学年九年级数学上册公式法教案新版新人教版

合集下载

21.2.2公式法-【高效课堂】2023-2024学年九年级数学上册同步课件+练习(人教版)

21.2.2公式法-【高效课堂】2023-2024学年九年级数学上册同步课件+练习(人教版)

人教版数学九年级上册
(2)b2-4ac=0时,
b 2 4ac
=0 ,由①可知,方程有两个相等的实数根
这时
2
4a
(3)b2-4ac<0时,
b
x1 x2
2a
2
b

b 4ac
这时
<0 ,而x取任何实数
<0 ,由①可知 x

2
2a
4a

2
b

都不能使 x <0 ,因此方程无实数根.
根,求m的取值范围.
解:由题意得:Δ>0且m2≠0.
即 (2m+1)2-4m2>0且m≠0
解得:m>-1/4且m≠0.
拓展训练
人教版数学九年级上册
2.已知关于x的一元二次方程kx2+(k+3)x+3(k≠0).求证:方
程一定有两个实数根.
证明:方程kx2+(k+3)x+3(k≠0),
其中a=k,b=k+3,c=3,
5
小试牛刀
人教版数学九年级上册
1.用公式法解方程 4x 2-12x=3,得到( D
3 6
A.x=
2
3 6
B.x=
2
3 2 3
C.x=
2
3 2 3
D.x=
2
).
小试牛刀
人教版数学九年级上册
2.不解方程,判别下列方程的根的情况.
(1)x2-6x+1=0 (2)2x2-x+2=0 (3)x2-4x+4=0 (4)(x-2)2+3=1
(2)找出系数a,b,c,注意各项的系数包括符号.
(3)计算b2-4ac,若结果为负数,方程无解.

21.2.2公式法一元二次方程的根的判别式的应用教案2021-2022学年人教版九年级数学上册

21.2.2公式法一元二次方程的根的判别式的应用教案2021-2022学年人教版九年级数学上册
3.重点难点解析:在讲授过程中,我会特别强调判别式的计算方法和判别式与方程根的关系这两个重点。对于难点部分,我会通过实际方程的例子和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程根的判别式相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,通过计算不同方程的判别式,观察根的情况,从而验证判别式的有效性。
五、教学反思
在今天的教学中,我引导学生们学习了一元二次方程的根的判别式的应用。通过这节课,我发现了一些值得注意的地方。
首先,判别式的概念对于学生来说是一个新的挑战。他们在理解判别式与方程根的关系上存在一定难度。在今后的教学中,我需要更加耐心地解释和演示,让学生逐步理解判别式的意义和作用。
其次,在教学过程中,我注意到学生在计算判别式时容易犯错。这可能是因为他们对公式不够熟悉,或者在进行计算时粗心大意。针对这个问题,我打算在接下来的课程中增加一些练习题,让学生多加练习,提高他们的计算准确率。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元二次方程根的判别式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
另外,我发现部分学生对一元二次方程的根的性质理解不够透彻,容易混淆。为了帮助学生更好地掌握这部分知识,我计划在下一节课中,通过图示和动画等形式,直观地展示不同判别式值对应的根的情况。
此外,实践活动和小组讨论环节,学生们表现得积极主动,能将判别式的知识应用到解决实际问题中。但在分享讨论成果时,部分学生表达不够清晰,可能是因为他们对问题的理解不够深入。在以后的教学中,我要加强对学生的引导,帮助他们更好地表达自己的观点。

新疆精河县九年级数学上册第21章一元二次方程21.2解一元二次方程21.2.2公式法教案新版新人教版

新疆精河县九年级数学上册第21章一元二次方程21.2解一元二次方程21.2.2公式法教案新版新人教版

新疆精河县九年级数学上册第21章一元二次方程21.2解一元二次方程21.2.2公式法教案新版新人教版05232146课题21.2.2公式法教学媒体多媒体教学目标知识技能 1.理解一元二次方程求根公式的推导过程.2.掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况.3.会利用求根公式解简单数字系数的一元二次方程.过程方法 1.经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解公式的基础.; 2.通过对公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单.3.提高学生的运算能力,并养成良好的运算习惯.情感态度 1.感受数学的严谨性和数学结论的确定性. 2.提高学生运算能力,使学生获得成功体验,建立学习信心. 教学重点求根公式的推导,公式的正确使用教学难点求根公式的推导教学过程一、复习引入导语:我们学习了用配方法解数字系数的一元二次方程,能否用配方法解一般形式的一元二次方程()002≠=++a c bx ax ?二、探究新知活动1.学生观察下面两个方程思考它们有何异同?○1;6x 2-7x+1=0○2()002≠=++a c bx ax 活动2.按配方法一般步骤同时对两个方程求解:1.移项得到6x 2-7x=-1,c bx ax -=+22.二次项系数化为1得到ac x a b x x x -=+-=-22,6167 3.配方得到x 2-76x+(712)2=-16+(712)2 x 2+b a x+(2b a )2=-c a+(2b a )2 4.写成(x+m )2=n 形式得到(x-712)2=25144,(x+2b a )2=2244b ac a -5.直接开平方得到x-712=±512,注意:(x+2b a )2=2244b ac a -是否可以直接开平方?活动3.对(x+2b a )2=2244b ac a -观察,分析,在0≠a 时对2244b ac a-的值与0的关系进行讨论活动4.归纳出一元二次方程的根的判别式和求根公式,公式法.活动5.初步使用公式解方程6x 2-7x+1=0.活动6.总结使用公式法的一般步骤:○1把方程整理成一般形式,确定a,b,c 的值,注意符号○2求出ac b 42-的值,方程()002≠=++a c bx ax ,当Δ>0时,有两个不等实根;Δ=0时有两个相等实根;Δ<0时无实根. ○3在ac b 42-≥0的前提下把a ,b ,c 的值带入公式x=242b b aca -±-进行计算,最后写出方程的根.三、课堂训练1.利用一元二次方程的根的判别式判断下列方程的根的情况(1)2x 2-4x-1=0(2)5x+2=3x2 (3)(x-2)(3x-5)=0(4)4x 2-3x+1=02.课本例2四、小结归纳本节课应掌握:1.用根的判别式判断一个一元二次方程是否有实数根2.用求根公式求一元二次方程的根3.一元二次方程求根公式适用于任意一个一元二次方程.五、作业设计必做:P17:4、5选做:P12:1、2补充作业:某电厂规定:该厂家属区的每户居民一个月用电量不超过A 千瓦时,•那么这户居民这个月只交10元电费,如果超过A 千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时100A 元收费.(1)若某户2月份用电90千瓦时,超过规定A 千瓦时,则超过部分电费为多少元?(•用A 表示)(2)下表是这户居民3月、4月的用电情况和交费情况根据上表数据,求电厂规定的A 值为多少?教学反思月份用电量(千瓦时)交电费总金额(元)3802544510。

九年级数学上册21.2.2公式法(第1课时)教案(新版)新人教版

九年级数学上册21.2.2公式法(第1课时)教案(新版)新人教版

21.2.2公式法教学目标:1. 经历求根公式的推导过程。

2. 掌握求根公式。

3. 掌握一元二次方程根的判别式。

4. 能运用判别式解决相关问题。

教学重点:1. 掌握求根公式。

2. 掌握判别式。

教学难点:求根公式的推导过程。

教学过程:一、 温故知新解方程: x(2x-4)=5-8x复习配方法的过程。

二、新知探究1.用配方法解方程ax 2+bx +c = 0(a ≠0)解:移项,得 ,二次项系数化为1,得 ,配方 ,方程左边写成平方式 ,∵a ≠0,∴4a 2 0,有以下三种情况:(1)当b 2-4ac>0时,=1x ; =2x 。

(2)当b 2-4ac=0时,==21x x 。

(3)b 2-4ac<0时,方程根的情况为 。

2.由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)式子ac b 42-叫做方程ax 2+bx +c = 0(a ≠0)根的 ,通常用字母 “△” 表示。

当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根;当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根;当△ 0时, 方程ax 2+bx+c=0(a ≠0) 实数根。

(2)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c = 0,当ac b 42-≥0时,x就得到方程的根.这个式子叫做一•将a、b、c代入式子=元二次方程的求根公式,利用求根公式解一元二次方程的方法叫公式法.三、巩固新知例1、已知关于x的一元二次方程x2-4x+m-1=0有两个相等的实数根,求m的值及方程的根。

例2、已知关于x的方程2x2-(4k+1)x+2k2-1=0,k为何值时:①方程有两个不相等实根;②方程有两个等根;③方程没有实根例3、关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1、x2.(1)求m的取值范围(2)若2(x1+x2)+x1x2+10=0,求m的值变式:(1)关于x的一元二次方程(a-5)x2-4x-1=0有实数根,求a的取值范围.(2)关于x的方程(a-5)x2-4x-1=0有两个实数根,求a的取值范围.教学反思:中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.2公式法教案新人教版(2021

九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.2公式法教案新人教版(2021

2018-2019学年九年级数学上册第二十一章一元二次方程21.2 解一元二次方程21.2.2 公式法教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学上册第二十一章一元二次方程21.2 解一元二次方程21.2.2 公式法教案(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学上册第二十一章一元二次方程21.2 解一元二次方程21.2.2 公式法教案(新版)新人教版的全部内容。

