【5套打包】连云港市初三九年级数学下(人教版)第二十七章《相似》单元综合练习卷(含答案)
人教版数学九年级下册 第二十七章 相似 习题练习(附答案)
人教版数学九年级下册第二十七章相似习题练习(附答案)一、选择题1.如果一个直角三角形的两条边分别是6和8,另一个与它相似的直角三角形边长分别是3,4及x,那么x的值()A.只有一个B.可以有2个C.可以有3个D.无数个2.如图,以点O为支点的杠杆,在A端用竖直向上的拉力将重为G的物体匀速拉起,当杠杆OA水平时,拉力为F;当杠杆被拉至OA1时,拉力为F1,过点B1作B1C⊥OA,过点A1作A1D⊥OA,垂足分别为点C、D.①△OB1C∽△OA1D;②OA·OC=OB·OD;③OC·G=OD·F1;④F=F1.其中正确的说法有()A. 1个B. 2个C. 3个D. 4个3.如图,AD是直角三角形ABC斜边上的中线,AE⊥AD交CB延长线于E,则图中一定相似的三角形是()A.△AED与△ACBB.△AEB与△ACDC.△BAE与△ACED.△AEC与△DAC4.如图是小莹设计用手电来测量某古城墙高度的示意图.在点P处放一水平的平面镜,光线从点A 出发经平面镜反射后,刚好射到古城墙CD的顶端C处.已知AB⊥BD,CD⊥BD.且测得AB=1.4米,BP=2.1米,PD=12米.那么该古城墙CD的高度是()A . 6米B . 8米C . 10米D . 12米5.如图所示格点图中,每个小正方形的边长均为1,△ABC 的三个顶点均在格点上,以原点O 为位似中心,相似比为12,把△ABC 缩小,则点C 的对应点C ′的坐标为( )A . (1,32)B . (2,6)C . (2,6)或(-2,-6)D . (1,32)或(-1,−32)6.如图,AD ∥BC ,∠D =90°,AD =2,BC =5,DC =8.若在边DC 上有点P ,使△PAD 与△PBC 相似,则这样的点P 有( )A . 1个B . 2个C . 3个D . 4个7.志远要在报纸上刊登广告,一块10 cm×5 cm 的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费( )A . 540元B . 1 080元C . 1 620元D . 1 800元8.△ABC 的三边之比为3∶4∶5,与其相似的△DEF 的最短边是9 cm ,则其最长边的长是( ) A . 5 cm B . 10 cm C . 15 cm D . 30 cm9.如图,已知AB ∥CD ∥EF ,那么下列结论中正确的是( )A .CD EF =AD AFB .AB CD =BC ECC.ADBC =AFBED.CEBE =AFAD10.如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA∶OA′=2∶3,则四边形ABCD与四边形A′B′C′D′的面积比为()A. 4∶9B. 2∶5C. 2∶3D.√2∶√311.若a5=b7=c8,且3a-2b+c=3,则2a+4b-3c的值是()A. 14 B. 42 C. 7 D.14312.一个数与3、4、6能组成比例,这个数是()A. 2或8B. 8 或4.5C. 4.5 或2D. 2,8或4.513.两个相似三角形的面积比为1∶4,那么它们的周长比为()A. 1∶√2B. 2∶1 C. 1∶4 D. 1∶2二、填空题14.如图,已知△ABC中,D为BC中点,E,F为AB边三等分点,AD分别交CE,CF于点M,N,则AM∶MN∶ND等于____________.15.如图所示,已知∠DAB=∠CAE,再添加一个条件就能使△ADE∽△ABC,则这个条件可能是________________.(写出一个即可)16.如图,AD =DF =FB ,DE ∥FG ∥BC ,则S Ⅰ∶S Ⅱ∶S Ⅲ=__________.17.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为______________.18.某同学用一等边三角形木板制作一些相似的直角三角形.如图,其方法是:过C 点作CD 1⊥AB 于D 1,再过D 1作D 1D 2⊥CA 于D 2,再过D 2作D 2D 3⊥AB 于D 3,…,若△ABC 的边长为a ,则CD 1=√32a ,D 1D 2=√34a ,D 2D 3=√38a ,依此规律,则D 5D 6的长为________.19.如图是测量玻璃管内径的示意图,点D 正对“10 mm”刻度线,点A 正对“30 mm”刻度线,DE ∥AB .若量得AB 的长为6 mm ,则内径DE 的长为____________ mm.三、解答题20.如图,△ABC 在方格纸中.(1)请建立平面直角坐标系.使A 、C 两点的坐标分别为(2,3)、C (5,2),求点B 的坐标.(2)以原点O 为位似中心,相似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A ′B ′C ′.(3)计算△A ′B ′C ′的面积S .21.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.22.如图,△ABC与△A1B1C1是位似图形.(1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B 的坐标为____________;(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP 的周长为____________.23.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC 的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC 的长.图①图②答案解析1.【答案】B【解析】∵一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形的边长分别是3和4及x,∴x可能是斜边或4是斜边,∴x=5或√7.∴x的值可以有2个.故选B.2.【答案】D【解析】∵B1C⊥OA,A1D⊥OA,∴B1C∥A1D,∴△OB1C∽△OA1D,故①正确;∴OCOD =OBOA1,由旋转的性质,得OB=OB1,OA=OA1,∴OA·OC=OB·OD,故②正确;由杠杆平衡原理,OC·G=OD·F1,故③正确;∴F1G =OCOD=OB1OA1=OBOA是定值,∴F1的大小不变,∴F=F1,故④正确.综上所述,说法正确的是①②③④.故选D.3.【答案】C【解析】∵斜边中线长为斜边的一半,∴AD=BD=CD,∴∠C=∠DAC,∵∠BAE+∠BAD=90°,∠DAC+∠BAD=90°,∴∠BAE=∠DAC,∴∠C=∠BAE,∵∠E=∠E,∴△BAE∽△ACE.故选C.4.【答案】B【解析】∵∠APB =∠CPD ,∠ABP =∠CDP ,∴△ABP ∽△CDP ,∴AB CD =BP PD, 即1.4CD =2.112,解得CD =8米.故选B.5.【答案】D【解析】∵以原点O 为位似中心,相似比为12,把△ABC 缩小,∴点C 的对应点C ′的坐标(1,32)或(-1,−32).故选D.6.【答案】C【解析】∵AD ∥BC ,∠D =90°,∴∠C =∠D =90°,∵DC =8,AD =2,BC =5,设PD =x ,则PC =8-x .①若PD ∶PC =AD ∶BC ,则△PAD ∽△PBC ,则x 8−x =25,解得x =167;②若PD ∶BC =AD ∶PC ,则△PAD ∽△BPC ,则x 5=28−x ,解得PD =4±√6,所以这样的点P 存在的个数有3个.故选C.7.【答案】C【解析】∵一块10 cm×5 cm 的长方形版面要付广告费180元, ∴每平方厘米的广告费为180÷50=185元, ∴把该版面的边长都扩大为原来的3倍后的广告费为30×15×185=1 620元故选C.8.【答案】C【解析】∵△ABC 和△DEF 相似,∴△DEF 的三边之比为3∶4∶5,∴△DEF 的最短边和最长边的比为3∶5,设最长边为x ,则3∶5=9∶x ,解得x =15,∴△DEF 的最长边为15 cm ,故选C.9.【答案】C【解析】∵AB ∥CD ∥EF ,∴AD AF =BC BE ,A 错误;AD DF =BC EC ,B 错误;AD AF =BC BE ,∴AD BC =AF BE ,C 正确;CE BE =DF AF ,D 错误,故选C.10.【答案】A【解析】∵四边形ABCD 和A ′B ′C ′D ′是以点O 为位似中心的位似图形,OA ∶OA ′=2∶3, ∴DA ∶D ′A ′=OA ∶OA ′=2∶3,∴四边形ABCD 与四边形A ′B ′C ′D ′的面积比为(23)2=49, 故选A.11.【答案】D【解析】设a =5k ,则b =7k ,c =8k ,又3a -2b +c =3,则15k -14k +8k =3,得k =13,即a =53,b =73,c =83,所以2a +4b -3c =143.故选D.12.【答案】D【解析】设这个数是x ,则3x =4×6或4x =3×6或6x =3×4, 解得x =8或x =4.5或x =2,所以,这个数是2,8或4.5.故选D.13.【答案】D【解析】∵两个相似三角形的面积比为1∶4,∴它们的相似比为1∶2,∴它们的周长比为1∶2.故选D.14.【答案】5∶3∶2【解析】如图,作PD ∥BF ,QE ∥BC ,∵D 为BC 的中点,∴PD ∶BF =1∶2,∵E ,F 为AB 边三等分点,∴PD ∶AF =1∶4,∴DN ∶NA =PD ∶AF =1∶4,∴ND =15AD ,AQ ∶AD =QE ∶BD =AE ∶AB =1∶3, ∴AQ =13AD ,QM =14QD =14×23AD =16AD , ∴AM =AQ +QM =12AD ,MN =AD -AM -ND =310AD ,∴AM ∶MN ∶ND =5∶3∶2.15.【答案】∠D =∠B【解析】这个条件可能是∠D =∠B ;理由如下: ∵∠DAB =∠CAE ,∴∠DAB +∠BAE =∠CAE +∠BAE ,即∠DAE =∠BAC ,又∵∠D =∠B ,∴△ADE ∽△ABC .16.【答案】1∶3∶5【解析】∵DE ∥FG ∥BC ,∴△ADE ∽△AFG ∽△ABC ,∵AD =DF =FB ,∴AD ∶AF ∶AB =1∶2∶3,∴S △ADE ∶S △AFG ∶S △ABC =1∶4∶9,∴S Ⅰ∶S Ⅱ∶S Ⅲ=1∶3∶5.17.【答案】113°或92°【解析】∵△BCD ∽△BAC ,∴∠BCD =∠A =46°,∵△ACD 是等腰三角形,∠ADC >∠BCD ,∴∠ADC >∠A ,即AC ≠CD ,①当AC =AD 时,∠ACD =∠ADC =12(180°-46°)=67°,∴∠ACB =67°+46°=113°,②当DA =DC 时,∠ACD =∠A =46°,∴∠ACB =46°+46°=92°. 18.【答案】√364a 【解析】CD 1=√32a =√321a , D 1D 2=√34a =√322a , D 2D 3=√38a =√323a , 则D 5D 6的长为√326a =√364a , 19.【答案】2【解析】由题意可得DE ∥AB ,∴△CDE ∽△CAB ,∴DE AD =DC AC , 即DE 6=1030,解得DE =2,20.【答案】解 (1)如图画出原点O ,x 轴、y 轴,建立直角坐标系,可知B 的坐标为(2,1);(2)如(1)中图,画出图形△A ′B ′C ′,即为所求;(3)S △A ′B ′C ′=12×4×6=12.【解析】(1)根据A ,C 点坐标进而得出原点位置,进而得出B 点坐标;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接利用三角形面积求法得出答案.21.【答案】解在△ABC与△AMN中,ACAB =3054=59,AMAN=1?0001?800=59,∴ACAB=AMAN,又∵∠A=∠A,∴△ABC∽△AMN,∴BCMN =ACAM,即45MN=301?000,解得MN=1 500米,答:M、N两点之间的直线距离是1 500米;【解析】先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可.22.【答案】解(1)如图所示:点B的坐标为(-2,-5);故答案为(-2,-5);(2)如图所示:△AB2C2,即为所求;(3)如图所示:P点即为所求,P点坐标为(-2,1),四边形ABCP的周长为√42+42+√22+42+√22+22+√22+42=4√2+2√5+2√2+2√5=6√2+4√5.故答案为6√2+4√5.【解析】(1)直接利用已知点位置得出B点坐标即可;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长.23.【答案】(1)证明∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵{BE=CE,∠B=∠C,BP=CQ,∴△BPE≌△CQE(SAS);(2)解连接PQ,∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴BPCE =BECQ,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3√2,∴BC=6√2【解析】。
人教版九年级下册数学《第27章相似》单元检测试卷含答案
第27章相似单元检测一、选择题1. 将下图中的箭头缩小到原来的12,得到的图形是( )A. B.C. D.2. 如图,AB //EF //CD ,BC 、AD 相交于点O ,F 是AD 的中点,则下列结论中错误的是( )A. AO AD =BO BCB. OB CE =OA DFC. EF CD =OE BED. 2BE AD =OE OF3. 下列各组数中,成比例的是( )A. −6,−8,3,4B. −7,−5,14,5C. 3,5,9,12D. 2,3,6,124. 不为0的四个实数a 、b ,c 、d 满足ab =cd ,改写成比例式错误的是( )A. a c =d bB. c a =b dC. d a =b cD. a b =c d5. 如图,点P 在△ABC 的边AC 上,要判断△ABP∽△ACB ,添加一个条件,不正确的是( )A. AB BP =AC CBB. ∠APB =∠ABCC. APAB =ABACD. ∠ABP=∠C6.已知C是线段AB的黄金分割点(AC>BC),则AC:AB=( )A. (−1):2B. (+1):2C. (3−:2D. (3+:27.对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是( )A. 平移B. 旋转C. 轴对称D. 位似8.已知两个相似多边形的面积比是9:16,其中较小多边形的周长为36cm,则较大多边形的周长为( )A. 48 cmB. 54 cmC. 56 cmD. 64 cm9.下列各组图形不一定相似的是( )A. 两个等腰直角三角形B. 各有一个角是100∘的两个等腰三角形C. 各有一个角是50∘的两个直角三角形D. 两个矩形10.如图所示,△ABC中,DE//BC,AD=5,BD=10,DE=6,则BC的值为( )A. 6B. 12C. 18D. 24二、填空题11.如果两个相似三角形对应角平分线的比是4:9,那么它们的周长比是______ .12.如图,已知AD//BE//CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB=6,BC=10,那么DEDF的值是______ .13.如果线段a、b、c、d满足ab =cd=13,那么a+cb+d=______ .14.已知线段a=3,b=6,那么线段a、b的比例中项等于______ .15.在△ABC中,点D、E分别在边AB、AC上,如果ADAB =23,AE=4,那么当EC的长是______ 时,DE//BC.三、解答题16.已知△ABC,作△DEF,使之与△ABC相似,且S△DEFS△ABC=4.要求:(1)尺规作图,保留作图痕迹,不写作法.(2)简要叙述作图依据.17. 如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE //BC ,已知AE =6,AD BD =34,求CE 的长.18. 如图,在平行四边形ABCD 中,DE ⊥AB 于点E ,BF ⊥AD 于点F .(1)AB ,BC ,BF ,DE 这四条线段能否成比例?如不能,请说明理由;如能,请写出比例式;(2)若AB =10,DE =2.5,BF =5,求BC 的长.19.已知a3=b4=c5≠0,求2a−b+ca+3b的值.20.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,在△ABC中,AB>AC,点D位于边AC上.求作:过点D、与边AB相交于E点的直线DE,使以A、E为顶点的三角形与原三角形相似.【答案】1. A2. C3. A4. D5. A6. A7. D8. A9. D10. C11. 4:912. 3813. 1314. 315. 616. 解:(1)如图所示:△DEF即为所求;(2)∵△DEF∽△ABC,且S△DEFS△ABC=4,∴DEAB =DFAC=EFBC=12,∴作AB,AC的垂直平分线,进而得出AB,AC的中点,即可得出ED,EF,DF的长.17. 解:∵DE//BC,∴AEEC =ADBD=34,∵AE=6,∴CE=8.18. 解:(1)(1)证明:∵在▱ABCD中,DE⊥AB,BF⊥AD,∴S▱A BCD=AB⋅DE=AD⋅BF,∴ADDE =ABBF;(2)∵AB⋅DE=AD⋅BF,∴10×2.5=5BC,解得:BC=5.19. 解:设a3=b4=c5=k,所以,a=3k,b=4k,c=5k,则2a−b+ca+3b =6k−4k+5k3k+12k=715.20. 解:如图1所示:△AED∽△ABC,如图2所示:△ADE∽△ABC,综上所述:直线DE即为所求.。
人教版九年级数学下册《第二十七章相似》章节检测卷-带答案
人教版九年级数学下册《第二十七章相似》章节检测卷-带答案学校:___________班级:___________姓名:___________考号:___________(满分120分,时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.方框中的两个图形不是位似图形的是( )2.若两个相似三角形周长的比为9:25,则它们的面积比为( )A.3:5B.9:25C.81:625D.以上都不对3.如图,△ABC中,E是BC 中点,AD 是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则 FC的长为( )A.11B.12C.13D.144.如图,在△ABC中,高BD,CE 交于点O,下列结论错误的是( )A. CO·CE=CD·CAB. OE·OC=OD·OBC. AD·AC=AE·ABD. CO·DO=BO·EO5.如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是( )A. EG=4GCB. EG=3GCGC D. EG=2GCC.EG=526.如图,在长为8cm、宽为4 cm的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )A.2 cm²B.4 cm²C.8cm²D.16 cm²7.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示),则小鱼上的点(a,b)对应大鱼上的点( )A.(-2a,-b)B.(-a,-2b)C.(-2b,-2a)D.(-2a,-2b)8.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC 相似,则点 E 的坐标不可能是( )A.(6,0)B.(6,3)C.(6,5)D.(4,2)9.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=3.若把矩形OABC绕着点O逆时针旋转,使点 A恰好落在BC 边上的A₁处,则点 C的对应点C₁的坐标为( )A.(−95,125)B.(−125,95)C.(−165,125)D.(−125,165)10.如图,已知AB,CD,EF都与BD 垂直,垂足分别是B,D,F,且AB=1,CD=3,那么 EF 的长是 ( )A.13B.23C.34D.45二、填空题(本大题共8小题,每小题4分,共32分.本题要求把正确结果填在规定的横线上,不需要解答过程)11.已知c4=b5=a6≠0,则b+ca的值为 .12.如图,在△ABC中,MN∥BC,分别交 AB,AC 于点M,N,若AM=1,MB=2,BC=3,,则 MN的长为13.如图,在△ABC中,AB≠AC,D,E分别为边AB,AC上的点AC=3AD,AB=3AE,,点 F 为 BC 边上一.点,添加一个条件:,可以使得△FDB 与△ADE 相似.(只需写出一个)14.已知a6=b5=c4,且a+b-2c=6,则a的值为 .15.如图,△ABC中,AB=6,DE∥AC,将△BDE 绕点B 顺时针旋转得到△BD′E′,,点D的对应点落在边BC上,已知BE′=5,D′C=4,则BC的长为 .16.如图,在平面直角坐标系中,已知点A(4,0)和点 B(0,3),点C是AB 的中点,点 P在折线AOB 上,用直线CP 截△AOB 所得的三角形与△AOB 相似,则点 P 的坐标是 .17.如图,在四边形ABCD 中,AD∥BC,CM是∠BCD的平分线,且(CM⊥AB,M 为垂足AM=13AB.若四边形 ABCD的面积为157,则四边形AMCD的面积是 .18.如图,CE 是▱ABCD 的边AB 的垂直平分线,垂足为点 O,CE 与DA 的延长线交于点 E.连接AC,BE,DO,DO与AC 交于点F,则下列结论:①四边形 ACBE 是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四边形AFOE :S△CD=2:3.其中正确的结论有 .(填写所有正确结论的序号)三、解答题(本大题共6小题,满分58分.解答应写出文字说明、证明过程或演算步骤)19.(6分)小颖用下面的方法来测量学校教学大楼AB 的高度:如图,在水平地面上放一面平面镜,镜子与教学大楼的距离.EA=21m,当与镜子的距离CE=2.5m时,她刚好能从镜子中看到教学大楼的顶端 B.已知她的眼睛距地面的高度DC=1.6m,,请你帮助小颖计算出教学大楼的高度AB是多少米?(注:根据光的反射定律,有反射角等于入射角)20.(8分)已知a+bc =a+cb=b+ca=k,求k的值.21.(10分)某社区拟筹资金2 000元,计划在一块上、下底长分别是10m,20m的梯形空地上种植花草,如图,他们想在△AMD和△BMC地带种植单价为 10元/m²的太阳花,当△AMD地带种满花后,已经花了500元,请你预算一下,若继续在△BMC地带种植同样的太阳花,资金是否够用?