2008年普通高等学校招生全国统一考试(福建卷)数 学(理科)

合集下载

2008年普通高等学校招生全国统一考试数学卷(福建.文)含详解

2008年普通高等学校招生全国统一考试数学卷(福建.文)含详解

2008年普通高等学校招生全国统一考试数学卷(福建.文)含详解数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.¢ (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 (3)设|a n |是等左数列,若a 2=3,a 1=13,则数列{a n }前8项的和为 A.128 B.80 C.64 D.56 (4)函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为 A.3 B.0 C.-1 D.-2 (5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 A.12125 B.16125 C.48125 D.96125(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为A.3 B.23 C.4D.13(7)函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 A.-sin x B.sin x C.-cos x D.cos x(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b ,则角B 的值为 A.6π B.3π C.6π或56π D.3π或23π(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(10)若实数x 、y 满足10,0,2,x y x x -+≤⎧⎪⎨⎪≤⎩则y x 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) (11)如果函数y=f (x )的图象如右图,那么 导函数y=f (x )的图象可能是(12)双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞]第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)(x +1x)9展开式中x 2的系数是 .(用数字作答) (14)若直线3x+4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是 . (15,则其外接球的表面积是 . (16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a+b 、a-b 、ab 、ab∈P (除数b ≠0)则称P 是一个数域,例如有理数集Q 是数域,有下列命题: ①数域必含有0,1两个数; ②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域;④数域必为无限集.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知向量(sin ,cos ),(1,2)m A A n ==-,且0.m n = (Ⅰ)求tan A 的值;(Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域. (18)(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为111,,,543且他们是否破译出密码互不影响.(Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由. (19)(本小题满分12分)如图,在四棱锥P —ABCD 中,侧面PAD ⊥底面ABCD ,侧棱PA =PD 底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC=2,O 为AD 中点. (Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的余弦值; (Ⅲ)求点A 到平面PCD 的距离. (20)(本小题满分12分)已知{a n }是正数组成的数列,a 1=11n a +)(n ∈N *)在函数y =x 2+1的图象上. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2n a,求证:b n ·b n +2<b 2n +1. (21)(本小题满分12分)已知函数32()2f x x mx nx =++-的图象过点(-1,-6),且函数()()6g x f x x '=+的图象关于y 轴对称.(Ⅰ)求m 、n 的值及函数y =f (x )的单调区间;(Ⅱ)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值. (22)(本小题满分14分)如图,椭圆2222:1x y C a b+=(a >b >0)的一个焦点为F (1,0),且过点(2,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)若AB 为垂直于x 轴的动弦,直线l :x =4与x 轴交于点N ,直线AF 与BN 交于点M . (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求△AMN 面积的最大值.2008年普通高等学校招生全国统一考试(福建卷)数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.∅ 解:A ={x |0<x<1}∴A ∩B={x |0<x <1} (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解:若00x y x ay +=-=与互相垂直,则0x ay -=的斜率必定为1,1a =,反之显然 (3):设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项的和为 A.128 B.80 C.64 D.56 解:因为{}n a 是等差数列,278313886422a a ++=⨯=⨯=∴S(4)函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为A.3B.0C.-1D.-2解:3()1sin f x x x -=+为奇函数,又()2f a =∴()11f a -=故()11f a --=-即()0f a -=.(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 A.12125 B.16125 C.48125 D.96125解:独立重复实验服从二项分布4(3,)5B ,21234148(2)55125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ (6)如图,在长方体ABCD -A 1B 1C 1D 1中, AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为AB.23D.13解:连11AC ,则11AC A ∠为AC 1与平面A 1B 1C 1D 1所成角.112AB BC AC AC ==⇒==11AA= 1111113sin 3AA AC AC A AC =⇒∠==∴ (7)函数cos ()y x x R =∈的图象向左平移2π个单位后,得到函数()y g x =的图象,则()g x 的解析式为A.sin x -B. sin xC.cos x -D.cos x 解:()cos()sin 2y g x x x π==+=-(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c,若222a cb +-=,则角B 的值为 A.6πB.3π C.6π或56π D.3π或23π解:由222a +c -b得222(a +c -b )2ac即cos = B 6B π⇒=(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48解:6人中选4人的方案4615C =种,没有女生的方案只有一种,所以满足要求的方案总数有14种(10)若实数x 、y 满足10,0,2,x y x y -+≤⎧⎪>⎨⎪≤⎩则y x 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) 解:由题设1y x ≥+,所以11y x x ≥+,又01211x y <≤-≤-=,因此2y x≥ 又yx可看做可行域中的点与原点构成直线的斜率,画出可行域也可得出答案。

2008年普通高等学校招生全国统一考试数学试卷分类汇编5.4解斜三角形

2008年普通高等学校招生全国统一考试数学试卷分类汇编5.4解斜三角形

第五章 平面向量四 解斜三角形【考点阐述】正弦定理.余弦定理.斜三角形解法. 【考试要求】(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形. 【考题分类】(一)选择题(共7题)1.(安徽卷文5)在三角形ABC 中,5,3,7AB AC BC ===,则BAC ∠的大小为( ) A .23π B .56π C .34π D .3π 解:由余弦定理2225371cos 2532BAC +-∠==-⨯⨯,23BAC π∠=2.(北京卷文4)已知ABC △中,a =b =60B = ,那么角A 等于( )A .135B .90C .45D .30【解析】由正弦定理得:sin sin a b A B A B ==== 45a b A B A <⇒<∴=【答案】C3.(福建卷理10文8)在△ABC 中,角ABC 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B ,则角B 的值为 A.6π B.3π C.6π或56πD.3π或23π解: 由222(a +c -b 得222(a +c -b )cos =22sin B ac B 即cos cos = 2sin BB Bsin B ∴,又在△中所以B 为3π或23π4.(海南宁夏卷理3)如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为 A.185B.43 C.23D. 87解:设顶角为C ,因为5,2l c a b c ===∴,由余弦定理222222447cos 22228a b c c c c C ab c c +-+-===⨯⨯5.(山东卷文8)已知a bc ,,为ABC △的三个内角A B C ,,的对边,向量1)(cos sin )A A =-=,,m n .若⊥m n ,且cos cos sin a B b A c C +=,则角A B,的大小分别为( ) A .ππ63,B .2ππ36,C .ππ36,D .ππ33,解析:本小题主要考查解三角形问题。

2008年普通高等学校招生全国统一考试(福建卷)数学(文)

2008年普通高等学校招生全国统一考试(福建卷)数学(文)

2008年普通高等学校招生全国统一考试(福建卷)数学(文)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|0A x x x =-<,{}|03B x x =<<,则A B 等于( )A .{}|01x x <<B .{}|03x x <<C .{}|13x x <<D .∅2.“1a =”是“直线0x y +=和直线0x ay -=互相垂直”的( )条件A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项和为( )A .128B .80C .64D .564.函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为( )A .3B .0C .-1D .-25.某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是( ) A .12125B .16125 C .48125D .961256.如图,在长方体1111ABCD A BC D -中,2AB BC ==分别为11AA =,则1AC 与平面1111A B C D 所成的角的正弦值为( )A B .23C D .137.函数cos ()y x x R =∈的图像向左平移2π个单位后,得到函数()y g x =的图像,则()g x 的解析式为( ) A .sin x - B .sin xC .cos x -D .cos x8.在△ABC 中,角A 、B 、C 的对应边分别为a 、b 、c,若222a cb +-=,则角B 的值为( )A .6πB .3π C .6π或56πD .3π或23π9.某班级要从4名男生和2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A .14B .24C .28D .4810.若实数x 、y 满足002x y x y -+≤⎧⎪>⎨⎪≤⎩,则y x 的取值范围是( )A .(0,2)B .(0,2]C .(2,)+∞D .[2,)+∞11.如果函数()y f x =的图像如右图,那么导函数'()y f x =的图像可能是()12.双曲线22221(0,0)x y a b a b-=>>的两个焦点为12,F F ,若P 为其上一点,且12||2||PF PF =,则双曲线离心率的取值范围为( )A .(1,3)B .(1,3]C .(3,)+∞D .[3,)+∞第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13. 91(x x+展开式中3x 的系数是 (用数字作答)14.若直线340x y m ++=与圆222440x y x y +-++=没有公共点,则实数m 的取值范围是15.,则其外接球的表面积是16.设P 是一个数集,且至少含有两个数,若对任意,a b P ∈,都有,,,aa b a b ab P b+-∈(除数0b ≠),则称P 是一个数域。