21.2.2 公式法※教学目标※【知识与技能】1.理解并掌握求根公式的推导过程.2。

能利用公式法求一元二次方程的解.【过程与方法】经历探索求根公式的过程,加强推理技能,进一步发展逻辑思维能力.【情感态度】用公式法求解一元二次方程的过程中,锻炼学生的运算能力,养成良好的运算习惯,培养严禁认真的科学态度.【教学重点】求根公式的推导和公式法的应用.【教学难点】一元二次方程求根公式的推导.※教学过程※一、复习导入1.前面我们学习过直接开平方法解一元二次方程,比如,方程24x,227x:提问1 这种解法的(理论)依据是什么?提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数"的特殊的一元二次方程有效,不能实施于一般形式的一元二次方程)2.面对这种局限性,我们该怎么办?(使用配方法,把一般形式的一元二次方程化为能够直接开平方的形式)(学生活动) 用配方法解方程:2x x.237总结用配方法解一元二次方程的步骤(学生总结,老师点评)(1)先将已知方程化为一般形式; (2)二次项系数化为1; (3)常数项移到右边;(4)方程两边都加上一次项系数的一般的平方,使左边配成一个完全平方式; (5)变形为2x np 的形式,如果0p ,就可以直接开平方求出方程的解,如果0p ,则一元二次方程无解.二、探索新知能否用上面配方法的步骤求出一元二次方程200ax bx c a 的两根?移项,得2ax bxc .二次项系数化为1,得2b cx xa a. 配方,得22222b b c b xx a aaa,即222424b b ac x aa .此时,教师应作适当停顿,提出如下问题,引导学生分析、探究:(1)两边能直接开平方吗?为什么? (2)你认为下一步该怎么办?师生共同完善认知:(1)当b 2—4ac >0时,两边可直接开平方,得242b b ac x a,∴2142bb ac x a,2242bb ac x a;(2)当b 2—4ac =0时,有202b x a 。

21.2.2公式法(同步教学设计)2024-2025学年九年级数学上册同步精品课堂(人教版)

21.2.2公式法(同步教学设计)2024-2025学年九年级数学上册同步精品课堂(人教版)
教学方法/手段/资源:
- 自主学习法:引导学生自主完成作业和拓展学习。
- 反思总结法:引导学生对自己的学习过程和成果进行反思和总结。
作用与目的:
- 巩固学生在课堂上学到的公式法知识点和技能。
- 通过拓展学习,拓宽学生的知识视野和思维方式。
- 通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
5. 练习题库:准备一些与本节课内容相关的练习题,包括不同类型的一元二次方程求解题目,以及一些实际问题的解决题目。这样可以帮助学生巩固所学知识,并进行实际应用。
6. 教学工具:准备黑板、粉笔、多媒体投影仪等教学工具,以便进行讲解和展示。
7. 教学课件:制作与本节课内容相关的教学课件,包括教学目标、教学内容、实例讲解、练习题等,以便进行多媒体教学。
- 帮助学生提前了解本节课的课题,为课堂学习做好准备。
- 培养学生的自主学习能力和独立思考能力。
2. 课中强化技能
教师活动:
- 导入新课:通过一个实际问题案例,引出公式法的重要性,激发学生的学习兴趣。
- 讲解知识点:详细讲解公式法的推导过程和应用步骤,结合实例帮助学生理解。
- 组织课堂活动:设计小组讨论,让学生共同探讨如何应用公式法解决实际问题。
- 鼓励学生进行自我评估和反思,总结自己的学习成果和不足,制定改进计划,不断提高自己的学习效果。
- 鼓励学生参加数学竞赛或挑战赛,如数学奥林匹克、数学挑战赛等,以提高自己的数学水平和竞争力。
2. 拓展要求:鼓励学生利用课后时间进行自主学习和拓展。教师可提供必要的指导和帮助,如推荐阅读材料、解答疑问等。
- 要求学生阅读《数学之美》一书中关于一元二次方程的章节,并回答相关问题,以加深对一元二次方程和公式法的理解。

2023九年级数学上册第22章一元二次方程22.2一元二次方程的解法3公式法教案(新版)华东师大版

2023九年级数学上册第22章一元二次方程22.2一元二次方程的解法3公式法教案(新版)华东师大版
-反思总结法:引导学生对自己的学习过程和成果进行反思和总结。
作用与目的:
-巩固学生在课堂上学到的“一元二次方程的解法--公式法”知识点和技能。
-通过拓展学习,拓宽学生的知识视野和思维方式。
-通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
学生学习效果
1.知识与技能:
-学生能够理解一元二次方程的解法--公式法的基本概念和原理。
重点难点及解决办法
重点:一元二次方程的公式法及其应用。
难点:理解并运用公式法求解实际问题,掌握公式法与判别式之间的关系。
解决办法:
1.通过具体实例,引导学生理解一元二次方程的公式法,让学生在实际问题中体会公式的运用。
2.利用数形结合,让学生直观地理解公式法与判别式之间的关系,突破难点。
3.设计梯度性练习题,让学生在练习中逐步掌握公式法的运用,巩固知识点。
-学生能够运用公式法求解一元二次方程,并正确运用判别式判断方程的解的情况。
-学生能够在实际问题中运用公式法,求解实际问题,并能够解释结果的实际意义。
2.过程与方法:
-学生能够通过自主探索和小组合作的方式,积极主动地参与课堂学习和实践活动。
-学生能够通过听讲、思考和讨论,深入理解一元二次方程解法--公式法的内涵和应用。
3.在线学习平台:利用在线学习平台,提供丰富的学习资源和练习题,方便学生自主学习和巩固知识。
4.实物教具:使用实物教具,如数学模型、图形展示等,帮助学生更好地理解和掌握一元二次方程的解法。
5.练习册与评价工具:提供练习册和评价工具,及时检测学生的学习效果,为学生提供反馈和指导。
教学实施过程
1.课前自主探索
-提问与讨论:针对不懂的问题或新的想法,勇敢提问并参与讨论。

九年级数学上册-解一元二次方程21.2.2公式法教案新版新人教版

九年级数学上册-解一元二次方程21.2.2公式法教案新版新人教版

21.2.2 公式法【知识与技能】1.理解并掌握求根公式的推导过程;2.能利用公式法求一元二次方程的解.【过程与方法】经历探索求根公式的过程,加强推理技能,进一步发展逻辑思维能力.【情感态度】用公式法求解一元二次方程的过程中,锻炼学生的运算能力,养成良好的运算习惯,培养严谨认真的科学态度.【教学重点】用公式法解一元二次方程.【教学难点】推导一元二次方程求根公式的过程.一、情境导入,初步认识我们知道,对于任意给定的一个一元二次方程,只要方程有解,都可以利用配方法求出它的两个实数根.事实上,任何一个一元二次方程都可以写成ax2+bx+c=0的形式,我们是否也能用配方法求出它的解呢?想想看,该怎样做?【教学说明】让学生回顾用配方法解一元二次方程的一般过程,从而尝试着求ax2+bx+c=0(a≠0)的方程的解,导入新课,教学时,应给予足够的思考时间,让学生自主探究.二、思考探究,获取新知通过问题情境思考后,师生共同探讨方程ax2+bx+c=0(a≠0)的解.由ax2+bx+c=0(a≠0),移项,ax2+bx=-c.二次项系数化为1,得x2+bax=-ca.配方,得x2+bax+2()2ba=-ca+2()2ba,即2224(42)b aa abxc-+=.至此,教师应作适当停顿,提出如下问题,引导学生分析、探究:(1)两边能直接开平方吗?为什么?(2)你认为下一步该怎么办?谈谈你的看法.【教学说明】设置停顿并提出两个问题的目的在于纠正学生的盲目行为,引导学生正确认识代数式b2-4ac的取值与此方程的解之间的关系,加深认知.教学时,应让学生积极主动思考,畅所欲言,在相互交流中促进理解.师生共同完善认知:一般地,式子b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)根的判别式,通常用Δ表示,即Δ=b2-4ac.从而有:①当Δ=b2-4ac>0时,方程ax2+bx+c=0(a≠0)有两个不相等的实数根;当Δ=b2-4ac=0时,方程ax2+bx+c=0(a≠0)有两个相等实数根;当Δ=b2-4ac<0时,方程ax2+bx+c=0(a≠0)没有实数解;②当Δ≥0时,方程ax2+bx+c=0(a≠0)的两个实数根可写成24b b ac-±-这个式子叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.三、典例精析,掌握新知例1不解方程,判别下列各方程的根的情况.(1)x2+x+1=0; (2)x2-3x+2=0; (3)3x22x=2.分析:找出方程中二次项系数、一次项系数和常数项,利用b2-4ac与0的大小关系可得结论.注意:在确定方程中a、b、c的值时,一定要先把方程化为一般式后才能确定,否则会出现失误.解:(1)∵a=1,b=1,c=1,∴Δ=b2-4ac=12-4×1×1=-3<0,∴原方程无实数解;(2)∵a=1,b=-3,c=2,∴Δ=b2-4ac=(-3)2-4×1×2=1>0,∴原方程有两个不相等实数根;(3)原方程可化为3x22x-2=0,∴2 ,c=-2,∴Δ=b22)2-4×3×(-2)=2+24=26>0.∴原方程有两个不相等的实数根.例2用公式法解下列方程:(1)x2-4x-7=0; (2)2x22x+1=0; (3)5x2-3x=x+1; (4)x2+17=8x分析:将方程化为一般形式后,找出a、b、c的值并计算b2-4ac后,可利用公式求出方程的解.【教学说明】以上两例均可让学生自主完成,同时选派同学上黑板演算.教师巡视,针对学生的困惑及时予以指导,最后共同评析黑板上作业,一方面引导学生关注其解答是否正确,同时还应注意其解答格式是否规范,查漏补缺,深化理解.教师接着引导学生阅读第12页有关引言中问题的解答,向学生提问:(1)什么情况下根的取值为正数?(2)列方程解决实际问题在取值时应注意什么?四、运用新知,深化理解1.关于x的方程x2-2x+m=0有两个实数根,则m的取值范围是 .2.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等实数根,那么k的取值范围是()A.k>-1 4B.k>-14且k≠0C.k<-1 4D.k≥-14且k≠03.方程2x2+43x+62=0的根是()A.x1=2,x2=3B.x1=6, x2=2C.x1=22, x2=2D.x1=x2=-64.关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一个根为0,试求m的值.(注:5~6题为教材第12页练习)5.解下列方程:(1)x2+x-6=0; (2)x2-3x-14=0; (3)3x2-6x-2=0;(4)4x2-6x=0; (5)x2+4x+8=4x+11; (6)x(2x-4)=5-8x.6.求第21.1节中问题1的答案.【教学说明】通过练习可进一步理解和掌握本节知识,在学中练、练中学的活动中得到巩固和提高.【答案】1.m≤12.B3.D4.把x=0代入方程,得m2+2m-3=0,解得m1=1,m2=-3,又∵m-1≠0,即m≠1,故m的值为-3.5~6略五、师生互动,课堂小结通过这节课的学习,你有哪些收获和体会?说说看.【教学说明】在学生回顾与反思本节课的学习过程中,进一步完善认知,师生共同归纳总结.1.布置作业:从教材“习题21.2”中选取.2.完成创优作业中本课时练习的“课时作业”部分.1.本课容量较大,难度较大,计算的要求较高,因此在教学设计各环节均围绕着利用公式法解一元二次方程这一重点内容展开,问题设计,课堂学习有利于学生强化运算能力,掌握基本技能,也有利于教师发现教学中存在的问题.2.在教学设计中,引导学生自主探索一元二次方程的求根公式,在师生讨论中发现求根公式,并学会利用公式解一元二次方程.3.整个课堂都以学生动手训练为主,让学生积极介入探索活动,体验到成功的喜悦.4.公式法是在配方法的基础上推出的一种解一元二次方程的基本方法,它使解一元二次方程更加简便,在公式的运用中,涉及到根的判别式,使公式法解一元二次方程得到延续和深化.。