并说明理由.22.(10分)如图,△ABC与△DEF均为等边三角形,O为BC,EF的中点,求AD的值.BE23.(12 分)如图,在四边形 ABCD 中,AB=AC=AD,AC 平分∠BAD,点 P 是AC 延长线上一点,且PD⊥AD.(1)求证:∠BDC=∠PDC;(2)若AC与BD 相交于点E,AB=1,CE:CP=2:3,求AE的长.24.(12 分)如图,在四边形 ABCD 中,AC 平分∠DAB,∠ADC=∠ACB=90°,E 为AB的中点.(1)求证:AC²=AB⋅AD;B(2)求证:CE∥AD;(3)若AD=4,AB=6,求AC的值.AF参考答案1. D2. C3. C4. D5. B6. C7. D8. B9. A10. C12.111.3213.∠A=∠BFD(答案不唯一)14.1215.2+√3416.(2,0)或 (0,32)或 (78,0)17.1 18.①②④19.解:根据光的反射定律,有∠1=∠2 所以∠BEA=∠DEC.又∠A=∠C=90°,所以△BAE∽△DCE.所以 BA DC =AECE所以 BA =AECE⋅DC =212.5×1.6=13.44(m ). 答:教学大楼的高为13.44 m.20.解:当a+b+c≠0时,由a+b c=a+c b=b+c a=k得a+b=ck,a+c=bk,b+c=ak 即2(a+b+c)=(a+b+c)k,此时k=2;当a+b+c=0时,有a+b=--c则a+b c=−c c=−1此时k=--1.综上可知,k的值是2或-1.21.解:不够用.理由:在梯形ABCD中因为AD∥BC,所以△AMD∽△CMB.因为AD=10m,BC=20m所以S A对DS BMC =(1020)2=14.因为S AMD=500÷10=50(m2),所以S BC=200m2.还需要资金200×10=2000(元),而剩余资金为2 000-500=1500(元),1500<2000,所以资金不够用.22.解:如图,连接OA,OD∵△ABC 与△DEF 均为等边三角形,O为 BC,EF 的中点∴AO⊥BC,DO⊥EF,∠EDO=30°,∠BAO=30°∴OD:OE=OA:OB=√3:1.∵∠DOE+∠EOA=∠BOA+∠EOA,即∠DOA=∠EOB,∴△DOA∽△EOB∴OD:OE=OA:OB=AD:BE=√3: 1.∴ADBE 的值为√3.23.(1)证明:∵AB=AD,AC平分∠BAD ∴AC⊥BD,∴∠ACD+∠BDC=90°.∵AC=AD,∴∠ACD=∠ADC.∵PD⊥AD,∴∠ADC+∠PDC=90°∴∠BDC=∠PDC.(2)解:如图,过点C作CM⊥PD于点M.∵∠BDC=∠PDC,∴CE=CM.∵∠CMP=∠ADP=90°,∠P=∠P∴CPMAPD,∴CMAD =PCPA.设CM=CE=x∵CE:CP=2:3,∴PC=32x.∵AB=AD=AC=1∴x1=32x32x+1,解得x=13∴AE=1−13=23.24.(1)证明:∵AC平分∠DAB ∴∠DAC=∠CAB.又∵∠ADC=∠ACB=90°∴△ADC∽△ACB.∴ADAC =ACAB,∴AC2=AB⋅AD.(2)证明:∵E为AB的中点∴CE=12AB=AE,∠EAC=∠ECA.∵AC平分∠DAB∴∠CAD=∠CAB.∴∠DAC=∠ECA.∴CE‖AD. (3)解:∵CE∥AD∴∠DAF=∠ECF,∠ADF=∠CEF∴AFDCFE,∴ADCE =AFCF.∵CE=12ΛB,∴CE=12×6=3.又∵AD=4,由ADCE =AFCF,得43=AFCF.∴AFAC =47,∴ACAF=74.。
人教版九年级下册数学第27章 相似 单元综合测试卷(Word版,含答案)
人教版九年级下册数学第27章相似单元综合测试卷一.选择题(共8小题,满分40分)1.若x﹣3y=0且y≠0,则的值为()A.11B.﹣C.D.﹣112.已知线段AB=2,点P是线段AB的黄金分割点(AP>BP),则线段AP的长为()A.+1B.﹣1C.D.3.下列图形一定是相似图形的是()A.任意两个菱形B.任意两个正三角形C.两个等腰三角形D.两个矩形4.如图,已知直线l1∥l2∥l3,直线m、n分别与直线l1、l2、l3分别交于点A、B、C、D、E、F,若DE=3,DF=8,则的值为()A.B.C.D.5.如图,下面图形及各个选项均是由边长为1的小方格组成的网格,三角形的顶点均在小方格的顶点上,下列四个选项中哪一个阴影部分的三角形与已知△ABC相似()A.B.C.D.6.如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,点H为AF与DG的交点.若AC=9,则DH为()A.1B.2C.D.37.如图,CD是Rt△ABC斜边AB上的高,CD=6,BD=4,则AB的长为()A.10B.11C.12D.138.如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍,设点B的横坐标是a,则点B的对应点B′的横坐标是()A.﹣2a+3B.﹣2a+1C.﹣2a+2D.﹣2a﹣2二.填空题(共8小题,满分40分)9.已知:=,则=.10.已知A、B两地的实际距离为100千米,地图上的比例尺为1:2000000,则A、B两地在地图上的距离是cm.11.在△OAB中,OA=OB,点C在直线AB上,BC=3AC,点E为OA边的中点,连接OC,射线BE交OC于点G,则的值为.12.如图,AB⊥BD,CD⊥BD,AB=6,CD=4,BD=14.点P在BD上移动,当以P,C,D为顶点的三角形与△ABP相似时,则PB的长为.13.如图,△ABC中,CE⊥AB,BF⊥AC,若∠A=60°,EF=2,则BC=.14.如图,Rt△ABC中,∠ABC=90°,∠ACB=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从点A出发,沿着A→C→A的方向运动,设点E的运动时间为秒(0≤t≤12),连接DE,当△CDE是直角三角形时,t的值为.15.△ABC中,∠ACB=90°,CD是高,点E在AB边上,∠BEC=2∠ABC,若AB=9,DE=1,则AD的长为.16.如图,线段CD两个端点的坐标分别为C(3,3),D(4,1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的两倍,得到线段AB,则线段AB的中点E的坐标为.三.解答题(共6小题,满分40分)17.阅读理解:已知:a,b,c,d都是不为0的数,且=,求证:=.证明:∵=,∴+1=+1.∴=.。
人教版九年级数学下册 第27章相似 单元测试.(word版有答案)
人教版九年级数学《图形的相似》单元测试一、选择题(45分)1.已知x +2y y =25,则x y 的值为( ) A .-125 B .-85 C.85 D.1252.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C ,D ,E ,F ,AB BC =23,DE =6,则EF的值为( ) A .4 B .6C .9D .123.如图,∠ABD =∠BDC =90°,∠A =∠CBD ,AB =3,BD =2,则CD 的长为( )A.34B.43C .2D .34.如图,在△ABC 中,∠A =78°,AB =4,AC =6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )5.如图,在正方形ABCD 中,G 为CD 边的中点,连接AG 并延长交BC 边的延长线于点E ,对角线BD 交AG 于点F ,已知FG =2,则线段AE 的长度为( )A .6B .8C .10D .12 6.如图,AB ∥DC ,AC 与BD 相交于点E ,EF ∥DC 交BC 于点F ,CE =5,CF =4,AE =BC ,则DCAB等于( )A.23B.14C.13D.357.学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB ⊥BD ,CD ⊥BD ,垂足分别为B ,D ,AO =4 m ,AB =1.6 m ,CO =1 m ,则栏杆C 端应下降的垂直距离CD 为( )A .0.2 mB .0.3 mC .0.4 mD .0.5 m8.如图,在△ABC 中,边BC =6,高AD =4,正方形EFGH 的顶点E ,F 在边BC 上,顶点H ,G 分别在边AB 和AC 上,那么这个正方形的边长等于( )A .3B .2.5C .2.4D .2 9.如图,平行于BC 的直线DE 把△ABC 分成面积相等的两部分,则ADAB 为( )A.12B.24C.14D.22二、填空题(15分)10.如图,在△ABC中,D,E分别是边AB,AC上的点,且DE∥BC.若△ADE与△ABC的周长之比为2∶3,AD=4,则DB= _________.11.如图,在△ABC中,∠ACB=90°,CD是斜边AB上的高,AD=9,BD=4,那么CD=12.如图,A,B,C,P四点均在边长为1的小正方形网格格点上,则∠BAC的度数是__________.三、解答题13.如图,已知∠ADE=∠ACB,BD=8,CE=4,CF=2,求DF的长.(8分)14.(10分)如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点0为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点0;(2)求出△ABC与△A′B′C′的位似比;(3)以点0为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于1.5.15. (10分)如图,修建某高速公路,需要通过一座山,指挥部决定从E,D两点开挖一个涵洞.工程师从地面选取三个点A,B,C,且A,B,D三点在同一条直线上,A,C,E三点也在同一条直线上.若已知AB =27米,AD=500米,AC=15米,AE=900米,且测得BC=22.5米,求DE的长.16. (12分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB·AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求ACAF的值.《图形的相似》单元测试答案:一、选择题1.已知x +2y y =25,则x y 的值为(B) A .-125B .-85C.85D.1252.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C ,D ,E ,F ,AB BC =23,DE =6,则EF的值为(C) A .4 B .6C .9D .123.如图,∠ABD =∠BDC =90°,∠A =∠CBD ,AB =3,BD =2,则CD 的长为(B)A.34B.43C .2D .34.如图,在△ABC 中,∠A =78°,AB =4,AC =6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是(C)5.如图,在正方形ABCD 中,G 为CD 边的中点,连接AG 并延长交BC 边的延长线于点E ,对角线BD 交AG 于点F ,已知FG =2,则线段AE 的长度为(D)A .6B .8C .10D .12 6.如图,AB ∥DC ,AC 与BD 相交于点E ,EF ∥DC 交BC 于点F ,CE =5,CF =4,AE =BC ,则DCAB等于(B)A.23B.14C.13D.357.学校门口的栏杆如图所示,栏杆从水平位置BD 绕O 点旋转到AC 位置,已知AB ⊥BD ,CD ⊥BD ,垂足分别为B ,D ,AO =4 m ,AB =1.6 m ,CO =1 m ,则栏杆C 端应下降的垂直距离CD 为(C)A .0.2 mB .0.3 mC .0.4 mD .0.5 m8.如图,在△ABC 中,边BC =6,高AD =4,正方形EFGH 的顶点E ,F 在边BC 上,顶点H ,G 分别在边AB 和AC 上,那么这个正方形的边长等于(C)A .3B .2.5C .2.4D .2 9.如图,平行于BC 的直线DE 把△ABC 分成面积相等的两部分,则ADAB为(D)A.12B.24C.14D.22二、填空题10.如图,在△ABC 中,D ,E 分别是边AB ,AC 上的点,且DE ∥BC.若△ADE 与△ABC 的周长之比为2∶3,AD =4,则DB = 2.11.如图,在△ABC 中,∠ACB =90°,CD 是斜边AB 上的高,AD =9,BD =4,那么CD =6,AC 12.如图,A ,B ,C ,P 四点均在边长为1的小正方形网格格点上,则∠BAC 的度数是135°. 三、解答题13.如图,已知∠ADE =∠ACB ,BD =8,CE =4,CF =2,求DF 的长.解:∵∠ADE =∠ACB ,∴180°-∠ADE =180°-∠ACB , 即∠BDF =∠ECF. 又∵∠BFD =∠EFC , ∴△BDF ∽△ECF.∴BD EC =DF CF ,即84=DF 2. ∴DF =4.14.如图,图中的小方格都是边长为1的正方形, △ABC 与△A′ B′ C′是关于点0为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点0;(2)求出△ABC 与△A′B′C′的位似比; 1:2(3)以点0为位似中心,再画一个△A 1B 1C 1,使它与△ABC 的位似比等于1.5.15.如图,修建某高速公路,需要通过一座山,指挥部决定从E ,D 两点开挖一个涵洞.工程师从地面选取三个点A ,B ,C ,且A ,B ,D 三点在同一条直线上,A ,C ,E 三点也在同一条直线上.若已知AB =27米,AD =500米,AC =15米,AE =900米,且测得BC =22.5米,求DE 的长.解:∵AB =27米,AD =500米,AC =15米,AE =900米, ∴AB AE =AC AD =3100. 又∵∠A =∠A , ∴△ABC ∽△AED. ∴BC DE =22.5DE =3100, 即DE =750米.16.如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点.(1)求证:AC 2=AB ·AD ;(2)求证:CE ∥AD ;(3)若AD =4,AB =6,求ACAF的值.解:(1)证明:∵AC 平分∠DAB ,∴∠DAC =∠CAB. 又∵∠ADC =∠ACB =90°, ∴△ADC ∽△ACB. ∴AD AC =AC AB,即AC 2=AB ·AD. (2)证明:∵E 为AB 的中点,∴CE =12AB =AE.∴∠EAC =∠ECA.由(1)知∠DAC =∠CAB. ∴∠DAC =∠ECA.∴CE ∥AD. (3)∵CE ∥AD ,∴△AFD ∽△CFE.∴AD CE =AFCF .∵CE =12AB ,∴CE =12×6=3.∴43=AF CF . ∴AF AC =47,即AC AF =74.。
【5套打包】扬州市初三九年级数学下(人教版)第二十七章《相似》单元综合练习题(含答案)
人教版九年级下册数学第27章《相似》单元测试题(解析版)一.选择题(共10小题)1.已知x:y:z=1:2:3,且2x+y﹣3z=﹣15,则x的值为()A.﹣2B.2C.3D.﹣32.若a:b=3:2,且b是a、c的比例中项,则b:c等于()A.4:3B.3:4C.3:2D.2:33.下列命题中,其中正确的命题个数有()(1)在△ABC中,已知AB=6,AC=,∠B=45°,则∠C的度数为60°;(2)已知⊙O的半径为5,圆心O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有3个;(3)圆心角是180°的扇形是一个半圆;(4)已知点P是线段AB的黄金分割点,若AB=1,则AP=.A.1个B.2个C.3个D.4个4.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5B.6C.7D.85.下列说法中正确的是()A.两个直角三角形一定相似B.两个等腰三角形一定相似C.两个等腰直角三角形一定相似D.两个矩形一定相似6.两个相似的六边形,如果一组对应边的长分别为3cm,4cm,且它们面积的差为28cm2,则较大的六边形的面积为()A.44.8 cm2B.45 cm2C.64 cm2D.54 cm27.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm8.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC =∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③9.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5B.3:5C.9:25D.4:2510.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m二.填空题(共8小题)11.若=,则=.12.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段DE的长为.13.已知==,且a+b﹣2c=6,则a的值.14.如图,△ABC与△ADB中,∠ABC=∠ADB=90°,∠C=∠ABD,AC=5cm,AB=4cm,AD的长为.15.如图,在△ABC中,DE∥BC,=,则=.16.已知△ABC和△DEF中.点A、B、C分别与点D、E、F相对应.且∠A=70°时,∠B=34°,∠D=70°,则当∠F=时,△ABC∽△DEF.17.如图,已知线段AB的两个端点在直角坐标系中的坐标分别是A(m,m),B(2n,n),以原点O为位似中心,相似比为,把线段AB缩小,则经过位似变换后A、B的对应点坐标分别是A′,B′;点A到原点O的距离是.18.如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两端上,若CD=2,则AB的长是.三.解答题(共8小题)19.已知,(1)求的值;(2)若x﹣2y+4z=24,求x+y+z的值.20.如图,四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2.(1)求下列各线段的比:,,;(2)指出AB,BC,CF,CD,EF,FB这六条线段中的成比例线段(写一组即可)21.如图,在△ABC与△A'B'C'中,∠A=∠A',BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,点D、E、D'、E'分别在AC、AB、A'C'、A'B'上,且=.求证:=22.如图所示:在△ABC中,AB=AC=5,BC=8,D,E分别为BC.AB边上一点,∠ADE =∠C,(1)求证:AD2=AE•AB;(2)∠ADC与∠BED是否相等?请说明理由;(3)若CD=2,求AD的长.23.如图,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于点O.求的值.24.如图,以O为位似中心,将△ABC放大为原来的2倍(不写作法,保留作图痕迹).25.如图,在四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,点E为AB 的中点.(1)求证:△ADC∽△ACB.(2)若AD=2,AB=3,求的值.26.如图,点E是正方形ABCD的边BC延长线上一点,联结DE,过顶点B作BF⊥DE,垂足为F,BF交边DC于点G.(1)求证:GD•AB=DF•BG;(2)联结CF,求证:∠CFB=45°.2019年春人教版九年级下册数学第27章相似单元测试题参考答案与试题解析一.选择题(共10小题)1.已知x:y:z=1:2:3,且2x+y﹣3z=﹣15,则x的值为()A.﹣2B.2C.3D.﹣3【分析】先利用x:y:z=1:2:3,y=2x,z=3x,然后消去y与z得到关于x的一元一次方程,再解一次方程即可.【解答】解:∵x:y:z=1:2:3,∴y=2x,z=3x,∴2x+2x﹣9x=﹣15,∴x=3.故选:C.【点评】本题考查了解三元一次方程组:利用代入消元或加减消元把解三元一次方程组的问题转化为解二元一次方程组的问题.2.若a:b=3:2,且b是a、c的比例中项,则b:c等于()A.4:3B.3:4C.3:2D.2:3【分析】由b是a、c的比例中项,根据比例中项的定义,即可求得,又由a:b=3:2,即可求得答案.【解答】解:∵b是a、c的比例中项,∴b2=ac,即,∵a:b=3:2,∴b:c=3:2.故选:C.【点评】此题考查了比例线段以及比例中项的定义.解题的关键是熟记比例中项的定义及其变形.对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,我们就说这四条线段是成比例线段,简称比例线段.3.下列命题中,其中正确的命题个数有()(1)在△ABC中,已知AB=6,AC=,∠B=45°,则∠C的度数为60°;(2)已知⊙O的半径为5,圆心O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有3个;(3)圆心角是180°的扇形是一个半圆;(4)已知点P是线段AB的黄金分割点,若AB=1,则AP=.A.1个B.2个C.3个D.4个【分析】(1)作出图形,过点A作AD⊥BC于点D,然后求出AD的长度,再在Rt△ACD 中,利用锐角的正弦值求出∠C的度数即可;(2)作出图形,根据圆的半径为5,圆心到AB的距离为3作出到直线AB的距离为2的直线,与圆的交点的个数即为所求;(3)根据半圆的圆心角等于180°解答;(4)因为AP是较长的线段还是较短的线段不明确,所以分两种情况讨论求解.【解答】解:(1)如图,过点A作AD⊥BC于点D,∵AB=6,∠B=45°,∴AD=AB sin45°=6×=3,又∵AC=,∴sin∠C===,∴∠C=60°,故本小题正确;(2)如图所示,到直线AB的距离为2的点有3个,故本小题正确;(3)∵半圆的圆心角为180°,∴圆心角是180°的扇形是一个半圆加一条直径,故本小题错误;(4)①若AP是较长线段,则AP2=AB•BP,即AP2=1×(1﹣AP),AP2+AP﹣1=0,解得AP=,②若AP是较短的线段,则AP=1﹣=,故本小题错误.综上所述,正确的命题有(1)(2)共2个.故选:B.【点评】本题考查了黄金分割,垂径定理,圆心角、弧、弦的关系,解直角三角形,作出图形,利用数形结合的思想求解比较关键.4.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5B.6C.7D.8【分析】根据平行线分线段成比例定理解答即可.【解答】解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.【点评】本题考查了平行线分线段成比例定理的应用,能熟练地运用定理进行计算是解此题的关键,题目比较典型,难度适中,注意:对应成比例.5.下列说法中正确的是()A.两个直角三角形一定相似B.两个等腰三角形一定相似C.两个等腰直角三角形一定相似D.