2008年福建省数学(理科)高考试卷及答案

2008年福建省数学(理科)高考试卷及答案

aaaabbbbOOOO(A) (B) (C)(D)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果函数a bx ax y ++=2的图象与x 轴有两上交点,则点(a ,b )在a Ob 平面上的区 域(不包含边界)为( )2.抛物线2ax y =的准线方程是y=2,则a 的值为 ( )A .81B .-81 C .8D .-8 3.已知==-∈x x x 2tan ,54cos ),0,2(则π( )A .247 B .-247 C .724 D .-7244.设函数,1)(.0,,0,12)(021>⎪⎩⎪⎨⎧>≤-=-x f x x x x f x 若则x 0的取值范围是( )A .(-1,1)B .(-1,+∞)C .(-∞,-2)∪ (0,+∞)D .(-∞,-1)∪(1,+∞) 5.O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足),,0[),||||(+∞∈++=λλAC AC AB AB OA OP 则P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心 6.函数),1(,11ln +∞∈-+=x x x y 的反函数为( )A .),0(,11+∞∈+-=x e e y xxB .),0(,11+∞∈-+=x e e y xxC .)0,(,11-∞∈+-=x e e y x x D .)0,(,11-∞∈-+=x e e y x x7.棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为 ( )A .33aB .43aC .63aD .123a8.设,)(,02c bx ax x f a ++=>曲线)(x f y =在点))(,(00x f x P 处切线的倾斜角的取值范 围为]4,0[π,则P 到曲线)(x f y =对称轴距离的取值范围为( )A .[a1,0] B .]21,0[aC .|]2|,0[abD .|]21|,0[ab -9.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则|m -n|=( )A .1B .43C .21D .8310.已知双曲线中心在原点且一个焦点为F (7,0)直线y=x -1与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是( )A .14322=-yxB .13422=-yxC .12522=-yxD .15222=-yx11.已知长方形四个顶点A (0,0),B (2,0),C (2,1)和D (0,1).一质点从AB 的中点P 0沿与AB夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射角等于反射角).设P 4的坐标为(x 4,0).若1< x 4<2,则tan θ的取值范围是 ( )A .)1,31(B .)32,31(C .)21,52(D .)32,52(12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为 ( )A .3πB .4πC . 33πD .6π第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,把答案填在题中横线上. 13.92)21(xx -展开式中x 9的系数是14.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取 , , 辆15.某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种 且相邻部分不能栽种同样颜色的花,不同的栽种方法有 种.(以数字作答)16.对于四面体ABCD ,给出下列四个命题 ①若AB=AC ,BD=CD ,则BC ⊥AD. ②若AB=CD ,AC=BD ,则BC ⊥AD.③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD. ④若AB ⊥CD ,BD ⊥AC ,则BC ⊥AD.其中真命题的序号是 .(写出所有真命题的序号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)有三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验.(Ⅰ)求恰有一件不合格的概率;(Ⅱ)求至少有两件不合格的概率.(精确到0.001)18.(本小题满分12分)已知函数)0,0)(sin()(πϕωϕω≤≤>+=x x f 上R 上的偶函数,其图象关于点)0,43(πM 对称,且在区间]2,0[π上是单调函数,求ϕ和ω的值.19.(本小题满分12分)如图,直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三角形,∠ACB=90°,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的垂心G . (Ⅰ)求A 1B 与平面ABD 所成角的大小(结果用反三角函数值表示); (Ⅱ)求点A 1到平面AED 的距离.D E KBC1A 1B 1AFC G20.(本小题满分12分)已知常数0>a ,向量).0,1(),,0(==i a c 经过原点O 以i c λ+为方向向量的直线与经过定点A (0,a )以c i λ2-为方向向量的直线相交于点P ,其中.R ∈λ试问:是否存在两个定点E 、F ,使得|PE|+|PF|为定值.若存在,求出E 、F 的坐标;若不存在,说明理由.21.(本小题满分12分) 已知n a ,0>为正整数.(Ⅰ)设1)(,)(--='-=n n a x n y a x y 证明;(Ⅱ)设).()1()1(,,)()(1n f n n f a n a x x x f n n n n n '+>+'≥--=+证明对任意22.(本小题满分14分)设,0>a 如图,已知直线ax y l =:及曲线C :2x y =,C 上的点Q 1的横坐标为1a(a a <<10).从C 上的点Q n (n ≥1)作直线平行于x 轴,交直线l 于点1+n P ,再从点1+n P 作直线平行于y 轴,交曲线C 于点Q n+1.Q n (n=1,2,3,…)的横坐标构成数列{}.n a (Ⅰ)试求n n a a 与1+的关系,并求{}n a 的通项公式;(Ⅱ)当21,11≤=a a 时,证明∑=++<-nk k k k a a a 121321)(;(Ⅲ)当a =1时,证明∑-++<-nk k k k a a a 121.31)(Oc ylxQ 1Q 2Q 3 1a 2a 3a r 2 r 12003年普通高等学校招生全国统一考试数 学 试 题(江苏卷)答案一、选择题:本题考查基本知识和基本运算,每小题5分,满分60分.1.C 2.B 3.D 4.D 5.B 6.B 7.C 8.B 9.C 10.D 11.C 12.A 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分. 13.221-14.6,30,10 15.120 16.①④三、解答题17.本小题要主考查相互独立事件概率的计算,运用数学知识解决问题的能力,满分12分. 解:设三种产品各抽取一件,抽到合格产品的事件分别为A 、B 和C.(Ⅰ)95.0)()(,90.0)(===C P B P A P , .50.0)()(,10.0)(===C P B P A P 因为事件A ,B ,C 相互独立,恰有一件不合格的概率为 176.095.095.010.005.095.090.02)()()()()()()()()()()()(=⨯⨯+⨯⨯⨯=⋅⋅+⋅⋅+⋅⋅=⋅⋅+⋅⋅+⋅⋅C P B P A P C P B P A P C P B P A P C B A P C B A P C B A P 答:恰有一件不合格的概率为0.176. 解法一:至少有两件不合格的概率为)()()()(C B A P C B A P C B A P C B A P ⋅⋅+⋅⋅+⋅⋅+⋅⋅012.005.010.095.005.010.0205.090.022=⨯+⨯⨯⨯+⨯=解法二:三件产品都合格的概率为812.095.090.0)()()()(2=⨯=⋅⋅=⋅⋅C P B P A P C B A P由(Ⅰ)知,恰有一件不合格的概率为0.176,所以至有两件不合格的概率为.012.0)176.0812.0(1]176.0)([1=+-=+⋅⋅-C B A P 答:至少有两件不合的概率为0.012.(18)在小题主要考查三角函数的图象和单调性、奇偶性等基本知识,以及分析问题和推理计算能力,满12分分解:由),()(,)(x f x f x f =-得是偶函数.0cos ,0,sin cos sin cos ),sin()sin(=>=-+=+-ϕωωϕωϕϕωϕω所以得且都成立对任意所以即x xx x x.232,;]2,0[)2sin()(,310,0;]2,0[)22sin()(,2,1;]2,0[)232sin()(,32,0.,2,1,0),12(32,,3,2,1,243,0,043cos ,43cos )243sin()43(,43cos)243sin()43(,0),43()43(,)(.2,0==+==≥+===+====+=∴=+=>=∴=+=∴=+==+-=-=≤≤ωωππωωππωππωωππωπωωπωππωππωππωπππππϕπϕ或综合得所以上不是单调函数在时当上是减函数在时当上是减函数在时当得又得取得对称的图象关于点由所以解得依题设x x f k x x f k x x f k k k k k f f x x f x f M x f19.本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力. 满分12分.解法一:(Ⅰ)解:连结BG ,则BG 是BE 在面ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,.32arcsin.323136sin .3,32,22,2.36321,2.3,1,31.,,,,,,112211所成的角是与平面于是中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EBEG EBG EB B A AB CD FC EG ED FD EF FD FD FG EFEFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥(Ⅱ)连结A 1D ,有E AA D AED A V V 11--=,,,F AB EF EF ED AB ED =⋂⊥⊥又AB A ED 1平面⊥∴, 设A 1到平面AED 的距离为h ,则ED S h S AB A AED ⋅=⋅∆∆1.2621,24121111=⋅==⋅==∆∆∆ED AE S AB A A S S AED AB A AE A 又.362.36226221的距离为到平面即AED A h =⨯=∴解法二:(Ⅰ)连结BG ,则BG 是BE 在面ABD 的射影,即∠A 1BG 是A 1B 与平ABD 所成的角. 如图所示建立坐标系,坐标原点为O ,设CA=2a , 则A(2a ,0,0),B(0,2a ,0),D(0,0,1).37arccos.372131323/14||||cos ).31,34,32(),2,2,2(.1.03232).1,2,0(),32,3,3().31,32,32(),1,,(),2,0,2(1111121所成角是与平面解得ABD B A BG BA BG BA BG A BG BA a a BD GE a BD a a CE a a G a a E a A =⋅=⋅=∠∴-=-=∴==+-=⋅∴-==∴(Ⅱ)由(Ⅰ)有A(2,0,0)A 1(2,0,2),E(1,1,1),D(0,0,1).,,0)0,1,1()2,0,0(,0)0,1,1()1,1,1(11AED ED E AA ED ED AA ED AE 平面又平面⊂⊥∴=--⋅=⋅=--⋅-=⋅(Ⅰ)当22=a 时,方程①是圆方程,故不存在合乎题意的定点E 和F ; (Ⅱ)当220<<a 时,方程①表示椭圆,焦点)2,2121()2,2121(22a a F a a E ---和(Ⅲ)当,22时>a 方程①也表示椭圆,焦点))21(21,0())21(21,0(22---+a a F a a E 和为合乎题意的两个定点.(21)本小题主要考查导数、不等式证明等知识,考查综合运用所数学知识解决问题的能力,满分12分.证明:(Ⅰ)因为nk kn nC a x 0)(=∑=-kkn x a --)(,所以1)(--=-='∑k kn nk k nxa kCy nk n 0=∑=.)()(1111------=-n k kn k n a x n xa C(Ⅱ)对函数nnn a x x x f )()(--=求导数:nnnnnnn n n n n n n n a n n a n n a n x a x x x f a x x f a x a n n n n f a x n nxx f )()1()1(,,.)()(,.0)(,0].)([)(,)()(1111-->-+-+≥--=≥∴>'>≥--='--='----时当因此的增函数是关于时当时当所以∴))()(1(])1()1)[(1()1(1nn n n n a n n n a n n n n f --+>-+-++=+'+).()1())()(1(1n f n a n n n n n n n'+=--+>-即对任意).()1()1(,1n f n n f a n n n '+>+'≥+22.本小题主要考查二次函数、数列、不等式等基础知识,综合运用数学知识分析问题和解决问题的能力,满分14分. (Ⅰ)解:∵).1,1(),,1(),,(422122121n n n n n n n n n a a a aQ a a aP a a Q ⋅⋅++-∴,121n n a aa ⋅=+ ∴2222122221)1()1(11-+--=⋅=⋅=n n n n a aa a a a aa ==⋅=-++-+3222222122321)1()1()1(n n a aa a a=1111221211221221)()1()1(---+-==-+++n n n n n a a a a a a a , ∴.)(121-=n aa a a n(Ⅱ)证明:由a =1知,21n n a a =+ ∵,211≤a ∴.161,4132≤≤a a∵当.161,132≤≤≥+a a k k 时∴∑∑=++=++<-=-≤-nk n k knk k k ka a a aa a a1111121.321)(161)(161)( (Ⅲ)证明:由(Ⅰ)知,当a =1时,,121-=n a a n因此∑∑∑=++-==++-≤-=-+-nk i i i i nk k k k a a a aaaa a a nk kk 1221111121212121121)()()(11∑-=-⋅-<-=1213131211312111)1()1(ni i aa a a aa a =.31121151<++aa a。

2008年普通高等学校招生全国统一考试数学试卷分类汇编7.3圆的方程

2008年普通高等学校招生全国统一考试数学试卷分类汇编7.3圆的方程

第七章 直线和圆的方程三 圆的方程【考点阐述】圆的标准方程和一般方程.圆的参数方程. 【考试要求】(6)掌握圆的标准方程和一般方程,了解参数方程的概念。

理解圆的参数方程. (7)会判断直线、圆的位置关系。

【考题分类】(一)选择题(共15题)1.(安徽卷理8文10)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .[B .(C .[33-D .(33-解:设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1x y -+=有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3k k k ≤+≤,选择C 另外,数形结合画出图形也可以判断C 正确。