新人教版九年级数学(上)一元二次方程的解法——配方法、求根公式法

新人教版九年级数学(上)一元二次方程的解法——配方法、求根公式法

新人教版九年级数学(上)一元二次方程的解法——配方法、求根公式法知识点一、配方法解一元二次方程()002≠=++a c bx ax 222442a ac b a b x -=??? ??+? ※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。

典型例题:例1、试用配方法说明322+-x x 的值恒大于0。

例2、已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。

例3、已知,x、y y x y x 0136422=+-++为实数,求yx 的值。

例4、分解因式:31242++x x一元二次方程的解法(二)针对练习:★★1、试用配方法说明47102-+-x x 的值恒小于0。

★★2、已知041122=---+x x x x ,则=+x x 1 .★★★3、若912322-+--=x x t ,则t 的最大值为,最小值为。

★★★4、如果4122411-++-=--++b a c b a ,那么c b a 32-+的值为。

知识点二、根的判别式从配方法那里我们知道不是所有的一元二次方程都是有实数解的,原因在于配方得到的右边的项为2244a ac b - ;而当04422<-a ac b ,是不能开方的,所以方程无实数解。

而2244aac b -与0的大小关系又取决于ac b 42-;所以:当042>-ac b 时,方程有两个不相等的实数根;当042=-ac b 时,方程有两个相等的实数根;当042<-ac b 时,方程没有实数根。

由此可知ac b 42-的取值决定了一元二次方程根的情况,我们把ac b 42-称作根的判别式,用符号“Δ”表示;即:ac b 42-=? 根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。

典型例题:例1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是。

例2、关于x 的方程()0212=++-m mx x m 有实数根,则m 的取值范围是( ) A.10≠≥且m m B.0≥m C.1≠m D.1>m例3、已知关于x 的方程()0222=++-k x k x (1)求证:无论k 取何值时,方程总有实数根;(2)若等腰?ABC 的一边长为1,另两边长恰好是方程的两个根,求?ABC 的周长。

