煤矿井下水力压裂技术的发展现状与前景
水力压裂技术在采矿工程中的应用与效果分析
水力压裂技术在采矿工程中的应用与效果分析水力压裂技术是一种通过注入高压水剂以及固体颗粒,将岩石破碎并形成裂缝的技术。
它主要用于提高油气和水资源的开采效果,优化采矿工程。
本文将对水力压裂技术在采矿工程中的应用以及效果进行分析。
首先,水力压裂技术在油气开采中的应用是十分广泛的。
通过将高压水剂注入油气储层,可有效地把岩石破碎,并形成裂缝网络。
这些裂缝能够提供更大的储层表面积,从而增加开采区域的有效渗透面积。
此外,水力压裂技术还能改善储层连通性,提高油气的采集效率。
通过合理的施工设计和操作方式,可以实现裂缝的指向性扩展,进一步提高采收率。
其次,水力压裂技术在水资源开采中也发挥了重要作用。
在富水储层中,水力压裂技术能够有效地提高开采率和注水率,实现更加稳定的水资源供应。
通过水力压裂,可增加储层渗透率,加大水井的产能。
此外,水力压裂技术还可应用于地下水资源的开采,提高井水量,满足农田灌溉、城市供水等需求。
水力压裂技术在采矿工程中的应用效果也是显著的。
首先,它能够大幅度提高采收率。
通过水力压裂,可以将原本无法开采的储层有效开发,并提高采取比。
这不仅能够增加产量,还能够提高采矿效益。
其次,水力压裂技术能够增加开采井的产能,提高油气或水的产量。
这对于地下资源开采公司来说,将是一项重要的利润增长点。
此外,水力压裂技术还能够改善储层的物理性质,提高油气或水的流动性,进一步提高开采效果。
然而,水力压裂技术在应用过程中也存在一些问题。
首先,水力压裂施工成本较高,涉及到固体颗粒和高压水剂的注入,需要专业的设备和技术人员,这增加了成本投入。
其次,施工过程对环境的影响较大,可能导致水资源的浪费、地下水表面化、地震等现象。
因此,在应用水力压裂技术时,需要制定相应的环保措施,以减少环境影响。
综上所述,水力压裂技术在采矿工程中的应用与效果是非常显著的。
它能够提高油气储层的采收率,增加水资源的开采量,改善采矿工程效果。
然而,在应用过程中也需要注意环境保护和成本控制等问题。
国内外水力压裂技术现状及发展趋势
国内外水力压裂技术现状及发展趋势国内外水力压裂技术现状及发展趋势1. 水力压裂技术的概述水力压裂技术是一种用于释放和采集地下岩石中储存的天然气或石油的方法。
该技术通过高压水将岩石破碎,使储层中的油气能够流动到井口并采集出来。
水力压裂技术的应用范围广泛,已经成为当今油气勘探和生产领域不可或缺的重要工艺。
2. 国内水力压裂技术的发展2.1 技术进展近年来,中国在水力压裂技术领域取得了长足的进展。
国内开展了一系列水力压裂试验和生产实践,并不断优化了水力压裂液的配方和压裂参数,提高了技术效果。
目前,国内已经具备了一定的水力压裂能力,大规模商业化的水力压裂项目也在逐渐增加。
2.2 技术挑战然而,国内水力压裂技术仍面临一些挑战。
由于我国地质条件复杂多样,水力压裂参数的优化和设计仍需进一步完善。
水力压裂过程中对水和化学药剂的需求量较大,对水资源的消耗和环境影响也需要引起重视。
国内水力压裂技术在环保、安全等方面的标准和规范也亟待完善。
3. 国外水力压裂技术的现状3.1 技术领先相比之下,国外水力压裂技术相对更为成熟和领先。
美国作为全球水力压裂技术的发源地和领导者,已经积累了丰富的经验和技术。
加拿大、澳大利亚、阿根廷等国家也在水力压裂技术领域取得了显著进展。
3.2 发展趋势在国外,水力压裂技术正朝着更高效、可持续的方向发展。
技术创新持续推动着水力压裂技术的进步,如改良水力压裂液配方、增加试验参数、提高水力压裂设备效率等。
另注重环境保护和社会责任意识也推动了水力压裂的可持续发展,包括减少用水量、降低化学品使用、加强废水处理等。
4. 对水力压裂技术的观点和理解4.1 技术应用前景广阔水力压裂技术作为一种有效的油气勘探和生产工艺,具备广阔的应用前景。
随着全球能源需求的增长和传统资源的逐渐减少,水力压裂技术有望成为我国能源领域的重要支撑。
4.2 重视技术创新和可持续发展为了更好地推动水力压裂技术在国内的应用,我们应加大技术创新力度,不断优化水力压裂方案,提高资源利用效率,并探索更环保、可持续的水力压裂技术路径。
水力压裂技术的发展现状
!"% 调整压裂液的密度控制缝高
这种方法主要是根据压裂梯度来计算压裂 液的密度。如果要控制裂缝向上延伸, 就要采用 密度较大的压裂液, 使其在重力作用下尽可能向 下压开裂缝。反之, 如果要控制裂缝向下延伸, 就 必须使用密度较小的压裂液。
!"! 冷却地层控制缝高
这种方法是先低排量注入低温液体冷却地 层, 降低地层应力, 这时的注入压力必须小于地 层的破裂压力。当冷却地层的范围和应力条件达 到一定要求时, 再提高排量, 注入高浓度降滤剂 的低温前置液, 压开裂缝。在注入低温液体冷却 地层期间的某一时刻, 将注液压力提高到造缝压 力, 进而采用控制排量和压力的方法控制缝高的 延伸。这种方法主要用于胶结性较差的地层和用 常规水力压裂难以控制裂缝延伸方法的油气层。
"
优化压裂设计
优化压裂设计在水力压裂技术中占有主要
位置。这项设计要求首先用油藏动态模拟预测不 同的裂缝长度和导流能力可能达到的油气产量, 然后用所测得的数据建立裂缝长度和经济效益 之间的关系, 确定达到不同的裂缝长度和导流能 力所需要的费用, 最大限度地提高经济效益。近 年来优化压裂设计水平的提高主要表现在压裂 设计模型和压裂液体系设计的发展和应用上。
河南石油
)"") 年 ! 月
文章编号: !""#$%"&’()"")*"!$""%%$"%
=89>9 38?@AB8CD
第 !# 卷
第!期
水力压裂技术的发展现状
马新仿, 张士诚
( 石油大学石油工程系, 北京 !"))%& )
