{免费}成都市2009年中考数学试题及答案(word版)
(最新5年)2006-2010年四川省成都市中考数学试题及答案
A BCDE FMC'D 'B'俯视图主(正)视图左视图成都市2006年高中阶段教育学校统一招生考试试卷(北师大版)A 卷(共100分)一、选择题:(每小题3分,共30分)1、2--的倒数是( )A 、2B 、12C 、12-D 、-22、2007年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球。
已知地球距离月球表面约为384000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为( )A 、3.84×410千米B 、3.84×510千米C 、3.84×610千米D 、38.4×410千米 3、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( )A 、5个B 、6个C 、7个D 、8个4、下列运算正确的是( )A 、2224(2)2a a a -=B 、336()a a a -⋅=C 、236(2)8x x-=- D 、2()x x x -÷=-5、下列事件中,不可能事件是( )A 、掷一枚六个面分别刻有1~6数码的均匀正方体骰子。
向上一面的点数是“5”B 、任意选择某个电视频道,正在播放动画片C 、肥皂泡会破碎D 、在平面内,度量一个三角形的内角度数,其和为360° 6 、已知代数式1312a xy-与23b a b x y -+-是同类项,那么a 、b 的值分别是( )A 、21a b =⎧⎨=-⎩B 、21a b =⎧⎨=⎩C 、21a b =-⎧⎨=-⎩D 、21a b =-⎧⎨=⎩7、把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在'B M 或'B M 的延长线上,那么∠EMF 的度数是( )A 、85°B 、90°C 、95°D 、100°8、如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D BC=2,那么sin ∠ACD =( )A 、3B 、23C 、5D 、29、为了了解汽车司机遵守交通法规的意识,小明的学习小成员协助交通警察在某路口统计的某个时段来往汽车的车(单位:千米/小时)情况如图所示。
2009年全国各地数学中考模拟试题分类汇编—阅读、规律、代数式
中考模拟分类汇编阅读、规律、代数式一、选择题1. (2009·浙江温州·模拟1)如图,地面上有不在同一直线上的A 、B 、C 三点,一只青蛙位于地面异于A 、B 、C 的P 点,第一步青蛙从P 跳到P 关于A 的对称点P 1,第二步从P 1跳到P 1关于B 的对称点P 2,第三步从P 2跳到P 2关于C 的对称点P 3,第四步从P 3跳到P 3关于A 的对称点P 4……以下跳法类推,青蛙至少跳几步回到原处P .( )A .4B .5C .6D .8 答案:C2. (2009·浙江温州·模拟2) 下列运算结果为2m 的式子是( ) A .63m m ÷ B .42m m -⋅C .12()m -D .42m m -答案:B3. 二次三项式2346x x -+的值为9,则2463x x -+的值为( ) A .18 B .12 C .9 D . 7 答案:D4. 如图是2007年5月的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是( )A .27B .36C .40D .54答案:C5、(2009年浙江省嘉兴市评估4). 如图,记抛物线12+-=x y 的图象与x 正半轴的交点为A ,将线段OA 分成n 等份,设分点分别为P 1,P 2,…,P n-1,过每个分点作x 轴的垂线,分别与抛物线交于点Q 1,Q 2,…,Q n-1,再记直角三角形OP 1Q 1,P 1P 2Q 2,…的面积分别为S 1,S 2,…,这样就有32121n n S -=,32224nn S -=,…;记W=S 1+S 2+…+S n-1,当n 越来越大时,你猜想W 最接近的常数是( )A · ·B P ·C · 第10题A.32 B. 21 C. 31 D. 41 答案:C6、(2009年浙江省嘉兴市秀洲区6).若干桶方便面摆放在桌子上,如图所示是它的三视图,则这一堆方便面共有( )(A )6桶 (B )7桶 (C )8桶(D )9桶 答案:B 7、(09九江市浔阳区中考模拟)观察下列正方形的四个顶点所标的数字规律,那么2009这个数标在【 】A.第502个正方形的左下角B. 第502个正方形的右下角C. 第503个正方形的左下角D. 第503个正方形的右下角答案:D8、若 表示000, 表示001, 则 表示为 ………………………( ▲ ) (09温州永嘉县二模)A 110B 010C 101D 011 答案:C 9、(安徽桐城白马中学模拟一).有一种石棉瓦(如图4),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n (n 为正整数)块石棉瓦覆盖的宽度为( ) A. 60n 厘米 B. 50n 厘米 C. (50n+10)厘米 D. (60n -10)厘米答案: C. (50n+10)厘米 二、填空题:1、(2009年深圳市数学模拟试卷)瑞士中学教师巴尔末成功地从光谱数据59,1216,2125,3236,……中得到巴尔末公式,从而打开了光谱奥妙的大门,请按这种规律写出第七个数据是________. 解:81772、(2009年湖北随州 十校联考数学试题)观察图(1)至图(4)中小圆圈的摆放规律,并按这样的规律继续摆放,记第n 个图中小圆圈的个数为m ,则m =______________(用含n 的代数式表示)(第2题图)主视图 左视图俯视图21111===CA CC BC BB AB AA S A 1B 1C 1=1431222===CA CC BC BB AB AA 41333===CA CC BC BB AB AA 91888===CA CC BC BB AB AA答:3n+23、(2009泰兴市 济川实验初中 初三数学阶段试题)观察下列等式:第一个等式是1+2=3,第二个等式是2+3=5,第三个等式是4+5=9,第四个等式是8+9=17,……猜想:第n 个等式是 . 答:12)12(211+=++--n n n4、(2009年重庆一中摸试卷)已知1112,12323a =+=⨯⨯2113,23438a =+=⨯⨯3114,...,345415a =+=⨯⨯依据上述规律,则=99a 。
成都市2007-2014年中考数学试题及答案
成都市二○○七年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学全卷分A卷和B卷,A卷满分100分,B卷满分50分,考试时间120分钟.A卷分 第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题.A卷第Ⅰ卷(选择题)注意事项:1.第Ⅰ卷共2页.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上.请注意机读答题卡的横竖格式. 一、选择题:1.如果某台家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么这台电冰箱冷冻室的温度为( ) A.26-℃ B.22-℃ C.18-℃ D.16-℃ 2.下列运算正确的是( ) A.321x x -= B.22122xx--=-C.236()a a a -=·D.236()a a -=-3表示该位置上小立方块的个数,那么该几何体的主视图为(4.下列说法正确的是( )A.为了了解我市今夏冰淇淋的质量,应采用普查的调查方式进行 B.鞋类销售商最感兴趣的是所销售的某种品牌鞋的尺码的平均数 C.明天我市会下雨是可能事件D.