时,可获得最大利润为72000元.··············································· 10分 23.解:(1)①当a =0时,y =-x +1,有两个交点(0,1),(1,0); ····························· 1分 ②当a ≠0且图象过原点时,2a +1=0,a =-12,有两个交点(0,0),(1,0); ·········· 2分③当a ≠0且图象与x 轴只有一个交点时,令y =0有:△=(3a +1)2-4a (2a +1)=0.解得a =-1,有两个交点(0,-1),(1,0); 综上得:a =0或-12或-1时,函数图象与坐标轴有两个交点. ·································· 3分(2)①依题意令y =0时,x 1+x 2=31a a +,x 1x 2=21a a +.················································ 4分 由x 2-x 1=2得:(x 2-x 1)2=4,则(31a a +)2-4(21)a +=4.化简得:3a2-2a-1=0.解得:a1=-13,a2=1. ·······················································5分∵△=(3a+1)2-4a(2a+1)=(a+1)2>0,且a>0,∴a=-13应舍去.a=1符合题意.∴抛物线的解析式为y=x2-4x+3.(注:其它方法,请参照给分) ······························6分②令y=0得:x2-4x+3=0.解得:x=1或3.由x2-x1=2>0知x2>x1,∴A(1,0),B(3,0),D(-1,0),C(0,3).如图,过D作DE⊥BC于E,则有OB=OC=3,OD=1.∴DE=BD²sin45°=而CD∴在Rt△CDE中,sin∠DCB=DECD.··················································10分24.(1)连结OH,如图①.∵AB∥HP,∠BAD=90°,∴AQ⊥HP.而AM是直径,∴HQ=12HP=32.在Rt△OHQ中,sin∠HOQ=HQOH=32,∴∠HOQ=60°,则∠OHQ=30°,∠APH=60°.又BD与⊙O相切,∴∠QHD=90°-∠OHQ=60°.∴∠APH=∠QHD.∴AP∥BH.又∵AB∥HP,∴四边形ABHP是平行四边形. ······························································3分由AB⊥AM,AM是直径知AB是⊙O的切线,而BD也是⊙O的切线,∴AB=BH.∴四边形ABHP是菱形.(注:其它方法,请参照给分) ·················································4分(2)G 点能落在⊙O 上,如图①.方法一:过C 作射线CR ⊥EF 交EF 于R ,交AD 于M 1,交BD 于R 1,交AP 于P 1,则C 关于EF 对称点G 在射线CR 上.当G 点落在M 1上时,M 1E =CE =x ,AB =CD =HP =3,AD =AB ²tan60°=ED =CD -CE =3-x .在Rt △M 1DE 中,cos60°=1ED M E =3x -=1.解得x =2. ·········································· 6分 sin60°=11M D M E =1M D x,∴M 1D而MD =AD -AMM 1与M 重合. ····································································· 7分 ∴M 在CP 1上,则MP 1⊥AP ,而MP ⊥AP ,∴P 与P 1重合,这校射线CR 与⊙O 交于M ,P .由AP ∥BD ,CP ⊥AP ,CR 1=PR 1,知C 与P 关于BD 对称.由于点E 不与点D 重合,故点G 不可能落在P 点.∴点G 只能落在⊙O 的M 点上,此时x =2. ·································································· 8分 方法二:连结CM ,PM ,如图①,由(1)知∠AMP =∠APH =60°,tan ∠CMD =CD MD=CMD =∠AMP =60°.∴C ,M ,P 三点共线.∵∠BDA =30°,∴CM ⊥BD .而BD ∥EF ,∴CM ⊥EF ,点C 关于EF 的对称点G 落在CP 上.又∵点P 到BD 的距离等于点C 到BD 的距离(即点A 到BD 的距离),EF 与BD 不重合,∴点G 不能落在P 点,可以落在⊙O 上的M 点. ······························································ 6分 当点G 落在⊙O 上的M 点时,ME =CE =x ,在Rt △MDE 中,x =MD=2. ∴点G 落在床⊙O 上的M 点,此时x =2. ······································································ 8分 方法三:证法略.提示:过C 作C ′P ⊥AP 于P ′,交BD 于R ′,可求CP ′=2CR ′=PM +CM =D 24题答案图①CP ′=CM +MP ,从而C ,M ,P 三点共线,x 的值求法同上.(3)由(2)知:①当点G 在CM 上运动时,0<x ≤2,S =12xx 2. ···································································································· 9分 ②当点G 在PM 上运动时,2<x <3,设FG 交AD 于T ,EG 交AD 于N ,如图②,则:EG =CE =x ,ED =3-x ,S △EFG =12CE ²CFx 2. NE =sin30ED ︒=6-2x ,GN =GE -NE =3x -6. ∵TG =GN ²tan30°=(3x -6)-S =S △EFG -S △TGNx 2x 2+-2+-····························································································· 11分综上所述,S=22(02),3).x x <⎪+-<<⎩≤当FG 与⊙O 相切时,S6. ············································································ 12分B24题答案图②。