摘要 + 综述了近期国内外水力压裂工艺技术的发展现状, 着重阐述了优化压裂设计、 压裂液和支撑剂、 裂缝检测 和控高技术、 端部脱砂压裂和重复压裂等技术的应用和发展情况。指出应研究和发展裂缝的控制技术, 在中高 渗透地层中应用端部脱砂压裂技术, 扩大水力压裂的技术范围, 发展矿场实时监测技术, 提高施工的成功率。 关键词: 水力压裂; 优化设计; 压裂液; 支撑剂; 发展 中图分类号: -./’,0! 文献标识码: 1
井下压裂年终总结
井下压裂年终总结1. 背景介绍井下压裂是一种常用的油气开采工艺,通过高压液体将岩石破碎以释放油气。
本文将对井下压裂在过去一年的应用情况进行总结和分析。
2. 井下压裂技术的发展趋势井下压裂技术在过去一年中得到了广泛应用,并且在不断发展壮大。
以下是井下压裂技术的几个发展趋势:2.1 高效能源利用在压裂过程中,液体的注入和排出是关键环节。
近年来,随着技术的进步,越来越多的压裂液体被回收和循环利用,以减少能源消耗和环境影响。
2.2 数字化管理系统井下压裂作业通常需要复杂的设备和人员配合,为了提高工作效率和安全性,许多公司开始采用数字化管理系统。
这种系统可以实时监测和控制井下压裂过程,提供准确的数据和分析结果,帮助优化作业计划和决策。
2.3 智能化设备应用随着技术的不断进步,越来越多的智能化设备被应用于井下压裂作业中。
这些设备可以自动调节压力、温度和液体流量等参数,提高作业的稳定性和效率。
3. 井下压裂应用案例分析在过去一年中,井下压裂技术在多个油气田中得到了广泛应用。
以下是两个井下压裂应用案例的分析:3.1 案例一:某油田井下压裂在某油田的井下压裂作业中,采用了最新的数字化管理系统和智能化设备。
通过实时监测和控制,作业效率显著提高,同时降低了安全风险。
3.2 案例二:某气田井下压裂某气田在过去一年中进行了大规模的井下压裂作业,成功提高了气田的产能。
通过回收和循环利用压裂液体,节约了能源消耗。
此外,智能化设备的应用也提高了作业的精确度。
4. 井下压裂的挑战与展望尽管井下压裂技术在过去一年中取得了显著的进展,但仍面临一些挑战。
例如,压裂液体的回收和循环利用仍需要进一步完善,智能化设备的研发和应用也需要不断提升。
展望未来,井下压裂技术有望在成本效益、环境友好性和作业效率等方面迎来更大的突破。
5. 总结井下压裂技术在过去一年中取得了显著的进展,高效能源利用、数字化管理系统和智能化设备等趋势成为技术发展的主要方向。
煤矿井下水力压裂技术抽采煤层瓦斯应用及前景
2971 煤矿井下水力压裂技术的研究现状1.1 理论研究现状目前,煤矿井下水力压裂技术在实验室的主要研究内容为水力压裂注入参数、裂缝扩展及延伸规律方面的试验。
通过试件压裂试验、理论分析及数值模拟获取相应的研究资料,在某研究项目中,研究人员利用空心包体应变计完成了对水力压裂前后钻孔周边煤层应力的变化数据分析,并对前方煤层应力的变化规律进行了监测,所获取的研究结果有着重要的参考价值,可有助于提高水力压裂增透抽采瓦斯的作业质量。
1.2 现场试验现状目前,对煤矿井下水力压裂技术的现场试验已经在多个煤矿企业中开展,以重庆某煤矿企业为例,该企业在10余个矿井内进行了近百次的现场试验。
在试验现场中,通过煤矿井下水力压裂技术实现对煤层的水利压裂,可发现通过水作为介质,煤层透气性能够显著提升,与技术应用前的煤层透气性相比,提升效果高达50余倍,而压裂钻场预抽瓦斯气体的体积数值高于常规操作的6~7倍,而每个抽采孔位的抽采纯度是常规操作的4~5倍,抽采作业的工期可缩短90~120d,对掘进效率的提升效果提高了1.5~2倍。
2 煤矿井下水力压裂技术在应用中的现存问题2.1 缺乏系统的地质指标在煤矿井下作业之中,煤矿井下水力压裂是一项重要的煤层增透技术,在实际工作中,必须要考虑地质环境的影响,同时还要有统一的地质标准。
但在实际工作中,因为缺乏系统的地质指标,没有相应的参考标准,单凭个人主观意识与工作经验加以判断,就会让抽采设计与压裂设计缺乏科学依据,从而降低抽采效率与工作质量。
2.2 缺乏主客观因素的有效关联在应用煤矿井下水力压裂技术时,需要依照煤岩层岩性、煤层厚度、煤层倾角等煤岩储层物性的特征,对水力压裂注入工艺、注入量、钻孔位置、压裂时间等参数做好综合分析,考虑人为主客观因素对水利压裂效果的影响。
不能有效的实现对上述因素的主客观分析,就会难以准确获取水力裂缝扩展延伸的规律,进而影响作业顺利性。
2.3 对煤岩应力、渗透率演化规律缺少准确认知在利用水力压裂为煤层增透的作业之中,施工人员对裂缝对煤岩的反作用力,影响煤岩应力、钻孔周边应力的变化以及煤岩渗透率的变化规律缺少准确的认知,没有理论支持,就会让水利压裂作业缺少理论上的专业指导,这就造成了抽采效率难以提升、作业成本难以控制的问题。
水平井压裂工艺技术现状及展望
水平井压裂工艺技术现状及展望水平井压裂工艺技术是一种在油气开采过程中常用的增产技术。
随着油气资源的日益枯竭和能源需求的不断增加,水平井压裂技术得到了广泛的应用和发展。
本文将对水平井压裂工艺技术的现状及展望作一详细的介绍。
1. 水平井压裂技术的起源水平井压裂技术起源于美国,上世纪90年代在美国的油气田开采中开始得到广泛应用。
通过对水平井进行定向钻井和高压液体介质的注入,从而将岩层进行压裂,增加了裂缝的面积和导流能力,提高了油气的产量。
2. 水平井压裂技术的应用水平井压裂技术在油田和气田的开发中得到了广泛的应用。
通过这一技术,能够有效地开采低渗透储层、致密砂岩和页岩气等非常规油气资源,提高了油气田的开采效率和产量。
3. 水平井压裂技术的发展随着油气资源的日益枯竭和能源需求的不断增加,水平井压裂技术的研究和发展也日益受到重视。
在技术方面,水平井的水平段长度和井眼直径越来越大,压裂技术也更加精细化和智能化;在装备方面,钻井设备和压裂设备也在不断更新和完善,提高了作业的效率和安全性。