两个矩形一定相似【分析】根据三角形、矩形相似的判定方法逐个分析,确定正确答案即可.【解答】解:A、两个直角三角形只有一个直角可以确定相等,其他两个角度未知,故A不正确;B、等腰三角形的角度不一定相等,各边也不一定对应成比例,故B不正确;C、两个等腰直角三角形的对应相等,所以两个等腰直角三角形相似,故C正确;D、两个矩形对应角相等,但对应边的比不一定相等,故D不正确;故选:C.【点评】本题考查了相似图形的知识,解题的关键是了解对应角相等,对应边的比相等的图形相似,难度不大.6.两个相似的六边形,如果一组对应边的长分别为3cm,4cm,且它们面积的差为28cm2,则较大的六边形的面积为()A.44.8 cm2B.45 cm2C.64 cm2D.54 cm2【分析】设大六边形的面积为xcm2,根据相似多边形的性质列出比例式,计算即可.【解答】解:设大六边形的面积为xcm2,则小六边形的面积为(x﹣28)cm2,∵两个六边形相似,∴=()2,解得,x=64,故选:C.【点评】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.7.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm【分析】根据相似三角形的对应边成比例求解可得.【解答】解:设另一个三角形的最长边长为xcm,根据题意,得:=,解得:x=4.5,即另一个三角形的最长边长为4.5cm,故选:C.【点评】本题主要考查相似三角形的性质,解题的关键是掌握相似三角形的对应角相等,对应边的比相等.8.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC =∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③【分析】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.【解答】解:当∠ACP=∠B,∠A公共,所以△APC∽△ACB;当∠APC=∠ACB,∠A公共,所以△APC∽△ACB;当AC2=AP•AB,即AC:AB=AP:AC,∠A公共,所以△APC∽△ACB;当AB•CP=AP•CB,即=,而∠PAC=∠CAB,所以不能判断△APC和△ACB相似.故选:D.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.9.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5B.3:5C.9:25D.4:25【分析】根据平行四边形的性质可得出CD∥AB,进而可得出△DEF∽△BAF,根据相似三角形的性质结合DE:EC=3:2,即可得出△DEF与△BAF的面积之比,此题得解.【解答】解:∵四边形ABCD为平行四边形,∴CD∥AB,∴△DEF∽△BAF.∵DE:EC=3:2,∴==,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及平行四边形的性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m【分析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x米,由题意得,=,解得:x=15.故选:C.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.二.填空题(共8小题)11.若=,则=.【分析】根据分比性质,可得答案.【解答】解:由分比性质,得=﹣=﹣2=,∴=,故答案为:.【点评】本题考查了比例的性质,利用了分比性质,用x表示y,是解题关键.12.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段DE的长为 4.5.【分析】根据平行线分线段成比例定理得到=,然后把AB、BC、BD的值代入后,利用比例的性质可计算出DE的长.【解答】解:∵l1∥l2∥l3,∴=,即,∴BE=3,∴DE=3+1.5=4.5.故答案为:4.5.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.13.已知==,且a+b﹣2c=6,则a的值10.【分析】设===k,表示出a,b,c,代入a+b﹣3c=6中求出k的值,即可确定出a的值.【解答】解:设===k,则有a=5k,b=6k,c=4k,代入a+b﹣2c=6中得:5k+6k﹣8k=6,解得:k=2,则a=10,故答案为:10【点评】此题考查了比例的性质,熟练掌握比例的性质是解本题的关键.14.如图,△ABC与△ADB中,∠ABC=∠ADB=90°,∠C=∠ABD,AC=5cm,AB=4cm,AD的长为.【分析】根据相似三角形的判定与性质即可求出答案.【解答】解:∵∠ABC=∠ADB=90°,∠C=∠ABD,∴△ACB∽△ABD,∴,∴AD==cm,故答案为:【点评】本题考查相似三角形的性质与判定,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.15.如图,在△ABC中,DE∥BC,=,则=.【分析】由DE∥BC可得出∠ADE=∠B、∠AED=∠C,进而可得出△ADE∽△ABC,根据相似三角形的性质可得出的值.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴==.故答案为:.【点评】本题考查了相似三角形的判定与性质,利用相似三角形的判定定理证出△ADE∽△ABC是解题的关键16.已知△ABC和△DEF中.点A、B、C分别与点D、E、F相对应.且∠A=70°时,∠B=34°,∠D=70°,则当∠F=76°时,△ABC∽△DEF.【分析】利用两对角相等的三角形相似即可作出判断.【解答】解:∵△ABC和△DEF中.点A、B、C分别与点D、E、F相对应.且∠A=70°时,∠B=34°,∠D=70°,∴∠B=∠E=34°,∴∠C=∠F=76°,故答案为:76°【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.17.如图,已知线段AB的两个端点在直角坐标系中的坐标分别是A(m,m),B(2n,n),以原点O为位似中心,相似比为,把线段AB缩小,则经过位似变换后A、B的对应点坐标分别是A′(m,m),B′(n,n);点A到原点O的距离是m.【分析】由于在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,则把点A和点B的坐标都乘以即可得到点A′和点B′的坐标,再利用两点间的距离公式计算点A到原点O的距离.【解答】解:∵A(m,m),B(2n,n),而位似中心为原点,相似比为,∴A′(m,m),B′(n,n);点A到原点O的距离==m.故答案为(m,m),(n,n);m.【点评】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.18.如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两端上,若CD=2,则AB的长是6.【分析】根据题意可知△ABO∽△DCO,根据相似三角形的性质即可求出AB的长度,此题得解.【解答】解:根据题意,可知:△ABO∽△DCO,∴=,即=3,∴AB=6.故答案为:6.【点评】本题考查了相似三角形的应用,利用相似三角形的性质求出AB的长度是解题的关键.三.解答题(共8小题)19.已知,(1)求的值;(2)若x﹣2y+4z=24,求x+y+z的值.【分析】设=k,于是得到x=2k,y=3k,z=4k,代入代数式即可得到结论.【解答】解:∵,∴设=k,∴x=2k,y=3k,z=4k,∴(1)==;(2)∵x﹣2y+4z=24,∴2k﹣6k+16k=24,∴k=2,∴x+y+z=2k+3k+4k=9k=18.【点评】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.20.如图,四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2.(1)求下列各线段的比:,,;(2)指出AB,BC,CF,CD,EF,FB这六条线段中的成比例线段(写一组即可)【分析】(1)根据矩形的性质和线段的和差关系得到CD,EF,BC,CF,再代入数据即可求得各线段的比;(2)根据成比例线段的定义写一组即可求解.【解答】解:(1)∵四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2,∴CD=EF=AB=3,BC=AD=6.5,CF=BC﹣BF=4.5,∴==,==,=;(2)成比例线段有=.【点评】本题考查了矩形的性质,比例线段,解决问题的关键是得到CD,EF,BC,CF的值.21.如图,在△ABC与△A'B'C'中,∠A=∠A',BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,点D、E、D'、E'分别在AC、AB、A'C'、A'B'上,且=.求证:=【分析】先证△BDC∽△B′D′C′得∠ACB=∠A′C′B′,结合∠A=∠A′可证△ABC ∽△A'B'C',再利用相似三角形的性质可得答案.【解答】解:∵BD是AC边上的高、B'D'是A'C'的高,∴∠BDC=∠B′D′C′=90°,∴△BDC和△B′D′C′均为直角三角形,∵=,∴△BDC∽△B′D′C′,∴∠ACB=∠A′C′B′,∵∠A=∠A′,∴△ABC∽△A'B'C',∵BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,∴=.【点评】本题主要考查相似三角形的判定与性质,解题的关键是掌握相似三角形的判定定理及相似三角形的对应边的比、对应高的比、对应中线的比、对应角平分线的比和周长的比都等于相似比、面积比等于相似比的平方的性质.22.如图所示:在△ABC中,AB=AC=5,BC=8,D,E分别为BC.AB边上一点,∠ADE =∠C,(1)求证:AD2=AE•AB;(2)∠ADC与∠BED是否相等?请说明理由;(3)若CD=2,求AD的长.【分析】(1)证明△DAE∽△BAD,根据相似三角形的性质证明;(2)根据三角形的外角的性质、等腰三角形的性质证明;(3)证明△ADC∽△DEB,根据相似三角形的性质求出BE,代入(1)的结论计算即可.【解答】(1)证明:∵∠ADE=∠C,∠DAE=∠BAD,∴△DAE∽△BAD,∴=,即AD2=AE•AB;(2)∠ADC=∠DAE+∠B,∠BED=∠DAE+∠ADE,∵AB=AC,∴∠B=∠C,∴∠ADC=∠BED;(3)∵∠ADC=∠BED,∠B=∠C,∴△ADC∽△DEB,∴=,即=,解得,BE=2.4,由(1)得,AD2=AE•AB=13,则AD=.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.23.如图,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于点O.求的值.【分析】由同旁内角互补两直线平行得到AB与CD平行,再利用两直线平行内错角相等,以及对顶角相等得到三角形相似,由相似得比例求出所求即可.【解答】解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴,在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1,在Rt△BCD中,∠BCD=90°,∠D=30°,BC=1,∴CD=,∴==.【点评】此题考查了相似三角形的性质与判定,以及平行线的性质,能利用相似三角形的性质将未知线段的比转化为已知线段的比是解本题的关键.24.如图,以O为位似中心,将△ABC放大为原来的2倍(不写作法,保留作图痕迹).【分析】延长OA到A′使OA′=2OA,同样作出点B′、C′,从而得到满足条件的△A′B′C′;反向延长OA到A″使OA″=2OA,同样作出点B″、C″,从而得到满足条件的△A″B″C″.【解答】解:如图所示:△A′B′C′和△A″B″C″.【点评】本题考查了作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.25.如图,在四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,点E为AB 的中点.(1)求证:△ADC∽△ACB.(2)若AD=2,AB=3,求的值.【分析】(1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;(2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE =AE,根据等腰三角形的性质、平行线的判定定理证明=,由相似三角形的性质列出比例式,计算即可.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵AC2=AB•AD,∴=,∴△ADC∽△ACB;(2)∵△ADC∽△ACB,∴∠ACB=∠ADC=90°,∵点E为AB的中点,∴CE=AE=AB=,∴∠EAC=∠ECA,∴∠DAC=∠EAC,∴∠DAC=∠ECA,∴CE∥AD;∴==,∴=.【点评】本题考查的是直角三角形的性质、平行线的判定、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.26.如图,点E是正方形ABCD的边BC延长线上一点,联结DE,过顶点B作BF⊥DE,垂足为F,BF交边DC于点G.(1)求证:GD•AB=DF•BG;(2)联结CF,求证:∠CFB=45°.【分析】(1)由∠BCD=∠GFD=90°、∠BGC=∠FGD可证得△BGC∽△DGF,即可知,根据AB=BC即可得证;(2)连接BD,由△BGC∽△DGF知,即,根据∠BGD=∠CGF可证△BGD∽△CGF得∠BDG=∠CFG,再由即可得证.【解答】证明:(1)∵四边形ABCD是正方形∴∠BCD=∠ADC=90°,AB=BC,∵BF⊥DE,∴∠GFD=90°,∴∠BCD=∠GFD,∵∠BGC=∠FGD,∴△BGC∽△DGF,∴,∴DG•BC=DF•BG,∵AB=BC,∴DG•AB=DF•BG;(2)如图,连接BD、CF,∵△BGC∽△DGF,∴,∴,又∵∠BGD=∠CGF,∴△BGD∽△CGF,∴∠BDG=∠CFG,∵四边形ABCD是正方形,BD是对角线,∴,∴∠CFG=45°.【点评】本题主要考查相似三角形的判定和性质及正方形的性质,解题的关键是熟练掌握相似三角形的判定和性质.人教版九的级数学下册第二十七章相似单元练习题(含答案)一、选择题1.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图所示的图形,其中AB⊥BE,EF⊥BE,AF交BE于点D,C在BD上,有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A、B间距离的有()A.4组B.3组C.2组D.1组2.如图,四边形ABCD∽四边形A1B1C1D1,AB=12,CD=15,A1B1=9,则边C1D1的长是()A.10B.12C.D.3.如图,为了估计河的宽度,在河的对岸选定一个目标点A,在近岸取点B,C,D,E,使点A,B,D在一条直线上,且AD⊥DE,点A,C,E也在一条直线上且DE∥BC.如果BC=24 m,BD=12 m,DE=40 m,则河的宽度AB约为()A.20 mB.18 mC.28 mD.30 m4.如图,在梯形ABCD中,AD∥BC,对角线AC与BD相交于点O,如果S△ACD:S△ABC=1∶2,那么S△AOD∶S△BOC是()A.1∶3B.1∶4C.1∶5D.1∶65.如图,在平面直角坐标系中,已知点A(-4,8),B(-10,-3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(-2,4)B.(-8,16)C.(-2,4)或(2,-4)D.(-8,16)或(8,-16)6.在△ABC中,点D、E分别在边AB、AC上,如果AD=2,BD=4,那么由下列条件能够判断DE∥BC的是()A.=B.=C.=D.=7.如图,直线l1∥l2∥l3,直线AC分别交,l1,l2,l3于点A,B,C,直线DF分别交,l1,l2,l3于点D,E,F.若DE=3,EF=6,AB=4,则AC的长是()A.6B.8C.9D.128.如图,以点O为支点的杠杆,在A端用竖直向上的拉力将重为G的物体匀速拉起,当杠杆OA水平时,拉力为F;当杠杆被拉至OA1时,拉力为F1,过点B1作B1C⊥OA,过点A1作A1D⊥OA,垂足分别为点C、D.①△OB1C∽△OA1D;②OA·OC=OB·OD;③OC·G=OD·F1;④F=F1.其中正确的说法有()A.1个B.2个C.3个D.4个9.在平面直角坐标系中,△ABC顶点A(2,3).若以原点O为位似中心,画三角形ABC的位似图形△A′B′C′,使△ABC与△A′B′C′的相似比为,则A′的坐标为()A.(3,)B.(,6)C.(3,)或(-3,)D.(,6)或(,-6)10.下列各组图形相似的是()A.B.C.D.二、填空题11.两三角形的相似比为1∶4,它们的周长之差为27 cm,则较小三角形的周长为__________.12.如图,在△ABC与△ADE中,=,要使△ABC与△ADE相似,还需要添加一个条件,这个条件是__________.13.已知△ABC∽△DEF,△ABC的周长为1,△DEF的周长为3,则△ABC与△DEF的面积之比为________.14.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,要使△ABE∽△ACD,则需要添加的一个条件是:________________.15.已知△ABC∽△DEF,且S△ABC=4,S△DEF=25,则=________.16.如图,根据所给信息,可知的值为______________.17.如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,=,则=__________.18.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是______________.19.一个等腰直角三角形和一个正方形如图摆放,被分割成了5个部分. ①,②,③这三块的面积比依次为1∶4∶41,那么④,⑤这两块的面积比是____________.20.将一个矩形沿着一条对称轴翻折,如果所得到的矩形与这个矩形相似,那么我们就将这样的矩形定义为“白银矩形”.事实上,“白银矩形”在日常生活中随处可见.如,我们常见的A4纸就是一个“白银矩形”.请根据上述信息求A4纸的较长边与较短边的比值.这个比值是__________.三、解答题21.如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)求证:DE2=DF·DA.22.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点)和直线l,按要求画图.(1)作出四边形ABCD关于直线l成轴对称的四边形A′B′C′D′;(2)以B为位似中心,在点B的下方将四边形ABCD放大2倍得到四边形A1B1C1D1,画出四边形A1B1C1D1.23.如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.(1)求证:BC平分∠PBD;(2)求证:PC2=PA·PB;(3)若PA=2,PC=2,求阴影部分的面积(结果保留π).24.△ABC∽△A′B′C,顶点A、B、C分别与A′、B′、C′对应,它们的周长分别为60 cm和72 cm,且AB=15 cm,B′C′=24 cm,求BC、AC、A′B′、A′C′的长度.25.如图,在△ABC中,DE∥BC.(1)与有什么关系?过E点作EF∥AB,与有什么关系?(2)由(1)可知与有什么关系?根据三角形相似的定义可知△ABC与△ADE相似吗?(3)你能根据上面的结论证明三组对应边的比相等的两个三角形相似吗?26.在△ABC中,∠BAC=90°,AB=AC,点D是BC边上一点,过点D作∠ADE=45°,DE交AC于点E,求证:△ABD∽△DCE.27.如图,△ABC中,点E、F分别在边AB,AC上,BF与CE相交于点P,且∠1=∠2=∠A.图1图2(1)如图1,若AB=AC,求证:BE=CF;(2)若图2,若AB≠AC,①(1)中的结论是否成立?请给出你的判断并说明理由;②求证:=.28.如图,△AED∽△ABC,相似比为1∶2.若BC=6,则DE的长是多少?答案解析1.【答案】B【解析】①因为知道∠ACB和BC的长,所以可利用∠ACB的正切来求AB的长;②可利用∠ACB和∠ADB的正切求出AB;③因为△ABD∽△EFD,可利用=,求出AB;④无法求出A,B间距离.故共有3组可以求出A,B间距离.故选B.2.【答案】C【解析】∵四边形ABCD∽四边形A1B1C1D1,∴=,∵AB=12,CD=15,A1B1=9,∴C1D1==.故选C.3.【答案】B【解析】∵BC∥DE,∴△ABC∽△ADE,∴=,即=,∴AB=18.故选B.4.【答案】B【解析】∵在梯形ABCD中,AD∥BC,而且S△ACD∶S△ABC=1∶2,∴AD∶BC=1∶2;∵AD∥BC,∴△AOD~△BOC,∵AD∶BC=1∶2,∴S△AOD∶S△BOC=1∶4.故选B.5.【答案】C【解析】以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是(-4×,8×)或,即点A′的坐标为(-2,4)或(2,-4).故选C.6.【答案】C【解析】只有选项C正确,理由是:∵AD=2,BD=4,=,∴===,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,根据选项A、B、D的条件都不能推出DE∥BC,故选C.7.【答案】D【解析】∵l1∥l2∥l3,∴=,即=,∴BC=8,∴AC=AB+BC=12,故选D.8.【答案】D【解析】∵B1C⊥OA,A1D⊥OA,∴B1C∥A1D,∴△OB1C∽△OA1D,故①正确;∴=,由旋转的性质,得OB=OB1,OA=OA1,∴OA·OC=OB·OD,故②正确;由杠杆平衡原理,OC·G=OD·F1,故③正确;∴===是定值,∴F1的大小不变,∴F=F1,故④正确.综上所述,说法正确的是①②③④.故选D.9.【答案】C【解析】∵△ABC与△A′B′C′的相似比为,∴△A′B′C′与△ABC的相似比为,∵位似中心为原点O,∴A′(2×,3×)或A′(-2×,-3×),即A′(3,)或A′(-3,-).故选C.10.【答案】B【解析】A.形状不同,大小不同,不符合相似定义,故错误;B.形状相同,但大小不同,符合相似定义,故正确;C.形状不同,不符合相似定义,故错误;D.形状不同,不符合相似定义,故错误.故选B.11.【答案】9 cm【解析】令较大的三角形的周长为x cm.