2.(北京卷理7)过直线y x =上的一点作圆22(5)(1)2x y -+-=的两条切线12l l ,,当直线12l l ,关于y x =对称时,它们之间的夹角为( ) A .30B .45C .60D .90【标准答案】: C【试题分析一】: 过圆心M 作直线l :y=x 的垂线交与N 点,过N 点作圆的切线能够满足条件,不难求出夹角为600。

【试题分析二】:明白N 点后,用图象法解之也很方便 【高考考点】: 直线与圆的位置关系。

【易错提醒】: N 点找不到。

【备考提示】: 数形结合这个解题方法在高考中应用的非常普遍,希望加强训练。

3.(广东卷文6)经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 A 、10x y ++= B 、10x y +-= C 、10x y -+= D 、10x y --= 【解析】易知点C 为(1,0)-,而直线与0x y +=垂直,我们设待求的直线的方程为y x b =+,将点C 的坐标代入马上就能求出参数b 的值为1b =,故待求的直线的方程为10x y -+=,选C.(或由图形快速排除得正确答案.)4.(湖北卷理9)过点(11,2)A 作圆22241640x y x y ++--=的弦,其中弦长为整数的共有 A. 16条 B. 17条 C. 32条 D. 34条解:圆的标准方程是:222(1)(2)13x y ++-=,圆心(1,2)-,半径13r =过点(11,2)A 的最短的弦长为10,最长的弦长为26,(分别只有一条)还有长度为11,12,25 的各2条,所以共有弦长为整数的221532+⨯=条。

2008年普通高等学校招生全国统一考试理科数学(福建卷)

2008年普通高等学校招生全国统一考试理科数学(福建卷)

A.
B.
的图象,则m的值可以为() C.-
D.-
10. 在△ABC中,角A、B、C的对边分别为a、b、c,若a2+c2-b2= ac,则角B的值为
A.
B.
C. 或
D. 或
11. 双曲线 A.(1,3)
(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为()
,求a的取值范围.
22. (本小题满分14分)
已知函数f(x)=ln(1+x)-x1
(Ⅰ)求f(x)的单调区间;
(Ⅱ)记f(x)在区间
(n∈N*)上的最小值为bx令an=ln(1+n)-bx。
(ⅰ)如果对一切n,不等式
恒成立,求实数c的取值范围;
(ⅱ)求证:

B.
C.(3,+ )
D.
12. 如图所示为函数y=f(x),y=g(x)的导函数的图象,那么y=f(x),y=g(x)的图象可能是( )
A.
B.
C.
D.
二、填空题
13. 若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=__________。(用数字作答)
成绩合格与否均互不影响。 (Ⅰ)求他不需要补考就可获得证书的概率; (Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为 ,求 的数学期望E 。
21. 已知椭圆
的一个焦点是F(1,0),O为坐标原点.
(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程; (Ⅱ)设过点F的直线l交椭圆于A、B两点,若直线l绕点F任意转动,总有

【历年高考经典】2008年理科数学试题及答案-福建卷

【历年高考经典】2008年理科数学试题及答案-福建卷

绝密 ★ 启用前2008年普通高等学校招生全国统一考试(福建理科)数 学(理工农医类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若复数(a 2-3a +2)+(a-1)i 是纯虚数,则实数a 的值为 A.1B.2C.1或2D.-1(2)设集合A={x |1xx -<0},B={x |0<x <3},那么“m ∈A ”是“m ∈B ”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件(3)设{a n }是公比为正数的等比数列,若a 1=7,a 5=16,则数列{a n }前7项的和为A.63B.64C.127D.128(4)函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为 A.3B.0C.-1D.-2(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下4粒种子恰有2粒发芽的概率是A.16625B.96625C. 192625D.256625(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2, AA 1=1, 则BC 1与平面BB 1D 1D 所成角的正弦值为A.3B.552 C.5D.5(7)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(8)若实数x 、y 满足 x-y+1≤0,则yx 的取值范围是 x>0A. (0,1)B. (0,1)C. (1,+∞)D. [1, +∞](9)函数f (x )=cos x (x )(x ∈R )的图象按向量(m,0) 平移后,得到函数y = -f ′(x )的图象,则m 的值可以为A.2πB.πC.-πD.-2π(10)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c , 若(a 2+c 2-b 2)tan B ,则角B 的值为A. 6π B.3π C.6π或56πD.3π或23π(11)双曲线12222=-b y a x (a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞(12)已知函数y =f (x ), y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)若(x -2)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 1+a 2+a 3+a 4+a 5=__________.(用数字作答) x =1+cos θ(14)若直线3x+4y+m=0与圆 y =-2+sin θ (θ为参数)没有公共点,则实数m 的取值范围是 .(15)若三棱锥的三个侧面两两垂直,,则其外接球的表面积是 .(16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a +b 、a -b , ab 、a b∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集{},F a b Q =+∈也是数域.有下列命题:①整数集是数域;②若有理数集Q M ⊆,则数集M 必为数域;③数域必为无限集; ④存在无穷多个数域.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上) 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域. (18)(本小题满分12分)如图,在四棱锥P-ABCD 中,则面PAD ⊥底面ABCD ,侧棱P A =PD ,底面ABCD为直角梯形,其中BC ∥AD , AB ⊥AD , AD =2AB =2BC =2, O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD 求出AQQD的值;若不存在,请说明理由. (19)(本小题满分12分) 已知函数321()23f x x x =+-. (Ⅰ)设{a n }是正数组成的数列,前n 项和为S n ,其中a 1=3.若点211(,2)n n n a a a ++-(n ∈N*)在函数y =f ′(x )的图象上,求证:点(n , S n )也在y =f ′(x )的图象上;(Ⅱ)求函数f (x )在区间(a -1, a )内的极值. (20)(本小题满分12分)某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试。

2008年普通高等学校招生全国统一考试(福建卷)数学理

2008年普通高等学校招生全国统一考试(福建卷)数学理

2008年普通高等学校招生全国统一考试(福建卷)数 学(理工农医类) 第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为( )A .1B .2C .1或2D .-12.设集合A={x |1xx -<0},B={x |0<x <3},那么“m ∈A ”是“m ∈B ”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.设{a n }是公比为正数的等比数列,若a 1=7,a 5=16,则数列{a n }前7项的和为( )A .63B .64C .127D .128 4.函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为( )A .3B .0C .-1D .-25.某一批花生种子,如果每1粒发芽的概率为45,那么播下4粒种子恰有2粒发芽的概率是( ) A .16625 B .96625 C .192625 D .2566256.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2, AA 1=1, 则BC 1与平面BB 1D 1D 所成角的正弦值为( )A .B .552 C D7.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A .14B .24C .28D .488.若实数x 、y 满足{100x y x -+≤>,则y x的取值范围是( )A .(0,1)B .(0,1)C .(1,+∞)D .[1,+∞]9.函数f (x )=cos x (x )(x ∈R )的图象按向量(m ,0)平移后,得到函数y =-f ′(x )的图象,则m 的值可以为( )A .2πB .πC .-πD .-2π10.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B ,则角B 的值为( )A .6πB .3πC .6π或56πD .3π或23π11.双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A .(1,3)B .(]1,3C .(3,+∞)D .[)3,+∞12.已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是( )第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置。

2008年福建省数学(理科)高考试卷及答案

2008年福建省数学(理科)高考试卷及答案

硕士研究生入学考试的数学试题以考察数学基本概念、基本方法和基本原理为主,并在这个基础上加强对考生的运算能力、抽象概括能力、逻辑思维能力、空间想象力和综合所学知识解决实际问题能力的考察。

具体遵循下列四原则:1.科学性与公平性原则作为公共基础课,考研数学试题以基础性、生活类试题为主,尽量避免对于广大考生来说过于专业和抽象难懂的内容。

2.覆盖全面的原则考研数学试题的内容要求涵盖所有考纲要求考核的内容,尤其涵盖数(一)、数(二)、数(三)、数(四)相区别之处。

3.控制难易度的原则考研数学试题要求以中等偏上的题为主,考试及格率控制在30%-40%。

4.控制题量的原则:考研数学试题的题量控制在20--23道之间(一般6道填空题,8道选择题,9道解答题),保证考生基本能答完试题并有时间检查。

硕士研究生入学考试的数学试题从知识内容来说有覆盖面较大的特点,从题型与难度来说有以下特点:1.填空题(现在一份试卷中有6个填空题、共占24分)填空题实际上相当于一些简单的计算题,用于考察“三基”及数学性质,主要是为扩大试卷的覆盖面而设计的,一般以中等偏下难度的试题为主。

2.选择题(现在一份试卷中有8个选择题、共占32分)选择题大致可分为三类:计算性的,概念性的与推理性的。

主要是考查考生对数学概念、数学性质的理解,并能进行简单的推理、判定和比较。

3.证明题以数学一为例,整张试卷中,一般有两道证明题:高等数学与线性代数各一题。

高等数学证明题的范围大致有:极限存在性、不等式,零点的存在性、定积分的不等式、级数敛、散性的论证。

线性代数有矩阵可逆与否的讨论、向量组线性无关与相关的论证、线性方程组无解、唯一解、无穷多解的论证,矩阵可否对角化的论证,矩阵正定的论证,关于秩的大小并用它来论证有关问题等等,可以说线代的证明题的范围比较广。

至于概率统计证明题通常集中于随机变量的不相关和独立性,估计的无偏性等。

此类题难度一般中等偏上,无过难的题。

2008年普通高等学校招生全国统一考试数学试卷分类汇编8.1椭圆

2008年普通高等学校招生全国统一考试数学试卷分类汇编8.1椭圆

第八章 圆锥曲线方程一 椭圆【考点阐述】椭圆及其标准方程.椭圆的简单几何性质.了解椭圆的参数方程. 【考试要求】(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程. 【考题分类】(一)选择题(共6题)1.(湖北卷理10文10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22c a . 其中正确式子的序号是A. ①③B. ②③C. ①④D. ②④ 解:由焦点到顶点的距离可知②正确,由椭圆的离心率知③正确,故应选B.2.(江西卷理7文7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是A .(0,1)B .1(0,]2 C. D. 解:C .由题知,垂足的轨迹为以焦距为直径的圆,则2222212c b c b a c e <⇒<=-⇒< 又(0,1)e ∈,所以1(0,)2e ∈3.(上海卷文12)设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A .4B .5C .8D .10【答案】D【解析】 由椭圆的第一定义知12210.PF PF a +==4.(天津卷理5)设椭圆()1112222>=-+m m y m x 上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为 (A) 6 (B) 2 (C)21(D) 772解析:由椭圆第一定义知2a =,所以24m =,椭圆方程为22111432x y e d +=⇒==所以2d =,选B .5.(天津卷文7)设椭圆22221(00)x y m n m n+=>>,的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( ) A .2211216x y +=B .2211612x y +=C .2214864x y +=D .2216448x y +=解析:抛物线的焦点为(2,0),椭圆焦点在x 轴上,排除A 、C ,由12e =排除D ,选B . 6.(上海春卷14)已知椭圆221102x y m m +=--,长轴在y 轴上. 若焦距为4,则m 等于 ( ) (A )4. (B )5. (C )7. (D )8.解析:由题意得m-2>10-m 且10-m>0,于是6<m<10,再有(m-2)-(10-m)=22,得m=8。