4. 水平井压裂技术的问题水平井压裂技术在应用过程中也存在一些问题。
压裂液回收、裂缝控制、产能持续性等问题,需要在技术上不断攻关和改进。
二、水平井压裂工艺技术展望1. 技术的智能化和精细化未来,水平井压裂技术将朝着智能化和精细化的方向发展。
通过引入先进的传感技术和互联网技术,实现作业过程的实时监测和智能控制,提高作业的精准度和安全性。
2. 环保技术的研发和应用水平井压裂过程中产生的废水和废液对环境造成了一定的影响,未来需要加大对环保技术的研发和应用力度,实现压裂液的高效回收和再利用,降低对环境的影响。
3. 产能持续性技术的研究和应用水平井压裂工艺技术在增加了产能的也存在一定程度上的产能持续性问题。
未来需要加大对产能持续性技术的研究和应用,延长油气田的有效生产期,降低油气田的衰竭速度。
4. 新材料和新技术的推广应用水平井压裂工艺技术的发展也离不开新材料和新技术的推广应用。
压裂液技术现状与发展趋势
压裂液技术现状与发展趋势压裂液技术,即水力压裂技术,是一种应用于页岩气、煤层气等非常规气源开采中的关键技术。
它通过将大量高压水泵送至深部岩石中,产生强大的压力,使岩石发生裂缝,从而提高气体流通性,促进气体的释放与采集。
本文将从技术现状与发展趋势两个方面对压裂液技术进行探讨。
一、技术现状1.压裂液配方:目前,常用的压裂液配方主要包括水、粘土矿物、添加剂和控制剂等。
水是压裂液的主体,占总体积的70%以上,常用的水源是地表水和淡水。
粘土矿物主要用于维持压裂液的黏度和稳定性。
添加剂如增稠剂、降解剂等用于改善液体流动性能,控制剂则主要用于调节压裂液的性能与效果。
2.压裂液泵送技术:压裂液泵送技术是实现压裂液高效输送的关键。
目前常用的泵送技术包括高压泵、齿轮泵、隔膜泵和柱塞泵等。
高压泵是最常用的泵送设备,其具有泵送流量大、压力高、结构简单等优点,但能耗较大。
隔膜泵则是一种节能型泵送设备,其通过隔膜的周期性振动,实现压裂液的泵送。
3.施工技术与工具:压裂液的施工技术包括固井施工、射孔施工、水力压裂施工等。
常用的施工工具包括固井管、射孔弹、水力压裂装置等。
施工工具的研发与改良对提高压裂液的施工效果和采气效率具有重要意义。
二、发展趋势1.绿色环保化:近年来,压裂液技术在环保方面存在一些问题,如废水排放、地下水污染等。
未来的发展趋势将更加关注绿色环保,研发低污染、高效、可回收利用的压裂液技术。
2.高效低耗能:随着油气资源的逐渐枯竭,对压裂液技术的要求也越来越高。
未来的发展趋势将注重提高压裂液技术的效率和降低能源消耗,通过改进泵送技术、配方优化等手段实现高效低耗能。
3.智能化与自动化:随着科技的不断发展,压裂液技术也将朝着智能化、自动化方向发展。
智能化技术可以实现对压裂液的自动控制和监测,提高施工效率和精确度。
4.全球化合作:压裂液技术在世界范围内得到广泛应用,特别是美国页岩气革命的推动下,国际合作和经验交流日益重要。
水平井压裂工艺技术现状及展望
水平井压裂工艺技术现状及展望水平井压裂工艺技术是一种在油气开采中常用的技术手段,通过对水平井进行压裂处理,可以大大提高油气储量的开采效率。
随着油气开采技术的不断进步和完善,水平井压裂工艺技术也在不断发展和改进。
本文将对水平井压裂工艺技术的现状及未来展望进行分析和探讨。
1.技术原理及发展历程水平井压裂是一种利用高压液体将岩石裂开,从而增加岩石孔隙中的油气渗透性的技术。
水平井压裂技术最早起源于20世纪40年代的美国,在60年代开始逐渐应用于石油开采中。
随着对水平井压裂技术的不断改进和完善,现代水平井压裂技术已经成熟,并在全球范围内被广泛应用。
2.技术分类及特点根据压裂液体的属性和使用情况,水平井压裂工艺技术可以分为液体压裂、气体压裂和混合压裂等多种类型。
液体压裂是最常见的一种,通过将高压液体注入井下,利用压力将岩石裂开,从而增加油气储量的产出。
而气体压裂则是利用高压气体将岩石裂开,混合压裂则是将液体和气体一同注入井下进行压裂处理。
水平井压裂工艺技术的特点主要包括提高油气产量、提高开采效率、缩短生产周期、减少环境影响等。
相比传统的垂直井开采技术,水平井压裂技术在油气开采中具有显著的优势。
3.应用情况及效果评估水平井压裂技术在世界范围内得到了广泛的应用,并取得了显著的成效。
特别是在北美地区,水平井压裂技术已经成为油气开采的主流技术手段。
通过对水平井进行压裂处理,可以大大增加油气产量,提高油气储量的开采效率。
国内也在不断推广和应用水平井压裂技术,特别是在页岩气开采方面取得了良好的效果。
通过水平井压裂技术,将页岩气中的油气提取出来,为我国能源资源的开发做出了重要贡献。
1.技术瓶颈及需进一步突破尽管水平井压裂技术在油气开采中取得了很大的成功,但在实际应用中也存在一些瓶颈和问题。
压裂液体对环境的影响、压裂后的油气产量衰减速度等问题,都需要进一步的技术突破和解决。
水平井压裂技术在开采成本和效益上也面临一些挑战,特别是在压裂液体的成本、井下设备的磨损和维护等方面。
水平井压裂工艺技术现状及展望
水平井压裂工艺技术现状及展望水平井压裂技术是一种在水平钻井工程中广泛应用的加密油层或气层生产的工艺技术。
随着对能源需求的不断增长,水平井压裂技术已成为开发深水和极深水油气资源最有效的方式之一。
本文将介绍水平井压裂技术的现状,并展望其未来的发展方向。
现状:1. 水平井钻探技术的进步水平井钻探技术的不断进步为水平井压裂技术提供了强有力的支持。
水平井钻探技术的进步减少了钻井成本,缩短了开采周期,提高了油气输出率,是水平井压裂技术得以广泛应用的重要因素。
2. 压裂剂技术的提升压裂剂技术的提升是水平井压裂技术不断发展的关键因素之一。
现在的压裂剂技术中,新型压裂剂使用可降解的材料,能够防止更多的环境污染。
3. 人工智能现代化管理人工智能技术在现代化管理中扮演着不可替代的角色。