人教版九年级上册数学全册教案(完整版)教学设计

人教版九年级上册数学全册教案(完整版)教学设计

人教版九年级上册数学全册教案(完整版)教学设计21.1 一元二次方程一、基本目标【知识与技能】1.理解一元二次方程及相关概念.2.掌握一元二次方程的一般形式.3.了解一元二次方程根的概念,会检验一个数是不是一元二次方程的解.【过程与方法】从实际问题中建立方程模型,体会一元二次方程的概念.【情感态度与价值观】通过从实际问题中抽象出方程模型来认识一元二次方程,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】1.一元二次方程的概念及其一般形式.2.判断一个数是不是一元二次方程的解.【教学难点】能准确判断一元二次方程的二次项、二次项系数、一次项、一次项系数及常数项.环节1 自学提纲,生成问题【5 min阅读】阅读教材P1~P4的内容,完成下面练习.【3 min反馈】1.解决下列问题:问题1:如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样大小的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?【解析】设切去的正方形的边长为x cm ,则盒底的长为__(100-2x )_cm__,宽为__(50-2x )_cm__.列方程,得__(100-2x )(50-2x )=3600__, 化简,整理,得__x 2-75x +350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【解析】全部比赛的场数为__4×7=28(场)__.设应邀请x 个队参赛,每个队要与其他__(x -1)__个队各赛一场.因为甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共__12x (x -1)__场.列方程,得__12x (x -1)=28__.化简、整理,得 __x 2-x -56=0__.②归纳总结:方程①②的共同特点是:方程的两边都是__整式__,只含有__一个__未知数,并且未知数的最高次数是__2__.2.一元二次方程的定义:等号两边都是__整式__,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.3.一元二次方程的一般形式是__ax 2+bx +c =0(a ≠0)__.其中__ax 2__是二次项,__a __是二次项系数,__bx __是一次项,__b __是一次项系数,__c __是常数项.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】判断下列方程,哪些是一元二次方程? (1)x 3-2x 2+5=0; (2)x 2=1;(3)5x 2-2x -14=x 2-2x +35;(4)2(x +1)2=3(x +1); (5)x 2-2x =x 2+1; (6)ax 2+bx +c =0.【互动探索】(引发学生思考)要判断一个方程是一元二次方程,那么它应该满足哪些条件?【解答】(2)(3)(4)是一元二次方程.【互动总结】(学生总结,老师点评)判断一个方程是不是一元二次方程,首先看方程等号两边是不是整式,然后移项,使方程的右边为0,再观察左边是否只有一个未知数,且未知数的最高次数是否为2.【例2】将方程2x ⎝ ⎛⎭⎪⎫12-x +2=5(x -1)化成一元二次方程的一般形式,并指出各项系数. 【互动探索】(引发学生思考)一元二次方程的一般形式是怎样的? 【解答】去括号,得x -2x 2+2=5x -5.移项,合并同类项,得一元二次方程的一般形式:2x 2+4x -7=0. 其中二次项系数是2,一次项系数是4,常数项是-7.【互动总结】(学生总结,老师点评)将一元二次方程化成一般形式时,通常要将二次项化负为正,化分为整.【例3】下面哪些数是方程2x 2+10x +12=0的解? -4,-3,-2,-1,0,1,2,3,4.【互动探索】(引发学生思考)你能类比判断一个数是一元一次方程的解的方法判断一元二次方程的解吗?【解答】将上面的这些数代入后,只有-2和-3满足等式,所以x =-2或x =-3是一元二次方程2x 2+10x +12=0的解.【互动总结】(学生总结,老师点评)要判断一个数是否是方程的解,只要把这个数代入等式,看等式两边是否相等即可.若相等,则这个数是方程的解,若不相等,则这个数不是方程的解.【活动2】 巩固练习(学生独学) 1.下列方程是一元二次方程的是( D ) A .ax 2+bx +c =0 B .3x 2-2x =3(x 2-2) C .x 3-2x -4=0D .(x -1)2+1=02.已知x =2是一元二次方程x 2-2mx +4=0的一个解,则m 的值为( A ) A .2 B .0 C .0或2D .0或-2【教师点拨】将x =2代入x 2-2mx +4=0得,4-4m +4=0.再解关于m 的一元一次方程即可得出m 的值.3.把一元二次方程(x +1)(1-x )=2x 化成二次项系数大于0的一般式是__x 2+2x -1=0__,其中二次项系数是__1__,一次项系数是__2__,常数项是 __-1__.【活动3】 拓展延伸(学生对学)【例4】求证:关于x 的方程(m 2-8m +17)x 2+2mx +1=0,不论m 取何值,该方程都是一元二次方程.【互动探索】(引发学生思考)已知关于x 的方程,且含有字母系数,要证明该方程是一元二次方程,则该方程的二次项系数必须满足什么条件?【证明】m 2-8m +17=m 2-8m +42+1=(m -4)2+1. ∵(m -4)2≥0,∴(m -4)2+1>0,即(m -4)2+1≠0, ∴不论m 取何值,该方程都是一元二次方程.【互动总结】(学生总结,老师点评)要证明不论m 取何值,该方程都是一元二次方程,只需证明二次项系数恒不为0,即m 2-8m +17≠0.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.一元二次方程⎩⎨⎧必须满足的三要素⎩⎪⎨⎪⎧ 是整式方程只有一个未知数未知数的最高次数是2一般形式:ax 2+bx +c =0a ≠02.判断一个数是否是一元二次方程解的方法:将这个数分别代入方程的左右两边,如果“左边=右边”,则这个数是方程的解;如果“左边≠右边”,则这个数不是方程的解.请完成本课时对应练习!21.2 解一元二次方程 21.2.1 配方法(第1课时)一、基本目标 【知识与技能】1.理解一元二次方程“降次”转化的数学思想,并能应用它解决一些具体问题. 2.理解并掌握直接开方法、配方法解一元二次方程的方法. 【过程与方法】1.通过根据平方根的意义解形如x 2=n (n ≥0)的方程,迁移到根据平方根的意义解形如(x +m )2=n (n ≥0)的方程.2.通过把一元二次方程转化为形如(x -a )2=b 的过程解一元二次方程. 【情感态度与价值观】通过对一元二次方程解法的探索,体会“降次”的基本思想,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标 【教学重点】掌握直接开平方法和配方法解一元二次方程. 【教学难点】把一元二次方程转化为形如(x -a )2=b 的形式.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P5~P9的内容,完成下面练习. 【3 min 反馈】1.一般地,对于方程x 2=p :(1)当p >0时,根据平方根的意义,方程有两个不等的实数根,x 1=__p ,x 2=__-p __.(2)当p =0时,方程有两个相等的实数根x 1=x 2=__0__; (3)当p <0时,方程__无实数根__. 2.用直接开平方法解下列方程: (1)(3x +1)2=9; x 1=23,x 2=-43.(2)y 2+2y +1=25. y 1=4,y 2=-6. 3.(1)x 2+6x +__9__=(x +__3__)2; (2)x 2-x +__14__=(x -__12__)2;(3)4x 2+4x +__1__=(2x + __1__)2.4.一般地,如果一个一元二次方程通过配方转化成(x +n )2=p 的形式,那么就有: (1)当p >0时,根据平方根的意义,方程有两个不等的实数根,x 1=__-n -p __,x 2=__-n +p __;(2)当p =0时,方程有两个相等的实数根x 1=x 2=__-n __; (3)当p <0时,方程__无实数根__. 环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学) 【例1】用配方法解下列关于x 的方程: (1)2x 2-4x -8=0; (2)2x 2+3x -2=0.【互动探索】(引发学生思考)用配方法解一元二次方程的实质和关键点是什么? 【解答】(1)移项,得2x 2-4x =8. 二次项系数化为1,得x 2-2x =4.配方,得x 2-2x +12=4+12,即(x -1)2=5. 由此可得x -1=±5, ∴x 1=1+5,x 2=1- 5. (2)移项,得2x 2+3x =2. 二次项系数化为1,得x 2+32x =1.配方,得⎝ ⎛⎭⎪⎫x +342=2516.由此可得x +34=±54,∴x 1=12,x 2=-2.【互动总结】(学生总结,老师点评)用配方法解一元二次方程的实质就是对一元二次方程进行变形,转化为开平方所需要的形式,配方法的一般步骤可简记为:一移,二化,三配,四开.【活动2】 巩固练习(学生独学)1.若x 2-4x +p =(x +q )2,则p 、q 的值分别是( B ) A .p =4,q =2 B .p =4,q =-2 C .p =-4,q =2D .p =-4,q =-22.用直接开平方法或配方法解下列方程: (1)3(x -1)2-6=0 ; (2)x 2-4x +4=5; (3)9x 2+6x +1=4; (4)36x 2-1=0; (5)4x 2=81; (6)x 2+2x +1=4. (1)x 1=1+2,x 2=1- 2. (2)x 1=2+5,x 2=2- 5. (3)x 1=-1,x 2=13.(4)x 1=16,x 2=-16.(5)x 1=92,x 2=-92.(6)x 1=1,x 2=-3.【活动3】 拓展延伸(学生对学)【例2】如果x 2-4x +y 2+6y +z +2+13=0,求(xy )z的值.【互动探索】(引发学生思考)一个数的平方是正数还是负数?一个数的算术平方根是正数还是负数?几个非负数相加的和是正数还是负数?【解答】由已知方程,得x2-4x+4+y2+6y+9+z+2=0,即(x-2)2+(y+3)2+z+2=0,∴x=2,y=-3,z=-2.∴(xy)z=[2×(-3)]-2=1 36 .【互动总结】(学生总结,老师点评)若几个非负数相加等于0,则这几个数都等于0.环节3 课堂小结,当堂达标(学生总结,老师点评)用配方法解一元二次方程的一般步骤:一移项→二化简→三配方→四开方请完成本课时对应练习!21.2.2 公式法(第2课时)一、基本目标【知识与技能】1.理解一元二次方程求根公式的推导过程,了解公式法的概念.2.会熟练运用公式法解一元二次方程.【过程与方法】复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.【情感态度与价值观】在一元二次方程求根公式的推导过程中,激发学生兴趣,了解解决问题多样性.二、重难点目标【教学重点】求根公式的推导及用公式法解一元二次方程.【教学难点】一元二次方程求根公式的推导.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P9~P12的内容,完成下面练习. 【3 min 反馈】1.用配方法解下列方程: (1)x 2-5x =0; x 1=0,x 2=5. (2)2x 2-4x -1=0. x 1=1+62,x 2=1-62. 2.如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它的两根? x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac2a.【教师点拨】因为前面解具体数字的一元二次方程已做得很多,我们现在不妨把a 、b 、c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.3.一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a 、b 、c 而定.(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0.当b 2-4ac ≥0时,将a 、b 、c 代入式子x =-b ±b 2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的__求根公式__. (3)利用求根公式解一元二次方程的方法叫__公式法__.(4)由求根公式可知,一元二次方程最多有__2__个实数根,也可能__没有__实数根. (5)一般地,式子b 2-4ac 叫做方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=__b 2-4ac __.当Δ__>__0时,方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根;当Δ__=__0时,方程ax 2+bx +c =0(a ≠0)有两个相等的实数根;当Δ__<__0时,方程ax 2+bx +c =0(a ≠0)没有实数根.4.不解方程,判断方程根的情况. (1)16x 2+8x =-3; (2)9x 2+6x +1=0; (3)2x 2-9x +8=0; (4)x 2-7x -18=0. 解:(1)没有实数根. (2)有两个相等的实数根. (3)有两个不相等的实数根. (4)有两个不相等的实数根.【教师点拨】将方程化为一般形式,再用判别式进行判断. 环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】用公式法解下列方程: (1)2x 2+1=3x ; (2)2x (x -1)-7x =2.【互动探索】(引发学生思考)用公式法解一元二次方程的步骤是怎样的? 【解答】(1)原方程整理,得2x 2-3x +1=0. 其中a =2,b =-3,c =1,则Δ=b 2-4ac =(-3)2-4×2×1=1>0. ∴x =-b ±b 2-4ac 2a =--3±12×2,即x 1=12,x 2=1.(2)原方程整理,得2x 2-9x -2=0. 其中a =2,b =-9,c =-2,则Δ=b 2-4ac =(-9)2-4×2×(-2)=97>0. ∴x =-b ±b 2-4ac 2a=--9±972×2,即x 1=9+974,x 2=9-974.【互动总结】(学生总结,老师点评)用公式法解一元二次方程的一般步骤:(1)把方程化为一般形式,确定a 、b 、c 的值;(2)求出Δ=b 2-4ac 的值;(3)当Δ>0时,方程有两个不相等的实数根,即x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac2a ;当Δ=0时,方程有两个相等的实数根,即x 1=x 2=-b2a;当Δ<0时,方程没有实数根. 【活动2】 巩固练习(学生独学)1.方程x 2-4x +4=0的根的情况是( B ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个实数根 D .没有实数根2.如果方程5x 2-4x =m 没有实数根,那么m 的取值范围是__m <-45__.3.用公式法解下列方程:(1)2x 2-6x -1=0; (2)2x 2-2x +1=0; (3)5x +2=3x 2.解:(1)x 1=3+112,x 2=3-112.(2)方程没有实数根. (3)x 1=2,x 2=-13.【活动3】 拓展延伸(学生对学)【例2】已知a 、b 、c 分别是三角形的三边,试判断方程(a +b )x 2+2cx +(a +b )=0的根的情况.【互动探索】(引发学生思考)三角形的三边满足什么关系?是怎样根据一元二次方程的系数判断根的情况?【解答】∵a 、b 、c 分别是三角形的三边,∴a +b >0,c +a +b >0,c -a -b <0,∴Δ=(2c )2-4(a +b )·(a +b )=4(c +a +b )(c -a -b )<0,故原方程没有实数根.【互动总结】(学生总结,老师点评)解答本题的关键是掌握三角形三边的关系,即两边之和大于第三边,以及运用根的判别式Δ=b 2-4ac 判断方程的根的情况.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.一元二次方程根的情况⎩⎪⎨⎪⎧Δ>0⇔方程有两个不相等的实数根Δ=0⇔方程有两个相等的实数根Δ<0⇔方程没有实数根2.当Δ≥0时,方程ax 2+bx +c =0(a ≠0)的实数根为x =-b ±b 2-4ac2a.请完成本课时对应练习!21.2.3 因式分解法(第3课时)一、基本目标 【知识与技能】1.掌握用因式分解法解一元二次方程.2.能根据具体一元二次方程的特征,灵活选择方程的解法. 