2008年普通高等学校招生全国统一考试数学卷(福建.文)含详解

2008年普通高等学校招生全国统一考试数学卷(福建.文)含详解

2008年普通高等学校招生全国统一考试数学卷(福建.文)含详解数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.¢ (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 (3)设|a n |是等左数列,若a 2=3,a 1=13,则数列{a n }前8项的和为 A.128 B.80 C.64 D.56 (4)函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为 A.3 B.0 C.-1 D.-2 (5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 A.12125 B.16125 C.48125 D.96125(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为A.3 B.23 C.4 D.13(7)函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 A.-sin x B.sin x C.-cos x D.cos x(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b ac ,则角B 的值为 A.6π B.3π C.6π或56π D.3π或23π(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48(10)若实数x 、y 满足10,0,2,x y x x -+≤⎧⎪⎨⎪≤⎩则y x 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) (11)如果函数y=f (x )的图象如右图,那么 导函数y=f (x )的图象可能是(12)双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PE 2|,则双曲线离心率的取值范围为A.(1,3)B.(1,3)C.(3,+∞)D. [3,+∞]第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. (13)(x +1x)9展开式中x 2的系数是 .(用数字作答) (14)若直线3x+4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是 . (15,则其外接球的表面积是 . (16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a+b 、a-b 、ab 、ab∈P (除数b ≠0)则称P 是一个数域,例如有理数集Q 是数域,有下列命题: ①数域必含有0,1两个数; ②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域;④数域必为无限集.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知向量(sin ,cos ),(1,2)m A A n ==-,且0.m n =(Ⅰ)求tan A 的值;(Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域. (18)(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为111,,,543且他们是否破译出密码互不影响. (Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由. (19)(本小题满分12分)如图,在四棱锥P —ABCD 中,侧面PAD ⊥底面ABCD ,侧棱PA =PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC=2,O 为AD 中点. (Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的余弦值; (Ⅲ)求点A 到平面PCD 的距离. (20)(本小题满分12分)已知{a n }是正数组成的数列,a 1=11n a +)(n ∈N *)在函数y =x 2+1的图象上. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2n a,求证:b n ·b n +2<b 2n +1. (21)(本小题满分12分)已知函数32()2f x x mx nx =++-的图象过点(-1,-6),且函数()()6g x f x x '=+的图象关于y 轴对称. (Ⅰ)求m 、n 的值及函数y =f (x )的单调区间;(Ⅱ)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值. (22)(本小题满分14分)如图,椭圆2222:1x y C a b+=(a >b >0)的一个焦点为F (1,0),且过点(2,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)若AB 为垂直于x 轴的动弦,直线l :x =4与x 轴交于点N ,直线AF 与BN 交于点M . (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求△AMN 面积的最大值.2008年普通高等学校招生全国统一考试(福建卷)数 学(文史类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)若集合A ={x |x 2-x <0},B={x |0<x <3},则A ∩B 等于 A.{x |0<x <1} B.{x |0<x <3} C.{x |1<x <3} D.∅ 解:A ={x |0<x<1}∴A ∩B={x |0<x <1} (2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解:若00x y x ay +=-=与互相垂直,则0x ay -=的斜率必定为1,1a =,反之显然 (3):设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项的和为 A.128 B.80 C.64 D.56 解:因为{}n a 是等差数列,278313886422a a ++=⨯=⨯=∴S(4)函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为 A.3 B.0 C.-1 D.-2解:3()1sin f x x x -=+为奇函数,又()2f a =∴()11f a -=故()11f a --=-即()0f a -=.(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 A.12125B.16125 C.48125 D.96125解:独立重复实验服从二项分布4(3,)5B ,21234148(2)55125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭(6)如图,在长方体ABCD -A 1B 1C 1D 1中, AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为A.3B.23C.4D.13解:连11A C ,则11AC A ∠为AC 1与平面A 1B 1C 1D 1所成角.112AB BC AC AC ==⇒==,又11AA =A1111113sin 3AA AC AC A AC =⇒∠==∴ (7)函数cos ()y x x R =∈的图象向左平移2π个单位后,得到函数()y g x =的图象,则()g x 的解析式为 A.sin x - B. sin x C.cos x - D.cos x解:()cos()sin 2y g x x x π==+=-(8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若222a c b +-=,则角B 的值为 A.6π B.3πC.6π或56πD.3π或23π解:由222a +c -b得222(a +c -b )= 2ac即cos B 6B π⇒=(9)某班级要从4名男士、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48 解:6人中选4人的方案4615C =种,没有女生的方案只有一种,所以满足要求的方案总数有14种(10)若实数x 、y 满足10,0,2,x y x y -+≤⎧⎪>⎨⎪≤⎩则y x 的取值范围是A.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞) 解:由题设1y x ≥+,所以11y x x ≥+,又01211x y <≤-≤-=,因此2y x≥ 又yx可看做可行域中的点与原点构成直线的斜率,画出可行域也可得出答案。

2008年普通高等学校招生全国统一考试数学(福建卷·理科)(附答案,完全word版)

2008年普通高等学校招生全国统一考试数学(福建卷·理科)(附答案,完全word版)