小三角形的周长为(x-27) cm,由两个相似三角形对应中线的比为1∶4,得1∶4=(x-27)∶x,解之得x=36,x-27=36-27=9 cm.12.【答案】∠B=∠E【解析】添加条件:∠B=∠E;∵=,∠B=∠E,∴△ABC∽△AED,13.【答案】1∶9【解析】∵△ABC∽△DEF,△ABC的周长为1,△DEF的周长为3,∴△ABC与△DEF的周长比为1∶3,∴△ABC与△DEF的相似比为1∶3,∴△ABC与△DEF的面积之比为1∶9,14.【答案】∠B=∠C(答案不唯一)【解析】要使△ABE∽△ACD,则需要添加的一个条件是:∠B=∠C,理由如下:∵∠A=∠A,∠B=∠C,∴△ABE∽△ACD,15.【答案】【解析】∵△ABC∽△DEF,且S△ABC=4,S△DEF=25,∴==.16.【答案】【解析】由题意可得:△ABC∽△A′B′C′,且=,故的值为.17.【答案】【解析】∵DE∥BC,∴△ADE∽△ABC,∴==.故答案为.18.【答案】(4,2)或(-4,-2)【解析】如图所示:△A1B1C1和△A′B′C′与△ABC的相似比为2,点B的对应点B1的坐标是(4,2)或(-4,-2).19.【答案】9∶14【解析】由题意,得①、②、④都是等腰直角三角形,∵①,②这两块的面积比依次为1∶4,∴设①的直角边为x,∴②的直角边为2x,设正方形的边长为y,∵①,③这两块的面积比依次为1∶41,∴①∶(①+③)=1∶42,即x2∶3xy=1∶42,∴y=7x,∴④的面积为6x·6x÷2=18x2,⑤的面积为4x·7x=28x2,∴④,⑤这两块的面积比是18x2∶28x2=9∶14.20.【答案】【解析】由题意,得四边形ABFE∽四边形ADCB,∴=,∴AB2=,∴=.21.【答案】证明(1)如图所示,连接OD,∵点E是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC,又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM,∴直线DM是⊙O的切线;(2)如图所示,连接BE,∵点E是△ABC的内心,∴∠BAE=∠CAE=∠CBD,∠ABE=∠CBE,∴∠BAE+∠ABE=∠CBD+∠CBE,即∠BED=∠EBD,∴DB=DE,∵∠DBF=∠DAB,∠BDF=∠ADB,∴△DBF∽△DAB,∴=,即DB2=DF·DA,∴DE2=DF·DA【解析】22.【答案】解(1)如图,四边形A′B′C′D′即为所求;(2)如图,四边形A1B1C1D1即为所求.【解析】(1)分别作出点A、B、C、D关于直线l的对称点,顺次连接即可得;(2)延长AB到A1,使BA1=2BA,同理分别作出点D、C的对应点,顺次连接即可得.23.【答案】(1)证明连接OC,∵PD切⊙O于点C,∴OC⊥PD,∵BD⊥PD,∴BD∥OC,∴∠DBC=∠BCO,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC=∠CBD,∴BC平分∠PBD;(2)证明连接AC,∵AB是半圆O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=∠ACO+∠ABC=90°,∵∠PCA+∠ACO=90°,∴∠ACP=∠ABC,∵∠P=∠P,∴△ACP∽△CBP,∴=,∴PC2=PA·PB;(3)解∵PC2=PA·PB,PA=2,PC=2,∴PB=6,∴AB=4,∴OC=2,PO=4,∴∠POC=60°,∴S=S△POC-S扇形=×2×2-=2-π.阴影【解析】24.【答案】解∵△ABC∽△A′B′C,它们的周长分别为60 cm和72 cm,∴两三角形相似之比为60∶72=5∶6,∵AB=15 cm,∴=,∴A′B′=18(cm),∵B′C′=24 cm,∴A′C′=72-18-24=30(cm),∴==,解得BC=20(cm),AC=25(cm),答:BC、AC、A′B′、A′C′的长度分别为20 cm,25 cm,18 cm,30 cm.【解析】根据相似三角的性质得出相似比,进而得出A′B′的长,即可分别得出BC、AC、A′C′的长度.25.【答案】解(1)∵DE∥BC,∴=;∵EF∥AB,。
人教版九年级下册第二十七章《相似》单元测试(含答案)
人教版九年级下册第二十七章《相似》单元测试(含答案)一、选择题1、如图,AD∥BE∥CF,直线m,n与这三条平行线分别交于点A、B、C和点D、E、F,已知AB=5,BC=10,DE=4,则EF的长为()A.12.5 B.12 C.8 D.42、已知线段AB=4,点P是它的黄金分割点,AP>PB,则PB=()A. B. C.2﹣4 D.6﹣23、已知=,那么的值为()A. B. C. D.4、矩形的长与宽分别为a、b,下列数据能构成黄金矩形的是()A.a=4,b=+2 B.a=4,b=﹣2 C.a=2,b=+1 D.a=2,b=﹣15、正方形ABCD的边长为4,P为BC边上的动点,连接AP,作PQ⊥PA交CD边于点Q.当点P从B运动到C时,线段AQ的中点M所经过的路径长()A.2 B.1 C.4 D.6、如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A. B. C. D.7、如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:98、如图,已知△ABC与△ADE中,∠C=∠AED=90°,点E在AB上,那么添加下列一个条件后,仍无法判定△ABC∽△DAE的是()A.∠B=∠D B. = C.AD∥BC D.∠BAC=∠D9、如图,在Rt△ABC中,∠C=90°,P是BC边上不同于B,C的一动点,过点P作PQ⊥AB,垂足为Q,连接AP.若AC=3,BC=4,则△AQP的面积的最大值是()A. B. C. D.二、填空题10、已知线段a=9,c=4,如果线段b是a、c的比例中项,那么b= .11、在比例尺为1:1000 000的地图上,量得两地间的距离为3厘米,那么两地间的实际距离是__________千米.12、如图,△ABC内接于⊙O,AB=BC,直径MN⊥BC于点D,与AC边相交于点E,若⊙O的半径为2,OE=2,则OD的长为.13、如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,A P= .14、如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,四边形DEFB是菱形,AB=6,BC=4,那么AD= .15、如图,点O为四边形ABCD与四边形A1B1C1D1的位似中心,OA1=3OA,若四边形ABCD的面积为5,则四边形A1B1C1D1的面积为.16、如图,在平面直角坐标系中,△ABC的顶点坐标分别为(4,0),(8,2),(6,4).已知△A1B1C1的两个顶点的坐标为(1,3),(2,5),若△ABC与△A1B1C1位似,则△A1B1C1的第三个顶点的坐标为.17、如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心,若AB=2,则DE= .三、简答题18、如图,在平面直角坐标系中,四边形OABC的顶点坐标分别是O(0,0),A(3,0),B(4,4),C(﹣2,3),将点O,A,B,C的横坐标、纵坐标都乘以﹣2.(1)画出以变化后的四个点为顶点的四边形;(2)由(1)得到的四边形与四边形OABC位似吗?如果位似,指出位似中心及与原图形的相似比.19、如图,在正方形ABCD中,点M是BC边上的任一点,连接AM并将线段AM绕M顺时针旋转得到线段MN,在CD边上取点P使CP=BM,连接NP,BP.(1)求证:四边形BMNP是平行四边形;(2)线段MN与CD交于点Q,连接AQ,若△MCQ∽△AMQ,则BM与MC存在怎样的数量关系?请说明理由.20、如图:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°求证:(1)△PAC∽△BPD;(2)若AC=3,BD=1,求CD的长.21、已知,如图,Rt△ABC中∠B=90°,Rt△DEF中∠E=90°,OF=OC,AB=6,BF=2,CE=8,CA=0,DE=15.(1)求证:△ABC∽△DEF;(2)求线段DF,FC的长.22、我们知道,三角形的内心是三条角平分线的交点,过三角形内心的一条直线与两边相交,两交点之间的线段把这个三角形分成两个图形.若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“內似线”.(1) 等边三角形“內似线”的条数为;(2) 如图,△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求证:BD是△ABC的“內似线”;(3) 在Rt△ABC中,∠C=90°,AC=4,BC=3,E、F分别在边AC、BC上,且EF是△ABC的“內似线”,求EF的长.参考答案一、选择题1、C解:∵AD∥BE∥CF,∴=,即=,解得,EF=8,2、D解:∵点P是线段AB的黄金分割点,AP>PB,AB=4,∴PB=4×=6﹣2;3、B解:∵=,∴设a=2k,则b=3k,则原式==.4、D解:∵宽与长的比是的矩形叫做黄金矩形,∴=,∴a=2,b=﹣1,5、B解:如图,连接AC,设AC的中点为O′.设BP的长为xcm,CQ的长为ycm.∵四边形ABCD是正方形,∴∠B=∠C=90°∵PQ⊥AP,∴∠APB+∠QPC=90°∠APB+∠BAP=90°∴∠BAP=∠QPC∴△ABP∽△PCQ∴=,即=,∴y=﹣x2+x=﹣(x﹣2)2+1(0<x<4);∴当x=2时,y有最大值1cm易知点M的运动轨迹是M→O→M,CQ最大时,MO=CQ=,∴点M的运动轨迹的路径的长为2OM=1,6、D解:∵△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,∴,A错误;∴,C错误;∴,D正确;不能得出,B错误;7、A解:由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC.∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∴=8、A解:∵∠C=∠AED=90°,∠B=∠D,∴△ABC∽△ADE,故A选项不能证明相似;∵∠C=∠AED=90°,,∴,即sin∠B=sin∠DAE,∴∠B=∠DAE,∴△ABC∽△DAE,故选项B可以证明相似;∵AD∥BC,∴∠B=∠DAE,∵∠C=∠AED=90°,∴△ABC∽△DAE,故选项C可以证明相似;∵∠BAC=∠D,∠C=∠AED=90°,∴△ABC∽△DAE,故选项D可以证明相似;9、C二、填空题10、6.解:若b是a、c的比例中项,即b2=ac.则b===6.11、30 .【考点】比例线段.【分析】根据比例尺=图上距离:实际距离,可知实际距离=图上距离÷比例尺.【解答】解:根据题意,3÷=3000 000厘米=30千米.即实际距离是30千米.故答案为:30.【点评】本题考查了比例线段的定义及比例尺,属于基础题型,比较简单.12、2.【解答】解:连接BO并延长交AC于F,如图,∵BA=BC,∴=,∴BF⊥AC,∵直径MN⊥BC,∴BD=CD,∵∠BOD=∠EOF,∴Rt△BOD∽Rt△EOF,∴===,设OF=x,则OD=x,∵∠DBO=∠DEC,∴Rt△DBO∽Rt△DEC,∴=,即=,而BD=CD,∴DB2=x(x+2)=3x2+2x,在Rt△OBD中,3x2+2x+3x2=(2)2,解得x1=,x2=﹣(舍去),∴OD=x=2.故答案为13、3【解答】解:如图作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ,∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,∴2x+3x=3,∴x=,∴AP=5x=3.14、;解:∵四边形DEFB是菱形,∴BD=BF=DE,DE∥BF,∴△ADE∽△ABC,∴,即,解得:AD=15、45解:∵点O为四边形ABCD与四边形A1B1C1D1的位似中心,OA1=3OA,∴四边形ABCD与四边形A1B1C1D1的相似比为:1:3,∴四边形ABCD与四边形A1B1C1D1的面积比为:1:9,∵四边形ABCD的面积为5,∴四边形A1B1C1D1的面积为:5×9=45.16、(3,4)或(0,4).【解答】解:设直线AC的解析式为:y=kx+b,∵△ABC的顶点坐标分别为(4,0),(8,2),(6,4),∴,解得:,∴直线AC的解析式为:y=2x﹣8,同理可得:直线AB的解析式为:y=x﹣2,直线BC的解析式为:y=﹣x+10,∵△A1B1C1的两个顶点的坐标为(1,3),(2,5),∴过这两点的直线为:y=2x+1,∴过这两点的直线与直线AC平行,①若A的对应点为A1(1,3),C的对应点为C1(2,5),则B1C1∥BC,B1A1∥BA,设直线B1C1的解析式为y=﹣x+a,直线B1A1的解析式为y=x+b,∴﹣2+a=5,+b=3,解得:a=7,b=,∴直线B1C1的解析式为y=﹣x+7,直线B1A1的解析式为y=x+,则直线B1C1与直线B1A1的交点为:(3,4);②若C的对应点为A1(1,3),A的对应点为C1(2,5),则B1A1∥BC,B1C1∥BA,设直线B1C1的解析式为y=x+c,直线B1A1的解析式为y=﹣x+d,∴×2+c=5,﹣1+d=3,解得:c=4,d=4,∴直线B1C1的解析式为y=x+4,直线B1A1的解析式为y=﹣x+4,则直线B1C1与直线B1A1的交点为:(0,4).∴△A1B1C1的第三个顶点的坐标为(3,4)或(0,4).故答案为:17、6.解:∵△ABC与△DEF位似,原点O是位似中心,∴AB:DE=OA:OD,即2:DE=1:3,∴DE=6.三、简答题18、【解答】解:(1)如图所示,四边形OA′B′C′即为所求四边形;(2)∵将点O,A,B,C的横坐标、纵坐标都乘以﹣2可得出四边形OA′B′C′,∴各对应边的比为2,对应点的连线都过原点,∴得到的四边形与四边形OABC位似,位似中心是O(0,0),与原图形的相似比为2.19、(1)证明:在正方形ABCD中,AB=BC,∠ABC=∠C,在△ABM和△BCP中,AB=BC,∠ABC=∠C,CP=BM,∴△ABM≌△BCP(SAS),∴AM=BP,∠BAM=∠CBP,∵∠BAM+∠AMB=90°,∴∠CBP+∠AMB=90°,∴AM⊥BP,∵将线段AM绕M顺时针旋转90°得到线段MN,∴AM⊥MN,且AM=MN,∴MN∥BP,∴四边形BMNP是平行四边形;(2)解:BM=MC.理由如下:∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°,∴∠BAM=∠CMQ,又∵∠ABM=∠C=90°,∴△ABM∽△MCQ,∴=,∵△MCQ∽△AMQ,∴△AMQ∽△ABM,∴=,∴=,∴BM=MC.20、证明:(1)∵△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,∴∠APC+∠BPD=45°,又∠PAB+∠PBA=45°,∠PBA+∠PBD=45°,∴∠PAB=∠PBD,∠BPD=∠PAC,∵∠PCA=∠PDB,∴△PAC∽△BPD;(2)∵=,PC=PD,AC=3,BD=1∴PC=PD=,∴CD==.21、(1)证明:∵OF=OC,∴∠OCF=∠OFC,∵∠B=90°,∠E=90°,∴△ABC∽△DEF;(2)解:∵△ABC∽△DEF,∴==,∵AB=6,DE=15,AC=10,BF=2,CE=8,∴==,∴DF=25,CF=2.22、(1) 解:等边三角形“內似线”的条数为3条;理由如下:过等边三角形的内心分别作三边的平行线,如图1所示:则△AMN∽△ABC,△CEF∽△CBA,△BGH∽△BAC,∴MN、EF、GH是等边三角形ABC的內似线”;故答案为:3;(2) 证明:∵AB=AC,BD=BC,∴∠ABC=∠C=∠BDC,∴△BCD∽△ABC,∴BD是△ABC的“內似线”;(3) 解:设D是△ABC的内心,连接CD,则CD平分∠ACB,∵EF是△ABC的“內似线”,∴△CEF与△ABC相似;分两种情况:①当==时,EF∥AB,∵∠ACB=90°,AC=4,BC=3,∴AB==5,作DN⊥BC于N,如图2所示:则DN∥AC,DN是Rt△ABC的内切圆半径,∴DN=(AC+BC﹣AB)=1,∵CD平分∠ACB,∴=,∵DN∥AC,∴=,即,∴CE=,∵EF∥AB,∴△CEF∽△CAB,∴,即,解得:EF=;②当==时,同理得:EF=;综上所述,EF的长为.人教版九年级下数学第二十七章 《相似》单元练习题(含答案)一.选择题1.如图,在△ABC 中,DE ∥BC 分别交AB ,AC 于点D ,E ,若=,则下列说法不正确的是( )A .=B .=C .=D .=2.在平行四边形ABCD 中,点E 是边AD 上一点,且AD =3ED ,EC 交对角线BD 于点F ,则等于( )A .B .C .D .3.如图,有一块三角形余料ABC ,BC =120mm ,高线AD =80mm ,要把它加工成一个矩形零件,使矩形的一边在BC 上,点P ,M 分别在AB ,AC 上,若满足PM :PQ =3:2,则PM 的长为( )A .60mmB . mmC .20mmD . mm4.如图,在△ABC 中,AB =6,AC =8,BC =10,D 是△ABC 内部或BC 边上的一个动点(与B 、C 不重合),以D 为顶点作△DEF ,使△DEF ∽△ABC (相似比k >1),EF ∥BC .两三角形重叠部分是四边形AGDH ,当四边形AGDH 的面积最大时,最大值是多少?( )A .12B .11.52C .13D .85.已知线段AB 的长为4,点P 是线段AB 的黄金分割点(AP >BP ),则PA 的长为( )A .2﹣2B .6﹣2√5C .D .4﹣26.如图,在△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,DE ∥BC ,DF ∥AC ,若△ADE 与四边形DBCE 的面积相等,则△DBF 与△ADE 的面积之比为( )A .B .C .D .7.如图,正方形OABC 的边长为8,点P 在AB 上,CP 交OB 于点Q .若S △BPQ =,则OQ 长为( )A .6B .C .D .8.在△ABC 中,点D 在边BC 上,联结AD ,下列说法错误的是( )A .如果∠BAC =90°,AB 2=BD •BC ,那么AD ⊥BCB .如果AD ⊥BC ,AD 2=BD •CD ,那么∠BAC =90°C .如果AD ⊥BC ,AB 2=BD •BC ,那么∠BAC =90°D .如果∠BAC =90°,AD 2=BD •CD ,那么AD ⊥BC 9.如图,在△ABC 中,点O 是∠ABC 和∠ACB 两个内角平分线的交点,过点O 作EF ∥BC 分别交AB ,AC 于点E ,F ,已知△ABC 的周长为8,BC =x ,△AEF 的周长为y ,则表示y 与x 的函数图象大致是( )A .B .C .D .10.如图,已知△ABO 与△DCO 位似,且△ABO 与△DCO 的面积之比为1:4,点B 的坐标为(﹣3,2),则点C 的坐标为( )A .(3,﹣2)B .(6,﹣4)C .(4,﹣6)D .(6,4)11.在比例尺是1:8000的地图上,中山路的长度约为25cm ,该路段实际长度约为( )A .3200mB .3000mC .2400mD .2000m12.如图,△DEF 和△ABC 是位似图形,点O 是位似中心,点D ,E ,F 分别是OA ,OB ,O C 的中点,若△DEF 的周长是2,则△ABC 的周长是( )A.2 B.4 C.6 D.8二.填空题13.如图,△ABC中,D、E分别是AB、AC上的点(DE不平行BC),若使△ADE与△ABC相似,则需要添加即可(只需添加一个条件).14.如图,已知△ABC和△ADE都是等边三角形,点D在边BC上,且BD=4,CD=2,那么AF=.15.如图,矩形ABCD中,AB=2,BC=4,剪去一个矩形ABEF后,余下的矩形EFDC∽矩形BCDA,则EC的长为.16.若=,则=.17.如图,平行四边形ABCD中,点E是AD边上一点,连结EC、BD交于点F,若AE:ED=5:4记△DFE的面积为S,△BCF的面积为S2,△DCF的面积为S3,则DF:BF1=,S1:S2:S3=.18.如图,在四边形ABCD中,AD∥BC∥EF,E F分别与AB,AC,CD相交于点E,M,F,若EM:BC=2:5,则FC:CD的值是.19.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么的值为.三.解答题20.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.21.如图,已知菱形ABCD,点E是AB的中点,AF⊥BC于点F,联结EF、ED、DF,DE 交AF于点G,且AE2=EG•ED.(1)求证:DE⊥EF;(2)求证:BC2=2DF•BF.22.如图,在△ABC中,D、E分别是边AB、AC上的点,DE∥BC,点F在线段DE上,过点F作FG∥AB、FH∥AC分别交BC于点G、H,如果BG:GH:HC=2:4:3.求的值.23.如图,△ABC的面积为12,BC与BC边上的高AD之比为3:2,矩形EFGH的边EF 在BC上,点H,G分别在边AB、AC上,且HG=2GF.(1)求AD的长;(2)求矩形EFGH的面积.24.如图,四边形ABGH,四边形BCFG,四边形CDEF都是正方形.请在图中找出与△HBC相似的三角形,并说明它们相似的理由.25.如图,在△ABC中,点D为边BC上一点,且AD=AB,AE⊥BC,垂足为点E.过点D作DF∥AB,交边AC于点F,连接EF,EF2=BD•EC.(1)求证:△EDF∽△EFC;(2)如果=,求证:AB=BD.参考答案一.选择题1.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,==,==,=()2=,∴=,故A、B、D选项正确,C选项错误,故选:C.2.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AD=3ED,∴=,∵AD∥BC,∴△EFD∽△CFB,∴==,故选:A.3.【解答】解:如图,设AD交PN于点K.∵PM:PQ=3:2,∴可以假设MP=3k,PQ=2k.∵四边形PQNM是矩形,∴△APM∽△ABC,∵AD⊥BC,BC∥PM,∴AD⊥PN,∴=,∴=,解得k=20mm,∴PM=3k=60mm,故选:A.4.【解答】解:∵AB2+AC2=100=BC2,∴∠BAC=90°,∵△DEF∽△ABC,∴∠EDF=∠BAC=90°,如图1延长ED交BC于M,延长FD交BC于N,∵△DEF∽△ABC,∴∠B=∠E,∵EF∥BC,∴∠E=∠EMC,∴∠B=∠EMC,∴AB∥DE,同理:DF∥AC,∴四边形AGDH为平行四边形,∵∠EDF=90°,∴四边形AGDH为矩形,∴四边形AGDH为正方形,当点D在△ABC内部时,四边形AGDH的面积不可能最大,如图2,点D在内部时(N在△ABC内部或BC边上),延长GD至N,过N作NM⊥AC于M,∴矩形GNMA面积大于矩形AGDH,∴点D在△ABC内部时,四边形AGDH的面积不可能最大,只有点D在BC边上时,面积才有可能最大,如图2,点D在BC上,∵△DEF∽△ABC,∴∠F=∠C,∵EF∥BC.