水平井压裂生产也同样需要进行先进的人工智能现代化管理。
采用人工智能技术可以使得井场的人员保持高效率,降低生产成本。
未来的发展方向:1. 环保型技术环保型技术对于人类的现在和未来都具有非常重要的意义。
未来水平井压裂技术的发展将会更加关注环保型技术的使用,减少环境污染的影响。
2. 智能化技术智能化技术是井场人员和设备非常重要的控制手段。
未来水平井压裂技术的发展将会采用更加先进的智能化技术,使得井场的人员和设备的控制变得更加精准、高效和智能。
3. 高效油气采集高效油气采集一直是水平井压裂技术的目标之一。
未来,水平井压裂技术的发展将会着重于如何更加高效地采集油气,如采用更加高效的压裂剂、增加压裂泵的数量和效率、提高油气产出率等。
结论:水平井压裂技术是一种高效的油气采集工艺技术,广泛应用于深水和极深水油气资源开发中。
未来该技术的发展将会着重于环保型技术、智能化技术和高效油气采集技术的应用,助力能源领域的可持续发展。
国内外水力压裂技术现状及发展趋势
国内外水力压裂技术现状及发展趋势
水力压裂技术是一种利用水压强制将深层岩石 fracture 整合成
连通通道从而提高油气开采效率的技术。
水力压裂技术自
1949 年以来获得了长足的发展,特别是近年来,其在美国页
岩气和页岩油等非常规油气资源开采中的应用取得了重大突破。
国内,由于国内油气资源开采技术相对滞后,水力压裂技术的发展较为缓慢。
但是,在近几年的油气勘探与开发中,水力压裂技术日益受到关注和重视,不断地得到了改进和提升。
目前,国内的水力压裂技术主要应用在 shale gas 和 tight oil 开采领域。
国际上,水力压裂技术的应用范围不断拓展,不仅在页岩气和页岩油等非常规油气开采中得到广泛应用,还在加拿大油砂、澳大利亚煤层气等领域得到应用并取得了良好的效果。
同时,随着环保意识的不断提高,加强水力压裂技术的环境友好型也成为国际上水力压裂技术发展的一个重要趋势。
未来,水力压裂技术将在探索各类非常规能源资源时得到广泛应用。
同时,技术将继续发展,应用范围将会更加广泛,同时,技术的环境友好型和安全性也将会不断得到提升和改进。
煤矿水力压裂总结报告
煤矿水力压裂总结报告摘要本报告对煤矿水力压裂技术进行了总结和分析。
水力压裂是一种利用高压水将裂缝注入煤层,以增加煤层透气性的技术。
通过实践和研究,我们总结出水力压裂在煤矿开采中的优势和应用情况,并对其未来发展进行了展望。
引言煤矿水力压裂技术是一种有效的煤层开采工艺,在近年来得到了广泛的应用。
水力压裂可以增加煤层渗透性,提高瓦斯抽采效果,降低煤层爆炸的风险。
本文将对水力压裂技术的原理和应用进行深入探讨,并总结实际应用中的经验和问题。
1. 水力压裂技术原理水力压裂技术是利用高压水将裂缝注入煤层,以增加煤层透气性的方法。
通过将高压水注入煤层,可以产生裂缝,改变煤层渗透性并提高瓦斯抽采效果。
水力压裂技术主要包括以下几个步骤:1.确定水力压裂层位:根据地质勘探和矿井实际情况,确定适合水力压裂的煤层层位。
2.配制压裂液:选择合适的压裂液,调配出符合要求的压裂液。
3.建立压裂系统:布置压裂泵、管道和阀门等设备,建立完整的压裂系统。
4.进行水力压裂:将高压液体通过压裂系统注入煤层,产生裂缝并提高煤层渗透性。
5.监测裂缝扩展情况:使用地下测量技术监测裂缝的扩展情况,评估压裂效果。
2. 水力压裂技术在煤矿开采中的应用水力压裂技术在煤矿开采中有着广泛的应用。
主要包括以下几个方面:2.1 提高煤层透气性水力压裂技术可以改变煤层的渗透性,提高煤层的透气性。
通过增加煤层的透气性,可以提高瓦斯抽采效果,降低煤矿瓦斯爆炸的风险。
2.2 提高煤矸石开采效率煤矸石是煤矿开采过程中产生的一种废弃物,水力压裂可以提高煤矸石开采效率,并减少对地下水的污染。
2.3 降低煤层开采难度部分煤矿存在煤与矸石夹层的情况,煤矿开采难度较大。
水力压裂技术可以破坏煤与矸石的结合,降低开采难度。
2.4 提高煤层开采率水力压裂技术可以促使煤层裂缝扩展,提高煤层的开采率。
通过水力压裂,可以有效利用煤矿资源,提高矿井的经济效益。
3. 水力压裂技术的优缺点水力压裂技术有着一些优点,但同时也存在一些不足之处。
水力压裂技术研究现状及发展趋势
水力压裂技术研究现状及发展趋势一、引言水力压裂技术是一种通过高压水将岩石裂开的方法,以便在其中注入液体或气体。
该技术广泛应用于石油和天然气勘探和生产领域。
本文旨在通过对水力压裂技术的现状和发展趋势进行研究,以了解该技术的最新进展和未来发展方向。
二、水力压裂技术的基本原理1.1 原理介绍水力压裂技术是一种将高压水注入地层中,以产生足够的裂缝来释放储层中的天然气或石油的方法。
该技术可以通过在井口附近钻孔并注入高压水来实现。
当高压水进入地层后,它会向外扩张,并在地层中形成裂缝。
这些裂缝可以增加储层中可供采集的天然气或石油量。
1.2 水力压裂技术的主要步骤(1)井口附近钻孔;(2)注入高压水;(3)形成地层中的裂缝;(4)释放储层中的天然气或石油。
三、水力压裂技术的现状2.1 技术应用范围水力压裂技术广泛应用于石油和天然气勘探和生产领域。
在美国,该技术已被广泛应用于页岩气和页岩油的开采。
2.2 技术发展历程水力压裂技术最早是在20世纪40年代开发出来的。
当时,该技术主要用于增加储层中可供采集的天然气或石油量。
随着时间的推移,该技术得到了不断改进,并被广泛应用于各种类型的储层中。
2.3 技术优势和不足之处水力压裂技术具有以下优势:(1)可以提高储层中可供采集的天然气或石油量;(2)可以增加能源产量;(3)可以减少对进口能源的依赖;(4)可以创造就业机会。
但是,该技术也存在一些不足之处:(1)可能会对环境造成负面影响;(2)可能会导致地震活动;(3)可能会对地下水资源造成污染。