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖 5.在函数3y x=中,自变量x 的取值范围是( ) A.2x -≥且0x ≠B.2x ≤且0x ≠A .B .C .D .C.0x ≠D.2x -≤6.下列命题中,真命题是( ) A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形 D.两条对角线互相平分的四边形是平行四边形7.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A.240x += B.24410x x -+= C.230x x ++=D.2210x x +-=8.如图,O 内切于ABC △,切点分别为D E F ,,.已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,, 那么EDF ∠等于( ) A.40° B.55°C.65° D.70°9.如图,小“鱼”与大“鱼”是位似图形, 已知小“鱼”上一个“顶点”的坐标为()a b ,, 那么大“鱼”上对应“顶点”的坐标为( ) A.(2)a b --, B.(2)a b --, C.(22)a b --,D.(22)b a --,10.如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠), 那么这个圆锥的高为( ) A .6cm B .35cm C .8cmD .53cm第Ⅱ卷(非选择题)注意事项:1.A 卷的第Ⅱ卷和B 卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目填写清楚. 二、填空题将答案直接写在该题目的横线上.11.已知22(5)0a b -++=,那么a b +的值为 .DO AFCE12.已知小明家五月份总支出共计1200元,各项支出如图所示, 那么其中用于教育上的支出是 元.13.如图,把一张矩形纸片ABCD 沿EF 折叠后,点C D , 分别落在C D '',的位置上,EC '交AD 于点G . 已知58EFG ∠=°,那么BEG ∠= °.14.如图,已知AB 是O 的直径,弦CD AB ⊥,AC =1BC =,那么sin ABD ∠的值是.15.如图所示的抛物线是二次函数2231y ax x a =-+- 的图象,那么a 的值是 . 三、16.解答下列各题: (11223sin 30--°.(2)解不等式组331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩,,≥并写出该不等式组的整数解.(3)解方程:32211x x x +=-+. 四、17.如图,甲、乙两栋高楼的水平距离BD 为90米,从甲楼顶部C 点测得乙楼顶部A 点的ABECDFGC 'D 'AB仰角α为30°,测得乙楼底部B 点的俯角β为60°,求甲、乙两栋高楼各有多高?(计算过程和结果都不取近似值)18.如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式; (2)求AOB △的面积.五、19.小华与小丽设计了A B ,两种游戏:游戏A 的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.游戏B 的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌.若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜;否则小丽获胜.请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由. 20.已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =;O yx B A(2)求证:12CE BF =; (3)CE 与BG 的大小关系如何?试证明你的结论.B 卷一、填空题: 将答案直接写在该题目中的横线上.21.如图,如果要使ABCD 成为一个菱形, 需要添加一个条件,那么你添加的条件是.22.某校九年级一班对全班50名学生进行了“一周(按7天计算)做家务劳动所用时间(单位:小时)那么该班学生一周做家务劳动所用时间的平均数为 小时,中位数为 小时.23.已知x 是一元二次方程2310x x +-=的实数根,那么代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值为 .24.如图,将一块斜边长为12cm ,60B ∠=°的 直角三角板ABC ,绕点C 沿逆时针方向旋转90° 至A B C '''△的位置,再沿CB 向右平移,使点B ' 刚好落在斜边AB 上,那么此三角板向右平移的 距离是cm .25.在平面直角坐标系xOy 中,已知一次函数(0)y kx b k =+≠的图象过点(11)P ,,与x 轴交于点A ,与y 轴交于点B ,且tan 3ABO ∠=,那么点A 的坐标是 . 二、D AE FCHGBD C B A '()C C '26.某校九年级三班为开展“迎2008年北京奥运会”的主题班会活动,派了小林和小明两位同学去学校附近的超市购买钢笔作为奖品.已知该超市的锦江牌钢笔每支8元,红梅牌钢每支4.8元,他们要购买这两种笔共40支.(1)如果他们两人一共带了240元,全部用于购买奖品,那么能买这两种笔各多少支? (2)小林和小明根据主题班会活动的设奖情况,决定所购买的锦江牌钢笔的数量要少于红梅牌钢笔的数量的12,但又不少于红梅牌钢笔的数量的14.如果他们买了锦江牌钢笔x 支,买这两种笔共花了y 元.①请写出y (元)关于x (支)的函数关系式,并求出自变量x 的取值范围;②请帮他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?27.如图,A 是以BC 为直径的O 上一点,AD BC ⊥于点D ,过点B 作O 的切线,与CA 的延长线相交于点E G ,是AD 的中点,连结CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P .(1)求证:BF EF =;(2)求证:PA 是O 的切线; (3)若FG BF =,且O的半径长为求BD 和FG 的长度.28.在平面直角坐标系xOy 中,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点A 在点B 的左边),与y 轴交于点C ,其顶点的横坐标为1,且过点(23),和(312)--,.(1)求此二次函数的表达式;(2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO ∠与ACO ∠的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.C成都市二○○七年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数学参考答案A 卷 第Ⅰ卷一、选择题 1.C ; 2.D ; 3.C ; 4.C ; 5.A ; 6.D ; 7.D ; 8.B ;9.C ;10.B .A 卷 第Ⅱ卷二、填空题:11.3-; 12.216;13.64;14.3; 15.1-三、16.(1)解:原式112322=+-⨯13222=+= (2)解:解不等式3312x x -++≥,得1x ≤. 解不等式13(1)8x x --<-,得2x >-.∴原不等式组的解集是21x -<≤.∴原不等式组的整数解是101-,,. (3)解:去分母,得3(1)2(1)2(1)(1)x x x x x ++-=-+. 去括号,得22332222x x x x ++-=-. 解得5x =-.经检验5x =-是原方程的解. ∴原方程的解是5x =-. 四、17.解:作CE AB ⊥于点E .CE DB CD AB ∵∥,∥,且90CDB ∠=°, ∴四边形BECD 是矩形. CD BE CE BD ==∴,.在Rt BCE △中,60β=°,90CE BD ==米.tan BECEβ=∵, tan 90tan 60BE CE β==⨯∴·°903= (米). 903CD BE ==∴(米)。