【过程与方法】通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.【情感态度与价值观】了解因式分解法是一元二次方程解法中应用较为广泛的简便方法,它避免了复杂的计算,提高了解题速度和准确程度,培养学生的应用意识和创新能力.二、重难点目标 【教学重点】运用因式分解法解一元二次方程. 【教学难点】选择适当的方法解一元二次方程.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P12~P14的内容,完成下面练习. 【3 min 反馈】1.将下列各题因式分解:am +bm +cm =__m (a +b +c )__; a 2-b 2=__(a +b )(a -b )__; a 2+2ab +b 2=__(a +b )2__; x 2+5x +6=__(x +2)(x +3)__;3x 2-14x +8=__(x -4)(3x -2)__. 2.按要求解下列方程: (1)2x 2+x =0(用配方法); (2)3x 2+6x -24=0(用公式法).解:(1)x 1=0,x 2=-12. (2)x 1=2,x 2=-4.3.对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做__因式分解法__.4.如果ab =0,那么a =0或b =0,这是因式分解法的根据.即:如果(x +1)(x -1)=0,那么x +1=0或 __x -1=0__,即x =-1或__x =1__.环节2 合作探究,解决问题 【活动1】 小组讨论(师生对学) 【例1】用因式分解法解下列方程: (1)x 2-3x -10=0; (2)5x 2-2x -14=x 2-2x +34;(3)3x (2x +1)=4x +2; (4)(x -4)2=(5-2x )2.【互动探索】(引发学生思考)用因式分解法解一元二次方程的一般步骤是什么? 【解答】(1)因式分解,得(x +2)(x -5)=0. ∴x +2=0或x -5=0, ∴x 1=-2,x 2=5.(2)移项、合并同类项,得4x 2-1=0. 因式分解,得(2x +1)(2x -1)=0. ∴2x +1=0或2x -1=0, ∴x 1=-12,x 2=12.(3)原方程可变形为3x (2x +1)-2(2x +1)=0. 因式分解,得(2x +1)(3x -2)=0. ∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.(4)移项,得(x -4)2-(5-2x )2=0. 因式分解,得(1-x )(3x -9)=0, ∴1-x =0或3x -9=0, ∴x 1=1,x 2=3.【互动总结】(学生总结,老师点评)用因式分解法解一元二次方程的步骤:(1)将一元二次方程化成一般形式,即方程右边为0;(2)将方程左边进行因式分解,将一元二次方程转化成两个一元一次方程;(3)对两个一元一次方程分别求解.【活动2】 巩固练习(学生独学) 1.解方程: (1)x 2-3x -10=0; (2)3x (x +2)=5(x +2); (3)(3x +1)2-5=0; (4)x 2-6x +9=(2-3x )2. 解:(1)x 1=5,x 2=-2. (2)x 1=-2,x 2=53.(3)x 1=-1+53,x 2=5-13.(4)x 1=-12,x 2=54.2.三角形两边的长是3和4,第三边的长是方程x 2-12x +35=0的根,求该三角形的周长.解:解x 2-12x +35=0,得x 1=5,x 2=7.∵3+4=7,∴x =5,故该三角形的周长=3+4+5=12. 【活动3】 拓展延伸(学生对学)【例2】已知9a 2-4b 2=0,求代数式a b -b a -a 2+b 2ab的值.【互动探索】(引发学生思考)a 、b 的值能求出来吗?a 、b 之间有怎样的关系?怎样将a 、b 的值与已知代数式联系起来.【解答】原式=a 2-b 2-a 2-b 2ab =-2ba.∵9a 2-4b 2=0,∴(3a +2b )(3a -2b )=0, 即3a +2b =0或3a -2b =0, ∴a =-23b 或a =23b .当a =-23b 时,原式=-2b-23b =3;当a =23b 时,原式=-3.【互动总结】(学生总结,老师点评)要求a b -b a -a 2+b 2ab的值,首先要对它进行化简,然后从已知条件入手,求出a 与b 的关系后代入,但也可以直接代入,因计算量比较大,容易发生错误.本题注意不要漏解.环节3 课堂小结,当堂达标 (学生总结,老师点评)用因式分解法解一元二次方程的一般步骤:先将方程一边化为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.请完成本课时对应练习!*21.2.4 一元二次方程的根与系数的关系(第4课时)一、基本目标【知识与技能】掌握一元二次方程的根与系数的关系.【过程与方法】利用求根公式得到一元二次方程的根,推导出根与系数的关系,体现了数学推理的严密性与严谨性.【情感态度与价值观】通过公式的引入,培养学生寻求简便方法的探索精神及创新意识,培养学生观察思考、归纳概括的能力.二、重难点目标【教学重点】理解一元二次方程的根与系数的关系.【教学难点】利用一元二次方程根与系数的关系解决问题.环节1 自学提纲,生成问题【5 min阅读】阅读教材P15~P16的内容,完成下面练习.【3 min反馈】1.解下列方程,并填写表格:方程x1x2x1+x2x1·x2x2-2x=00220x2+3x-4=0-41-3-4x2-5x+6=0235 6(1)用语言描述你发现的规律:__一元二次方程的两根之和为一次项系数的相反数;两根之积为常数项__.(2)关于x的方程x2+px+q=0的两根为x1、x2,请用式子表示x1、x2与p、q的关系:__x1+x2=-p,x1x2=q__.2.解下列方程,并填写表格:方程x1x2x1+x2x1·x2(1)用语言描述你发现的规律:__两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比__.(2)关于x 的方程ax 2+bx +c =0(a ≠0)的两根为x 1、x 2,请用式子表示x 1、x 2与a 、b 、c 的关系:__x 1+x 2=-b a ,x 1x 2=ca__.3.求下列方程的两根之和与两根之积. (1)x 2-6x -15=0; (2)5x -1=4x 2; (3)x 2=4; (4)2x 2=3x .解:(1)x 1+x 2=6,x 1x 2=-15. (2)x 1+x 2=54,x 1x 2=14.(3)x 1+x 2=0,x 1x 2=-4. (4)x 1+x 2=32,x 1x 2=0.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】x 1、x 2是方程2x 2-3x -5=0的两个根,不解方程,求下列代数式的值: (1)x 1+x 2 ; (2)1x 1+1x 2;(3)x 21+x 22; (4)x 21+3x 22-3x 2.【互动探索】(引发学生思考)根据一元二次方程的根与系数的关系可考虑将所求代数式转化为两根之和与两根之积的关系.【解答】(1)x 1+x 2=32,(2)∵x 1x 2=-52,∴1x 1+1x 2=x 1+x 2x 1x 2=-35.(3)x 21+x 22=(x 1+x 2)2-2x 1x 2=294.(4)x 21+3x 22-3x 2=(x 21 +x 22 ) +(2x 22 -3x 2 )=1214.【互动总结】(学生总结,老师点评)解答这类问题一般先将求值式进行变形,使其含有两根的和与两根的积,再求出方程的两根的和与两根的积,整体代入即可求解.【活动2】 巩固练习(学生独学)1.不解方程,求下列方程的两根和与两根积. (1)x 2-5x -3=0; (2)9x +2=x 2; (3)6x 2-3x +2=0; (4)3x 2+x +1=0. 解:(1)x 1+x 2=5,x 1x 2=-3. (2)x 1+x 2=9,x 1x 2=-2. (3)方程无解. (4)方程无解.2.已知方程x 2-3x +m =0的一个根为1,求另一根及m 的值. 解:另一根为2,m =2.【教师点拨】本题有两种解法:一种是根据根的定义,将x =1代入方程先求m ,再求另一个根;另一种是利用根与系数的关系解答.3.若一元二次方程x 2+ax +2=0的两根满足:x 21 +x 22 =12,求a 的值. 解:a =±4.【教师点拨】由x 21 + x 22 =(x 1+x 2)2-2x 1x 2=12,再整体代入方程的两根之和与两根之积得到答案.【活动3】 拓展延伸(学生对学)【例2】已知关于x 的方程x 2-(k +1)x +14k 2+1=0,且方程两实根的积为5,求k 的值.【互动探索】(引发学生思考)一元二次方程有根的条件是什么?一元二次方程两实根的积与什么有关?【解答】∵方程两实根的积为5,∴ ⎩⎪⎨⎪⎧Δ=[-k +1]2-4⎝ ⎛⎭⎪⎫14k 2+1≥0,x 1x 2=14k 2+1=5,∴k ≥32,k =±4.故当k =4时,方程两实根的积为5.【互动总结】(学生总结,老师点评)根据一元二次方程两实根满足的条件,求待定字母的值,务必要注意方程有两实根的条件,即所求的值应满足Δ≥0.环节3 课堂小结,当堂达标 (学生总结,老师点评)一元二次方程ax 2+bx +c =0(a ≠0)的两根x 1、x 2和系数的关系如下:x 1+x 2=-b a ,x 1x 2=ca.请完成本课时对应练习!21.3 实际问题与一元二次方程一、基本目标 【知识与技能】1.会根据具体问题中的数量关系列一元二次方程并求解. 2.能根据问题的实际意义,检验所得结果是否合理. 【过程与方法】经历分析和解决实际问题的过程,体会一元二次方程的数学建模作用. 【情感态度与价值观】体会数学来源于实践,反过来又作用于实践,增强数学的应用意识. 二、重难点目标 【教学重点】列一元二次方程解决实际问题的一般步骤. 【教学难点】利用一元二次方程解决实际问题.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P19~P21的内容,完成下面练习. 【3 min 反馈】1. 有一人患了感毛,经过两轮传染后共有121人患了感冒,每轮传染中平均一个人传染了几个人?设每轮传染中平均一个人传染了x个人,则第一轮后共有__1+x__人患了感冒,第二轮后共有__1+x+x(x+1)__人患了感冒.可列方程 __1+x+x(x+1)=121__.解方程,得x1=__-12(不合题意,舍去)__,_x2=__10__.所以平均一个人传染了__10__个人.2.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.01)绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元),显然,乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为__5000(1-x)__元,两年后甲种药品成本为__5000(1-x)2__元.依题意,得__5000(1-x)2=3000__.解得__x1≈0.23,x2≈1.77__.根据实际意义,甲种药品成本的年平均下降率约为__23%__.②设乙种药品成本的年平均下降率为y.依题意,得__6000(1-y)2=3600__.解得__y1≈0.23,y2≈1.77(不合题意,舍去)__.所以两种药品成本的年平均下降率 __相同__.提示:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.环节2 合作探究,解决问题【活动1】小组讨论(师生互学)【例1】某林场计划修一条长750 m,断面为等腰梯形的渠道,断面面积为1.6 m2,上口宽比渠深多2 m,渠底比渠深多0.4 m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48 m3,需要多少天才能把这条渠道挖完?【互动探索】(引发学生思考)(1)怎样用渠深表示上口宽和渠底,怎样计算梯形面积?(2)渠道的体积怎样计算?【解答】(1)设渠深为x m,则渠底为(x+0.4)m,上口宽为(x+2)m.依题意,得12(x +2+x +0.4)x =1.6,整理,得5x 2+6x -8=0, 解得x 1=45=0.8,x 2=-2(舍去),∴上口宽为2.8 m ,渠底为1.2 m.(2)如果计划每天挖土48 m 3,需要1.6×75048=25(天)才能挖完渠道.【互动总结】(学生总结,老师点评)解答本题的关键是掌握梯形面积的计算方法,正确用未知数表示出相关数量.【活动2】 巩固练习(学生独学)1.两个正数的差是2,它们的平方和是52,则这两个数是( C ) A .2和4 B .6和8 C .4和6D .8和102.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x 个小分支, 则1+x +x ·x =91.解得x 1=9或x 2=-10(舍去).故每个支干长出9个小分支.3.如图,要设计一幅长30 cm 、宽20 cm 的图案,其中有两横两竖的彩条(图中阴影部分),横、竖彩条的宽度比为3∶2,如果要使彩条所占面积是图案面积的14,应如何设计彩条的宽度?(精确到0.1 cm)解:横彩条宽为1.8 cm ,竖彩条宽为1.2 cm.【教师点拨】设横彩条的宽度为3x cm ,则竖彩条的宽度为2x cm.根据题意,得(30-4x )(20-6x )=⎝ ⎛⎭⎪⎫1-14×20×30.解得x 1≈0.61或x 2≈10.2(舍去). 4.用一根长40 cm 的铁丝围成一个长方形,要求长方形的面积为75 cm 2.(1)此长方形的宽是多少?(2)能围成一个面积为101 cm 2的长方形吗?若能,说明围法;若不能,说明理由; 解:(1)5 cm.(2)不能.设宽为x cm ,则长为(20-x ) cm ,由x (20-x )=101,即x 2-20x +101=0,由Δ=202-4×101=-4<0,∴方程无解,故不能围成一个面积为101 cm 2的长方形.【活动3】拓展延伸(学生对学)【例3】如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m),现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.【互动探索】(引发学生思考)AB与BC之间的数量关系是怎样的?BC还应满足什么条件?【解答】设AB=x m,则BC=(50-2x)m.根据题意,得x(50-2x)=300.解得x1=10,x2=15,当x=10时,BC=50-10-10=30>25,则x1=10不合题意,舍去.故可以围成AB长为15 m,BC长为20 m的矩形花园.【互动总结】(学生总结,老师点评)利用一元二次方程解决实际问题时,要注意检验方程的根是否符合实际问题.环节3 课堂小结,当堂达标(学生总结,老师点评)列一元二次方程解应用题的一般步骤:(1)“设”,即设未知数,设未知数的方法有直接设和间接设未知数两种;(2)“列”,即根据题中的等量关系列方程;(3)“解”,即求出所列方程的根;(4)“检验”,即验证是否符合题意;(5)“答”,即回答题目中要解决的问题.请完成本课时对应练习!22.1 二次函数的图象和性质22.1.1 二次函数(第1课时)一、基本目标 【知识与技能】1.理解并掌握二次函数的概念,能判断一个给定的函数是否为二次函数. 2.根据实际问题中的条件确定二次函数的解析式,体会函数的模型思想. 【过程与方法】经历与一次函数类比学习的过程,学会与人合作,并获得代数学习的一些常用方法:类比法、合情推理、抽象概括等.【情感态度与价值观】通过对几个特殊的二次函数的讲解,体验数学中的探索精神,初步体会二次函数的数学模型.二、重难点目标 【教学重点】 二次函数的概念. 【教学难点】能根据已知条件写出二次函数的解析式.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P28~P29的内容,完成下面练习. 【3 min 反馈】1.正比例的函数的表达式为y =kx (k 为常数,且k ≠0);一次函数的表达式为__y =ax +b __(a 、b 为常数,且a ≠0).2.二次函数的概念:一般地,形如__y =ax 2+bx +c __(a 、b 、c 是常数,且a ≠0)的函数叫做二次函数,其中二次项系数、一次项系数和常数项分别为__a 、b 、c __.3.下列函数中,是二次函数的有__①②③__.①y =(x -3)2-1;②y =1-2x 2;③y =13(x +2)(x -2);④y =(x -1)2-x 2.4.二次函数y =-x 2+2x 中,二次项系数是__-1__,一次项系数是___2____,常数项是___0____.5.半径为R 的圆,半径增加x ,圆的面积增加y ,则y 与x 之间的函数关系式为__y =πx 2+2πRx (x ≥0)__.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】已知关于x 的函数y =(m +1)xm 2-m 是二次函数, 求m 的值.。