四、水力压裂技术的发展趋势3.1 技术改进和创新随着技术的不断发展,水力压裂技术将继续得到改进和创新。
例如,可以通过改变注入液体的化学成分来提高效率,并减少对环境的影响。
3.2 研究新的能源资源随着传统石油和天然气储层的逐渐枯竭,研究新的能源资源将成为未来水力压裂技术发展的重点。
例如,可以研究深层天然气、页岩气和煤层气等资源。
3.3 加强环保措施由于水力压裂技术可能会对环境造成负面影响,因此加强环保措施将成为未来该技术发展的重点。
水平井压裂工艺技术现状及展望
水平井压裂工艺技术现状及展望随着页岩油气资源的不断开发,水平井压裂技术成为新一代油气勘探和开发的主要工艺之一。
本文将从压裂技术的基本原理、技术现状、存在问题以及未来展望等方面对水平井压裂技术进行探讨。
一、水平井压裂技术的基本原理水平井压裂技术是一种通过在水平井中注入高压液体将岩石裂开并形成缝隙,从而增加储层渗透性和生产率的工艺。
该技术主要包括以下三个方面:(1)液体注入:将高压液体注入水平井中,包括水和含砂特殊液体。
(2)施力:施加足够的压力使岩石裂开并形成缝隙。
(3)支撑:在岩石裂缝中灌入支撑物质,如小颗粒的石英砂或陶粒,以确保缝隙稳定并增加储层的渗透性。
目前在油气勘探开发中,水平井压裂技术已经广泛应用。
该技术的发展经历了以下几个阶段:(1)水平井压裂的早期阶段:20世纪70年代,美国开始在煤层气开采中使用水力加压深浅井压裂技术。
随着该技术的不断发展,水平井的应用范围逐渐扩大。
(2)常规水平井压裂阶段:上世纪80年代,水平井技术逐渐成熟,常规垂直井压裂技术不再适用,水平井压裂技术因其高效、低成本的特点得到广泛应用。
(3)复杂水平井压裂阶段:21世纪初,随着油气勘探难度的增加,水平井压裂技术也面临越来越多的挑战,如水平井多级分层压裂、长距离水平井压裂和高温高压井压裂等。
(1)环境污染问题:压裂过程中使用的液体,如化学品、石油和水等,可能会对地下水资源造成污染。
(2)压裂工艺的可持续性:随着压裂次数的增加,岩石的渗透性将逐渐降低,使得压裂效果下降。
(3)压裂技术需要大量的水资源,对于水资源供应受限的地区来说,这可能会造成问题。
(1)提高技术的可持续性:开发高效可持续的压裂技术,降低岩石渗透性下降的速度。
(2)减少对环境的影响:研究并开发非化学性质液体,减少对环境的影响。
(3)加强技术升级和创新:通过加强创新和技术升级,提高压裂技术的效率和储层采收率。
综上所述,水平井压裂技术是油气勘探开发的一个重要工艺,然而,该技术的应用还面临着许多问题。
矿山开采的水力压裂及固井
固井在某矿山开采中的应用案例
总结词
保障安全、提高稳定性、延长使用寿命
VS
详细描述
固井技术在该矿山开采中起到了关键作用 ,通过在井筒内注入水泥浆,有效地固定 了井壁,提高了井筒的稳定性和安全性。 这一技术的应用还延长了井筒的使用寿命 ,减少了维修和更换的频率,降低了运营 成本。
2023 WORK SUMMARY
矿山开采的水力压裂 及固井
汇报人:可编辑
2023-12-31
REPORTING
目录
• 矿山开采概述 • 水力压裂技术 • 固井技术 • 水力压裂与固井在矿山开采中的应用 • 案例分析
PART 01
矿山开采概述
矿山开采的定义与特点
定义
矿山开采是指通过挖掘、采矿、 破碎、选矿等工序,从地下裂与固井联合应用在某矿山开采中的应用案例
总结词
协同效应、提高采收率与安全性、降低成本
详细描述
水力压裂与固井技术的联合应用在该矿山开 采中取得了显著效果。通过水力压裂提高采 收率,同时利用固井技术保障安全,两者相 互协同,进一步提高了采收率与安全性。这 一技术的应用还降低了开采成本,为矿山企 业带来了可观的经济效益。
水力压裂技术
水力压裂的定义与原理
总结词
水力压裂是一种利用高压流体将岩石破碎,形成裂缝,增加油藏或气藏的渗透 性,从而提高采收率的技术。
详细描述
水力压裂技术的基本原理是通过向地层中注入高压流体,使地层岩石产生破裂 ,形成裂缝。这些裂缝可以增加油藏或气藏的渗透性,使油、气更易流动,从 而提高采收率。
水力压裂的应用范围
矿山开采的历史与发展
古代采矿
古代采矿主要依靠手工挖掘和简单工具,生产效率低下,安全风 险高。
国内外水力压裂技术现状及发展趋势
国内外水力压裂技术现状及发展趋势
一、水力压裂技术简介
水力压裂技术是一种通过高压水将岩石层裂开的方法,以便释放天然
气或石油等资源。
该技术主要包括注水、加压、断裂和排出四个步骤。
二、国内外水力压裂技术现状
1. 国内水力压裂技术现状
近年来,中国的水力压裂技术得到了快速发展。
在西部地区,如四川
盆地和塔里木盆地等地区,已经实现了大规模的商业化开采。
同时,
在东部地区也开始逐渐进行试验性生产和商业化开采。
2. 国外水力压裂技术现状
美国是目前全球最重要的页岩气生产国家之一。
自2005年以来,美国页岩气产量增长了近20倍。
此外,加拿大、阿根廷和澳大利亚等国家也在积极推进页岩气的开采。
三、国内外水力压裂技术发展趋势
1. 技术优化升级
随着行业竞争日益激烈,各个企业都在积极探索更加高效和节能的水
力压裂技术。
未来,水力压裂技术将会更加智能化和自动化,以提高
生产效率和降低成本。
2. 环保要求越来越高
水力压裂技术会产生大量的废水和废液,对环境造成一定的污染。
未来,随着环保要求越来越高,各个企业将不断优化水力压裂技术,减少对环境的影响。
3. 国际合作加强
随着全球能源需求的增长,国际合作将成为未来水力压裂技术发展的重要方向。
各个国家都将在技术研发、资源共享等方面进行更加紧密的合作。
四、总结
水力压裂技术是一种非常重要的能源开发方式。
在未来,该技术将会不断优化升级,并且受到越来越多的环保要求。
同时,国际合作也将成为未来该技术发展的重要方向。