2024年四川省成都市中考数学试题+答案详解
2024年四川省成都市中考数学试题+答案详解(试题部分)A 卷(共100分) 第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是( ) A. 5B. ﹣5C. 15−D.152. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是( )A. B. C. D.3. 下列计算正确的是( ) A. ()2233x x = B. 336x y xy += C. ()222x y x y +=+D. ()()2224x x x +−=−4. 在平面直角坐标系xOy 中,点()1,4P −关于原点对称的点的坐标是( ) A. ()1,4−−B. ()1,4−C. ()1,4D. ()1,4−5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( ) A. 53B. 55C. 58D. 646. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB AD =B. AC BD ⊥C. AC BD =D. ACB ACD ∠=∠7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( )A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩B. 142133y x y x ⎧=−⎪⎪⎨⎪=+⎪⎩C. 142133y x y x ⎧=−⎪⎪⎨⎪=−⎪⎩D. 142133y x y x ⎧=+⎪⎪⎨⎪=−⎪⎩8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE ∠=∠B. 5BC =C. DE DF =D.53BE EF = 第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m ++=,则()2m n +的值为______. 10. 分式方程132x x=−的解是____. 11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则AB 的长为______.12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则xy的值为______. 13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l上一动点,连接PO,PA,则PO PA+的最小值为______.三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242 +︒−−+.(2)解不等式组:2311123xx x+≥−⎧⎪⎨−−<⎪⎩①②15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.18. 如图,在平面直角坐标系xOy 中,直线y x m =−+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0ky k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.20. 若m ,n 是一元二次方程2520x x −+=的两个实数根,则()22m n +−的值为______. 21. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =−+−图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______. 二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg . (1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =−−>与x 轴交于A ,B 两点(点A在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB ''.将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.26. 数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BDCE的值. 【深入探究】(2)如图2,在纸片ADE 绕点A 旋转过程中,当点D 恰好落在ABC 的中线BM 的延长线上时,延长ED 交AC 于点F ,求CF 的长.【拓展延伸】(3)在纸片ADE 绕点A 旋转过程中,试探究C ,D ,E 三点能否构成直角三角形.若能,直接写出所有直角三角形CDE 的面积;若不能,请说明理由.2024年四川省成都市中考数学试题+答案详解(答案详解)A 卷(共100分) 第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是( ) A. 5 B. ﹣5C. 15−D.15【答案】A 【解析】【分析】根据负数的绝对值等于它的相反数可得答案. 【详解】解:|﹣5|=5. 故选A .2. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是( )A. B. C. D.【答案】A 【解析】【分析】本题考查简单几何体的三视图,根据主视图是从正面看到的图形求解即可. 【详解】解:该几何体的主视图为,故选:A .3. 下列计算正确的是( ) A. ()2233x x = B. 336x y xy += C. ()222x y x y +=+ D. ()()2224x x x +−=−【答案】D【解析】【分析】本题主要考查了积的乘方运算,同类项的合并,完全平方公式以及平方差公式,根据积的乘方运算法则,同类项的合并法则以及完全平方公式以及平方差公式一一计算判断即可.【详解】解:A .()2239x x =,原计算错误,故该选项不符合题意;B .3x 和3y 不是同类项,不能合并,故该选项不符合题意;C .()2222x y x y xy +=++,原计算错误,故该选项不符合题意; D .()()2224x x x +−=−,原计算正确,故该选项符合题意;故选:D .4. 在平面直角坐标系xOy 中,点()1,4P −关于原点对称的点的坐标是( ) A. ()1,4−− B. ()1,4−C. ()1,4D. ()1,4−【答案】B 【解析】【分析】本题考查了求关于原点对称的点的坐标.关于原点对称的两点,则其横、纵坐标互为相反数,由点关于原点对称的坐标特征即可求得对称点的坐标.【详解】解:点()1,4P −关于原点对称的点的坐标为()1,4−; 故选:B .5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( ) A. 53 B. 55C. 58D. 64【答案】B 【解析】【分析】本题主要考查了中位数的定义,根据中位数的定义求解即可. 【详解】解:参赛的六个村得分分别为:55,64,51,50,61,55, 把这6个数从小到大排序:50,51,55,55,61,64, ∴这组数据的中位数是:5555552+=, 故选:B .6. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB AD =B. AC BD ⊥C. AC BD =D. ACB ACD ∠=∠【答案】C 【解析】【分析】本题考查矩形的性质,根据矩形的性质逐项判断即可. 【详解】解:∵四边形ABCD 是矩形,∴AB CD =,AC BD =,AD BC ∥,则ACB DAC ∠=∠, ∴选项A 中AB AD =不一定正确,故不符合题意; 选项B 中AC BD ⊥不一定正确,故不符合题意; 选项C 中AC BD =一定正确,故符合题意;选项D 中ACB ACD ∠=∠不一定正确,故不符合题意, 故选:C .7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( )A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩B. 142133y x y x ⎧=−⎪⎪⎨⎪=+⎪⎩C. 142133y x y x ⎧=−⎪⎪⎨⎪=−⎪⎩D. 142133y x y x ⎧=+⎪⎪⎨⎪=−⎪⎩【答案】B 【解析】【分析】本题主要考查了列二元一次方程组,根据题意列出二元一次方程组即可. 【详解】解:设人数为x ,琎价为y , 根据每人出12钱,会多出4钱可得出1y x 42=−, 每人出13钱,又差了3钱.可得出133y x =+,则方程组为:142133y x y x ⎧=−⎪⎪⎨⎪=+⎪⎩,故选:B .8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE ∠=∠B. 5BC =C. DE DF =D.53BE EF = 【答案】D 【解析】【分析】本题考查角平分线的尺规作图、平行四边形的性质、等腰三角形的判定以及相似性质与判定的综合.先由作图得到BF为ABC ∠的角平分,利用平行线证明AEB ABE ∠=∠,从而得到3AE AB CD ===,再利用平行四边形的性质得到325BC AD AE ED ==+=+=,再证明AEB DEF △∽△,分别求出32BE EF =,2DF =,则各选项可以判定. 【详解】解:由作图可知,BF 为ABC ∠的角平分, ∴ABE CBE ∠=∠,故A 正确; ∵四边形ABCD 为平行四边形, ∴,,AD BC AB CD AD BC ==, ∵AD BC ∥ ∴AEB CBE ∠=∠, ∴AEB ABE ∠=∠, ∴3AE AB CD ===,∴325BC AD AE ED ==+=+=,故B 正确;∵AB CD =,∴ABE F ∠=∠,∵AEB DEF ∠=∠,∴AEB DEF △∽△, ∴BE AB AE EF DF ED==, ∴332BE EF DF ==, ∴32BE EF =,2DF =,故D 错误; ∵2DE =,∴DE DF =,故C 正确,故选:D .第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m ++=,则()2m n +的值为______.【答案】1【解析】【分析】本题考查非负数的性质,根据平方式和算术平方数的非负数求得m 、n 值,进而代值求解即可.【详解】解:∵()240m ++=,∴40m +=,50n −=,解得4m =−,5n =,∴()()22451m n +=−+=,故答案为:1.10. 分式方程132x x=−的解是____. 【答案】x=3【解析】【详解】试题分析:分式方程去分母转化为整式方程x=3(x ﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.考点:解分式方程11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则AB 的长为______.【答案】4π【解析】【分析】此题考查了弧长公式,把已知数据代入弧长公式计算即可.【详解】解:由题意得AB 的长为π120π64π180180n r ⨯==, 故答案为:4π12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x y的值为______. 【答案】35【解析】【分析】本题考查简单的概率计算、比例性质,根据随机取出一枚棋子,它是黑棋的概率是38,可得38x x y =+,进而利用比例性质求解即可. 【详解】解:∵随机取出一枚棋子,它是黑棋的概率是38, ∴38x x y =+,则35x y =, 故答案为:35. 13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.【答案】5【解析】【分析】本题考查轴对称—最短问题以及勾股定理和轴对称图形的性质.先取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,得到AC A C '=,A A l '⊥,再由轴对称图形的性质和两点之间线段最短,得到当,,O P A '三点共线时,PO PA +的最小值为A O ',再利用勾股定理求A O '即可.【详解】解:取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,则可知AC A C '=,A A l '⊥,∴PO PA PO PA A O ''+=+≥,即当,,O P A '三点共线时,PO PA +的最小值为A O ',∵直线l 垂直于y 轴,∴A A x '⊥轴,∵()3,0A ,()0,2B ,∴3,4AO AA '==,∴在Rt A AO '中,5A O '===,故答案为:5三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242+︒−−+.(2)解不等式组:2311123x x x +≥−⎧⎪⎨−−<⎪⎩①②【答案】(1)5;(2)29x −≤<【解析】【分析】本题考查实数的混合运算、解一元一次不等式组,熟练掌握相关运算法则并正确求解是解答的关键.(1)先计算算术平方根、特殊角的三角函数值、零指数幂、化简绝对值,然后加减运算即可; (2)先求得每个不等式的解集,再求得它们的公共部分即为不等式组的解集.【详解】解:(1()02sin6020242π︒−−−42122=+⨯−+−5=+5=;(2)解不等式①,得2x ≥−,解不等式②,得9x <,∴该不等式组的解集为29x −≤<.15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.【答案】(1)160,40(2)99︒(3)385【解析】【分析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息 是解答的关键.(1)根据选择“亲子互动慢游线”的人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是90︒可求解x 值;(2)由360︒乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”所占的比例求解即可.【小问1详解】解:调查总人数为4830160÷%=(人), 选择“世界公园打卡线”的人数为9016040360⨯=(人), 故答案为:160,40;【小问2详解】 解:“国风古韵观赏线”对应的圆心角度数为4436099160︒⨯=︒; 【小问3详解】解:选择“园艺小清新线”的人数为16044404828−−−=(人), ∴该单位选择“园艺小清新线”的员工人数为282200385160⨯=(人). 16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)【答案】9.2尺【解析】【分析】本题主要考查解直角三角形和求平均数,利用正切分别求得BC 和BD ,结合题意利用平均数即可求得春分和秋分时日影长度.