2008年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为( ) A .1B .2C .1或2D .1-2.设集合01x A xx ⎧⎫=<⎨⎬-⎩⎭,{}03B x x =<<,那么“m ∈A ”是“m ∈B ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.设{a n }是公比为正数的等比数列,若11a =,516a =,则数列{a n }前7项的和为( ) A .63B .64C .127D .1284.函数3()sin 1()f x x x x =++∈R ,若f (a )=2,则()f a -的值为( ) A .3B .0C .1-D .2-5.某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是( ) A .16625B .96625C . 192625D . 2566256.如图,在长方体1111ABCD A BC D -中,AB =BC =2,AA 1=1,则BC 1与 平面BB 1D 1D 所成角的正弦值为( ) A.3B .5C .5D .57.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( ) A .14 B .24 C .28 D .48 8.若实数x 、y 满足100x y x -+⎧⎨>⎩≤,,则yx 的取值范围是( ) A .(0,1)B .(]01,C .(1,+∞)D .[)1+∞,9.函数()cos ()f x x x =∈R 的图象按向量(m ,0) 平移后,得到函数()y f x '=-的图象,则m 的值可以为( )ABC DA 1D 1C 1B 1A .2π B .πC .-πD .2π-10.在△ABC 中,角A B C ,,的对边分别为a b c ,,,若222()tan a c b B +-=,则角B 的值为( ) A .6π B .3π C .6π或56πD .3π或23π11.双曲线22221x y a b-=(00)a b >>,的两个焦点为F 1,F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( ) A .(1,3)B .(]13,C .(3,+∞)D .[)3+∞,12.已知函数y =f (x ),y =g (x )的导函数的图象如图,那么y =f (x ),y =g (x )的图象可能是( )第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置. 13.若55432543210(2)x a x a x a x a x a x a -=+++++,则a 1+a 2+a 3+a 4+a 5=__________.(用数字作答)14.若直线340x y m ++=与圆1cos 2sin x y θθ=+⎧⎨=-+⎩(θ为参数)没有公共点,则实数m 的取值范围是 .15,则其外接球的表面积是 . 16.设P 是一个数集,且至少含有两个数,若对任意a b P ∈,,都有a b +,a b -,ab ,a b∈P (除数0b ≠),则称P 是一个数域.例如有理数集Q是数域;数集{}F a b =+∈Q ,也是数域.有下列命题:①整数集是数域;②若有理数集M ⊆Q ,则数集M 必为数域;③数域必为无限集;④存在无穷多个数域.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上))xA .B .C .D .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知向量(sin cos )A A =,m,1)=-n ,1=m n ,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x =+∈R 的值域.18.(本小题满分12分)如图,在四棱锥P-ABCD 中,侧面PAD ⊥底面ABCD ,侧棱PA =PDABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC =2,O 为AD 中点. (Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PB 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD若存在,求出AQQD的值;若不存在,请说明理由.19.(本小题满分12分) 已知函数321()23f x x x =+-. (Ⅰ)设{}n a 是正数组成的数列,前n 项和为n S ,其中13a =.若点211(2)n n n a a a ++-,(n ∈*N )在函数()y f x '=的图象上,求证:点()n n S ,也在()y f x '=的图象上;(Ⅱ)求函数f (x )在区间(1)a a -,内的极值.20.(本小题满分12分) 某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A 每次考试成绩合格的概率均为23,科目B 每次考试成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响.(Ⅰ)求他不需要补考就可获得证书的概率;(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望E ξ.A BCO DP21.(本小题满分12分)如图,椭圆22221(0)x y a b a b+=>>的一个焦点是F (1,0),O 为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F 的直线l 交椭圆于A ,B 两点.若直线l 绕点F 任意转动,恒有222OA OB AB +<,求a 的取值范围.22.(本小题满分14分) 已知函数()ln(1)f x x x =+-. (Ⅰ)求f (x )的单调区间;(Ⅱ)记f (x )在区间[]0π,(n ∈*N )上的最小值为n b ,令ln(1)n n a n b =+-.(Ⅲ)如果对一切nc 的取值范围; (Ⅳ)求证:13132112242421n na a a a a a a a a a a a -+++<……….2008年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)参考答案一、选择题:本大题考查基本概念和基本运算.每小题5分,满分60分. 1.B 2.A 3.C 4.B 5.B 6.D 7.A 8.C 9.A 10.D 11.B 12.D二、填空题:本大题考查基础知识和基本运算.每小题4分,满分16分. 13.3114.(0)(10)-+∞,,∞ 15.9π16.③④三、本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.本小题主要考查平面向量的数量积计算、三角函数的基本公式、三角恒等变换、一元二次函数的最值等基本知识,考查运算能力.满分12分. 解:(Ⅰ)由题意得3sin cos 1m n A A =-=,12sin 1sin 662A A ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,.由A 为锐角得66A ππ-=,3A π=. (Ⅱ)由(Ⅰ)知1cos 2A =,所以2213()cos22sin 12sin 2sin 2sin 22f x x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭因为x ∈R ,所以[]sin 11x ∈-,,因此,当1sin 2x =时,f (x )有最大值32. 当sin 1x =-时,()f x 有最小值3-,所以所求函数f (x )的值域是332⎡⎤-⎢⎥⎣⎦,.18.本小题主要考查直线与平面的位置关系、异面直线所成角、点到平面的距离等基本知识,考查空间想象能力、逻辑思维能力和运算能力.满分12分. 解法一:(Ⅰ)证明:在△PAD 中PA =PD ,O 为AD 中点,所以PO ⊥AD ,又侧面PAD ⊥底面ABCD ,平面PAD 平面ABCD =AD ,PO ⊂平面PAD , 所以PO ⊥平面ABCD .(Ⅱ)连结BO ,在直角梯形ABCD 中,BC ∥AD ,AD =2AB =2BC ,有OD ∥BC 且OD =BC ,所以四边形OBCD 是平行四边形, 所以OB ∥DC .由(Ⅰ)知,PO ⊥OB ,∠PBO 为锐角, 所以∠PBO 是异面直线PB 与CD 所成的角. 因为AD =2AB =2BC =2,在Rt △AOB 中,AB =1,AO =1, 所以OBA B CODPQ在Rt △POA 中,因为APAO =1,所以OP =1,在Rt △PBO 中,tan ∠PBO=PG PBO BO ==∠=. 所以异面直线PB 与CD所成的角是arctan2. (Ⅲ)假设存在点Q ,使得它到平面PCD的距离为2. 设QD =x ,则12DQC S x =△,由(Ⅱ)得CD =OB在Rt △POC 中,PC = 所以PC =CD =DP ,2(2)42PCD S ==△, 由P DQC Q PCD VV --=,得111132322x ⨯⨯=⨯,解得322x =<, 所以存在点Q 满足题意,此时13AQ QD =. 解法二:(Ⅰ)同解法一.(Ⅱ)以O 为坐标原点,OC OD OP ,,的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O xyz -,依题意,易得(010)A -,,,(110)B -,,,(100)C ,,,(010)D ,,,(001)P ,,, 所以(110)(111)CD PB =-=--,,,,,.cos 32PB CD PB CD PB CD<>===,, 所以异面直线PB 与CD 所成的角是arccos3(Ⅲ)假设存在点Q ,使得它到平面PCD 的距离为2, 由(Ⅱ)知(101)(110)CP CD =-=-,,,,,.设平面PCD 的法向量为n =(x 0,y 0,z 0).则00n CP n CD ⎧=⎪⎨=⎪⎩,,所以000000x z x y -+=⎧⎨-+=⎩,,即000x y z ==, 取x 0=1,得平面PCD 的一个法向量为n =(1,1,1). 设(00)(11)(10)Q y yCQ y -=-,, ≤≤,,, ,由32CQ n n=,得2=, 解得12y =-或y =52(舍去), 此时1322AQ QD ==,,所以存在点Q 满足题意,此时13AQ QD =. 19.本小题主要考查函数极值、等差数列等基本知识,考查分类与整合、转化与化归等数学思想方法,考查分析问题和解决问题的能力.满分12分. (Ⅰ)证明:因为321()23f x x x =+-,所以2()2f x x x '=+, 由点211(2)()n n n a a a n ++-∈*N ,在函数()y f x '=的图象上, 得221122n n n n a a a a ++-=+,即11()(2)0n n n n a a a a +++--=,又*0()n a n >∈N ,所以12n n a a +-=,又因为13a =, 所以数列{}n a 是以3为首项,公差为2的等差数列. 所以2(1)32=22n n n S n n n -=+⨯+,又因为2()2f n n n '=+,所以()n S f n '=, 故点()n n S ,也在函数()y f x '=的图象上.(Ⅱ)解:2()2(2)f x x x x x '=+=+,由()0f x '=,得02x x ==-或.当x 变化时,()f x ',()f x 的变化情况如下表:注意到(1)12a a --=<,从而①当12a a -<-<,即21a -<<-时,()f x 的极大值为2(2)3f -=-,此时()f x 无极小值; ②当10a a -<<,即01a <<时,()f x 的极小值为(0)2f =-,此时()f x 无极大值; ③当2a -≤或10a -≤≤或1a ≥时,()f x 既无极大值又无极小值.20.本小题主要考查概率的基本知识与分类思想,考查运用数学知识分析问题,解决问题的能力.满分12分.解:设“科目A 第一次考试合格”为事件1A ,“科目A 补考合格”为事件A 2;“科目B 第一次考试合格”为事件1B ,“科目B 补考合格”为事件2B .(Ⅰ)不需要补考就获得证书的事件为A 1·B 1,注意到A 1与B 1相互独立, 则1111211()()()323P A B P A P B =⨯=⨯=. 答:该考生不需要补考就获得证书的概率为13. (Ⅱ)由已知得,ξ=2,3,4,注意到各事件之间的独立性与互斥性,可得1112(2)()()P P A B P A A ξ==+2111114.3233399=⨯+⨯=+= 112112122(3)()()()P P A B B P A B B P A A B ξ==++21121112111143223223326699=⨯⨯+⨯⨯+⨯⨯=++=, 12221212(4)()()P P A A B B P A A B B ξ==+121112111113322332218189=⨯⨯⨯+⨯⨯⨯=+=, 故44182349993E ξ=⨯+⨯+⨯=.答:该考生参加考试次数的数学期望为83.21.本小题主要考查直线与椭圆的位置关系、不等式的解法等基本知识,考查分类与整合思想,考查运算能力和综合解题能力.满分12分.解法一:(Ⅰ)设M ,N 为短轴的两个三等分点, 因为△MNF 为正三角形,所以OF =,即1=223b,解得b 2214a b =+=,因此,椭圆方程为22143x y +=. (Ⅱ)设1122()()A x y B x y ,,,. (ⅰ)当直线 AB 与x 轴重合时,22222224(1)OA OB a AB a a +==>,,因此,恒有222OA OB AB +<. (ⅱ)当直线AB 不与x 轴重合时,设直线AB 的方程为:1x my =+,代入22221x y a b+=,整理得22222222()20a b m y b my b a b +++-=,所以222212122222222b m b a b y y y y a b m a b m-+=-=++,. 因为恒有222OA OB AB +<,所以∠AOB 恒为钝角. 即11221212()()0OA OB x y x y x x y y ==+<,,恒成立.2121212121212(1)(1)(1)()1x x y y my my y y m y y m y y +=+++=++++222222222222(1)()21m b a b b m a b m a b m +-=-+++22222222220m a b b a b a a b m -+-+=<+.又a 2+b 2m 2>0,所以22222220m a b b a b a -+-+<对m ∈R 恒成立, 即2222222a b m a a b b >-+对m ∈R 恒成立.当m ∈R 时,222a b m 最小值为0,所以22220a a b b -+<.2222a a b b <-,2224(1)a a b b <-=,因为a >0,b >0,所以a <b 2,即210a a -->,解得a >a <(舍去),即a >,综合(i )(ii ),a 的取值范围为⎫+⎪⎪⎝⎭∞.解法二:(Ⅰ)同解法一,(Ⅱ)解:(i )当直线l 垂直于x 轴时,x =1代入22222221(1)1A y b a y a b a-+==,. 因为恒有|OA |2+|OB |2<|AB |2,222(1)4A A y y+<,21Ay >,即21a a->1,解得a >a < (舍去),即a > (ii )当直线l 不垂直于x 轴时,设11()A x y ,,22()B x y ,.设直线AB 的方程为y =k (x -1)代入22221x y a b+=,得(b 2+a 2k 2)x 2-2a 2k 2x + a 2 k 2-a 2 b 2=0,故22222212122222222a k a k a b x x x x b a k b a k -+==++,因为恒有|OA |2+|OB |2<|AB |2,所以x 21+y 21+ x 22+ y 22<( x 2-x 1)2+(y 2-y 1)2, 得x 1x 2+ y 1y 2<0恒成立.x 1x 2+ y 1y 2= x 1x 2+k 2(x 1-1) (x 2-1)=(1+k 2) x 1x 2-k 2(x 1+x 2)+ k 222222222222222222222222222()(1)a k a b a k a a b b k a b k k k b a k b a k b a k --+-=+-+=+++.由题意得(a 2-a 2 b 2+b 2)k 2-a 2 b 2<0对k ∈R 恒成立.①当a 2-a 2 b 2+b 2>0时,不合题意;②当a 2-a 2 b 2+b 2=0时,a ③当a 2-a 2 b 2+b 2<0时,a 2-a 2(a 2-1)+ (a 2-1)<0,a 4-3a 2 +1>0,解得a 2>a 2>a >a .综合(i )(ii ),a 的取值范围为⎫+⎪⎪⎝⎭∞.22.本小题主要考查函数的单调性、最值、不等式、数列等基本知识,考查运用导数研究函数性质的方法,考查分析问题和解决问题的能力,满分14分. 解法一:(Ⅰ)因为()ln(1)f x x x =+-,所以函数定义域为(1-,+∞),且1()111x f x x x-'=-=++. 由()0f x '>得10x -<<,()f x 的单调递增区间为(1-,0); 由()0f x '<得x >0,()f x 的单调递增区间为(0,+∞).(Ⅱ)因为()f x 在[0,n ]上是减函数,所以()ln(1)n b f n n n ==+-, 则ln(1)ln(1)ln(1)n n a n b n n n n =+-=+-++=.(ⅰ)2n ==++1>=,又lim lim 1x x→==,因此c <1,即实数c 的取值范围是(-∞,1). < 因为2135(21)246(2)n n ⎡⎤-⎢⎥⎣⎦……3222133557(21)(21)11246(2)2121n n n n n -+=<++…,所以135(21)246(2)n n -<……)n ∈*N ,则113135(21)224246(2)n n -+++………1<….13132112242421()n na a a a a a n a a a a a a -+++<∈*N ……….解法二:(Ⅰ)同解法一.(Ⅱ)因为f (x )在[]0n ,上是减函数,所以()ln(1)n b f n n n ==+-, 则ln(1)ln(1)ln(1)n n a n b n n n n =+-=+-++=.(ⅰ)因为<n ∈*N<对n ∈*N 恒成立.则2c n <+n ∈*N 恒成立.设()2g n n =+,n ∈*N ,则c <g (n )对n ∈*N 恒成立.考虑[)()21g x x x =+∈+∞,.因为12211()1(2)(22)11021x g x x x x x -+=-++=<-=+′,所以()g x 在[)1+∞,内是减函数;则当n ∈*N 时,g (n )随n 的增大而减小,又因为42lim ()lim(2x x x x g n n →∞→∞+=+===1.所以对一切()1n g n ∈>*N ,.因此1c ≤,即实数c 的取值范围是(]1-∞,.<下面用数学归纳法证明不等式135(21))246(2)n n n -<∈*N …….①当n =1时,左边=12<右边.不等式成立. ②假设当n=k时,不等式成立.即135(21)246(2)k k -<……当n=k +1时,13521(21)212462(22)222222k k k k k k k k ∙∙∙∙∙++<=++++=…(-)…()=<=,即1n k =+时,不等式成立综合①,②得,不等式135(21))246(2)n n n ∙∙∙∙∙∙∙∙-<∈*N ……成立.所以135(21)246(2)n n ∙∙∙∙∙∙∙∙-<……113135(21)224246(2)n n ∙∙∙∙∙∙∙∙∙∙-+++………1<…相信能就一定能即13132112242421()n na a a a a a n a a a a a a -+++<∈*N ……….8、这个世界并不是掌握在那些嘲笑者的手中,而恰恰掌握在能够经受得住嘲笑与批忍不断往前走的人手中。