水平井压裂工艺技术现状及展望
水平井压裂工艺技术现状及展望水平井压裂工艺技术是一种常用的页岩气开采技术,通过在水平井段注入高压液体使岩石裂缝扩展,进一步提高天然气的渗透能力,从而实现有效开采。
本文将对水平井压裂工艺技术现状进行介绍,并展望未来的发展方向。
目前,水平井压裂工艺技术已经成为页岩气开采的核心技术之一。
其主要特点包括大井段长度、高水平注采比、高密度压裂等。
水平井压裂技术主要包括井斜反压控制技术、高密度压裂技术、微裂缝控制技术、多点压裂技术等。
目前,国内外对水平井压裂工艺技术进行了大量的研究和应用,取得了一定的进展。
主要有以下几个方面的技术改进:井斜反压控制技术。
该技术主要针对水平井压裂过程中的井斜角度、裂缝方向等问题进行研究,通过调整注水速度,使液体从裂缝末端疏散,从而实现裂缝的完整扩展。
高密度压裂技术。
该技术主要通过提高压裂液体的注入速度和注入量,增加岩石的断裂面积。
现在,已经有一些研究开展了高密度压裂技术在水平井压裂中的应用,取得了较好的效果。
微裂缝控制技术。
微裂缝控制技术主要是针对水平井压裂后产生的微裂缝进行控制,避免裂缝的过分扩展和连接,减少非产状裂缝对渗流的影响。
多点压裂技术。
多点压裂技术是指在水平井段不同位置同时进行压裂作业,以提高开采效果。
该技术已经在国内外的部分页岩气开采作业中得到了应用。
未来,水平井压裂工艺技术还有一些可以发展的方向。
可以继续研究优化压裂液体的配方,以提高对页岩气藏的适应性和增产效果。
可以进一步完善井斜反压控制技术,提高裂缝扩展的均匀性和完整性。
可以加强对微裂缝控制技术的研究和应用,减少渗流通道的阻塞和扩散。
可以进一步拓展多点压裂技术的应用,以提高开采效果和资源利用率。
水平井压裂工艺技术在页岩气开采中具有重要的作用。
当前,该技术已经取得了一定的进展,并且未来还有很大的发展潜力。
通过不断的研究和应用,可以进一步提高水平井压裂工艺技术的效果和经济效益,为页岩气开采提供更好的技术支撑。
水力压裂技术的近期发展及展望
三、近期发展
1、高效压裂液:新型压裂液的研发与应用,如生物聚合物压裂液、低粘度胍 胶压裂液等,提高了压裂效果和储层渗透率,减少了环境污染。
三、近期发展Βιβλιοθήκη 2、微地震监测:利用微地震监测技术,实时监测压裂过程中岩层裂缝的扩展 和分布情况,为优化压裂方案提供了依据。
三、近期发展
3、垂直钻井与水平钻井:通过采用垂直钻井和水平钻井技术,更好地控制了 裂缝的方向和长度,提高了增产效果。
三、近期发展
4、实时压力监测:在压裂过程中进行实时压力监测,及时调整压裂参数,确 保压裂效果的优化。
三、近期发展
然而,水力压裂技术在应用过程中也存在一些问题,如环境污染、地层伤害 等,这些问题在未来发展中需要加以解决。
四、展望未来
四、展望未来
展望未来,水力压裂技术将继续发挥重要作用,为满足全球能源需求和可持 续发展目标做出贡献。以下是水力压裂技术的未来发展趋势和挑战:
本次演示对水力压裂技术的近期发展及展望进行了全面探讨。总结来说,水 力压裂技术在提高石油和天然气产量及采收率方面具有重要作用,但在应用过程 中也存在一些问题需要解决。未来发展中,水力压裂技术将在清洁能源需求、技 术创新、数字化与智能化、多学科融合等方面取得更大进展。通过具体案例的分 析,表明水力压裂技术在实践中具有重要应用价值和发展潜力。
水力压裂技术的近期发展及展 望
01 一、背景介绍
目录
02 二、技术原理
03 三、近期发展
04 四、展望未来
05 五、案例分析
06 六、总结
一、背景介绍
一、背景介绍
水力压裂技术是一种广泛应用于石油和天然气开采领域的增产技术。自20世 纪40年代以来,水力压裂技术经历了不断的发展和改进,为全球能源产业做出了 重要贡献。本次演示将重点探讨水力压裂技术的近期发展及其未来展望。
水平井压裂工艺技术现状及展望
水平井压裂工艺技术现状及展望水平井压裂工艺技术是一种提高油气井产能的重要方法,它通过在井筒内注入大量高压液体,在地层中形成裂缝,增加油气井与油层的接触面积,从而提高产能。
本文将介绍水平井压裂工艺技术的现状及展望。
目前,水平井压裂工艺技术已经取得了一定的研究成果,并在工业生产中得到了广泛应用。
主要包括以下几个方面:水平井压裂工艺技术已经形成了一套完整的理论体系。
研究者通过实验和数值模拟,深入研究了水平井压裂过程中的流体力学特性、压裂裂缝形成与演化机理等关键问题,对工艺参数的选择和优化提供了理论依据。
水平井压裂工艺技术已经形成了一套成熟的操作流程。
通常包括井筒完钻和钻井液清洗、套管固井、水平段入井和固定、作业液的选择和配比、压裂参数的确定和控制等环节。
这些操作流程经过长期实践验证,已经具有较高的可靠性和适用性。
水平井压裂工艺技术已经形成了一套完善的设备体系。
包括压裂液体制备、压裂泵车、压裂监测设备、压裂布局工具等。
这些设备不仅能够满足水平井压裂的需要,还能够进行远程监控和数据处理,提高了施工效率和控制精度。
水平井压裂工艺技术还面临一些挑战和问题。
首先是高成本和高风险。
水平井压裂过程中需要使用大量的化学品和能源,施工风险较大,一旦出现问题会造成较大的经济损失。
其次是环境污染问题。
压裂液中的化学物质和地下水的交互作用可能导致地下水污染,对生态环境造成危害。
再次是产能退化问题。
水平井压裂后,在一定时间内产能会有所增加,但随着时间的推移,裂缝会逐渐封闭,产能也会逐渐下降。
展望未来,水平井压裂工艺技术仍然有很大的发展空间。
一方面,可以进一步优化工艺参数和操作流程,提高工艺的稳定性和可控性,降低成本和风险。
可以开展更深入的研究,探索新的压裂技术和方法。
可以研究新型压裂液体的配方和制备,开发更高效的压裂泵车和监测设备,探索新的压裂布局方式,用于更多类型的地质条件和油藏类型。