【详解】解:∵73.4ACB ∠=︒,杆子AB 垂直于地面,AB 长8尺. ∴tan ∠=AB ACB BC ,即8 2.393.35BC ≈≈, ∵26.6ADB ∠=︒, ∴tan AB ADB BD∠=,即8160.50BD ≈=, ∵春分和秋分时日影长度等于夏至和冬至日影长度的平均数.∴春分和秋分时日影长度为2.39169.22+≈. 答:春分和秋分时日影长度9.2尺.17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.【答案】(1)见详解;(2.【解析】【分析】(1)先证明EBC DBF ∽,然后利用对应边成比例,即可证明;(2)利用EBC DBF ∽,知道EBC DBF ∠=∠,从而推出CBF EBA ∠=∠,结合A CBF ∠=∠,知道A EBA ∠=∠,推出AE BE =,接下来证明BFC ABC ∠=∠,那么有tan tan BFC ∠=∠即CB AC CF BC==CF x =,代入求得CF 的长度,不妨设EF y =,在Rt CEB △和Rt CFB △中利用勾股定理求得EF 和BF 的长度,最后利用tan tan CEB FDB ∠=∠,求得DF 的长度,然后在利用勾股定理求得BD 的长度.【小问1详解】BD Q 是O 的直径90BFD C ∴∠=︒=∠又CEB FDB ∠∠=EBC DBF ∴∽ EC CB DF FB ∴= BC DF BF CE ⋅=⋅∴【小问2详解】由(1)可知,EBC DBF ∽EBC DBF ∴∠=∠EBC FBE DBF FBE ∴∠−∠=∠−∠CBF EBA ∴∠=∠A CBF ∠=∠A EBA ∴∠=∠AE BE ∴=A CBF ∠=∠9090A CBF ∴︒−∠=︒−∠ABC CFB ∴∠=∠tan BFC ∠=tan tan BFC ∠∴=∠CB AC CF BC∴==不妨设CF x =,那么CB = 4AF ==x ∴=CF ∴=5CB ==不妨设EF y =,那么AE AF EF y BE =−==在Rt CEB △中,CE EF CF y =+=,5CB =,BE y =222(5)y y ∴++=−y ∴=EF ∴=在Rt CFB △中,CF =,5BC =BF ∴===CEB FDB ∠∠=tan tan CEB FDB ∴∠=∠CB BF CE DF∴=DF =DF ∴=BD ∴===∴O 的直径是故答案为:CF =O 直径是 【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,三角形相似的判定与性质,勾股定理,解直角三角形,等腰三角形的性质,二次根式的化简,熟练掌握以上知识点是解题的关键. 18. 如图,在平面直角坐标系xOy 中,直线y x m =−+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.【答案】(1)4a =,6m =,6b =(2)点C 的坐标为()4,4−或()4,4−,16k =−(3)1−【解析】【分析】(1)利用待定系数法求解即可;(2)设(),C t s ,根据平行四边形的性质,分当OA 为对角线时,当OB 为对角线时,当OC 为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点(),0D x ,则(),0E x −,0x <,利用相似三角形的性质得2AB BE BD =⋅,进而解方程得2x =−,则()2,0D −,利用待定系数法求得直线AC 的表达式为2y x =+,联立方程组得220x x k +−=,根据题意,方程220x x k +−=有且只有一个实数根,利用根的判别式求解即可.【小问1详解】解:由题意,将()2,A a 代入2y x =中,得224a =⨯=,则()2,4A ,将()2,4A 代入y x m =−+中,得42m =−+,则6m =,∴6y x =−+,将(),0B b 代入6y x =−+中,得06b =−+,则6b =;【小问2详解】解:设(),C t s ,由(1)知()2,4A ,()6,0B若O ,A ,B ,C 为顶点的四边形为平行四边形,分以下情况:当OA 为对角线时,则026040t s +=+⎧⎨+=+⎩,解得44t s =−⎧⎨=⎩, ∴()4,4C −,则4416k =−⨯=−;当OB 为对角线时,则062004t s +=+⎧⎨+=+⎩,解得44t s =⎧⎨=−⎩, ∴()4,4C −,则4416k =−⨯=−;当OC 为对角线时,依题意,这种情况不存在,综上所述,满足条件的点C 的坐标为()4,4−或()4,4−,16k =−;【小问3详解】解:如图,设点(),0D x ,则(),0E x −,0x <,若ABD EBA △∽△,则AB BD BE AB =,即2AB BE BD =⋅, ∴()()()()22264066x x −+−=+−,即24x =,解得2x =±,∵0x <,∴2x =−,则()2,0D −,设直线AC 的表达式为y px q =+,则2420p q p q +=⎧⎨−+=⎩,解得12p q =⎧⎨=⎩, ∴直线AC 的表达式为2y x =+, 联立方程组2y x k y x =+⎧⎪⎨=⎪⎩,得220x x k +−=, ∵有且只有一点C ,∴方程220x x k +−=有且只有一个实数根,∴2402k +==∆,解得1k =−;由题意,ABD ABE ∽V V 不存在,故满足条件的k 值为1−.【点睛】本题考查一次函数与反比例函数的综合、反比例函数与几何的综合,涉及待定系数法、相似三角形的性质、平行四边形的性质、坐标与图形、一元二次方程根的判别式等知识,熟练掌握相关知识的联系与运用,利用分类讨论思想求解是解答的关键.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.【答案】100︒##100度【解析】【分析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出45CED ACB ∠=∠=︒,再利用三角形内角和求出DCE ∠的度数即可.【详解】解:由ABC CDE △≌△,35D ∠=︒,∴45CED ACB ∠=∠=︒,∵35D ∠=︒,∴1801803545100DCE D CED ∠=︒−∠−∠=︒−︒−︒=︒,故答案为:100︒20. 若m ,n 是一元二次方程2520x x −+=的两个实数根,则()22m n +−的值为______.【答案】7【解析】【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求出2520n n −+=,5b m n a+=−=,从而得到252n n =−,再将原式利用完全平方公式展开,利用252n n =−替换2n 项,整理后得到m n 2++,再将5m n +=代入即可.【详解】解:∵m ,n 是一元二次方程2520x x −+=的两个实数根,∴2520n n −+=,5b m n a+=−=, 则252n n =−∴()22m n +− 244m n n =+−+5244m n n =+−−+2m n =++52=+7=故答案为:721. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.【答案】 ①. 9 ②. 144【解析】【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.【详解】解:当2n =时,只有{}1,2一种取法,则1k =;当3n =时,有{}1,3和{}2,3两种取法,则2k =;当4n =时,有{}1,4,{}2,4,{}3,4,{}2,3四种取法,则243144k =+==; 故当5n =时,有{}1,5,{}2,5,{}3,5,{}4,5,{}2,4,{}3,4六种取法,则426k =+=;当6n =时,有{}1,6,{}2,6,{}3,6,{}4,6,{}5,6,{}2,5,{}3,5,{}4,5,{}3,4九种取法,则2653194k =++==; 依次类推,当n 为偶数时,()()2135314n k n n =−+−++++=, 故当24n =时,2242321195311444k =++++++==, 故答案为:9,144. 