∴∠F=∠BDG,∴∠BDG=∠C,∴DG∥AC,∴△BGD∽△BAC,∴=,∴=,∴=,∴AH=8﹣GA,S=AG×AH=AG×(8﹣AG)=﹣AG2+8AG,矩形AGDH当AG=﹣=3时,S矩形AGDH最大,S矩形AGDH最大=12.故选:A.5.【解答】解:∵点P是线段AB的黄金分割点(AP>BP),∴PA=AB=×4=2﹣2.故选:A.6.【解答】解:∵DE∥BC,DF∥AC,∴四边形DFCE是平行四边形,∴DE=CF,∵△ADE与四边形DBCE的面积相等,∴=,∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴=,设DE=k,BC=2k,∴BF=2k﹣k,∵DF∥AC,∴△BDF∽△BAC,∴△DBF∽△ADE,∴=()2==﹣1,故选:C.7.【解答】解:∵四边形ABCO是正方形,∴AB∥OC,∴△PBQ∽△COQ,∴=()2=,∴OC=3PB,∵OC=8,∴PB=,∵==,BO=8,∴OQ=×8=6,故选:B.8.【解答】解:A、∵AB2=BD•BC,∴=,又∠B=∠B∴△BAD∽△BCA,∴∠BDA=∠BAC=90°,即AD⊥BC,故A选项说法正确,不符合题意;B、∵AD2=BD•CD,∴=,又∠ADC=∠BDA=90°,∴△ADC∽△BDA,∴∠BAD=∠C,∵∠DAC+∠C=90°,∴∠DAC+∠BAD=90°,∴∠BAC=90°,故B选项说法正确,不符合题意;C、∵AB2=BD•BC,∴=,又∠B=∠B∴△BAD∽△BCA,∴∠BAC=∠BDA=90°,即AD⊥BC,故C选项说法正确,不符合题意;D、如果∠BAC=90°,AD2=BD•CD,那么AD与BC不一定垂直,故D选项错误,不符合题意;故选:D.9.【解答】解:∵点O是△ABC的内心,∴∠ABO=∠CBO,∠ACO=∠BCO,∵EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO,∴∠ABO=∠EOB,∠ACO=∠FOC,∴BE=OE,CF=OF,∴△AEF的周长y=AE+EF+AF=AE+OE+OF+AF=AB+AC,∵△ABC的周长为8,BC=x,∴AB+AC=8﹣x,∴y=8﹣x,∵AB+AC>BC,∴y>x,∴8﹣x>x,∴0<x<4,即y与x的函数关系式为y=8﹣x(x<4),故选:A.10.【解答】解:∵△ABO与△DCO位似,且△ABO与△DCO的面积之比为1:4,∴△ABO与△DCO为1:2,∵点B的坐标为(﹣3,2),∴点C的坐标为(6,﹣4),故选:B.11.【解答】解:设它的实际长度为xcm,根据题意得:1:8000=25:x,解得:x=200000,∵200000cm=2000m,∴该路段实际长度约为2000m.故选:D.12.【解答】解:∵点D,E分别是OA,OB的中点,∴DE=AB,∵△DEF和△ABC是位似图形,点O是位似中心,∴△DEF∽△DBA,∴=,∴△ABC的周长=2×2=4.故选:B.二.填空题(共7小题)13.【解答】解:∵∠A是公共角,如果∠ADE=∠C或∠AED=∠B,∴△ADE∽△ABC;如果=,∠A=∠A,∴△ADE∽△ABC,故答案为:∠ADE=∠C或∠AED=∠B或=.14.【解答】解:∵△ABC和△ADE都是等边三角形,BD=4,CD=2,∴AB=AC=6,∠B=∠C=∠ADF=60°,∴∠ADB+∠BAD=∠ADB+∠CDF=120°,∴∠BAD=∠CDF,∴△ABD∽△DCF,∴=,即=,解得CF=,∴AF=AC﹣CF=6﹣=,故答案为:.15.【解答】解:∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=4,∵四边形EFCD是矩形,∴EF=CD=2,CF=DE,∵余下的矩形EFCD∽矩形BCDA,∴,即=,∴CF=1,∴EC的长===,故答案为:.16.【解答】解:设==k(k≠0),则a=2k,b=3k,所以==4.故答案是:4.17.【解答】解:∵AE:ED=5:4,∴DE:AD=4:9,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴==,∴=()2=,=,∴S1:S2:S3=16:81:36,故答案为:4:9,16:81:36.18.【解答】解:∵AD∥BC∥EF,∴△AEM∽△ABC,△CFM∽△CDA,∵EM:BC=2:5,∴==,设AM=2x,则AC=5x,故MC=3x,∴==,故答案为:.19.【解答】证明:∵AB=6,D是边AB的中点,∴AD=3,∵AG是∠BAC的平分线,∴∠BAG=∠EAF,∵∠ADE=∠C,∴△ADF∽△ACG;∴==,故答案为:.三.解答题(共6小题)20.【解答】证明:(1)∵AB=AC,D是边BC的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ADE+∠CDE=90°.∵DE⊥AC,∴∠CED=90°,∴∠CDE+∠DCE=90°,∴∠ADE=∠DCE.又∵∠AED=∠DEC=90°,∴△AED∽△DEC,∴=,∴DE•CD=AD•CE;(2)∵AB=AC,∴BD=CD=BC.∵F为DE的中点,∴DE=2DF.∵DE•CD=AD•CE,∴2DF•BC=AD•CE,∴=.又∵∠BCE=∠ADF,∴△BCE∽△ADF,∴=,∴AF•BC=AD•BE.21.【解答】(1)证明:∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵AE2=EG•ED,∴=,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴∠EAG=∠ADG,∵∠AGD=∠FGE,∴∠DAG=∠FEG,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∴∠FEG=90°,∴DE⊥EF;(2)解:∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴=,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴=,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE=AB=BC,∴=,∴BC2=2DF•BF.22.【解答】解:∵BG:GH:HC=2:4:3,∴设BG=2k,GH=4k,HC=3k,(k≠0)∵DE∥BC,FG∥AB,∴四边形BDFG是平行四边形,∴DF=BG=2k,∵DE∥BC,FH∥AC∴四边形EFHC是平行四边形,∴EF=HC=3k,∴DE=5k∵DE∥BC∴∠ADE=∠B,∵FG∥AB∴∠FGH=∠B,∴∠ADE=∠FGH,同理可得:∠AED=∠FHG∴△ADE∽△FGH∴=()2=,23.【解答】解:(1)设BC=3x,则AD=2x,∵△ABC的面积为12,∴×3x×2x=12,解得,x1=2,x2=﹣2(舍去),则AD的长=2x=4;(2)设GF=y,则HG=2y,∵四边形EFGH为矩形,∴HG∥BC,∴△AHG∽△ABC,∴=,即=,解得,y=,HG=2y=,则矩形EFGH的面积=×=.24.【解答】解:△DBH∽△HBC,理由:∵四边形ABGH,四边形BCFG,四边形CDEF都是正方形,∴A,B,C,D在一条直线上,∠A=90°,设AB=x,则AH=BC=CD=x,∴BH=x,BD=2x,∴,∵∠HBC=∠HBC,∴△DBH∽△HBC.25.【解答】证明:(1)∵AB=AD,AE⊥BC,∴BE=ED=DB,∵EF2=•BD•EC,∴EF2=ED•EC,即得=,又∵∠FED=∠CEF,∴△EDF∽△EFC.(2)∵AB=AD,∴∠B=∠ADB,又∵DF∥AB,∴∠FDC=∠B,∴∠ADB=∠FDC,∴∠ADB+∠ADF=∠FDC+∠ADF,即得∠EDF=∠ADC,∵△EDF∽△EFC,∴∠EFD=∠C,∴△EDF∽△ADC,∴=()2=,∴=,即 ED =AD ,又∵ED =BE =BD ,∴BD =AD ,∴AB =BD .人教版九年级下数学第二十七章相似单元练习题(含答案).doc一、选择题1.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是()A.∠C=∠AEDB.=C.∠B=∠DD.=2.如图,已知矩形ABCD和矩形EFGO在平面直角坐标系中,点B,F的坐标分别为(-4,4),(2,1).若矩形ABCD和矩形EFGO是位似图形,点P(点P在GC上)是位似中心,则点P的坐标为()A.(0,3)B.(0,2.5)C.(0,2)D.(0,1.5)3.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①=;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④B.①④C.②③④D.①②③4.如图,圆内接四边形ABCD的BA,CD的延长线交于P,AC,BD交于E,则图中相似三角形有()A.2对B.3对C.4对D.5对5.下列各组图形中可能不相似的是()A.各有一个角是45°的两个等腰三角形B.各有一个角是60°的两个等腰三角形C.各有一个角是105°的两个等腰三角形D.两个等腰直角三角形6.如图,把一个长方形划分为5个全等的小长方形,若要使每一个小长方形与原长方形相似,则原长方形的边a,b应满足的条件是()A.a=5bB.a=10bC.a=bD.a=2b7.如图,己知△ABC,任取一点O,连接AO,BO,CO,并取它们的中点D,E,F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形;②△ABC与△DEF是相似图形;③△ABC与△DEF的周长比为1∶2;④△ABC与△DEF的面积比为4∶1.A.1B.2C.3D.48.如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()A.B.C.D.9.如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2∶1,则点C′的坐标为()A.(0,0)B.(0,1)C.(1,-1)D.(1,0)10.对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是() A.平移B.旋转C.轴对称D.位似二、填空题11.已知:在△ABC中,AB=4,BC=5,CA=6.(1)如果DE=10,那么当EF=________,FD=________时,△DEF∽△ABC;(2)如果DE=10,那么当EF=________,FD=________时,△FDE∽△ABC.12.如图,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE 交AD于点F.若CD=5,BC=8,AE=2,则AF=________.13.如图,在平行四边形ABCD中,F是AD延长线上一点,连接BF分别交AC、CD于P、E,则图中的位似三角形共有________对.14.已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为__________.15.两千多年前,我国的学者墨子和他的学生做了小孔成像的实验.他的做法是,在一间黑暗的屋子里,一面墙上开一个小孔,小孔对面的墙上就会出现外面景物的倒像.小华在学习了小孔成像的原理后,利用如图装置来验证小孔成像的现象.已知一根点燃的蜡烛距小孔20 cm,光屏在距小孔30 cm处,小华测量了蜡烛的火焰高度为2 cm,则光屏上火焰所成像的高度为__________ cm.16.已知a,b,c,d是成比例线段,其中a=2 m,b=4 m,c=5 m,则d=__________ m.17.汪老师要装修自己带阁楼的新居(如图为新居剖面图),在建造客厅到阁楼的楼梯AC时,为避免上楼时墙角F碰头,设计墙角F到楼梯的竖直距离FG为1.75 m.他量得客厅高AB =2.8 m,楼梯洞口宽AF=2 m,阁楼阳台宽EF=3 m.要使墙角F到楼梯的竖直距离FG为1.75 m,楼梯底端C到墙角D的距离CD是____________ m.18.△ABC中,∠C=90°,∠A=30°,AB=2.以点C为位似中心将△ABC按∶1放大,A、B 的对应点分别为A′、B′,再将△A′B′C绕点C旋转90°,A′的对应点为P,则点P与B之间的距离为__________.19.如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知CD=12 m,DE=18 m,小明和小华的身高都是1.5 m,同一时刻小明站在E处,影子落在坡面上,影长为2 m,小华站在平地上,影子也落在平地上,影长为1 m,则塔高AB是__________米.20.如图,小强和小华共同站在路灯下,小强的身高EF=1.8 m,小华的身高MN=1.5 m,他们的影子恰巧等于自己的身高,即BF=1.8 m,CN=1.5 m,且两人相距4.7 m,则路灯AD 的高度是____________.三、解答题21.如图,四边形ABCD是平行四边形,E为边CD延长线上一点,连接BE交边AD于点F.请找出一对相似三角形,并加以证明.22.作图:如图所示,O为△ABC外一点,以O为位似中心,将△ABC缩小为原图的.(只作图,不写作法和步骤)23.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点四边形ABCD(顶点是网格线的交点)和直线l,按要求画图.(1)作出四边形ABCD关于直线l成轴对称的四边形A′B′C′D′;(2)以B为位似中心,在点B的下方将四边形ABCD放大2倍得到四边形A1B1C1D1,画出四边形A1B1C1D1.24.如果两个一次函数y=k1x+b1和y=k2x+b2满足k1=k2,b1≠b2,那么称这两个一次函数为“平行一次函数”.如图,已知函数y=-2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b 与y=-2x+4是“平行一次函数”(1)若函数y=kx+b的图象过点(3,1),求b的值;(2)若函数y=kx+b的图象与两坐标轴围成的三角形和△AOB构成位似图形,位似中心为原点,位似比为1∶2,求函数y=kx+b的表达式.25.如图,▱ABCD的对角线AC、BD相交于点O,点E、F、G、H分别是线段OA、OB、OC、OD的中点,那么▱ABCD与四边形EFGH是否是位似图形?为什么?26.如图1,给定锐角三角形ABC,小明希望画正方形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上,他发现直接画图比较困难,于是他先画了一个正方形HIJK,使得点H,I位于射线BC上,K位于射线BA上,而不需要求J必须位于AC上.这时他发现可以将正方形HIJK通过放大或缩小得到满足要求的正方形DEFG.阅读以上材料,回答小明接下来研究的以下问题:(1)如图2,给定锐角三角形ABC,画出所有长宽比为2:1的长方形DEFG,使D,E位于边BC上,F,G分别位于边AC,AB上.(2)已知三角形ABC的面积为36,BC=12,在第(1)问的条件下,求长方形DEFG的面积.27.如图:已知AB⊥DB于B点,CD⊥DB于D点,AB=6,CD=4,BD=14,在DB上取一点P,使以CDP为顶点的三角形与以PBA为顶点的三角形相似,则DP的长.28.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1∶2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标.答案解析1.【答案】D【解析】∵∠1=∠2,∴∠BAC=∠DAE.A.∵∠C=∠AED,∴△ABC∽△ADE,错误;B.∵=,∴△ABC∽△ADE,错误;C.∵∠B=∠D,∴△ABC∽△ADE,错误;D.∵=,∠B与∠D的大小无法判定,∴无法判定△ABC∽△ADE,正确.故选D.2.【答案】C【解析】连接BF交y轴于P,∵四边形ABCD和四边形EFGO是矩形,点B,F的坐标分别为(-4,4),(2,1),∴点C的坐标为(0,4),点G的坐标为(0,1),∴CG=3,∵BC∥GF,∴==,∴GP=1,PC=2,∴点P的坐标为(0,2),故选C.3.【答案】D【解析】∵在▱ABCD中,AO=AC,∵点E是OA的中点,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴==,∵AD=BC,∴AF=AD,∴=;故①正确;∵S△AEF=4,==,∴S△BCE=36;故②正确;∵==,∴=,∴S△ABE=12,故③正确;∵BF不平行于CD,∴△AEF与△ADC只有一个角相等,∴△AEF与△ACD不一定相似,故④错误,故选D.4.【答案】C【解析】根据同弧所对的圆周角相等及相似三角形的判定定理可知,图中相似三角形有4对,分别是△ADE∽△BCE,△AEB∽△DEC,△PAD∽△PCB,△PBD∽△PCA.故选C.5.【答案】A【解析】A.不正确,因为没有指明这个45°的角是顶角还是底角,则无法判定其相似;B.由已知我们可以得到这是两个正三角形,从而可以根据三组对应边的比相等的两个三角形相似判定这两个三角形相似;C.正确,已知一个角为105°,则我们可以判定其为顶角,这样我们就可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似判定这两个三角形相似;D.正确,因为是等腰直角三角形,则我们可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定这两个三角形相似.故选A.6.【答案】C【解析】∵每一个小长方形与原长方形相似,∴=,∴a2=5b2,∴a=b.故选C.7.【答案】C【解析】根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的,∴△ABC与△DEF的周长比为2∶1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4∶1.故选C.8.【答案】A【解析】如图,作BF⊥l3,AE⊥l3,∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CBF=90°,∴∠ACE=∠CBF,在△ACE和△CBF中,,∴△ACE≌△CBF,∴CE=BF=3,CF=AE=4,∵l1与l2的距离为1,l2与l3的距离为3,∴AG=1,BG=EF=CF+CE=7,。
人教版九年级数学下册第二十七章 相似单元测试题
人教版九年级数学下册第二十七章 相似单元测试题第一卷 (选择题 共30分)一、选择题(每题3分,共30分)1.以下各组中的四条线段是成比例线段的是( )A .4 cm ,4 cm ,5 cm ,6 cmB .1 cm ,2 cm ,3 cm ,5 cmC .3 cm ,4 cm ,5 cm ,6 cmD .1 cm ,2 cm ,2 cm ,4 cm2.在比例尺是1∶38000的黄浦江交通旅游图上,某隧道长约7 cm ,那么它的实践长度约为( )A .266 kmB .26.6 kmC .2.66 kmD .0.266 km3.假定△ABC 的每条边长添加各自的10%得△A ′B ′C ′,那么∠B ′的度数与其对应角∠B 的度数相比( )A .添加了10%B .增加了10%C .添加了(1+10%)D .没有改动4.假设两个相似五边形的面积和等于65 cm 2,其中一组对应边的长区分为3 cm 和4.5 cm ,那么较大五边形的面积为( )A .26 cm 2B .39 cm 2C .20 cm 2D .45 cm 25.如图27-Z -1,每个小正方形网格的边长均为1,将△ABC 的三边区分扩展一倍失掉△A 1B 1C 1(顶点均在格点上),假定它们是以点P 为位似中心的位似图形,那么点P 的坐标是( )图27-Z -1A .(-3,-4)B .(-3,-3)C .(-4,-4)D .(-4,-3)6.为测量某河(两岸相互平行)的宽度,小军在河对岸选定一个目的点A ,再在他所在的这一侧选点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,然后找出AD 与BC 的交点E .如图27-Z -2所示,假定测得BE =90 m ,EC =45 m ,CD =60 m ,那么这条河的宽AB 等于( )图27-Z -2A .120 mB .67.5 mC .40 mD .30 m 7.如图27-Z -3所示,在△ABC 中,D 为AC 边上一点,假定∠DBC =∠A ,BC =6,AC =3,那么CD 的长为( )图27-Z -3A .1 B.32 C .2 D.528.如图27-Z -4,在△ABC 中,中线BE ,CD 相交于点O ,衔接DE ,有以下结论:①DE BC =12;②S △DOE S △COB =12;③AD AB =OEOB . 图27-Z -4其中正确的有( )A .0个B .1个C .2个D .3个9.在研讨相似效果时,甲、乙同窗的观念如下:甲:将边长区分为3,4,5的三角形按图27-Z -5①的方式向外扩张,失掉新的三角形,它们的对应边间距均为1,那么新三角形与原三角形相似.乙:将邻边区分为3和5的矩形按图②的方式向外扩张,失掉新的矩形,它们的对应边间距均为1,那么新矩形与原矩形不相似.关于两人的观念,以下说法正确的选项是( )图27-Z -5A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对10.如图27-Z -6,在△ABC 中,E ,D 是BC 边的三等分点,F 是AC 的中点,BF 区分交AD ,AE 于点G ,H ,那么BG ∶GH ∶HF 等于( )图27-Z -6A .1∶2∶3B .3∶5∶2C .5∶3∶2D .5∶3∶1第二卷 (非选择题 共70分)二、填空题(每题3分,共18分)11.如图27-Z -7,D 是BC 上一点,△ABC ∽△DBA ,E ,F 区分是AC ,AD 的中点,且AB =28,BC =36,那么BE ∶BF =________.图27-Z -712.如图27-Z -8,直线l 1∥l 2∥l 3,另两条直线区分交l 1,l 2,l 3于点A ,B ,C 及点D ,E ,F ,且AB =3,DE =4,EF =2,那么DE·BC =________.图27-Z -813.如图27-Z -9,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等份,那么图中阴影局部的面积是△ABC 的面积的________.图27-Z -9 14.如图27-Z -10,在Rt △ABC 中,AB =BC ,∠B =90°,AC =10 2.