还可以加强环境保护意识,研究环境友好型压裂液体的应用,减少对地下水的污染。
水力压裂技术发展及展望
报告题目:水力压裂技术近期发展及展望目录一、引言 ................................................................................................................ - 2 -二、发展及简介 ...................................................................................................... - 2 -2.1 发展历程.................................................................................................... - 2 -2.2 原理简介.................................................................................................... - 2 -三、近期进展 .......................................................................................................... - 3 -3.1 植物胶及其衍生物.................................................................................... - 3 -3.2 纤维素及其衍生物.................................................................................... - 3 -3.2.1羧甲基纤维素钠(CMC) ............................................................... - 4 -3.2.2 改性羧甲基纤维素(CMPC) ........................................................... - 4 -3.2.3 羟乙基纤维素(HEC) ...................................................................... - 4 -3.2.4羧甲基羟丙基纤维素醚(CMHPC) ................................................. - 4 -3.3 合成聚合物................................................................................................ - 5 -3.3.1 丙烯酰胺类..................................................................................... - 5 -3.3.2丙烯酸酯类...................................................................................... - 5 -3.3.3有机磷酸盐类.................................................................................. - 5 -四、发展展望 .......................................................................................................... - 6 -水力压裂技术近期发展及展望一、引言经过50多年的发展,水力压裂技术从理论研究到现场实践都取得了惊人的发展,不但成为油气藏的增产增注手段,也成为评价认识储层的重要方法[1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤矿井下水力压裂技术的发展现状与前景
作者:郭晨
来源:《科学与财富》2016年第07期
摘要:我国煤炭安全生产形势依然严峻,增加煤层透气性、进行有效瓦斯抽放迫在眉睫。
水力压裂技术是目前增加煤层透气性最有效的方法之一,文章从水力压裂机理、封孔技术、工艺设备发展三方面,综述了我国井下煤层水力压裂技术的发展和应用前景。
关键词:水力压裂;煤层;增透;发展现状
基金项目:重庆科技学院研究生科技创新计划项目,编号:YKJCX2014047
目前我国煤炭行业的安全形势依然严峻,由于煤层透气性低、瓦斯难以有效抽放导致的瓦斯突出、爆炸等事故屡见不鲜,造成了巨大的人员伤亡和经济损失,因此,加强瓦斯抽放、增加煤层透气性势在必行。
水力压裂技术已成为增加煤层透气性最有效方法之一,本文通过介绍水力压裂机理、封孔技术及工艺设备的研究现状,指出水力压裂技术研究的必要性与可行性,以期为工程应用提供参考。
1.水力压裂机理研究
水力压裂技术1947年始于美国,起初主要用于低渗透油、气田的开发中,在地面水力压裂方面的研究仅仅局限在石油、油气藏以及地热资源的地面钻井开采过程中[1]。
前苏联科学家在20世纪60年代开始在卡拉甘达和顿巴斯矿区进行井下水力压裂的试验研究[2]。
目前针对井下煤层水力压裂增透技术的研究已取得了明显发展,国内学者郭启文、张文勇等经过试验与现场应用研究了煤层的压裂分解机理,指出水力压裂技术只能够在煤层内产生很少的裂缝,并会在裂缝周围产生应力集中区[3],存在一定局限性。