22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.【解析】 【分析】连接CE ,过E 作EF CD ⊥于F ,设BD x =,EF m =,根据直角三角形斜边上的中线性质和等腰三角形的性质证得112CF DF CD ===,EAC ECA =∠∠,ECD EDC BEC ∠=∠=∠,进而利用三角形的外角性质和三角形的中位线性质得到2CED CAE ∠=∠,22AC EF m ==,证明CBE CED ∽,利用相似三角形的性质和勾股定理得到232m x =+;根据角平分线的定义和相似三角形的判定与性质证明CAB FBE ∽得到()()2212m x x =++,进而得到关于x 的一元二次方程,进而求解即可.【详解】解:连接CE ,过E 作EFCD ⊥于F ,设BD x =,EF m =,∵90ACB ∠=︒,E 为AD 中点,∴CE AE DE ==,又2CD =, ∴112CF DF CD ===,EAC ECA =∠∠,ECD EDC ∠=∠, ∴2CED CAE ∠=∠,22AC EF m ==,∵BE BC =,∴BEC ECB ∠=∠,则BEC EDC ∠=∠,又BCE ECD ∠=∠,∴CBE CED ∽, ∴CE CB CD CE=,2CBE CED CAE ∠=∠=∠, ∴()22242CE CD CB x x =⋅=+=+,则222232m EF CE CF x ==−=+;∵AD 是ABC 的一条角平分线,∴2CAB CAE CBE ∠=∠=∠,又90ACB BFE ∠=∠=︒,∴CAB FBE ∽, ∴AC BC BF EF= ∴221m x x m +=+,则()()2212m x x =++, ∴()()()23212x x x +=++,即240x x --=,解得x =,【点睛】本题考查了相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质、三角形的中位线性质、三角形的外角性质、角平分线的定义以及解一元二次方程等知识,是一道填空压轴题,有一定的难度,熟练掌握三角形相关知识是解答的关键.23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =−+−图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______.【答案】 ①. > ②. 112m −<< 【解析】【分析】本题考查二次函数的性质、不等式的性质以及解不等式组,熟练掌握二次函数的性质是解答的关键.先求得二次函数的对称轴,再根据二次函数的性质求解即可.【详解】解:由()224123y x x x =−+−=−−+得抛物线的对称轴为直线2x =,开口向下, ∵101x <<,24x >,∴1222x x −<−,∴12y y >;∵12m m m <+<+,11m x m <<+,212m x m +<<+,323m x m +<<+,∴123x x x <<,∵存在132y y y <<,∴12x <,32x >,且()11,A x y 离对称轴最远,()22,B x y 离对称轴最近, ∴132222x x x −>−>−,即134x x +<,且234x x +>,∵132224m x x m +<+<+,232325m x x m +<+<+,∴224m +<且254m +>, 解得112m −<<, 故答案为:>;112m −<<. 二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.【答案】(1)A 种水果购进1000千克,B 种水果购进500千克(2)A 种水果的最低销售单价为12.5元/kg【解析】【分析】本题主要考查一元二次方程的应用和一元一次不等式的应用,(1)设A 种水果购进x 千克, B 种水果购进y 千克,根据题意列出二元一次方程组求解即可. (2)根据题意列出关于利润和进价与售价的不等式求解即可.【小问1详解】解:设A 种水果购进x 千克, B 种水果购进y 千克,根据题意有:1500101517500x y x y +=⎧⎨+=⎩, 解得:1000500x y =⎧⎨=⎩, ∴A 种水果购进1000千克,B 种水果购进500千克【小问2详解】设A 种水果的销售单价为a 元/kg ,根据题意有:()()100014%120%100010a −≥+⨯⨯,解得12.5a ≥,故A 种水果的最低销售单价为12.5元/kg25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =−−>与x 轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB ''.将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.【答案】(1)4AB =(2)10tan 3ABD ∠= (3)抛物线L '与L 交于定点()3,0【解析】【分析】(1)根据题意可得2230ax ax a −−=,整理得2230x x −−=,即可知()()1,0,3,0,A B −则有4AB =;(2)由题意得抛物线L :()222314y x x x =−−=−−,则()1,4,C −设()2,23,D n n n −−()03n <<,可求得2246ABD S n n =−++△,结合题意可得直线AD 解析式为()()31y n x =−+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n −,即可求得21ACD S n =−,进一步解得点720,39D ⎛⎫− ⎪⎝⎭,过D 作DH AB ⊥于点H ,则220,39BH DH ==,即可求得tan DH ABD BH ∠=; (3)设()2,23,D n an an a −−可求得直线AD 解析式为()()31y a n x =−+,过点D 作DM AB ⊥,可得21,23AM n DM an an a =+=−++,结合题意得1,EM n =+()2,23,A n an an a −++'()24,23,B n an an a '+−++设抛物线L '解析式为()20y ax bx c a =++>,由于过点A ',B '可求得抛物线L '解析式为()22463y ax an a x an a =+−−++,根据()22232463ax ax a ax an a x an a −−=+−−++解得3x =,即可判断抛物线L '与L 交于定点()3,0.【小问1详解】解:∵抛物线L :()2230y ax ax a a =−−>与x 轴交于A ,B 两点, ∴2230ax ax a −−=,整理得2230x x −−=,解得121,3,x x =−=∴()()1,0,3,0,A B −则()314AB =−−=;【小问2详解】当1a =时,抛物线L :()222314y x x x =−−=−−, 则()1,4,C −设()2,23,D n n n −−()03n <<,则()221142324622ABD D S AB y n n n n =⋅=−⨯⨯−−=−++, 设直线AD 解析式为()1y k x =+,∵点D 在直线AD 上,∴()2231n n k n −−=+,解得3k n =−, 则直线AD 解析式为()()31y n x =−+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n −,。
历年四川省成都市中考数学试卷(A卷)(含答案)