四边形BDEF 是△ABC 的内接正方形(点D ,E ,F 在三角形的边上),那么此正方形的面积是________.图27-Z -1015.«九章算术»是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中卷第九〝勾股〞章,主要讲述了以测量效果为中心的直角三角形三边互求的关系.其中记载:〝今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?〞译文:〝如图27-Z -11,今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门.走出东门15里处有棵大树,问走出南门多少步恰恰能望见这棵树?〞(注:1里=300步)你的计算结果是:出南门________步而见木.图27-Z -1116.如图27-Z -12,在钝角三角形ABC 中,AB =6 cm ,AC =12 cm ,动点D 从点A 动身到点B 中止,动点E 从点C 动身到点A 中止,点D 运动的速度为1 cm /s ,点E 运动的速度为2 cm /s ,假设两点同时运动,运动________s 时,△AED ∽△ABC.图27-Z -12三、解答题(共52分)17.(5分)四边形ABCD ∽四边形A′B′C′D′,且AB ∶BC ∶CD ∶DA =20∶15∶9∶8,四边形A′B′C′D′的周长为26,求四边形A′B′C′D′各边的长.18.(5分)阅读与计算:请阅读以下资料,并完成相应的效果.角平分线分线段成比例定理:如图27-Z -13①,在△ABC 中,AD 平分∠BAC ,那么AB AC =BD CD.下面是这个定理的局部证明进程.证明:如图②,过点C 作CE ∥DA ,交BA 的延伸线于点E.… 义务:请依照下面的证明思绪,写出该证明的剩余局部.图27-Z -1319.(5分)如图27-Z -14,△ABC 在直角坐标平面内,三个顶点的坐标区分为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长都是1个单位长度).(1)画出△ABC 向下平移4个单位长度后失掉的△A 1B 1C 1,点C 1的坐标是________; (2)以点B 为位似中心,在该网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且相似比为2∶1,点C 2的坐标是________;(3)△A 2B 2C 2的面积是________平方单位.图27-Z -1420.(5分)如图27-Z -15,四边形ABCD ∽四边形EFGH ,衔接AC ,EG.求证:ACEG =AD EH. 图27-Z -1521.(7分)如图27-Z -16,⊙O 是△ABC 的外接圆,圆心O 在AB 上,过点B 作⊙O 的切线交AC 的延伸线于点D.(1)求证:△ABC ∽△BDC ;(2)假定AC =8,BC =6,求△BDC 的面积.图27-Z -1622.(7分)如图27-Z -17,在Rt △ABC 中,∠C =90°,翻折∠C ,使点C 落在斜边AB 上的某一点D 处,折痕为EF(点E ,F 区分在边AC ,BC 上).(1)假定△CEF 与△ABC 相似.①当AC =BC =2时,AD 的长为________; ②当AC =3,BC =4时,AD 的长为________.(2)当D 是AB 的中点时,△CEF 与△ABC 相似吗?说明理由.图27-Z -1723.(9分)一块资料的外形是锐角三角形ABC ,边BC =12 cm ,高AD =8 cm ,把它加工成矩形零件如图27-Z -18,要使矩形的一边在BC 上,其他两个顶点区分在AB ,AC 上,且矩形的长与宽的比为3∶2,求这个矩形零件的边长.图27-Z -1824.(9分):在四边形ABCD 中,E ,F 区分是AB ,AD 边上的点,DE 与CF 相交于点G.(1)如图27-Z -19①,假定四边形ABCD 是矩形,且DE ⊥CF.求证:AD DE =CGCD ;(2)如图②,假定四边形ABCD 是平行四边形,试探求:当∠B 与∠EGC 满足什么关系时,AD DE =CGCD成立?并证明你的结论;(3)如图③,假定BA =BC =9,DA =DC =12,∠BAD =90°,DE ⊥CF.求DECF的值. 图27-Z -19详解详析1.D [解析] 选项A 中,44≠56,故不成比例.选项B 中,12≠35,故不成比例.选项C中,34≠56,故不成比例.选项D 中,12=24,故成比例.应选D.2.C [解析] 设隧道的实践长度是x cm ,依据题意,得7∶x =1∶38000,解得x =266000(cm)=2.66 km.3.D [解析] ∵△ABC 的每条边长添加各自的10%得△A ′B ′C ′, ∴△ABC 与△A ′B ′C ′的三边对应成比例, ∴△ABC ∽△A ′B ′C ′, ∴∠B ′=∠B .4.D [解析] 设较大五边形与较小五边形的面积区分是m cm 2,n cm 2.那么n m =(34.5)2=49,∴n =49m . 依据面积之和是65 cm 2,失掉m +49m =65,解得m =45,即较大五边形的面积为45 cm 2.5.D [解析] 衔接两对对应点,发现它们所在的直线相交于点(-4,-3),因此位似中心的坐标为(-4,-3).6.A [解析] ∵AB ⊥BC ,CD ⊥BC ,∴△BAE ∽△CDE ,∴AB CD =BECE .∵BE =90 m ,CE =45 m ,CD =60 m ,∴AB 60=9045,解得AB =120(m). 7.C [解析] ∵∠DBC =∠A ,∠C =∠C , ∴△CBD ∽△CAB ,∴CD BC =BCAC ,∴CD 6=63, ∴CD =2. 8.C [解析] ①∵DE 是△ABC 的中位线,∴DE =12BC ,即DE BC =12,故①正确;②∵DE 是△ABC 的中位线,∴DE ∥BC ,∴△DOE ∽△COB ,∴S △DOE S △COB =⎝⎛⎭⎫DE BC 2=⎝⎛⎭⎫122=14,故②错误;③∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AB =DEBC .又∵DE ∥BC ,∴△DOE ∽△COB ,∴OE OB =DE BC ,∴AD AB =OEOB,故③正确.综上,①③正确. 9.A [解析] 甲:如图①,依据题意,得AB ∥A ′B ′,AC ∥A ′C ′,BC ∥B ′C ′,∴∠A =∠A ′,∠B =∠B ′, ∴△ABC ∽△A ′B ′C ′, ∴甲的说法正确;乙:如图②,依据题意,得AB =CD =3,AD =BC =5,那么A ′B ′=C ′D ′=3+2=5,A ′D ′=B ′C ′=5+2=7,∴AB A ′B ′=CD C ′D ′=35,AD A ′D ′=BC B ′C ′=57, ∴AB A ′B ′≠AD A ′D ′, ∴新矩形与原矩形不相似. ∴乙的说法正确.10.C [解析] 设BC =6a ,那么BD =DE =EC =2a ,如图,过点F 作FN ∥BC 交AE 于点M ,交AD 于点N . ∵F 是AC 的中点,∴MF =12EC =a .∵FM ∥BC ,∴△FMH ∽△BEH , ∴HF BH =MF BE =14, ∴HF =14BH ,那么HF =15BF .∵FN ∥BC ,∴△ANF ∽△ADC . ∵F 是AC 的中点,∴FN =12DC =2a .∵FN ∥BC ,∴△BGD ∽△FGN , ∴BG FG =BD FN =1,∴BG =FG ,那么BG =12BF , ∴GH =BF -BG -HF =310BF ,∴BG ∶GH ∶HF =12BF ∶310BF ∶15BF =5∶3∶2.11.9∶7 [解析] 由于△ABC ∽△DBA , 所以BC AB =BE BF =97.12.6 [解析] 由l 1∥l 2∥l 3,可得AB BC =DE EF ,所以BC =32,所以DE ·BC =6. 13.13 [解析] ∵AB 被截成三等份, ∴△AEH ∽△AFG ∽△ABC , ∴AE AF =12,AE AB =13, ∴S △AFG ∶S △ABC =4∶9,S △AEH ∶S △ABC =1∶9, ∴S 阴影局部=49S △ABC -19S △ABC =13S △ABC .14.25 [解析] ∵在Rt △ABC 中,AB 2+BC 2=AC 2,AB =BC ,AC =10 2,∴2AB 2=200,∴AB =BC =10.设EF =x ,那么AF =10-x . ∵EF ∥BC ,∴△AFE ∽△ABC ,∴EF BC =AF AB ,即x 10=10-x 10,∴x =5,即EF =5,∴此正方形的面积为5×5=25.15.315 [解析] 如图,由题意得EG ⊥AB ,FH ⊥AD ,HG 经过A 点, ∴F A ∥EG ,EA ∥FH , ∴∠HF A =∠AEG =90°,∠FHA =∠EAG , ∴△GEA ∽△AFH ,∴EG F A =EA FH .∵AB =9里,DA =7里,EG =15里, ∴F A =3.5里,EA =4.5里,∴153.5=4.5FH ,解得FH =1.05(里),即FH =315步.16.245 [解析] 设运动x s 时,△AED ∽△ABC ,那么AE AB =ADAC ,即12-2x 6=x 12,解得x =245,即运动245s 时,△AED ∽△ABC . 17.解:∵四边形ABCD ∽四边形A ′B ′C ′D ′,且AB ∶BC ∶CD ∶DA =20∶15∶9∶8, ∴A ′B ′∶B ′C ′∶C ′D ′∶D ′A ′=20∶15∶9∶8.设A ′B ′=20x ,B ′C ′=15x ,C ′D ′=9x ,D ′A ′=8x ,由四边形A ′B ′C ′D ′的周长为26,得20x +15x +9x +8x =26, 解得x =12.∴A ′B ′=10,B ′C ′=7.5,C ′D ′=4.5,D ′A ′=4.18.证明:过点C 作CE ∥DA ,交BA 的延伸线于点E . ∵CE ∥AD ,∴AB AE =BDCD ,∠2=∠ACE ,∠1=∠E .∵∠1=∠2,∴∠ACE =∠E , ∴AE =AC ,∴AB AC =BDCD.19.解:(1)如下图,C 1(2,-2). (2)如下图,C 2(1,0).(3)∵A 2C 22=20,B 2C 22=20,A 2B 22=40,A 2C 22+B 2C 22=A 2B 22,∴△A 2B 2C 2是等腰直角三角形,∴△A 2B 2C 2的面积是12×2 5×2 5=10(平方单位).故填:10.20.证明:∵四边形ABCD ∽四边形EFGH , ∴AD EH =CDGH,∠D =∠H , ∴△ADC ∽△EHG ,∴AC EG =ADEH.21.解:(1)证明:∵⊙O 是△ABC 的外接圆,圆心O 在AB 上, ∴AB 是⊙O 的直径,∴∠ACB =90°, ∴∠CAB +∠ABC =90°.∵BD 切⊙O 于点B ,∴∠ABD =90°, 即∠CBD +∠ABC =90°,∴∠CAB =∠CBD . 又∵∠ACB =∠BCD =90°, ∴△ABC ∽△BDC .(2)由(1)知△ABC ∽△BDC , ∴S △ABC S △BDC =(AC BC)2=(86)2=169.又∵S △ABC =12AC ·BC =12×8×6=24,∴S △BDC =916S △ABC =916×24=272.22.解:(1)①2 ②1.8或2.5(2)相似.理由:衔接CD ,与EF 交于点O . ∵CD 是Rt △ABC 的中线, ∴CD =DB =12AB ,∴∠DCB =∠B .由折叠知∠COF =∠DOF =90°, ∴∠DCB +∠CFE =90°. 又∵∠B +∠A =90°,∴∠CFE =∠A . 又∵∠FCE =∠ACB ,∴△CEF ∽△CBA . 23.解:∵四边形PQMN 是矩形, ∴BC ∥PQ ,∴△APQ ∽△ABC , ∴PQ BC =AH AD. ∵矩形的长与宽的比为3∶2,分两种状况讨论:①假定PQ 为长,PN 为宽,设PQ =3k ,PN =2k ,那么3k 12=8-2k8,解得k =2,∴PQ =6 cm ,PN =4 cm ;②假定PN 为长,PQ 为宽,设PN =3k ,PQ =2k , 那么2k 12=8-3k 8,解得k =2413,∴PN =7213 cm ,PQ =4813cm.综上所述,这个矩形零件的长为6 cm ,宽为4 cm 或长为7213 cm ,宽为4813 cm.24.解:(1)证明:∵四边形ABCD 是矩形,∴∠A =∠ADC =90°, ∴∠ADE +∠CDG =90°.∵DE ⊥CF ,∴∠CDG +∠DCF =90°, ∴∠ADE =∠DCF .又∵∠A =∠CGD =90°, ∴△ADE ∽△GCD ,∴AD CG =DE CD ,即AD DE =CGCD. (2)当∠B =∠EGC 或∠B +∠EGC =180°时,AD DE =CGCD成立.证明:当∠B =∠EGC 时,过点C 作DE 的平行线,过点D 作CF 的平行线,两线交于点M ,如图①,∴四边形CMDG 是平行四边形,∴CG =DM ,∠M =∠CGD ,∠CDG =∠DCM .∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC , ∴∠A +∠B =180°,∠FCB =∠CFD . ∵∠B =∠EGC ,∴∠A +∠EGC =180°. ∵∠EGC +∠CGD =180°,∴∠A =∠CGD , ∴∠A =∠CGD =∠M .∵AB ∥CD ,∴∠AED =∠CDG .∵∠CDG =∠DCM ,∴∠AED =∠DCM , ∴△ADE ∽△MDC ,∴AD DM =DE CD. ∵CG =DM ,∴AD CG =DE CD ,即AD DE =CG CD; 当∠B +∠EGC =180°时,过点C 作DE 的平行线,过点D 作CF 的平行线,两线交于点M ,如图②,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠CFD =∠BCF . ∵∠B +∠EGC =180°, ∴∠GEB +∠BCF =180°,∴∠BCF =∠AED ,∴∠CFD =∠AED . ∵∠ADE =∠GDF ,∴△FDG ∽△EDA ,∴DG AD =DF DE ,即DF DG =DE AD. ∵AB ∥CD ,∴∠AED =∠CDE , ∴∠CFD =∠CDE .∵∠FCD =∠DCG ,∴△FCD ∽△DCG , ∴DF DG =CD CG ,∴DE AD =CD CG ,即AD DE =CG CD. (3)如图③,过点C 作CN ⊥AD 于点N ,CM ⊥AB 交AB 的延伸线于点M ,衔接BD ,设CN =x ,∵∠BAD =90°,∴∠A =∠M =∠CNA =90°, ∴四边形AMCN 是矩形, ∴AM =CN ,AN =CM .∵在△BAD 和△BCD 中,⎩⎪⎨⎪⎧DA =DC ,BA =BC ,BD =BD ,∴△BAD ≌△BCD ,∴∠BCD =∠A =90°, ∴∠ABC +∠ADC =180°. ∵∠ABC +∠MBC =180°, ∴∠MBC =∠ADC . ∵∠CND =∠M =90°,∴△BCM ∽△DCN , ∴CM CN =BC CD ,即CM x =912,∴CM =34x .在Rt △CMB 中,CM =34x ,BM =AM -AB =x -9,由勾股定理,得BM 2+CM 2=BC 2, ∴(x -9)2+(34x )2=92,解得x 1=0(舍去),x 2=28825,∴CN =28825.∵∠A =∠FGE =90°, ∴∠AED +∠AFG =180°. ∵∠AFG +∠NFC =180°, ∴∠AED =∠NFC . ∵∠A =∠CNF =90°, ∴△AED ∽△NFC , ∴DE CF =AD CN =1228825=2524.。
人教版九年级数学下册《第27章相似》单元测试卷(有答案).docx
人教版九年级数学下册第27章相似单元测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________ 一、选择题(本题共计 10 小题,每题 3 分,共计30分,) 1. 若 ab =23,则ba+b 的值等于() A.53B.25C.35D.522. 下列各组线段中,能成比例线段的一组是() A.2,3,4,6 B.2,3,4,5 C.2,3,5,7 D.3,4,5,63. 若△ABC ∽△DEF ,且AB:DE =1:3,则S △ABC :S △DEF =() A.1:3 B.1:9 C.1:√3D.1:1.5 4. 有四组线段,每组线段长度如下,则成比例(排列顺序可调换)线段的有() ①1,2,3,4 ②3,2,6,4 ③1.1,2.2,3.3,4.4 ④4,2,3,1.5. A.1组 B.2组 C.3组 D.4组5. 某校要举办国庆联欢会,主持人站在舞台的黄金分割点处最自然得体.如图,若舞台AB 的长为20m ,C 为AB 的一个黄金分割点(AC <BC),则AC 的长为(结果精确到0.1m )()A.6.7mB.7.6mC.10mD.12.4m 6. 如图在△ABC 中,DE // FG // BC ,AD:AF:AB =1:3:6,则S △ADE :S 四边形DEGF :S 四边形FGCB =()A.1:8:27B.1:4:9C.1:8:36D.1:9:367. 如图,等腰△ABC 中,腰AB =a ,∠A =36∘,∠ABC 的平分线交AC 于D ,∠BCD 的平分线交BD于E .设k =√5−12,则DE =()A.k 2aB.k 3aC.ak 2D.ak 38. 如图,在△ABC 中,AB =4,AC =3,DE // BC 交AB 于点D ,交AC 于点E ,若AD =3,则AE 的长为()A.43 B.34 C.94 D.499. 下列说法中正确的有()①位似图形都相似;②两个等腰三角形一定相似;③两个相似多边形的面积比为4:9,则周长的比为16:81;④若一个三角形的三边分别比另一个三角形的三边长2cm ,那么这两个三角形一定相似. A.1个 B.2个 C.3个 D.4个10. 已知:△ABC ∽△A′B′C′,且△ABC 的面积:△A′B′C′的面积=1:4,则两三角形周长比为() A.1:4 B.1:2 C.1:16 D.1:5 二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 已知四边形ABCD 和四边形A 1B 1C 1D 1相似,四边形ABCD 的最长边和最短边的长分别是10cm 和4cm ,如果四边形A 1B 1C 1D 1的最短边的长是6cm ,那么四边形A 1B 1C 1D 1中最长的边长是________cm . 12. 如图,在△ABC 中,∠BAC =90∘,AB =6,AC =8,N 是AC 上的点,且AN =AB ,连接BN ,作AD ⊥BN 于D ,点M 是BC 上的动点,则当BM =________时,△BMD ∽△BCN .13. △ABC 的长分别是6,8,10,与其相似的三角形的两条边长是3和4,那么这个三角形第三边的长是________.14. 如图,在△ABC 中,D 为直线BC 上任意一点,给出以下判断:①若点D 到AB ,AC 距离相等,且BD =DC ,则AB =AC ;②若AD ⊥BC 且AD 2=BD ⋅DC ,则∠BAC =90∘;③若AB =AC ,则AD 2+BD ⋅DC =AC 2;④若∠BAC =90∘,且AD ⊥BC ,则AD 2=BD ⋅DC .其中正确的是________(把所有正确结论序号都填在横线上)15. 已知线段AB =10cm ,C 、D 是AB 上的两个黄金分割点,则线段CD 的长为________.16. 如图,要使△AEF 和△ACB 相似,已具备条件________,还需补充的条件是________,或________,或________.17. 两个相似三角形高的比为1:√3,则它们的相似比为________;对应中线之比为________;对应角平分线之比为________;周长之比为________;面积之比为________.18. 把一个三角形变成和它位似的另一个三角形,若边长缩小到12倍,则面积缩小到原来的________倍.19. 上午某一时刻,身高1.7米的小刚在地面上的投影长为3.4米,则影长26米的旗杆高度为________米.20. 已知在平面直角坐标系中,点A(−3, −1)、B(−2, −4)、C(−6, −5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为________.三、解答题(本题共计 6 小题,每题 10 分,共计60分,)21. 如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.(1)判断△ABC和△DEF是否相似,并说明理由;(2)以点E为中心,在位似中心的同侧画出△EDF的一个位似△ED1F1,使得它与△EDF的相似比为2:1;(3)求△ABC与△ED1F1的面积比.22. 已知线段a,b,c满足a3=b2=c6,且a+2b+c=26.(1)求a,b,c的值;(2)若线段x是线段a,b的比例中项,求x.23. 如图,在△ABC中,AG为∠BAC的平分线,点D在AB边上,点E在AC边上,DE // BC,DE= 6cm,BC=10cm,AG=8cm,求FG的长.24. 如图,为了估算河的宽度,我们可以在河对岸选定一个目标点A,再在河岸的这一边选取点B 和点C,使AB⊥BC,然后再选取点E,使EC⊥BC,用视线确定BC和AE的交点D,此时如果测得BD=160m,DC=80m,EC=50m,求A、B间的大致距离.25. 如图,在△PAB中,点C、D在边AB上,PC=PD=CD,∠APB=120∘.(1)试说明△APC与△PBD相似.(2)若CD=1,AC=x,BD=y,请你求出y与x之间的函数关系式.(3)小明猜想:若PC=PD=1,∠CPD=α,∠APB=β,只要α与β之间满足某种关系式,问题(2)中的函数关系式仍然成立.你同意小明的观点吗?如果你同意,请求出α与β所满足的关系式;若不同意,请说明理由.26. 已知在Rt△ABC中,∠ABC=90∘,∠A=30∘,点P在BC上,且∠MPN=90∘.(1)当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1).过点P作PE⊥AB于点E,请探索PN与PM之间的数量关系,并说明理由;(2)当PC=√2PA,①点M、N分别在线段AB、BC上,如图2时,请写出线段PN、PM之间的数量关系,并给予证明.②当点M、K分别在线段AB、BC的延长线上,如图3时,请判断①中线段PN、PM之间的数量关系是否还存在.(直接写出答案,不用证明)答案1. C2. A3. B4. B5. B6. A7. B8. C9. A10. B11. 1512. 513. 514. ①②③④15. 10√5−20cm16. ∠EAF=∠CAB∠AEF=∠C∠AFE=∠B AEAC =AFAB17. 1:√31:√31:√31:√31:318. 1419. 1320. (1, 2)或(−1, −2)21. 解:(1)∵AB=2√5,AC=√5,BC=5,EF=√10,FD=√2,ED=2√2,∴BC EF =√10=√102,ACFD=√5√2=√102,ABED=√52√2=√102,∴BC EF =ACFD=ABED,∴△ABC∽△DEF;(2)延长ED到点D1,使ED1=2ED,延长EF到点F1,使EF1=2EF,连结D1F1,则△ED1F1为所求,如图;(3)∵△ABC∽△DEF,△DEF∽△D1EF1,∴△ABC∽△D1EF1,∴△ABC与△ED1F1的面积比=(ACD1F1)2=(√52√2)2=58.22. 解:(1)设a3=b2=c6=k,则a=3k,b=2k,c=6k,所以3k+2×2k+6k=26,解得k=2,所以a=3×2=6,b=2×2=4,c=6×2=12.(2)∵线段x是线段a,b的比例中项,∴x2=ab=6×4=24,∴线段x=2√6.23. 解:设GF=xcm,则AF=8−x(cm);∵DE // BC,∴△ADE∽△ABC,△ADF∽△ABG,∴ADAB=DEBC,ADAB=AFAG,∴DEBC=AFAG;而DE=6,BC=10,AF=8−x,AG=8,∴810=8−x8,解得x=85(cm),即FG的长为85cm.24. A、B间的距离为100m.25. 解:(1)∵PC=PD=CD,∴∠PCD=∠PDC=∠CPD=60∘,∴∠ACP=∠BDP=120∘,∵∠A+∠APC=60∘,∠APC+∠BPD=∠APB−∠CPD=120∘−60∘=60∘,∴∠A=∠BPD,∴△APC∽△PBD;(2)由(1)得△APC∽△PBD,∴AC PC =PDBD,∴x 1=1y,即y=1x(x>0);(3)同意,α和β的关系式为α+2β=180∘.过程如下:∵PC=PD,∴∠PCD=∠PDC,∴∠PCA=∠PDB,当ACPC =PDBD时,则有△APC∽△PBD,∴∠A=∠DPB,∵∠APC+∠DPB=∠APB−∠CPD=β−α,∴∠PCD=∠PDC=∠A+∠APC=β−α,在△PCD中,∠PCD+∠PDC+∠CPD=180∘,∴β−α+β−α+α=180∘,即−α+2β=180∘.26.解:(1)PN=√3PM,理由:如图1,作PF⊥BC,∵∠ABC=90∘,PE⊥AB,∴PE // BC,PF // AB,∴四边形PFBE是矩形,∴∠EPF=90∘∴P是AC的中点,∴PE=12BC,PF=12AB,∵∠MPN=90∘,∠EPF=90∘,∴∠MPE=∠NPF,∴△MPE∽△NPF,∴PNPM=PFPE=ABBC,∵∠A=30∘,在RT△ABC中,cot30∘=ABBc=√3,∴PNPM=√3,即PN=√3PM.(2)解;①PN=√6PM,如图2在Rt△ABC中,过点P作PE⊥AB于E,PF⊥BC于点F ∴四边形BFPE是矩形,∴△PFN∽△PEM∴PFPE=PNPM,又∵Rt△AEP和Rt△PFC中,∠A=30∘,∠C=60∘∴PF=√32PC,PE=12PA∴PNPM=PFPE=√3PCPA∵PC=√2PA∴PNPM=√6,即:PN=√6PM②如图3,成立.。