李安启等将理论与实践相结合,研究了煤层性质对水力裂缝的影响,还在煤层压裂裂缝监测基础上提出了煤层水力裂缝的几何模型。
在水力压裂机理方面的研究,国内外学者对水力压裂在油气系统地面钻井压裂、煤炭行业井下增加煤层透气性方面都进行了较为深入的研究,但其压裂机理方面仍存在一定分歧,不能很好的控制水力压裂的效果。
随着我国煤炭安全生产逐步发展和穿煤隧道等工程的逐步建设,水力压裂技术将大范围推广应用,因此加强水力压裂技术理论研究势在必行。
2.压裂钻孔封孔技术研究
煤层水力压裂钻孔封孔是有效实施水力压裂技术的关键,而封孔质量的好坏取决于两个主要因素:①封孔材料,需要选择性能良好、价格适中、易于操作的材料;②封孔的长度,封孔长度太短会导致高压水的渗漏,太长会造成人力、材料、时间的浪费。
因此,要使水力压裂技术能够有效开展,必须在选取“物美价廉”的封孔材料的同时,研究材料承载能力与封孔长度之
间应满足的关系,因此有关水力压裂过程中钻孔封孔问题的研究主要集中在封孔材料、封孔方法方面的研究。
倪冠华等采用无缝钢管模拟钻孔的方法,对PD复合材料的脉动水力压裂钻孔密封参数进行了研究,确定了一定注水压力下的封孔长度,并获得了许多有益结论,但是该方法不能真实反映现场实际情况,存在一定局限性。
葛兆龙等通过建立水力压裂钻孔封孔的力学模型,研究了封孔材料承载能力与材料、封孔长度等存在的关系,并指出:封孔材料、封孔长度是影响封孔承载力的关键因素,封孔材料承载能力随材料的强度、弹性模量、封孔长度的增加而增加,且当封孔长度增加到一定程度时,封孔材料承载能力趋于某一定值。
2011年由朱建安、申伟鹏[4]等学者研发的水力压裂耐高压水力封孔器具有结构简单,封孔可靠,注水压力高,可重复利用等优点,但目前在煤矿井下以及穿煤隧道施工过程中近水平孔的封孔方法研究仍然较少,导致增加钻孔施工量,加大了劳动成本。
2014年彭深[5]等学者对煤矿水力压裂封孔技术长期存在的工艺复杂、封孔困难等问题进行了较为深入的研究,分析了封孔器耐压的相关影响因素,为井下水力压裂钻孔封孔器的设计以及抗压性能的计算提供了参考,但准确性仍需进一步提高。
目前我国大多煤矿采用水泥砂浆封孔等传统封孔工艺,但其封孔周期长,成本高等问题已逐步显现,因此,未来仍需加强对封孔技术研究,采用新技术使压裂钻孔封孔技术往工艺简单,操作方便、耐压性能好等方向发展。
综上所述,水力压裂封孔技术主要有水泥砂浆封孔和封孔器封孔2种,其中水泥砂浆封孔所能承受压力较高,但也存在固有的缺点;封孔器封孔工艺较为简单,但承受压力较小,特别是近水平孔封孔质量不高、封堵成功率低、可操作性不强、压裂增透效果差等方面的问题。
目前仍需从压裂理论层面进一步创新,发掘封孔技术的主要参数,进一步加强封孔质量才能从根本上利用水力压裂技术达到增加煤层透气性的目的。
3.水力压裂工艺设备研究
当前针对煤矿井下水力压裂工艺方法研究也较多,并取得了不小的成果,苏现波等采用顶底板顺层钻孔、顶底板穿层钻孔、本煤层顺层钻孔或本煤层穿层钻孔进行水力压裂,首先确定钻孔参数施工钻孔,再设计水压及注水量、洗孔、排水、检验压裂效果,合格后联管抽放。
王魁军[6]等在顶(底)板岩巷(也可以在煤巷)向煤层打水力压裂钻孔,压裂钻孔进入煤层的长度大于煤层厚度的1/2以上,并在水力压裂钻孔周围打若干控制钻孔,从水力压裂钻孔进行水力压裂,当压裂范围达到控制钻孔时,在水力压裂钻孔周围一定距离煤体产生抗压薄弱区域,高压水可以把水力压裂钻孔与控制孔之间的煤体压穿,从而达到增透效果。
煤矿井下水力压裂工艺目前主要有常规压裂、定向水力压裂、高脉动水力压裂以及井下点式水力压裂等技术工艺。
常规水力压裂能够克服最小主应力和煤体的抗裂压力,扩宽伸展并沟通这些裂缝,增加煤层相互贯通裂隙的数量和增大单一裂隙面的张开程度,最终使得煤层透气性增加。
目前已经在鹤壁、焦作、义马、平顶山等矿区得到应用,并取得了一定效果[7]。
由徐幼平等对定向压裂与非定向压裂的效果进行了比较,并在平煤集团十二矿进行了生产验证,
结果表明定向压裂比非定向压裂在压裂半径、增透效果上都有明显优势,为煤矿水力压裂技术的发展提供了新思路。
4.结语
目前,我国煤矿井下水力压裂技术已经取得了不少成果,并在现场应用中取得了较好的效果,但由于我国幅员辽阔,地质情况复杂,水力压裂技术并未形成系统应用。
压裂机理尚未完全明晰;封孔技术水平还较为落后,特别是近水平孔多抗压性能差,封孔质量不高,并且压裂效果不好的问题尚未得到重视。
尽管已在工艺设备的研究方面取得了不少成果,但成本较高,难以推广应用,加强相关设备的研制必对未来煤矿安全形势有巨大推动作用。
参考文献
[1] 杨万有. 薄差层压裂力学机理及工艺研究[D].大庆:大庆石油学院,2006.
[2] 安志雄. 采用水力压裂强化煤层瓦斯抽放的远景[J].煤矿安全,1989,20 ( 9): 51-53.
[3] 赵阳升,杨栋,胡耀青等. 低渗透煤储层煤层气开采有效技术途径的研究[J].煤炭学
报, 2001, 26(5): 455-458.
[4] 朱建安,申伟鹏,郭培红. 煤矿水力压裂耐高压水力封孔器的研制[J]. 煤矿安全. 2011(08). 5-6.
[5] 彭深,翟成等. 钻孔胶囊封孔器耐压影响因素及其在煤矿水力压裂中的应用[J].煤矿安全,2014,45(7)114-117.
[6] 王魁军,富向,曹垚林等. 穿层钻孔水力压裂疏松煤体瓦斯抽放方法:中国,
CN101581231[P]. 2009.11-18.
[7] 王念红,任培良. 单一低透气性煤层水力压裂技术增透效果考察分析[J].煤矿安全,2011, 42 ( 2):109-112.
作者简介:郭晨(1990一),男,河南洛阳人,硕士研究生,主要从事煤矿瓦斯治理的
研究。