2008高考福建数学理科试卷含详细解答

2008高考福建数学理科试卷含详细解答

2008年普通高等学校招生全国统一考试(福建卷)数 学(理工类)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为A.1B.2C.1或2D.-1解:由2320a a -+=得12a =或,且101a a -≠≠得2a ∴=(纯虚数一定要使虚部不为0) (2)设集合{|0}1xA x x =<-,{|03}B x x =<<,那么“m ∈A ”是“m ∈B ”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件解:由01xx <-得01x <<,可知“m A ∈”是“m B ∈”的充分而不必要条件 (3)设{a n }是公比为正数的等比数列,若151,16a a ==,则数列{}n a 前7项的和为A.63B.64C.127D.128解:由151,16a a ==及{a n }是公比为正数得公比2q =,所以771212712S -==- (4)函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为A.3B.0C.-1D.-2解:3()1sin f x x x -=+为奇函数,又()2f a =∴()11f a -=故()11f a --=-即()0f a -=.(5)某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是 A.16625B.96625C. 192625D. 256625解:独立重复实验4(4,)5B ,22244196(2)55625P k C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭A(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为B.C.D.解:连11A C 与11B D 交与O 点,再连BO,则1OBC ∠为BC 1与平面BB 1D 1D所成角.111OC COS OBC BC ∠=,1OC =,1BC =1COS OBC ∴∠== (7)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48解:6人中选4人的方案4615C =种,没有女生的方案只有一种,所以满足要求的方案总数有14种 (8)若实数x 、y 满足100x y x -+≤⎧⎨>⎩ 则yx 的取值范围是A.(0,1)B.(]0,1C.(1,+∞)D.[)1,+∞解:由已知1y x ≥+,111y x x x x +==+,又0x >,故yx的取值范围是(1,)+∞(9)函数()cos ()f x x x R =∈的图象按向量(,0)m 平移后,得到函数'()y f x =-的图象, 则m 的值可以为A.2πB.πC.-πD.- 2π解:()sin y f x x '=-=,而()cos ()f x x x R =∈的图象按向量(,0)m 平移后得到cos()y x m =-,所以cos()sin x m x -=,故m可以为2π. (10)在△ABC 中,角ABC 的对边分别为a 、b 、c ,若222(a +c -b ,则角B 的值为A.6π B.3π C.6π或56πD.3π或23π解: 由222(a +c -b 3ac 得222(a +c -b )3cos = 22sin Bac B即3cos cos = 2sin B B B3sin B ∴,又在△中所以B 为3π或23π(11)双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞解:如图,设2PF m =,12(0)F PF θθπ∠=<≤,当P 在右顶点处θπ=,222(2)4cos 254cos 2m m m c e a θθ+-===-∵1cos 1θ-<≤,∴(]1,3e ∈另外也可用三角形的两边和大于第三边,及两边差小于第三边,但要注意前者可以取到等号成立,因为可以三点一线. 也可用焦半径公式确定a 与c 的关系。

2008年普通高等学校招生全国统一考试数学试卷分类汇编3.4 数列综合应用

2008年普通高等学校招生全国统一考试数学试卷分类汇编3.4 数列综合应用

第三章 数列四 数列综合应用【考点阐述】 数列综合应用 【考试要求】(4)运用等差数列、等比数列及求和知识解决数列综合问题。

【考题分类】(一)解答题(共35题)1.(安徽卷理21)设数列{}n a 满足3*010,1,,n n a a ca c c N c +==+-∈其中为实数(Ⅰ)证明:[0,1]n a ∈对任意*n N ∈成立的充分必要条件是[0,1]c ∈;(Ⅱ)设103c <<,证明:1*1(3),n n a c n N -≥-∈; (Ⅲ)设103c <<,证明:222*1221,13n a a a n n N c++>+-∈- 解 (1) 必要性 :120,1a a c ==-∵∴ ,又 2[0,1],011a c ∈≤-≤∵∴ ,即[0,1]c ∈充分性 :设[0,1]c ∈,对*n N ∈用数学归纳法证明[0,1]n a ∈ 当1n =时,10[0,1]a =∈.假设[0,1](1)k a k ∈≥则31111k k a ca c c c +=+-≤+-=,且31110k k a ca c c +=+-≥-=≥1[0,1]k a +∈∴,由数学归纳法知[0,1]n a ∈对所有*n N ∈成立(2) 设 103c <<,当1n =时,10a =,结论成立 当2n ≥ 时,3211111,1(1)(1)n n n n n n a ca c a c a a a ----=+--=-++∵∴103C <<∵,由(1)知1[0,1]n a -∈,所以 21113n n a a --++≤ 且 110n a --≥ 113(1)n n a c a --≤-∴21112113(1)(3)(1)(3)(1)(3)n n n n n a c a c a c a c -----≤-≤-≤≤-= ∴1*1(3)()n n a c n N -≥-∈∴(3) 设 103c <<,当1n =时,2120213a c=>--,结论成立 当2n ≥时,由(2)知11(3)0n n a c -≥->21212(1)1(1(3))12(3)(3)12(3)n n n n n a c c c c ----≥-=-+>-∴ 222222112212[3(3)(3)]n n n a a a a a n c c c -+++=++>--+++ ∴2(1(3))2111313n c n n c c-=+->+---2.(安徽卷文21)设数列{}n a 满足*01,1,,n n a a a ca c c N +==+-∈其中,a c 为实数,且0c ≠(Ⅰ)求数列{}n a 的通项公式 (Ⅱ)设11,22a c ==,*(1),n n b n a n N =-∈,求数列{}n b 的前n 项和n S ; (Ⅲ)若01n a <<对任意*n N ∈成立,证明01c <≤ 解 (1) 方法一: 11(1)n n a c a +-=-∵∴当1a ≠时,{}1n a -是首项为1a -,公比为c 的等比数列。

2008年普通高等学校招生全国统一考试数学试卷分类汇编1.2简易逻辑

2008年普通高等学校招生全国统一考试数学试卷分类汇编1.2简易逻辑

第一章 集合与简易逻辑二 简易逻辑【考点阐述】逻辑联结词.四种命题.充分条件和必要条件.【考试要求】(2)理解逻辑联结词“或”、“且”、“非”的含义,理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.【考题分类】(一)选择题(共21题)1、(安徽卷理7文4)0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件解:当0422>-=∆a ,得a<1时方程有根。

a<0时,0121<=ax x ,方程有负根,又a=1时,方程根为1-=x ,所以选B 2、(北京卷理3) “函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【标准答案】: B【试题分析】: 函数()()f x x ∈R 存在反函数,至少还有可能函数()f x 在R 上为减函数,充分条件不成立;而必有条件显然成立。

【高考考点】: 充要条件,反函数,映射关系,函数单调性。

【易错提醒】: 单调性与一一对应之间的关系不清楚【备考提示】: 平时注意数形结合训练。

3、(北京卷文3) “双曲线的方程为221916x y -=”是“双曲线的准线方程为95x =±”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】“双曲线的方程为221916x y -=”⇒是“双曲线的准线方程为95x =±” “95x =±” ⇒ “221916x y -=”,如反例: 2211882x y -=. 4、(福建卷理2)设集合A={x |1x x -<0},B={x |0<x <3=,那么“m ∈A ”是“m ∈B ”的 A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 解:由01x x <-得01x <<,可知“m A ∈”是“m B ∈”的充分而不必要条件 5、(福建卷文2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 解:若00x y x ay +=-=与互相垂直,则0x ay -=的斜率必定为1,1a =,反之显然6、(广东卷理6)已知命题:p 所有有理数都是实数,命题:q 正数的对数都是负数,则下列命题中为真命题的是( )A .()p q ⌝∨B .p q ∧C .()()p q ⌝∧⌝D .()()p q ⌝∨⌝【解析】不难判断命题p 为真命题,命题q 为假命题,从而上述叙述中只有()()p q ⌝∨⌝ 为真命题7、(广东卷文8)命题“若函数()log (0,1)a f x x a a =>≠在其定义域内是减函数,则log 20a <”的逆否命题是( )A 、若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数B 、若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内不是减函数C 、若log 20a ≥,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数D 、若log 20a <,则函数()log (0,1)a f x x a a =>≠在其定义域内是减函数【解析】考查逆否命题,易得答案A.8、(湖北卷理2)若非空集合,,A B C 满足A B C = ,且B 不是A 的子集,则A. “x C ∈”是“x A ∈”的充分条件但不是必要条件B. “x C ∈”是“x A ∈”的必要条件但不是充分条件C. “x C ∈”是“x A ∈”的充要条件D. “x C ∈”既不是“x A ∈”的充分条件也不是“x A ∈”必要条件解:x A x C ∈⇒∈,但是x C x A ∈⇒∈不能, 所以B 正确。