2017年四川省成都市中考数学试卷(A卷)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.3.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<15.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a67.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.210.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0=.12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1y2.(填“>”或“<”).14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.16.(6分)化简求值:÷(1﹣),其中x=﹣1.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)如图,数轴上点A表示的实数是.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.2017年四川省成都市中考数学试卷(A卷)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•成都)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(3分)(2017•成都)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看一层三个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.(3分)(2017•成都)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:647亿=647 0000 0000=6.47×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•成都)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<1【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x﹣1≥0,∴x≥1,故选(A)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.5.(3分)(2017•成都)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•成都)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a6【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选B.【点评】本题主要考查了同底数幂的乘法、除法、幂的乘方及合并同类项等,关键是熟记,同底数幂的除法法则:底数不变,指数相减;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.7.(3分)(2017•成都)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【解答】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.(3分)(2017•成都)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.【点评】本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.9.(3分)(2017•成都)已知x=3是分式方程﹣=2的解,那么实数k 的值为()A.﹣1 B.0 C.1 D.2【分析】将x=3代入原方程即可求出k的值.【解答】解:将x=3代入﹣=2,∴解得:k=2,故选(D)【点评】本题考查一元一次方程的解,解题的关键是将x=3代入原方程中,本题属于基础题型.10.(3分)(2017•成都)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0【分析】首先根据图象中抛物线的开口方向、对称轴的位置、与y轴交点的位置来判断出a、b、c的位置,进而判断各结论是否正确.【解答】解:根据二次函数的图象知:抛物线开口向上,则a>0;抛物线的对称轴在y轴右侧,则x=﹣>0,即b<0;抛物线交y轴于负半轴,则c<0;∴abc>0,∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选B.【点评】本题考查了二次函数图象与系数的关系,由图象找出有关a,b,c的相关信息以及抛物线与x轴交点情况,是解题的关键.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(2017•成都)(﹣1)0=1.【分析】直接利用零指数幂的性质求出答案.【解答】解:(﹣1)0=1.故答案为:1.【点评】此题主要考查了零指数幂的性质,正确把握定义是解题关键.12.(4分)(2017•成都)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为40°.【分析】直接用一个未知数表示出∠A,∠B,∠C的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确表示出各角度数是解题关键.13.(4分)(2017•成都)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1<y2.(填“>”或“<”).【分析】由图象可以知道,当x=2时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.【解答】解:由图象知,当x<2时,y2的图象在y1上右,∴y1<y2.故答案为:<.【点评】本题考查了两条直线相交与平行,正确的识别图象是解题的关键.14.(4分)(2017•成都)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD 于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.三、解答题(本大题共6小题,共54分)15.(12分)(2017•成都)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.【分析】(1)原式利用二次根式性质,特殊角的三角函数值,以及负整数指数幂法则计算即可得到结果.(2)分别求得两个不等式的解集,然后取其公共部分即可.【解答】解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;(2),①可化简为2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化简为2x≤1﹣3,则x≤﹣1.不等式的解集是﹣4<x≤﹣1.【点评】本题考查了解一元一次不等式组,实数的运算,负整数指数幂以及特殊角的三角函数值.熟练掌握运算法则是解本题的关键.16.(6分)(2017•成都)化简求值:÷(1﹣),其中x=﹣1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知代入计算即可求出值.【解答】解:÷(1﹣)=•=,∵x=﹣1,∴原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.