《21.2.2 公式法》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册

《21.2.2 公式法》教学设计教学反思-2023-2024学年初中数学人教版12九年级上册

《公式法》教学设计方案(第一课时)一、教学目标1. 掌握公式法概念及基本步骤。

2. 能够运用公式法计算公式涉及的数学问题。

3. 培养学生对公式法的理解和应用能力。

二、教学重难点1. 教学重点:理解公式法概念,掌握公式法基本步骤。

2. 教学难点:运用公式法解决实际问题,理解公式的适用范围和条件。

三、教学准备1. 准备教学用具:黑板、白板、笔、几何图形工具等。

2. 准备教学资料:相关例题、练习题及拓展资料。

3. 设计教学流程:导入、讲解、示范、练习、反馈等环节。

4. 确定教学方法:采用互动式、案例式等教学方法,注重学生参与和实践。

四、教学过程:本节课的教学对象是八年级学生,他们已经掌握了一定的基础知识,有了一定的逻辑推理能力。

为了提高他们的学习兴趣和自信心,本节课将采用讲授、演示、探究、练习等多种教学方法,以引导学生自主探究,动手实践,合作交流。

1. 导入新课:通过回顾上一节课的内容,引入本节课的主题——公式法。

让学生明确学习目标,即掌握公式的概念、公式的形式、公式的适用范围等。

2. 讲授新课:通过演示和讲解,让学生逐步理解公式的概念和形式。

可以通过一些简单的例子,让学生自己总结公式的适用范围,并加以巩固。

3. 探究活动:将学生分成若干小组,进行探究活动。

可以设置一些实际问题,让学生运用所学知识解决,以加深对公式的理解和应用。

4. 课堂练习:通过练习题,让学生巩固所学知识,并发现自己的不足之处。

教师及时给予指导,帮助学生解决问题。

5. 课堂小结:引导学生回顾本节课的主要内容,总结公式的概念、形式、适用范围等。

同时,鼓励学生交流学习心得,分享学习经验。

6. 布置作业:针对本节课的内容,布置一些相关练习题,让学生在家中继续巩固和深化所学知识。

在整个教学过程中,要注重学生的主体地位,发挥学生的主动性,培养他们的探究精神和合作意识。

同时,教师也要发挥主导作用,适时引导和启发学生,关注学生的表现和反应,及时调整教学策略,确保教学效果。

人教版数学九年级上册(新)教案:21.2《公式法》

人教版数学九年级上册(新)教案:21.2《公式法》
举例:如何判断x²+4x+4和x²+4x+3哪个可以运用完全平方公式。
(2)平方差公式的适用范围:学生需要理解平方差公式仅适用于形如a²-b²的差平方形式,而不仅仅是数字,也可以是含有变量的表达式。
举例:解释为什么x²-y²可以因式分解为(x+y)(x-y),而x²+y²则不能。
(3)立方和与立方差公式的复杂性:这些公式相对复杂,学生需要克服对立方项分解的恐惧,理解并掌握公式的结构。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解公式法的基本概念。公式法是指利用已知的数学公式来简化代数表达式或解决方程问题。它是数学中非常重要的一环,可以帮助我们快速准确地解决各种数学问题。
2.案例分析:接下来,我们来看一个具体的案例。比如,利用完全平方公式将x²+6x+9分解为(x+3)²。这个案例展示了公式法在实际中的应用,以及它如何帮助我们解决问题。
举例:如x²+6x+9的因式分解,应能迅速识别为(x+3)²。
(2)平方差公式的应用:关键是掌握a²-b²=(a+b)(a-b)公式的适用条件,能够解决形如x²-4、9x²-16等类型的因式分解问题。
举例:如x²-9的因式分解,应能迅速得到(x+3)(x-3)。
(3)立方和与立方差公式的理解:重点在于掌握a³+b³=(a+b)(a²-ab+b²)和a³-b³=(a-b)(a²+ab+b²)两个公式的推导和应用,能够处理相应的因式分解问题。
学生小组讨论的部分,我尝试让每个小组记录并分享他们的讨论成果,这样的方式既能促进学生之间的交流,也能让全班同学从中受益。但我也发现,部分学生在表达自己的观点时还不够自信,可能是因为他们对知识的掌握还不够扎实。因此,我计划在接下来的课程中,多给予学生表达的机会,鼓励他们大胆地说出自己的想法。

21.2.2+解一元一次方程(公式法)-【高效课堂】2023-2024学年九年级数学上册同步精品课件

21.2.2+解一元一次方程(公式法)-【高效课堂】2023-2024学年九年级数学上册同步精品课件

新知探究
用配方法解一般形式的一元二次方程
ax2+bx+c=0 (a≠0).
解: 移项,得 ax2 bx c,
方程两边都除以a x2 b x c ,
a
a
配方,得
x2
b a
x
b 2a
2
c a
b 2a
2
.

x
b 2a
2
b2 4ac 4a 2
.
新知探究
∵a ≠0,4a2>0,式子b2-4ac 的值有以下三种情况:
巩固练习
2.用公式法解方程:2x2+1=-2x. 2
解:方程化为 2x2+2x+21=0. a=2,b=2,c=12. Δ=b2-4ac=22-4×2×12=0. 方程有两个相等的实数根 x1=x2=-2ba=-2×2 2=-12.
巩固练习
3.用公式法解方程:2x2- 5x+1=0.
解:a=2,b=- 5,c=1. Δ=b2-4ac=(- 5)2-4×2×1=-3<0. 方程无实数根.
⑴b2-4ac> 0 b2 4ac >0,
这时 4a2

b
b2 4ac
x
.
2a
2a
x b
b2 4ac .
2a
方程有两个不相等实 数根
新知探究
⑵b2-4ac=0 这时 b2 4ac 0,
4a 2
x1=x2=-
b 2a
方程有两个相等实数 根
新知探究
(3)b2-4ac <0时,
x
b 2a
第21章
一元二次方程
21.2.2 解一元一次方程(公式法)
教学目标/Teaching aims