人教版数学九年级下册第二十七章相似 测试题含答案
九年级下册数学第27章《相似》单元测试题(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1.已知2x=5y (y ≠0),则下列比例式成立的是( )A .x y 25=B .x y 52= C .x 2y 5= D .x 52y =2.若a b c 234==,则a 2b 3c a++等于( ) A .8 B .9 C .10 D .113.下列各组条件中,一定能推得△ABC 与△DEF 相似的是( )A .∠A=∠E 且∠D=∠FB .∠A=∠B 且∠D=∠FC .∠A=∠E 且AB EF AC ED = D .∠A=∠E 且AB DF BC ED=4.如图,正方形ABCD 的边长为2,BE=CE ,MN=1,线段MN 的两端点在CD 、AD 上滑动,当DM 为( )时,△ABE 与以D 、M 、N 为顶点的三角形相似.N ME DCBAABCD5.如图所示,△ABC 中若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )F E D C B AA .AD DE DB BC = B .BF EF BC AD = C AE BF EC FC =. D .EF DE AB BC= 6.如图,在△ABC 中,DE ∥BC ,AD 1DB 2=,DE=4,则BC 的长是( )ED C B AA .8B .10C .11D .12 7.如图,四边形ABCD ∽四边形A 1B 1C 1D 1,AB=12,CD=15,A 1B 1=9,则边C 1D 1的长是( )D 1C 1B 1A 1DC BA A .10B .12C .454 D.3658.已知△ABC ∽△A′B′C′且AB 1A B 2='',则S △ABC :S △A'B'C′为( ) A .1:2 B .2:1 C .1:4 D .4:19.如图,铁路道口的栏杆短臂长1m ,长臂长16m .当短臂端点下降0.5m 时,长臂端点升高(杆的宽度忽略不计)( )0.5m16m ?A .4mB .6mC .8mD .12m10.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,如果AC=3,AB=6,那么AD 的值为( )D CB AA .32B .92CD .二、填空题(共6小题,每小题3分,共18分)11.在直角△ABC 中,AD 是斜边BC 上的高,BD=4,CD=9,则AD= .12.如图,直线AD ∥BE ∥CF ,BC=13AC ,DE=4,那么EF 的值是 . FEDC B A13.已知△ABC ∽△DEF ,且它们的面积之比为4:9,则它们的相似比为 .14.如图,以点O 为位似中心,将△ABC 放大得到△DEF ,若AD=OA ,则△ABC 与△DEF 的面积之比为 .O FDC15.如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经过平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是 米(平面镜的厚度忽略不计).C16.如图,在△ABC 中,AB=9,AC=6,BC=12,点M 在AB 边上,且AM=3,过点M 作直线MN 与AC 边交于点N ,使截得的三角形与原三角形相似,则MN= .CB A三、解答题(共8题,共72分)17.(本题8分)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,若DE ∥BC ,AD=3,AB=5,求DE BC的值. ECB A18.(本题8分)已知:平行四边形ABCD ,E 是BA 延长线上一点,CE 与AD 、BD 交于G 、F .求证:CF 2=GF•EF .D C B19.(本题8分)如图,在△ABC 中,AB=AC ,∠A=36°,BD 为角平分线,DE ⊥AB ,垂足为E .(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.EDC B A20.(本题8分)如图,已知A (﹣4,2),B (﹣2,6),C (0,4)是直角坐标系平面上三点.(1)把△ABC 向右平移4个单位再向下平移1个单位,得到△A 1B 1C 1.画出平移后的图形,并写出点A 的对应点A 1的坐标;(2)以原点O 为位似中心,将△ABC 缩小为原来的一半,得到△A 2B 2C 2,请在所给的坐标系中作出所有满足条件的图形.21.(本题8分)在△ABC 中,点D 为BC 上一点,连接AD ,点E 在BD 上,且DE=CD ,过点E 作AB 的平行线交AD 于F ,且EF=AC .如图,求证:∠BAD=∠CAD ;C BAFE D22.(本题10分)如图,在梯形ABCD 中,已知AD ∥BC ,∠B=90°,AB=7,AD=9,BC=12,在线段BC 上任取一点E ,连接DE ,作EF ⊥DE ,交直线AB 于点F .(1)若点F 与B 重合,求CE 的长;(2)若点F 在线段AB 上,且AF=CE ,求CE 的长. C B AFE D23.(本题10分)如图,已知△ABC ∽△ADE ,AB=30cm ,AD=18cm ,BC=20cm ,∠BAC=75°,∠ABC=40°.(1)求∠ADE 和∠AED 的度数;(2)求DE 的长.DEB CA24.(本题12分)在Rt △ABC 中,∠C=90°,AC=20cm ,BC=15cm ,现有动点P 从点A 出发,沿AC 向点C 方向运动,动点Q 从点C 出发,沿线段CB 也向点B 方向运动,如果点P 的速度是4cm/秒,点Q 的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t 秒.求:(1)当t=3秒时,这时,P ,Q 两点之间的距离是多少?(2)若△CPQ 的面积为S ,求S 关于t 的函数关系式.(3)当t 为多少秒时,以点C ,P ,Q 为顶点的三角形与△ABC 相似?B CA第27章《相似》单元测试卷答案与解析一、选择题1. 【答案】∵2x=5y ,∴x y 52=.故选B . 2.【答案】设a b c 234===k , 则a=2k ,b=3k ,c=4k , 即a 2b 3c a ++=2k 23k 34k 2k+⨯+⨯=10, 故选C .3. 【答案】A 、∠D 和∠F 不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;B 、∠A=∠B ,∠D=∠F 不是两个三角形的对应角,故不能判定两三角形相似,故此选项错误;C 、由AB EF AC ED=可以根据两组对应边的比相等且夹角对应相等的两个三角形相似可以判断出△ABC 与△DEF 相似,故此选项正确; D 、∠A=∠E 且AB DF BC ED=不能判定两三角形相似,因为相等的两个角不是夹角,故此选项错误; 故选:C .F E D C B A4. 【答案】∵四边形ABCD 是正方形,∴AB=BC ,∵BE=CE ,∴AB=2BE ,又∵△ABE 与以D 、M 、N 为顶点的三角形相似,∴①DM 与AB 是对应边时,DM=2DN∴DM 2+DN 2=MN 2=1∴DM 2+14DM 2=1,解得; ②DM 与BE 是对应边时,DM=12DN ,∴DM 2+DN 2=MN 2=1, 即DM 2+4DM 2=1,解得.∴DM时,△ABE 与以D 、M 、N 为顶点的三角形相似. 故选C .5. 【答案】∵DE ∥BC ,EF ∥AB ,∴四边形DEFB 是平行四边形,∴DE=BF ,BD=EF ;∵DE ∥BC ,∴AD AE BF AB AC BC ==,EF CE BC AB AC DE ==, ∵EF ∥AB ,∴AE BF EC FC = 故选C .6.【答案】∵AD 1DB 2=,∴AD 1AB 3=, ∵在△ABC 中,DE ∥BC ,∴DE AD 1BC AB 3==, ∵DE=4,∴BC=3DE=12.故选D .7. 【答案】∵四边形ABCD ∽四边形A 1B 1C 1D 1,∴1111AB CD A B C D =, ∵AB=12,CD=15,A 1B 1=9,∴C 1D 1=454. 故选C .8.【答案】∵△ABC ∽△A′B′C′,AB 1A B 2='',∴S △ABC :S △A'B'C′==(AB A B '')2=14,故选C . 9.【答案】设长臂端点升高x 米,则0.5:x=1:16,∴解得:x=8.故选;C .10. 【答案】∵在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,∴AC 2=AD•AB ,又∵AC=3,AB=6,∴32=6AD ,则AD=32. 故选:A .二、填空题11.【答案】∵△ABC 是直角三角形,AD 是斜边BC 上的高,∴AD 2=BD•CD (射影定理),∵BD=4,CD=9,∴AD=6. DC B A12.【答案】∵BC=13AC ,∴AB 2BC 1=,∵AD ∥BE ∥CF ,∴AB DE BC EF =,∵DE=4,∴EF=2.故答案为:2. 13.【答案】因为△ABC ∽△DEF ,所以△ABC 与△DEF 的面积比等于相似比的平方,因为S △ABC :S △DEF =2:9=(2:3)2,所以△ABC 与△DEF 的相似比为2:3,故答案为:2:3.14.【答案】∵以点O 为位似中心,将△ABC 放大得到△DEF ,AD=OA ,∴AB :DE=OA :OD=1:2,∴△ABC 与△DEF 的面积之比为:1:4.故答案为:1:4.15.【答案】由题意知:光线AP 与光线PC ,∠APB=∠CPD ,∴Rt △ABP ∽Rt △CDP ,∴AB:BP=CD:PD,,∴CD=1.2×12÷1.8=8(米).故答案为:8.16.【答案】如图1,当MN ∥BC 时,则△AMN ∽△ABC ,故AM:AB=AN:AC=MN:BC ,则3:9=MN:12,解得:MN=4,如图2所示:当∠ANM=∠B 时,又∵∠A=∠A ,∴△ANM ∽△ABC ,∴AM:AC=MN:BC ,即3:6=MN:12,解得:MN=6,故答案为:4或6.图2图1AB C C B A三、解答题 17.【解答】∵DE ∥BC ,∴AD:AB=DE:BC ,∵AD=3,AB=5,∴DE BC =35. 18.【解答】证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,∴GF:CF=DF:BF ,CF:EF=DF:BF ,∴GF:CF=CF:EF ,即CF 2=GF•EF .19.【解答】(1)△ADE ≌△BDE ,△ABC ∽△BCD ;(2)证明:∵AB=AC ,∠A=36°,∴∠ABC=∠C=72°, ∵BD 为角平分线,∴∠ABD=12∠ABC=36°=∠A , 在△ADE 和△BDE 中, ∠A=∠DBA,∠AED=∠BED,ED=ED , ∴△ADE ≌△BDE (AAS );∵AB=AC ,∠A=36°,∴∠ABC=∠C=72°, ∵BD 为角平分线,∴∠DBC=12∠ABC=36°=∠A , ∵∠C=∠C ,∴△ABC ∽△BCD .20.【解答】(1)△A 1B 1C 1如图所示,其中A 1的坐标为:(0,1);(2)符合条件△A 2B 2C 2有两个,如图所示.A 1B 1C 1各点的坐标,继而画出图形;(2)利用位似的性质,可求得△A 2B 2C 2各点的坐标,继而画出图形.21.【解答】延长FD 到点G ,过C 作CG ∥AB 交FD 的延长线于点M ,则EF ∥MC ,∴∠BAD=∠EFD=∠M ,在△EDF 和△CMD 中,∠EFD=∠M ,∠EDF=∠MDC ,ED=DC ,∴△EDF ≌△CMD (AAS ),∴MC=EF=AC ,∴∠M=∠CAD ,∴∠BAD=∠CAD ;B AM22.【解答】(1)当F 和B 重合时,∵EF ⊥DE ,∵DE ⊥BC ,∵∠B=90°,∴AB ⊥BC ,∴AB ∥DE ,∵AD ∥BC ,∴四边形ABED 是平行四边形,∴AD=EF=9,∴CE=BC ﹣EF=12﹣9=3;(2)过D 作DM ⊥BC 于M ,∵∠B=90°,∴AB ⊥BC ,∴DM ∥AB ,∵AD ∥BC ,∴四边形ABMD 是矩形,∴AD=BM=9,AB=DM=7,CM=12﹣9=3,设AF=CE=a ,则BF=7﹣a ,EM=a ﹣3,BE=12﹣a ,∵∠FEC=∠B=∠DMB=90°,∴∠FEB+∠DEM=90°,∠BFE+∠FEB=90°,∴∠BFE=∠DEM ,∵∠B=∠DME ,∴△FBE ∽△EMD ,∴BF:EM=BE:DM ,∴(7-a):(a-3)=(12-a ):7,a=5,a=17,∵点F 在线段AB 上,AB=7,∴AF=CE=17(舍去),即CE=5.DF D23.【解答】解:(1)∵∠BAC=75°,∠ABC=40°,∴∠C=180°﹣∠BAC ﹣∠ABC=180°﹣75°﹣40°=65°, ∵△ABC ∽△ADE ,∴∠ADE=∠ABC=40°,∠AED=∠C=65°;(2)∵△ABC ∽△ADE ,∴AB:AD=BC:DE ,即30:18=20:DE ,解得DE=12cm .24.【解答】由题意得AP=4t ,CQ=2t ,则CP=20﹣4t ,(1)当t=3秒时,CP=20﹣4t=8cm ,CQ=2t=6cm , 由勾股定理得PQ=10cm ;(2)由题意得AP=4t ,CQ=2t ,则CP=20﹣4t ,因此Rt △CPQ 的面积为S=12×(20-4t )×2t=(20t-4t 2)cm 2; (3)分两种情况:①当Rt △CPQ ∽Rt △CAB 时,CP:CA=CQ:CB ,即(20-4t):20=2t :15,解得t=3秒;②当Rt △CPQ ∽Rt △CBA 时,CP:CB=CQ:CA ,即(20-4t):15=2t :20,解得t=4011秒. 因此t=3秒或t=4011秒时,以点C 、P 、Q 为顶点的三角形与△ABC 相似.第11 页共11 页。
人教版九年级下册数学第 第二十七章 相 似 单元测试卷(含答案)
人教版九年级下册数学第二十七章相似单元测试卷(测试时间:120分钟,满分120分)一、选择题(每小题3分,共30分1、要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为 5 cm,6 cm和9 cm,另一个三角形的最短边长为2.5 cm,则它的最长边长为(C)A.3 cm B.4 cm C.4.5 cm D.5 cm2、如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则下列说法中错误的是(C)A.△ACD∽△CBD B.△ACD∽△ABCC.△BCD∽△ABC D.△BCD∽△BAC3、如图,四边形ABCD为平行四边形,E,F为CD边的两个三等分点,连接AF,BE交于点G,则S△EFG ∶S△ABG=(C)A.1∶3 B.3∶1 C.1∶9 D.9∶14、如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是(D)A.ABAE=AGADB.DFCF=DGADC.FGAC=EGBDD.AEBE=CFDF5、如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为(B)A.4 2 B.4 C.2 5 D.86.如图,在△ABC中,AE交BC于点D,∠C=∠E,AD∶DE=3∶5,AE=8,BD =4,则DC的长等于(A)A.154B.125C.203D.1747、如图,在△ABC中,EF∥BC,AB=3AE.若S四边形BCFE =16,则S△ABC=(B)A.16 B.18 C.20 D.248、如图,在等腰Rt△ABC中,∠C=90°,AC=15,点E在边CB上,CE=2EB,点D在边AB上,CD⊥AE,垂足为F,则AD的长为( A)A.92.B.82.C..62.D.42.9.如图,四边形ABCD与四边形AEFG是位似图形,且AC∶AF=2∶3,则下列结论不正确的是(B)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学九年级下册第二十七章 相似 章末复习卷一、选择题:1、制作一块3m ×2m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( C )A .360元B .720元C .1080元D .2160元2.如果x ∶y =2∶3,则下列各式不成立的是( D )A.x +y y =53B.y -x y =13C.x 2y =13D.x +1y +1=343.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC ,若BD =2AD ,则( B )A.AD AB =12 B .AE EC =12 C.AD EC =12 D .DE BC =124. 下列各组图形中有可能不相似的是( A )A .各有一个角是45°的两个等腰三角形B .各有一个角是60°的两个等腰三角形C .各有一个角是105°的两个等腰三角形D .两个等腰直角三角形5.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,且∠ ,将 绕点A 顺时针旋转 ,使点E 落在点处,则下列判断不正确的是 DA. ′是等腰直角三角形B. AF 垂直平分C. ′∽D. ′是等腰三角形6. 下列图形中不是位似图形的是( C )7.已知△ABC中,AB=AC,∠A=36°,以点A为位似中心把△ABC的各边放大2倍后得到△AB′C′,则∠B的对应角∠B′的度数为( C )A.36° B.54° C.72° D.144°8、若四条线段a,b,c,d成比例,且a=3 cm,b=2 cm,c=9 cm,则线段d的长为( C )A.4 cmB.5 cmC.6 cmD.8 cm9.如图,在△ABC中,DE∥BC,,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE 的长为( C )A.6 B.8 C.10 D.1210. 如图所示3个图形中是位似图形的有( B )A.1个 B.2个 C.3个 D.0个二、填空题:11、在比例尺为1:6 000 000 的海南地图上,量得海口与三亚的距离约为3.7 厘米,则海口与三亚的实际距离约为 222 千米.12. 若k=a-2bc=b-2ca=c-2ab,且a+b+c≠0,则k= -1 .13.若△ABC∽△A1B1C1,AB=2,A1B1=3;则△A1B1C1与△ABC的相似比为 3∶2 .14.如图,有三个三角形,其中相似的是①与② .15. 如图,四边形ABCD与四边形EFGH位似,位似中心点是O,OEOA=35,则FGBC=35.三、解答题16.若a+23=b4=c+56,且2a-b+3c=21.试求a∶b∶c.解:a∶b∶c=4∶8∶7.17.已知四边形ABCD和A1B1C1D1中,ABA1B1人教版初中数学九年级下册第二十七章《相似》单元测试一、选择题1. 下列图形一定是相似图形的是()A. 任意两个菱形B. 任意两个正三角形C. 两个等腰三角形D. 两个矩形2. 下列各组线段,是成比例线段的是()A. 3 cm,6 cm,7 cm,9 cmB. 2 cm,5 cm,0.6 dm,8 cmC. 3 cm,9 cm,6 cm,1.8 dmD. 1 cm,2 cm,3 cm,4 cm3. 下列说法不正确的是()A. 有一个角等于60°的两个等腰三角形相似B. 有一个底角等于30°的两个等腰三角形相似C. 有一个锐角相等的两个等腰三角形相似D. 有一个锐角相等的两个直角三角形相似4. 如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米,CA=1米,则树的高度为()A. 3米B. 4米C. 4.5米D. 6米第4题第5题5. 如图,在ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF并延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A. 2B. 3C. 4D. 56. 