2008年普通高等学校招生全国统一考试(福建卷)文科数学试题及解答

2008年普通高等学校招生全国统一考试(福建卷)文科数学试题及解答

2008年普通高等学校招生全国统一考试(福建文)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|0A x x x =-<,{}|03B x x =<<,则A B I 等于( )A.{}|01x x << B.{}|03x x << C.{}|13x x << D.∅ 2.a=1”是“直线0x y +=和直线0x ay -=互相垂直”的( )条件A.充分不必要 B.必要不充分 C.冲要 D.既不充分也不必要3.设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项和为( )A.128 B.80C.64 D.56 4.函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为( )A.3 B.0 C.-1 D.-25.某一批花生种子,如果每一粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是( ) A.12125 B.16125 C.48125 D.961256.如图,在长方体1111ABCD A B C D -中,2AB BC ==分别为11AA =,则1AC 与平面1111A B C D 所成的角的正弦值等于( )A.223 B.23 C.24 D.137.函数cos ()y x x R =∈的图像向左平移2π个单位后,得到()y g x =的图像,则()g x 的解析式为( )A.sin x - B.sin x C.cos x -D.cos x 8.在中,角A,B,C 的对应边分别为a,b,c,若2223a c b ac +-=,则角B 的值为( )A.6π B.3π C.6π或56π D.3π或23π 9.某班级要从4名男生和2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方法有( )A.14 B.24 C.28 D.4810.若实数x,y满足2x yxy-+≤>≤,则yx的取值范围是()A.(0,2)B.(0,2]C.(2,)+∞D.[2,)+∞11.如果函数()y f x=的图像如右图,那么导函数,()y f x=的图像可能是()12.双曲线22221(0,0)x ya ba b+=>>的两个焦点为12,F F,若P为其上的一点,且12||2||PF PF=,则双曲线离心率的取值范围为()A.(1,3)B.(1,3]C.(3,)+∞D.[3,)+∞第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13. 91()xx+展开式中3x的系数是(用数字作答)14.若直线340x y m++=与圆222440x y x y+-++=没有公共点,则实数m的取值范围是15.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是16.设P是一个数集,且至少含有两个数,若对任意,a b P∈,都有,,,aa b a b ab Pb+-∈(除数0b≠),则称P是一个数域。

2008年福建省数学(理科)高考试卷及答案

2008年福建省数学(理科)高考试卷及答案

2008年普通高等学校招生全国统一考试(福建卷)数学(理科)考试说明:本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。

(1)答题前,考生先将自己的姓名、准考证号码填写清楚。

(2)请按照题号顺序在各题目的答题区内作答,在草稿纸和试卷上答题视为无效。

(3)保持卡面清洁,不得折叠、不要弄皱,不准使用涂改液和刮纸刀等用具。

第I 卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设复数121,2z i z bi =+=+,若12z z 为纯虚数,则实数b = A .2- B .2 C .1- D . 12. 设,a b 都是非零向量,若函数()()()f x x x =+- a b a b (x ∈R )是偶函数,则必有 A .⊥a bB .a ∥bC .||||=a bD .||||≠a b3. 3a =是直线230ax y a ++=和直线3(1)7x a y a +-=-平行的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 4.设函数()f x ={}{}(),()A x y f x B y y f x ====则右图中阴影部分表示的集合为A .[0,3]B .(0,3)C .(5,0][3,4)-D .[5,0)(3,4]- 5. 把函数)6sin(π+=x y 图象上各点的横坐标缩短到原来的21倍(纵坐标不变),再将图象向右平移3π个 单位,那么所得图象的一条对称轴方程为 A .2π-=x B .4π-=x C .8π=x D .4π=x6. 已知,a b 为两条不同的直线,,αβ为两个不同的平面,且a α⊥,b β⊥,则下列命题中的假命题是A .若a ∥b ,则α∥βB .若αβ⊥,则a b ⊥C .若,a b 相交,则,αβ相交D .若,αβ相交,则,a b 相交7.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中{},1,2,3,4,5,6a b ∈,若1a b -≤,就称甲乙“心有灵犀”. 现任意找两人玩这个游戏,则他们“心有灵犀”的概率为A .19B .29 C .718 D .498.已知函数2()cos()f n n n π=,且()(1)n a f n f n =++,则123100a a a a ++++=A .0B .100-C .100D .10200第Ⅱ卷 非选择题 (共110分)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9—12题)9.某校有高级教师26人,中级教师104人,其他教师若干人.为了了解该校教师的工资收入情况,若按分层抽样从该校的所有教师中抽取56人进行调查,已知从其他教师中共抽取了16人,则该校共有教师 人.10.圆柱形容器的内壁底半径是10cm ,有一个实心铁球浸没于容器的水中,若取出这个铁球,测得容器的水面下降了53cm ,则这个铁球的表面积为 2cm .11.右图所示的算法流程图中,若3a =,则输出的T 值为 ;若输出的120T =,则a 的值为 *()a ∈N .12.已知()f x 是R 上的奇函数,2)1(=f ,且对任意x ∈R 都有(6)()(3)f x f x f +=+成立,则(3)f = ; =)2009(f .(二)选做题(13—15题,考生只能从中选做两题)13.(坐标系与参数方程选做题)(坐标系与参数方程选做题)若直线340x y m ++=与曲线 ⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)没有公共点,则实数m 的取值范围是____________.14.(不等式选讲选做题)设关于x 的不等式1x x a +-<(a ∈R ). 若2a =,则不等式的解集为 ;若不等式的解集为∅,则a 的取值范围是 . 15.(几何证明选讲选做题)如图,圆M 与圆N 交于A B 、两点,以A 为切点作两圆的切线分别交圆M 和圆N 于C D 、两点, 延长DB 交圆M 于点E ,延长CB 交圆N 于点F ,已知5BC =,10BD =,则AB =;CFDE= .三、解答题:本大题共6小题,共80分. 解答应写出详细文字说明,证明过程或演算步骤. 16.(本小题满分12分)设向量(sin ,cos )x x =a,(sin )x x =b ,x ∈R ,函数()(2)f x =+a ab . (1) 求函数()f x 的最大值与单调递增区间;(2) 求使不等式()2f x '≥成立的x 的取值集合.17.(本小题满分12分)某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版(1) 从这50名教师中随机选出2名,求2人所使用版本相同的概率;(2) 若随机选出2名使用人教版的教师发言,设使用人教A 版的教师人数为ξ,求随机 变量ξ的分布列和数学期望.18.(本小题满分14分)四棱锥P ABCD -中,PA ⊥底面ABCD ,且12PA AB AD CD ===,//AB CD , 90ADC ∠=︒.(1) 在侧棱PC 上是否存在一点Q ,使//BQ 平面PAD ?证明你的结论;(2) 求证:平面PBC ⊥平面PCD ;(3) 求平面PAD 与平面PBC 所成锐二面角的余弦值.19.(本小题满分14分)已知函数()log k f x x =(k 为常数,0k >且1k ≠),且数列{}()n f a 是首项为4,公差为2的等差 数列.(1) 求证:数列{}n a 是等比数列; (2) 若()n n n b a f a =⋅,当k ={}n b 的前n 项和n S ;(3) 若lg n n n c a a =,问是否存在实数k ,使得{}n c 中的每一项恒小于它后面的项?若存在,求出k 的范围;若不存在,说明理由.20.(本小题满分14分)如图,设F 是椭圆22221,(0)x y a b a b+=>>的左焦点,直线l 为对应的准线,直线l 与x轴交于P 点,A PB CDQMN 为椭圆的长轴,已知8MN =,且||2||PM MF =.(1) 求椭圆的标准方程;(2) 求证:对于任意的割线PAB ,恒有AFM BFN ∠=∠; (3) 求三角形△ABF 面积的最大值.21.(本小题满分14分)设函数()ln f x x x =(0)x >.(1) 求函数()f x 的最小值;(2) 设2()()F x ax f x '=+()a ∈R ,讨论函数()F x 的单调性;(3) 斜率为k 的直线与曲线()y f x '=交于11(,)A x y 、22(,)B x y 12()x x <两点,求证:121x x k<<.【答案及详细解析】一、选择题:本大题理科共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

2008年普通高等学校招生全国统一考试文科数学试题及答案-福建卷

2008年普通高等学校招生全国统一考试文科数学试题及答案-福建卷

2008年普通高等学校招生全国统一考试(福建卷)文科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分、在每小题给出的四个选项中,只有一项是符合题目要求的、1、已知集合{}2|0A x x x =-<,{}|03B x x =<<,则AB 等于( )A、{}|01x x << B、{}|03x x << C、{}|13x x <<D、∅2、a=1”是“直线0x y +=和直线0x ay -=互相垂直”的( )条件A、充分而不必要条件 B、必要而不充分条件 C、充要条件 D、既不充分也不必要条件 3、设{}n a 是等差数列,若273,13a a ==,则数列{}n a 前8项和为( )A、128B、80C、64D、564、函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为( )A、3B、0 C、-1D、-25、某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是( )A、12125B、16125 C、48125 D、961256、如图,在长方体1111ABCD A BC D -中,2AB BC ==分别为11AA =,则1AC 与平面1111A B C D 所成的角的正弦值为( )A、3B、23C、4D、137、函数cos ()y x x R =∈的图像向左平移2π个单位后,得到函数()y g x =的图像,则()g x 的解析式为( )A、sin x - B、sin xC、cos x -D、cos x8、在△ABC 中,角A,B,C 的对应边分别为a,b,c,若222a cb +-=,则角B 的值为( )A、6πB、3π C、6π或56πD、3π或23π9、某班级要从4名男生和2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A、14 B、24 C、28 D、4810、若实数x,y 满足{02x y x y -+≤>≤,则yx的取值范围是( ) A、(0,2)B、(0,2] C、(2,)+∞D、[2,)+∞11、如果函数()y f x =的图像如右图,那么导函数'()y f x =的图像可能是( )12、双曲线22221(0,0)x y a b a b-=>>的两个焦点为12,F F ,若P 为其上一点,且12||2||PF PF =,则双曲线离心率的取值范围为( )A、(1,3)B、(1,3]C、(3,)+∞D、[3,)+∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分、把答案填在答题卡的相应位置、13. 91()x x+展开式中3x 的系数是 (用数字作答)14.若直线340x y m ++=与圆222440x y x y +-++=没有公共点,则实数m 的取值范围是15.,则其外接球的表面积是 16.设P 是一个数集,且至少含有两个数,若对任意,a b P ∈,都有,,,aa b a b ab P b+-∈(除数0b ≠),则称P 是一个数域。