最新人教版九年级数学上册《公式法》精品教案

最新人教版九年级数学上册《公式法》精品教案

21.2.2 公式法1.知道一元二次方程根的判别式的概念.2.会用判别式判断一元二次方程的根的情况及根据一元二次方程的根的情况确定字母的取值范围.3.经历求根公式的推导过程并会用公式法解简单的一元二次方程.一、情境导入老师写了4个一元二次方程让同学们判断它们是否有解,大家都才解第一个方程呢,小强突然站起来说出每个方程解的情况,你想知道他是如何判断的吗?二、合作探究探究点一:一元二次方程的根的情况【类型一】判断一元二次方程根的情况不解方程,判断下列方程的根的情况.(1)2x2+3x-4=0;(2)x2-x+14=0;(3)x2-x+1=0.解析:根据根的判别式我们可以知道当b2-4ac≥0时,方程才有实数根,而b2-4ac<0时,方程没有实数根.由此我们不解方程就能判断一元二次方程根的情况.解:(1)2x2+3x-4=0,a=2,b=3,c=-4,∴b2-4ac=32-4×2×(-4)=41>0.∴方程有两个不相等的实数根.(2)x2-x+14=0,a=1,b=-1,c=14.∴b2-4ac=(-1)2-4×1×14=0.∴方程有两个相等的实数根.(3)x2-x+1=0,a=1,b=-1,c=1.∴b2-4ac=(-1)2-4×1×1=-3<0.∴方程没有实数根.方法总结:给出一个一元二次方程,不解方程,可由b2-4ac的值的符号来判断方程根的情况.当b2-4ac>0时,一元二次方程有两个不相等的实数根;当b2-4ac=0时,一元二次方程有两个相等的实数根;当b2-4ac<0时,一元二次方程无实数根.【类型二】由一元二次方程根的情况确定字母系数的取值已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是( )A.a>2 B.a<2C.a<2且a≠1 D.a<-2解析:由于一元二次方程有两个不相等的实数根,判别式大于0,得到一个不等式,再由二次项系数不为0知a-1不为0.即4-4(a-1)>0且a-1≠0,解得a<2且a≠1.选C.方法总结:若方程有实数根,则b2-4ac≥0.由于本题强调说明方程是一元二次方程,所以,二次项系数不为0.因此本题还是一道易错题.【类型三】说明含有字母系数的一元二次方程根的情况已知:关于x的方程2x2+kx-1=0,求证:方程有两个不相等的实数根.证明:Δ=k2-4×2×(-1)=k2+8,无论k取何值,k2≥0,所以k2+8>0,即Δ>0,∴方程2x2+kx-1=0有两个不相等的实数根.方法总结:要说明一个含字母系数的一元二次方程的根的情况,只需求出该方程根的判别式,分析其正、负情况,即可得出结论.【类型四】一元二次方程的根的情况的实际应用小林准备进行如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.小峰对小林说:“这两个正方形的面积之和不可能等于48cm2”,他的说法对吗?请说明理由.解:假设能围成.设其中一个正方形的边长为x,则另一个正方形的边长是(10-x),由题可得,x2+(10-x)2=48.化简得x2-10x+26=0.因为b2-4ac=(-10)2-4×1×26=-4<0,所以此方程没有实数根.所以小峰的说法是对的.探究点二:公式法解一元二次方程【类型一】用公式法解一元二次方程用公式法解下列方程:(1)2x2+x-6=0;(2)x2+4x=2;(3)5x2-4x+12=0;(4)4x2+4x+10=1-8x.解析:方程(1)(3)是一元二次方程的一般形式,可以直接确定a,b,c的值,并计算b2-4ac的值,然后代入求根公式,即可求出方程的根;方程(2)(4)则需要先化成一般形式,再求解.解:(1)这里a=2,b=1,c=-6,b2-4ac=12-4×2×(-6)=1+48=49.∴x=-b±b2-4ac2a =-1±492×2=-1±74,即原方程的解是x1=-2,x2=32.(2)将方程化为一般形式,得x2+4x-2=0.∵b2-4ac=24,∴x=-4±242=-2± 6.∴原方程的解是x1=-2+6,x2=-2- 6.(3)∵b2-4ac=-224<0,∴原方程没有实数根.(4)整理,得4x2+12x+9=0.∵b2-4ac=0,∴x1=x2=-32.方法总结:用公式法解一元二次方程时,一定要先将方程化为一般形式,再确定a,b,c的值.【类型二】一元二次方程解法的综合运用三角形的两边分别为2和6,第三边是方程x2-10x+21=0的解,则第三边的长为( )A.7 B.3C.7或3 D.无法确定解析:解一元二次方程x2-10x+21=0,得x1=3,x2=7.根据三角形三边的关系,第三边还应满足4<x<8.所以第三边的长x=7.故选A.方法总结:解题的关键是正确求解一元二次方程,并会运用三角形三边的关系进行取舍.三、板书设计教学过程中,强调用判别式去判断方程根的情况,首先需把方程化为一般形式.同时公式法的得出是通过配方法来的,用公式法解方程∴前提是Δ≥0.教师寄语同学们,生活让人快乐,学习让人更快乐。