如图,以点O为位似中心,将ABC缩小后得到A′B′C′.已知OB=3OB′,则A′B′C′与ABC的面积比为()A. 1∶3B. 1∶4C. 1∶8D. 1∶9第6题第7题7. 如图,E,F分别为矩形ABCD的边AD,CD上的点,∠BEF=90°,则图中Ⅰ、Ⅱ、Ⅲ、Ⅳ四个三角形中一定相似的是()A. Ⅰ和ⅡB. Ⅰ和ⅢC. Ⅱ和ⅢD. Ⅲ和Ⅳ8. 如图,三角形ABC中,D,E,F分别是AB,AC,BC上的点,且DE∥BC,EF∥AB,AD∶DB=1∶2,BC=30 cm,则FC的长为()A. 10 cmB. 20 cmC. 5 cmD.6 cm第8题第9题9. 如图,D,E分别是ABC的边AB,BC上的点,且DE∥AC,AE,CD相交于点O,若S DOE∶S COA=1∶25,则S BDE与S CDE的比是()A. 1∶3B. 1∶4C. 1∶5D. 1∶2510. 为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50 cm,镜面中心C距离旗杆底部D的距离为4 m,如图所示.已知小丽同学的身高是1.54 m,眼睛位置A距离小丽头顶的距离是4 cm,则旗杆DE的高度等于()A. 10 mB. 12 mC. 12.4 mD. 12.32 m二、填空题11. 如图,在ABC中,点D为AC上一点,且CDAD=12,过点D作DE∥BC交AB于点E,连接CE,过点D作DF∥CE交AB于点F.若AB=15,则EF=.第11题第12题12. 如图,已知ABC和AED均为等边三角形,点D在BC边上,DE与AB相交于点F,如果AC=12,CD=4,那么BF的长度为.13. 如图,P为线段AB上一点,AD与BC交于点E,∠CPD=∠A=∠B,BC交PD于点F,AD交PC于点G,则图中相似三角形有对.第13题第14题14. 如图,在ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M 作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=.15. 如图,已知D,E,F是ABC三边上的点,AE=6 cm,CE=3 cm,BF=2 cm,且DE∥BC,DF∥AC,则CF的长度为cm.第15题第16题16. 某课外活动小组的同学在研究某种植物标本(如图所示)时,测得叶片①最大宽度是8 cm,最大长度是16 cm;叶片②最大宽度是7 cm,最大长度是14 cm;叶片③最大宽度约为6.5 cm,请你用所学数学知识估算叶片③的完整叶片的最大长度,结果约为cm.17. 如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为.第17题 第18题18. 如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则MNPQ AEFG S S 正方形正方形的值等于 .三、解答题19. 已知:如图,在 ABC 中,AB =AC ,且AG GD =AF FB ,EG ∥CD . 证明:AE =AF .20. 如图,在平行四边形ABCD 中,点E 为边BC 上一点,连接AE 并延长交DC 的延长线于点M ,交BD 于点G ,过点G 作GF ∥BC 交DC 于点F . 求证:DF FC =DM CD.21. 如图,在平面直角坐标系中, ABC 和 A 1B 1C 1关于点E 成中心对称,(1)在图中标出点E ,点E 的坐标为 ;(2)点P (a ,b )是 ABC 边AB 上一点, ABC 经过平移后点P 的对应点P ′的坐标为(a-6,b+2),请画出上述平移后的A2B2C2,此时A2的坐标为,C2的坐标为;(3)若A1B1C1和A2B2C2关于点F成位似三角形,则点F的坐标为.22. 如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE∶CP=2∶3,求AE的长.23. 如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)ABE与ADF相似吗?请说明理由;(2)若AB=6,AD=12,BE=8,求DF的长.24. 如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:ADF∽△DEC;(2)若AB=8,AD,AE=6,求AF的长.25. 在矩形ABCD中,E为CD的中点,H为BE上的一点,EHBH=3,连接CH并延长交AB于点G,连接GE并延长交AD的延长线于点F.(1)求证:ECBG=EHBH;(2)若∠CGF=90°,求ABBC的值.参考答案1. B2. C3. C4. D5. B6. D7. D8. B9. B 10. B11. 10312.8313. 3 14. 4或6 15. 4 16. 13 17.111218.8919. 证明:因为EG∥CD,所以AGGD =AEEC,因为AGGD=AFFB,所以AEEC=AFFB,所以AEAE EC+=AF AF FB+,即AEAC=AFFB,因为AB=AC,所以AE=AF.20. 证明:因为GF∥BC,所以DFFC=DGBG,因为四边形ABCD是平行四边形,所以AB=CD,AB∥CD,所以DMAB=DGBG,所以DFFC人教版初中数学九年级下册第二十七章《相似》单元测试一、选择题1. 下列图形一定是相似图形的是()A. 任意两个菱形B. 任意两个正三角形C. 两个等腰三角形D. 两个矩形2. 下列各组线段,是成比例线段的是()A. 3 cm,6 cm,7 cm,9 cmB. 2 cm,5 cm,0.6 dm,8 cmC. 3 cm,9 cm,6 cm,1.8 dmD. 1 cm,2 cm,3 cm,4 cm3. 下列说法不正确的是()A. 有一个角等于60°的两个等腰三角形相似B. 有一个底角等于30°的两个等腰三角形相似C. 有一个锐角相等的两个等腰三角形相似D. 有一个锐角相等的两个直角三角形相似4. 如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米,CA=1米,则树的高度为()A. 3米B. 4米C. 4.5米D. 6米第4题第5题5. 如图,在ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF并延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A. 2B. 3C. 4D. 56. 如图,以点O为位似中心,将ABC缩小后得到A′B′C′.已知OB=3OB′,则A′B′C′与ABC的面积比为()A. 1∶3B. 1∶4C. 1∶8D. 1∶9第6题第7题7. 如图,E,F分别为矩形ABCD的边AD,CD上的点,∠BEF=90°,则图中Ⅰ、Ⅱ、Ⅲ、Ⅳ四个三角形中一定相似的是()A. Ⅰ和ⅡB. Ⅰ和ⅢC. Ⅱ和ⅢD. Ⅲ和Ⅳ8. 如图,三角形ABC中,D,E,F分别是AB,AC,BC上的点,且DE∥BC,EF∥AB,AD∶DB=1∶2,BC=30 cm,则FC的长为()A. 10 cmB. 20 cmC. 5 cmD.6 cm第8题第9题9. 如图,D,E分别是ABC的边AB,BC上的点,且DE∥AC,AE,CD相交于点O,若S DOE∶S COA=1∶25,则S BDE与S CDE的比是()A. 1∶3B. 1∶4C. 1∶5D. 1∶2510. 为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50 cm,镜面中心C距离旗杆底部D的距离为4 m,如图所示.已知小丽同学的身高是1.54 m,眼睛位置A距离小丽头顶的距离是4 cm,则旗杆DE的高度等于()A. 10 mB. 12 mC. 12.4 mD. 12.32 m二、填空题11. 如图,在ABC中,点D为AC上一点,且CDAD=12,过点D作DE∥BC交AB于点E,连接CE,过点D作DF∥CE交AB于点F.若AB=15,则EF=.第11题第12题12. 如图,已知ABC和AED均为等边三角形,点D在BC边上,DE与AB相交于点F,如果AC=12,CD=4,那么BF的长度为.13. 如图,P为线段AB上一点,AD与BC交于点E,∠CPD=∠A=∠B,BC交PD于点F,AD交PC于点G,则图中相似三角形有对.第13题第14题14. 如图,在ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN 与AC 边交于点N ,使截得的三角形与原三角形相似,则MN = .15. 如图,已知D ,E ,F 是 ABC 三边上的点,AE =6 cm ,CE =3 cm ,BF =2 cm ,且DE ∥BC ,DF ∥AC ,则CF 的长度为 cm.第15题 第16题16. 某课外活动小组的同学在研究某种植物标本(如图所示)时,测得叶片①最大宽度是8 cm ,最大长度是16 cm ;叶片②最大宽度是7 cm ,最大长度是14 cm ;叶片③最大宽度约为6.5 cm ,请你用所学数学知识估算叶片③的完整叶片的最大长度,结果约为 cm.17. 如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为 .第17题 第18题18. 如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则MNPQ AEFGS S 正方形正方形的值等于 .三、解答题19. 已知:如图,在ABC中,AB=AC,且AGGD =AFFB,EG∥CD. 证明:AE=AF.20. 如图,在平行四边形ABCD中,点E为边BC上一点,连接AE并延长交DC的延长线于点M,交BD于点G,过点G作GF∥BC交DC于点F. 求证:DFFC=DMCD.21. 如图,在平面直角坐标系中,ABC和A1B1C1关于点E成中心对称,(1)在图中标出点E,点E的坐标为;(2)点P(a,b)是ABC边AB上一点,ABC经过平移后点P的对应点P′的坐标为(a-6,b+2),请画出上述平移后的A2B2C2,此时A2的坐标为,C2的坐标为;(3)若A1B1C1和A2B2C2关于点F成位似三角形,则点F的坐标为.22. 如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE∶CP=2∶3,求AE的长.23. 如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)ABE与ADF相似吗?请说明理由;(2)若AB=6,AD=12,BE=8,求DF的长.24. 如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:ADF∽△DEC;(2)若AB=8,AD,AE=6,求AF的长.25. 在矩形ABCD中,E为CD的中点,H为BE上的一点,EHBH=3,连接CH并延长交AB于点G,连接GE并延长交AD的延长线于点F.(1)求证:ECBG=EHBH;(2)若∠CGF=90°,求ABBC的值.参考答案1. B2. C3. C4. D5. B6. D7. D8. B9. B 10. B11. 10312.8313. 3 14. 4或6 15. 4 16. 13 17.111218.8919. 证明:因为EG∥CD,所以AGGD =AEEC,因为AGGD=AFFB,所以AEEC=AFFB,所以AEAE EC+=AF AF FB+,即AEAC=AFFB,因为AB=AC,所以AE=AF.20. 证明:因为GF∥BC,所以DFFC=DGBG,因为四边形ABCD是平行四边形,所以AB=CD,AB∥CD,所以DMAB=DGBG,所以DFFC新人教版九年级数学下册第二十七章相似单元检测题(含解析)一、选择题(每小题3分,共30分)1.如图所示,为估算某河的宽度,在河对岸边选定一个目标点,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上,若测得BE20 m,EC=10 m,CD=20 m,则河的宽度AB等于()第1题图第2题图A.60 mB.40 mC.30 mD.20 m2.如图所示,在△ABC中,M,N分别是边AB,AC的中点,则△AMN的面积与四边形MBCN的面积比为()A. B. C. D.3.如图所示,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB等于()A.5∶8B.3∶8C.3∶5D.2∶5第3题图第4题图4.如图所示,在△ABC中,DE∥BC,DE=1,AD=2,DB=3,则BC的长是()A. B. C. D.5.若△ABC∽△A′B′C′,相似比为1∶2,则△ABC与△A′B′C′的面积的比为()A. 1∶2B. 2∶1C. 1∶4D. 4∶16.在比例尺的地图上,量得两地的距离是,则这两地的实际距离是()A. B. C. D.7.如图所示,在梯形中,∥,对角线相交于点,若=1,3,则的值为()A. B.C. D.8.已知四边形与四边形位似,位似中心为点.若=1∶3,则∶等于()A.1∶9B.1∶6C.1∶4D.1∶39.小刚身高1.7 m,测得他站立在阳光下的影子长为0.85 m,紧接着他把手臂竖直举起,测得影子长为1.1 m,那么小刚举起的手臂高出头顶()A.0.5 mB.0.55 mC.0.6 mD.2.2 m10.(2014·河北中考)在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3,4,5的三角形按图①的方式向外扩张,得到新三角形,它们的对应边间距均为1,则新三角形与原三角形相似.① ②第10题图乙:将邻边为3和5的矩形按图②的方式向外扩张,得到新矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对二、填空题(每小题3分,共24分)OAB CD第7题图11.如图所示,在边长为9的正三角形ABC 中,BD =3,∠ADE =60°,则AE 的长为 .第11题图 第12题图 12.如图所示,在△ABC 中,DE ∥BC ,23DE BC ,△ADE 的面积是8,则△ABC 的面积为 . 13.已知一个三角形的三边长分别为6、8、10,与其相似的一个三角形的最短边长为18,则较小三角形与较大三角形的相似比= . 14.在△中,12 cm ,=18 cm ,24 cm ,另一个与它相似的△的周长为18 cm ,则△各边长分别为 .15.如图所示,一束光线从点出发,经过轴上的反射后经过点,则光线从点到点经过的路线长是 . 16.四边形与四边形 位似,点为位似中心,若,那么= .17.(1)若两个相似三角形的面积比为1∶2,则它们的相似比为 ;(2)若两个相似三角形的周长比为3∶2,则这两个相似三角形的相似比为 ; (3)若两个相似三角形对应高的比为2∶3,它们周长的差是25,那么较大三角形的周长是 . 18.如图所示,在正方形中,点是边上一点,且 =21,与交于点,则△与四边形的面积之比是 .三、解答题(共46分)19.(6分)已知线段成比例,且,,,求线段的长度.AB CDFE第18题图20.(6分)若,求的值.21.(8分)(2014·安徽中考)如图所示,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.第21题图22.(8分)某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.第22题图根据以上测量过程及测量数据,请你求出河宽BD是多少米?23.(8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图所示,当李明走到点A时,张龙测得李明直立时身高AM与其影子长AE正好相等;接着李明沿AC方向继续向前走,到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m.已知李明直立的身高为1.75 m.求路灯的高度CD.(结果精确到0.1 m)第23题图第24题图24.(10分)如图所示,⊙O的半径为4,B是⊙O外一点,连接OB,且OB=6.过点B作⊙O的切线BD,切点为D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为C.(1)求证:AD平分∠BAC;(2)求AC的长.第二十七章相似单元测试题参考答案1.B 解析:∵AB⊥BC,CD⊥BC,∴AB∥CD,∴∠A=∠D,∴△BAE∽△CDE,∴=.∵BE20 m,EC10 m,CD20 m,∴=,∴AB=40 m.2.B 解析:∵在△ABC中,点M,N分别是边AB,AC的中点,∴MN∥BC,MN=BC, ∴△AMN∽△ABC, ∴==,∴=.点拨:三角形的中位线平行于第三边,且等于第三边的一半.3.A 解析:本题考查了相似三角形的判定和性质,∵DE∥BC,∴∠ADE=∠B.又∵∠A=∠A,∴△ADE∽△ABC,∴=.∵=,∴=,即=,∴=.设AE=3,则AC=8,∴CE=AC-AE=5.∵EF∥AB,∴△CEF∽△CAB,∴.4.C 解析:∵DE∥BC,∴△ADE∽△ABC.∴.∵DE=1,AD=2,DB=3,∴.∴BC=.点拨:求两条线段的比值或求线段的长时,常通过证明两个三角形相似,根据相似三角形的对应边成比例列出比例式求解.5. C 解析:根据相似三角形的面积比等于相似比的平方的性质直接得出结果△ABC与△A′B′C′的面积的比为1∶4.故选C.6.D 解析:7.B 解析:由∥得△∽△,∴.8. A 解析:依据相似多边形的面积比等于相似比的平方解题.由四边形与四边形位似,得四边形与四边形相似.又由四边形与四边形相似得所以选A.9.A 解析:设小刚举起的手臂高出头顶,则∴10.A 解析:图①中两个三角形的3组角分别对应相等,两个三角形一定相似;图②中的两个矩形,虽然4组角分别对应相等,但较短边之比与较长边之比不相等,两个矩形一定不相似.只有同时满足“对应角相等九年级数学第27章《相似》同步测试(有答案)一、选择题:1、已知x:y:z=1:2:3,且2x+y﹣3z=﹣15,则x的值为()A.﹣2 B.2 C.3 D.﹣32、(2018•重庆)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元3、已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF的面积为()A.32 B.8 C.4 D.164、已知△ABC中,AB=AC,∠A=36°,以点A为位似中心把△ABC的各边放大2倍后得到△AB′C′,则∠B的对应角∠B′的度数为( )A.36° B.54° C.72° D.144°5、(2018•临安区)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.6、下列说法中正确的是()A.两个直角三角形一定相似B.两个等腰三角形一定相似C.两个等腰直角三角形一定相似D.两个矩形一定相似7、(2018•内江)已知△ABC与△A1B1C1相似,且相似比为1:3,则△ABC与△A1B1C1的面积比为()A.1:1 B.1:3 C.1:6 D.1:98、如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为()A.8 B.12 C.14 D.169、如图,△ABC与△ADB中,∠ABC=∠ADB=90°,∠C=∠ABD,AC=5cm,AB=4cm,AD的长为( )A.16/5 B.2 C.3 D.24/510、学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为()A.0.2m B.0.3m C.0.4m D.0.5m11、如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是( )A .∠ABD =∠CB .∠ADB =∠ABC C.AB BD =CB CDD .AD AB =AB AC12、如图,点A 在线段BD 上,在BD 的同侧作等腰Rt △ABC 和等腰Rt △ADE ,CD 与BE 、AE 分别交于点P ,M .对于下列结论:①△BAE ∽△CAD ;②MP•MD=MA•ME;③2CB 2=CP•CM.其中正确的是( )A .①②③B .①C .①②D .②③ 二、填空题:13、(2018•邵阳)如图所示,点E 是平行四边形ABCD 的边BC 延长线上一点,连接AE ,交CD 于点F ,连接BF .写出图中任意一对相似三角形: .14、已知△ABC ∽△DEF ,且相似比为1:2,则△ABC 与△DEF 的面积比为 .15、在比例尺为1:100的地图上,量得甲、乙两点的距离为25cm ,甲、乙两点的实际距离为 m .16、如图,在△ABC 中,点D 是边AB 上的一点,∠ADC=∠ACB ,AD=2,BD=6,则边AC 的长为 .17、如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD 和BC 交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l 的两端上,若CD=2,则AB的长是.18、已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为.19、如图,在平面直角坐标系中,以原点为位似中心,将△AOB扩大到原来的2倍,得到△A′OB′,若点A的坐标是(1,2),则点A′的坐标是 .20、如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为 .21、(2018•吉林)如图是测量河宽的示意图,AE与BC相交于点D,∠B=∠C=90°,测得BD=120m,DC=60m,EC=50m,求得河宽AB= m.22、如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于点G ,若AE=3ED ,DF=CF ,则AG:GF 的值是 .三、解答题:23、已知四边形ABCD 和A 1B 1C 1D 1中,AB A 1B 1=BC B 1C 1=CD C 1D 1=AD A 1D 1=35,且周长之差为12cm ,两个四边形的周长分别是多少?24、如图,△ABC 中,AB =AC ,点E 在边BC 上移动(点E 不与点B 、C 重合),满足∠DEF =∠B ,且点D 、F 分别在边AB 、AC 上.(1)求证:△BDE ∽△CEF ;(2)当点E 移动到BC 的中点时,求证:FE 平分∠DFC.25、(2018•江西)如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.26、如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:△BDE∽△CAD.(2)若AB=13,BC=10,求线段DE的长.27、如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF.(2)。