2008年福建省数学(理科)高考试卷及答案

2008年福建省数学(理科)高考试卷及答案

第 1 页 共 4 页2008年普通高等学校招生全国统一考试(福建卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第I 卷(选择题 共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上. 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数iz -=11的共轭复数是( )A .i 2121+B .i 2121-C .i -1D .i +1 2.已知等差数列}{n a 中,1,16497==+a a a ,则12a 的值是 ( )A .15B .30C .31D .64 3.在△ABC 中,∠C=90°,),3,2(),1,(==AC k AB 则k 的值是 ( )A .5B .-5C .23D .23-4.已知直线m 、n 与平面βα,,给出下列三个命题: ①若;//,//,//n m n m 则αα ②若;,,//m n n m ⊥⊥则αα ③若.,//,βαβα⊥⊥则m m 其中真命题的个数是( )A .0B .1C .2D .35.函数bx a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是 ( )A .0,1<>b aB .0,1>>b aC .0,10><<b a第 2 页 共 4 页D .0,10<<<b a6.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则 ( )A .4,2πϕπω==B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==7.已知p :,0)3(:,1|32|<-<-x x q x 则p 是q 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 8.如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G 分别是DD 1、AB 、CC 1的中 点,则异面直线A 1E 与GF 所成的角是( ) A .515arccosB .4πC .510arccosD .2π9.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( ) A .300种 B .240种 C .144种 D .96种10.已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( )A .324+B .13-C .213+ D .13+11.设b a b a b a +=+∈则,62,,22R 的最小值是( )A .22-B .335-C .-3D .27-12.)(x f 是定义在R 上的以3为周期的奇函数,且0)2(=f 在区间(0,6)内解的个数的最小值是( ) A .2B .3C .4D .5第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年普通高等学校招生全国统一考试(福建卷)数 学(理科)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若复数2(32)(1)a a a i -++-是纯虚数,则实数a 的值为A.1B.2C.1或2D.-1解:由2320a a -+=得12a =或,且101a a -≠≠得2a ∴=(纯虚数一定要使虚部不为0) (2)设集合{|0}1xA x x =<-,{|03}B x x =<<,那么“m ∈A ”是“m ∈B ”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件解:由01xx <-得01x <<,可知“m A ∈”是“m B ∈”的充分而不必要条件 (3)设{a n }是公比为正数的等比数列,若151,16a a ==,则数列{}n a 前7项的和为A.63B.64C.127D.128解:由151,16a a ==及{a n }是公比为正数得公比2q =,所以771212712S -==- (4)函数3()sin 1()f x x x x R =++∈,若()2f a =,则()f a -的值为A.3B.0C.-1D.-2解:3()1sin f x x x -=+为奇函数,又()2f a =∴()11f a -=故()11f a --=-即()0f a -=.(5)某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是 A.16625B.96625C. 192625D. 256625解:独立重复实验4(4,)5B ,22244196(2)55625P k C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭A(6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为B.C.D.解:连11AC 与11B D 交与O 点,再连BO,则1OBC ∠为BC 1与平面BB 1D 1D所成角.111OC COS OBC BC ∠=,1OC =,1BC1C O S O B C∴∠ (7)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为A.14B.24C.28D.48解:6人中选4人的方案4615C =种,没有女生的方案只有一种,所以满足要求的方案总数有14种 (8)若实数x 、y 满足100x y x -+≤⎧⎨>⎩ 则yx 的取值范围是A.(0,1)B.(]0,1C.(1,+∞)D.[)1,+∞解:由已知1y x ≥+,111y x x x x +==+,又0x >,故yx的取值范围是(1,)+∞(9)函数()cos ()f x x x R =∈的图象按向量(,0)m 平移后,得到函数'()y f x =-的图象,则m 的值可以为A.2πB.πC.-πD.-2π 解:()sin y f x x '=-=,而()cos ()f x x x R =∈的图象按向量(,0)m 平移后得到cos()y x m =-,所以cos()sin x m x -=,故m可以为2π. (10)在△ABC 中,角ABC 的对边分别为a 、b 、c ,若222(a +c -b ,则角B 的值为A.6π B.3π C.6π或56πD.3π或23π解: 由222(a +c -b 得222(a +c -b )2ac cos Bsin B ∴,又在△中所以B 为3π或23π(11)双曲线22221x y a b-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞解:如图,设2PF m =,12(0)F PF θθπ∠=<≤,当P 在右顶点处θπ=,22ce a ===∵1cos 1θ-<≤,∴(]1,3e ∈另外也可用三角形的两边和大于第三边,及两边差小于第三边,但要注意前者可以取到等号成立,因为可以三点一线. 也可用焦半径公式确定a 与c 的关系。

(12) 已知函数(),()y f x y g x ==的导函数的图象如下图,那么(),()y f x y g x ==图象可能是解:从导函数的图象可知两个函数在0x 处斜率相同,可以排除B 答案,再者导函数的函数值反映的是原函数增加的快慢,可明显看出()y f x =的导函数是减函数,所以原函数应该增加的越来越慢,排除AC,最后就只有答案D 了,可以验证y=g(x)导函数是增函数,增加越来越快.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.(13)若55432543210(2)x a x a x a x a x a x a -=+++++,则12345a a a a a ++++= (用数字作答)解:令54321011x a a a a a a =+++++=-得,令0x =得0032x a ==-得 所以 5432131a a a a a ++++=(14) 若直线340x y m ++=与圆 1cos 2sin x y θθ=+⎧⎨=-+⎩(θ为参数)没有公共点,则实数m 的取值范围是解:圆心为(1,2)-,要没有公共点,根据圆心到直线的距离大于半径可得1d r =>=,即55m ->,m ∈∞∞ (-,0)(10,+) (15)若三棱锥的三个侧圆两两垂直,且侧棱长均为,则其外接球的表面积是 解:依题可以构造一个正方体,其体对角线就是外接球的直径.23r == ,249S r ππ==(16)设P 是一个数集,且至少含有两个数,若对任意a 、b ∈R ,都有a +b 、a -b , ab 、ab∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q是数域;数集{},F a b Q =+∈也是数域.有下列命题: ①整数集是数域;②若有理数集Q M ⊆,则数集M 必为数域;③数域必为无限集; ④存在无穷多个数域.其中正确的命题的序号是 .(把你认为正确的命题的序号填填上) 解:①对除法如12Z ∉不满足,所以排除,②取{},M a b Q =+∈,M =, ③④的正确性容易推得。

三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知向量m =(sin A ,cos A ),n=1)-,m ·n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域.解:(Ⅰ) 由题意得cos 1,m n A A =-= 12sin()1,sin().662A A ππ-=-= 由A 为锐角得 ,663A A πππ-==(Ⅱ) 由(Ⅰ)知1cos ,2A =所以2213()cos 22sin 12sin 2sin 2(sin ).22f x x x x s x =+=-+=--+因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值32.当sin 1x =-时,()f x 有最小值-3,所以所求函数()f x 的值域是332⎡⎤-⎢⎥⎣⎦, (18)(本小题满分12分)如图,在四棱锥P-ABCD 中,则面PAD ⊥底面ABCD ,侧棱PA =PD ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC =2,O 为AD 中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求异面直线PD 与CD 所成角的大小;(Ⅲ)线段AD 上是否存在点Q ,使得它到平面PCD 的距离为AQQD的值;若不存在,请说明理由. 解法一:(Ⅰ)证明:在△PAD 中PA =PD ,O 为AD 中点,所以PO ⊥AD ,又侧面PAD ⊥底面ABCD ,平面PAD ⋂平面ABCD =AD , PO ⊂平面PAD , 所以PO ⊥平面ABCD .(Ⅱ)连结BO ,在直角梯形ABCD 中、BC ∥AD ,AD =2AB =2BC ,有OD ∥BC 且OD =BC ,所以四边形OBCD 是平行四边形,所以OB ∥DC . 由(Ⅰ)知,PO ⊥OB ,∠PBO 为锐角, 所以∠PBO 是异面直线PB 与CD 所成的角.因为AD =2AB =2BC =2,在Rt △AOB 中,AB =1,AO =1,所以OB在Rt △POA 中,因为AP AO =1,所以OP =1,在Rt △PBO 中,tan ∠PBO =arctan22PG PBO BC ==∠=所以异面直线PB 与CD 所成的角是arctan2.(Ⅲ)假设存在点Q ,使得它到平面PCD. 设QD =x ,则12DQC S x ∆=,由(Ⅱ)得CD =OB在Rt △POC 中,PC ==所以PC =CD =DP, 242PCD S ∆== 由V p-DQC =V Q-PCD ,得2,所以存在点Q 满足题意,此时13AQ QD =. 解法二:(Ⅰ)同解法一.(Ⅱ)以O 为坐标原点,OC OD OP、、的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O-xyz ,依题意,易得A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),P (0,0,1),所以110111CD PB --- =(,,),=(,,).所以异面直线PB 与CD 所成的角是(Ⅲ)假设存在点Q ,使得它到平面PCD, 由(Ⅱ)知(1,0,1),(1,1,0).CP CD =-=-设平面PCD 的法向量为n =(x 0,y 0,z 0).则0,0,n CP n CD ⎧=⎪⎨=⎪⎩所以00000,0,x z x y -+=⎧⎨-+=⎩即000x y z ==, 取x 0=1,得平面PCD 的一个法向量为n =(1,1,1).设(0,,0)(11),(1,,0),Q y y CQ y -≤≤=-由CQ n n== 解y =-12或y =52(舍去),此时13,22AQ QD ==, 所以存在点Q 满足题意,此时13AQ QD =.(19)(本小题满分12分) 已知函数321()23f x x x =+-. (Ⅰ)设}{n a 是正数组成的数列,前n 项和为n S ,其中13a =.若点211(,2)n n n a a a ++-(n ∈N*)在函数'()y f x =的图象上,求证:点(,)n n S 也在'()y f x =的图象上;(Ⅱ)求函数()f x 在区间(1,)a a -内的极值. 解:(Ⅰ)证明: 因为321()2,3f x x x =+-所以'2()2f x x x =+, 由点211(,2)(N )n n n a a a n +++-∈在函数'()y f x =的图象上,221122n n n n a a a a ++-=+111()()2()n n n n n n a a a a a a ++++-=+, 又0(N ),n a n +>∈所以12n n a a +-=,}{n a 是13,2a d ==的等差数列 所以2(1)32=22n n n S n n n -=+⨯+,又因为'2()2f n n n =+,所以()n S f n '=, 故点(,)n n S 也在函数'()y f x =的图象上.(Ⅱ)解:2()2(2)f x x x x x '=+=+,令()0,f x '=得02x x ==-或.当x 变化时,()f x '﹑()f x 的变化情况如下表:注意到(1)12a a --=<,从而①当212,21,()(2)3a a a f x f -<-<-<<--=-即时的极大值为,此时()f x 无极小值; ②当10,01,()a a a f x -<<<<即时的极小值为(0)2f =-,此时()f x 无极大值; ③当2101,()a a a f x ≤--≤≤≥或或时既无极大值又无极小值.(20)(本小题满分12分)某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科 目B 的考试。

相关文档
最新文档