最新人教版九年级数学上册《公式法》优质教案

最新人教版九年级数学上册《公式法》优质教案

第二十一章 一元二次方程 21.2 解一元二次方程 21.2.2 公式法学习目标:1.经历求根公式的推导过程.2.会用公式法解一元二次方程.3.理解并会计算一元二次方程根的判别式.4.会用判别式判断一元二次方程的根的情况.重点:运用公式法解一元二次方程. 难点:一元二次方程求根公式的推导. 一、知识链接如何用配方法解方程2x 2+4x-1=0? 二、要点探究探究点1:求根公式的推导合作探究 任何一个一元二次方程都可以写成一般形式ax 2+bx+c=0(a ≠0),能否也用配方法得出它的解呢?问题1 用配方法解一元二次方程ax 2+bx+c=0(a ≠0). 解:移项,得ax 2+bx=-c , 二次项系数化为1,得x 2+ x=c a 配方,得x 2+ x+( )2=( )2c a即(x+2b a)2=2244b aca ①问题2 对于方程①接下来能直接开平方解吗?要点归纳:∵a ≠0,∴4a 2>0.要注意式子b 2-4ac 的值有大于0、小于0和等于0三种情况. 探究点2:一元二次方程根的判别式我们把b 2-4ac 叫做一元二次方程ax 2+bx+c=0根的判别式,通常用符号“”表示,即= b 2-4ac.0 0练一练 按要求完成下列表格 4403x21103x x10例1 已知一元二次方程x 2+x=1,下列判断正确的是( ) A.该方程有两个相等的实数根 B.该方程有两个不相等的实数根 C.该方程无实数根 D.该方程根的情况不确定例2 不解方程,判断下列方程的根的情况.(1) 3x 2+4x -3=0; (2) 4x 2=12x -9; (3) 7y=5(y 2+1).方法总结:现将方程变形为一般形式ax 2+bx+c=0,再根据根的判别式求解即可.例3 若关于x 的一元二次方程x 2+8x+q=0有两个不相等的实数根,则q 的取值范围是( ) A. q ≤4 B. q ≥4C. q<16D. q>16【变式题】二次项系数含字母若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是( ) A. k>-1 B. k>-1且k ≠0C. k<1D. k<1且k ≠0方法总结:当一元二次方程二次项系数为字母时,一定要注意二次项系数不为0,再根据根的判别式求字母的取值范围. 【变式题】删除限制条件“二次”若关于x 的方程kx 2-2x -1=0有实数根,则k 的取值范围是( ) A. k ≥-1 B.k ≥-1且k ≠0C.k<1D.k<1且k ≠0探究点3:用公式法解方程由上可知,当≥0时,方程ax 2+bx+c=0 (a ≠0)的实数根可写为242bb ac xa的形式,这个式子叫做一元二次方程ax 2+bx+c=0的求根公式.用求根公式解一元二次方程的方法叫做公式法.例4 (教材p11例2)用公式法解下列方程:(1)x 2-4x -7=0; (2) 2x 2-+1=0; (2) 5x 2-3x=x+1; (4) x 2+17=8x. 要点归纳:公式法解方程的步骤: 1.变形:化已知方程为一般形式; 2.确定系数:用a ,b ,c 写出各项系数; 3.计算:b 2-4ac 的值;4.判断:若b 2-4ac ≥0,则利用求根公式求出;若b 2-4ac<0,则方程没有实数根. 三、课堂小结(1) 2x 2+3x -4=0; (2) x 2-x+14=0; (3) x 2-x+1=0.2.解方程:x 2 +7x –18 = 0.3.解方程:(x -2) (1-3x) = 6.4.解方程:2x 2-5.(1)关于x 的一元二次方程220x x m 有两个实根,则m 的取值范围是 ; (2)若关于x 的一元二次方程(m-1)x 2-2mx+m=2有实数根.求m 的取值范围. 6.不解方程,判别关于x 的方程22220x kx k 的根的情况.能力提升:在等腰△ABC 中,三边分别为a ,b ,c ,其中a=5,若关于x 的方程x 2+(b+2)x+6-b=0有两个相等的实数根,求△ABC 的周长. 参考答案 自主学习 一、知识链接 解:方程整理得212.2x x配方,得23+12x .直接开平方,得6+12x ,∴12661122x x ,. 课堂探究 二、要点探究探究点1:求根公式的推导 问题1b a b a 2b a 2ba问题2 不能,需要注意右边式子有大于0,等于0,小于0三种情况. 探究点2:一元二次方程根的判别式两个不相等实数根 两个相等实数根 没有实数根 两个实数根 练一练 从上往下,从左到右依次为0,13,4,有两个相等实数根,没有实数根,有两个不相等的实数根例1 B 解析:原方程变形为x 2+x -1=0.∵b 2-4ac=1-4×1×(-1)=5>0,∴该方程有两个不相等的实数根,故选B.例2 解:(1)3x 2+4x -3=0,a=3,b=4,c=-3,∴b 2-4ac=42-4×3×(-3)=52>0.∴方程有两个不相等的实数根.(2)方程化为:4x 2-12x+9=0,∴b 2-4ac=(-12)2-4×4×9=0.∴方程有两个相等的实数根. (3)方程化为:5y 2-7y+5=0,∴b 2-4ac=(-7)2-4×5×5=-51<0.∴方程无实数根.例3 C 解析:由根的判别式知,方程有两个不相等的实数根,则b 2-4ac>0,即82-4q>0.解得q <16,故选C.【变式题】B 解析:方程有两个不相等的实数根,则b 2-4ac>0,即(-2)2+4k>0.又二次项系数不为0,可得k>-1且k ≠0,故选B.【变式题】A 思路分析:分k=0或k ≠0两种情况进行分类讨论. 探究点3:用公式法解方程例4 解:(1)a=1,b=-4,c=-7,b 2-4ac=(-4)2-4×1×(-7)=44>0.方程有两个不相等的实数根24(4)44211.221bb ac xa即12211211x x ,.(2)a=2,b=22,c=1,b 2-4ac=(22)2-4×1×2=0.方程有两个相等的实数根,即212422022222bb ac x x a. (3)方程化为5x 2-4x -1=0,a=5,b=-4,c=-1,b 2-4ac=(-4)2-4×5×(-1)=36>0.方程有两个不相等的实数根24(4)3646.22510bb ac xa 即12115x x ,. (4)方程化为x 2-8x+17=0,a=1,b=-8,c=17,b 2-4ac=(-8)2-4×1×17=-4<0.方程无实数根. 当堂检测1.解:(1)a=2,b=3,c=-4,b 2-4ac=32-4×2×(-4)=41>0.方程有两个不相等的实数根. (2)a=1,b=-1,c=14,b 2-4ac=(-1)2-4×1×14=0.方程有两个相等的实数根. (3)a=1,b=-1,c=1,b 2-4ac=(-1)2-4×1×1=-3<0.方程无实数根. 2.解:这里a=1,b=7,c=-18,b 2-4ac=72-4×1×(-18)=121>0. ∴247121711.2212bb ac xa1292x x ,.3. 解:去括号,得x -2-3x 2 + 6x = 6,化为一般式为3x 2-7x + 8 = 0,这里a=3,b=-7,c=8,b 2-4ac=(-7)2–4×3×8 =49-96=-47<0.∴原方程无实数根. 4.这里a=2,b=33,c=3,b 2-4ac=(33)2-4×2×3=3>0. ∴24333.24bb acxa12332x x ,. 5.(1)m ≤1(2)解:化为一般式(m -1)x 2-2mx+m -2=0.Δ=4m 2−4(m −1)(m −2)≥0,且m -1≠0,解得23m 且m ≠1. 6.解:222222241844kk k k k ,∵20k ,∴240k ,∴0.∴方程有两个实数根.能力提升解:关于x 的方程x 2+(b+2)x+6-b=0有两个相等的实数根, 所以Δ=b 2-4ac=(b -2)2-4(6-b)=b 2+8b -20=0.所以b=-10或b=2. 将b=-10代入原方程得x 2-8x+16=0,x 1=x 2=4; 将b=2代入原方程得x 2+4x+4=0,x 1=x 2=-2(舍去); 所以△ABC 的三边长为4,4,5,其周长为4+4+5=13.教师寄语同学们,生活让人快乐,学习让人更快乐。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学年九年级数学上册公式法教案新版新人教版 The following text is amended on 12 November 2020.公式法教学内容1.一元二次方程求根公式的推导过程;2.公式法的概念;3.利用公式法解一元二次方程.教学目标理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)•的求根公式的推导公式,并应用公式法解一元二次方程.重难点关键1.重点:求根公式的推导和公式法的应用.2.难点与关键:一元二次方程求根公式法的推导.教学过程一、复习引入(学生活动)用配方法解下列方程(1)6x2-7x+1=0 (2)4x2-3x=52(老师点评)(1)移项,得:6x2-7x=-1二次项系数化为1,得:x2-76x=-16配方,得:x2-76x+(712)2=-16+(712)2(x-712)2=25144x-712=±512x1=512+712=7512+=1x 2=-512+712=7512-=16(2)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为(x+m)2=n的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.二、探索新知如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx+c=0(a ≠0)且b 2-4ac ≥0,试推导它的两个根x 1=242b b ac a -+-,x 2=242b b ac a --- 分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx=-c二次项系数化为1,得x 2+b a x=-c a配方,得:x 2+ba x+(2b a )2=-c a +(2b a )2即(x+2b a)2=2244b ac a - ∵b 2-4ac ≥0且4a 2>0∴2244b ac a -≥0 直接开平方,得:x+2b a=±242b ac a - 即x =242b b ac a-±-∴x1=242b b aca-+-,x2=242b b aca---由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac≥0时,•将a、b、c代入式子x=242b b aca-±-就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.(4)由求根公式可知,一元二次方程最多有两个实数根.例1.用公式法解下列方程.(1)2x2-4x-1=0 (2)5x+2=3x2(3)(x-2)(3x-5)=0 (4)4x2-3x+1=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.解:(1)a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0x=(4)2442626--±±±== ∴x 1=262+,x 2=262- (2)将方程化为一般形式3x 2-5x-2=0a=3,b=-5,c=-2b 2-4ac=(-5)2-4×3×(-2)=49>0x=(5)4957236--±±=⨯ x 1=2,x 2=-13(3)将方程化为一般形式3x 2-11x+9=0a=3,b=-11,c=9b 2-4ac=(-11)2-4×3×9=13>0 ∴(11)131113--±±= ∴x 11113+x 21113-(3)a=4,b=-3,c=1b 2-4ac=(-3)2-4×4×1=-7<0因为在实数范围内,负数不能开平方,所以方程无实数根.三、巩固练习教材P 42 练习1.(1)、(3)、(5)四、应用拓展例2.某数学兴趣小组对关于x 的方程(m+1)22m x++(m-2)x-1=0提出了下列问题. (1)若使方程为一元二次方程,m 是否存在若存在,求出m 并解此方程.(2)若使方程为一元二次方程m 是否存在若存在,请求出.你能解决这个问题吗分析:能.(1)要使它为一元二次方程,必须满足m 2+1=2,同时还要满足(m+1)≠0.(2)要使它为一元一次方程,必须满足:①211(1)(2)0m m m ⎧+=⎨++-≠⎩或②21020m m ⎧+=⎨-≠⎩或③1020m m +=⎧⎨-≠⎩ 解:(1)存在.根据题意,得:m 2+1=2m2=1 m=±1当m=1时,m+1=1+1=2≠0当m=-1时,m+1=-1+1=0(不合题意,舍去)∴当m=1时,方程为2x2-1-x=0a=2,b=-1,c=-1b2-4ac=(-1)2-4×2×(-1)=1+8=9x=(1)9134 --±±=x1=,x2=-12因此,该方程是一元二次方程时,m=1,两根x1=1,x2=-12.(2)存在.根据题意,得:①m2+1=1,m2=0,m=0因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0所以m=0满足题意.②当m2+1=0,m不存在.③当m+1=0,即m=-1时,m-2=-3≠0所以m=-1也满足题意.当m=0时,一元一次方程是x-2x-1=0,解得:x=-1当m=-1时,一元一次方程是-3x-1=0解得x=-1 3因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-•1时,其一元一次方程的根为x=-13.五、归纳小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程;(4)初步了解一元二次方程根的情况.六、布置作业1.教材复习巩固4.2.选用作业设计:一、选择题1.用公式法解方程4x 2-12x=3,得到( ).A ..C .D .2x 2=0的根是( ).A .x 1=,x 2.x 1=6,x 2C .x 1,x 2D .x 1=x 2=-3.(m 2-n 2)(m 2-n 2-2)-8=0,则m 2-n 2的值是( ).A .4B .-2C .4或-2D .-4或2二、填空题1.一元二次方程ax 2+bx+c=0(a ≠0)的求根公式是________,条件是________.2.当x=______时,代数式x 2-8x+12的值是-4.3.若关于x 的一元二次方程(m-1)x 2+x+m 2+2m-3=0有一根为0,则m 的值是_____.三、综合提高题1.用公式法解关于x 的方程:x 2-2ax-b 2+a 2=0.2.设x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根,(1)试推导x 1+x 2=-b a ,x 1·x 2=c a;(2)•求代数式a (x 13+x 23)+b (x 12+x 22)+c (x 1+x 2)的值. 3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A 千瓦时,•那么这户居民这个月只交10元电费,如果超过A 千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时100A 元收费. (1)若某户2月份用电90千瓦时,超过规定A 千瓦时,则超过部分电费为多少元(•用A 表示)(2)下表是这户居民3月、4月的用电情况和交费情况月份 用电量(千瓦时) 交电费总金额(元)3 80 254 45 10根据上表数据,求电厂规定的A 值为多少答案:一、1.D 2.D 3.C二、1.x=242b b ac a-±-,b 2-4ac ≥0 2.4 3.-3三、1.x=22224442a a b a ±+-=a ±│b │ 2.(1)∵x 1、x 2是ax 2+bx+c=0(a ≠0)的两根, ∴x 1=242b b ac a -+-,x 2=242b b ac a--- ∴x 1+x 2=2244b b ac b b ac -+----=-b a, x 1·x 2=24b b ac -+-·24b b ac ---=c a(2)∵x 1,x 2是ax 2+bx+c=0的两根,∴ax 12+bx 1+c=0,ax 22+bx 2+c=0 原式=ax 13+bx 12+c 1x 1+ax 23+bx 22+cx 2=x 1(ax 12+bx 1+c )+x 2(ax 22+bx 2+c ) =03.(1)超过部分电费=(90-A )·100A =-1100A 2+910A (2)依题意,得:(80-A )·100A =15,A 1=30(舍去),A 2=50。

相关文档
最新文档