(8分)(2017•成都)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有50人,估计该校1200名学生中“不了解”的人数是360人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.【分析】(1)用“非常了解”人数除以它所占的百分比即可得到调查的总人数;(2)用总人数乘以“不了解”人数所占的百分比即可得出答案;(3)先画树状图展示所有12个等可能的结果数,再找出恰好是一位男同学和一位女同学的结果数,然后根据概率公式求解.【解答】解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案为:50,360;(2)画树状图,共有12根可能的结果,恰好抽到一男一女的结果有8个,∴P(恰好抽到一男一女的)==.【点评】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.18.(8分)(2017•成都)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.【分析】过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C两地的距离是2千米.【点评】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.19.(10分)(2017•成都)如图,在平面直角坐标系xOy中,已知正比例函数y=x 的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.【分析】(1)把A(a,﹣2)代入y=x,可得A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得反比例函数的表达式为y=,再根据点B与点A关于原点对称,即可得到B的坐标;(2)过P作PE⊥x轴于E,交AB于C,先设P(m,),则C(m,m),根据△POC的面积为3,可得方程m×|m﹣|=3,求得m的值,即可得到点P 的坐标.【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.20.(12分)(2017•成都)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH⊥OD,DH是圆O的切线;(2)如图2,先证明∠E=∠B=∠C,则H是EC的中点,设AE=x,EC=4x,则AC=3x,由OD是△ABC的中位线,得:OD=AC=,证明△AEF∽△ODF,列比例式可得结论;(3)如图2,设⊙O的半径为r,即OD=OB=r,证明DF=OD=r,则DE=DF+EF=r+1,BD=CD=DE=r+1,证明△BFD∽△EFA,列比例式为:,则=,求出r的值即可.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),综上所述,⊙O的半径为.【点评】本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、三角形相似的性质和判定、圆周角定理,第三问设圆的半径为r,根据等边对等角表示其它边长,利用比例列方程解决问题.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)(2017•成都)如图,数轴上点A表示的实数是﹣1.【分析】直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.【点评】此题主要考查了实数与数轴,正确得出﹣1到A的距离是解题关键.22.(4分)(2017•成都)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.【分析】由x12﹣x22=0得x1+x2=0或x1﹣x2=0;当x1+x2=0时,运用两根关系可以得到﹣2m﹣1=0或方程有两个相等的实根,据此即可求得m的值.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=25﹣4a=4,∴a=,故答案为:.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.23.(4分)(2017•成都)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.【分析】直接利用圆的面积求法结合正方形的性质得出P1,P2的值即可得出答案.【解答】解:设⊙O的半径为1,则AD=,故S=π,圆O阴影部分面积为:π×2+×﹣π=2,则P1=,P2=,故=.故答案为:.【点评】此题主要考查了几何概率,正确得出各部分面积是解题关键.24.(4分)(2017•成都)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=﹣.【分析】设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),由AB=2可得出b=a+2,再根据反比例函数图象上点的坐标特征即可得出关于k、a、b的方程组,解之即可得出k值.【解答】解:设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.故答案为:﹣.【点评】本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k、a、b的方程组是解题的关键.25.(4分)(2017•成都)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.【分析】作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,首先证明△AKC′≌△GFM,可得GF=AK,由AN=4.5cm,A′N=1.5cm,C′K∥A′N,推出=,可得=,推出C′K=1cm,在Rt△AC′K中,根据AK=,求出AK即可解决问题.【解答】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,∴=,∴C′K=1cm,在Rt△AC′K中,AK==cm,∴FG=AK=cm,故答案为.【点评】本题考查翻折变换、正方形的性质、矩形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.五、解答题(本大题共3小题,共30分)26.(8分)(2017•成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2﹣9x+80,根据二次函数的性质,即可得出最短时间.【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:,解得:,故y1关于x的函数表达式为:y1=2x+2;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴当x=9时,y有最小值,y min==39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.【点评】本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.27.(10分)(2017•成都)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.【分析】迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解决问题.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,。
中考成都市中考数学试题分析及教学建议实用教案
第二十三页,共38页。
(四)统计(tǒngjì)与概率 1.统计(tǒngjì)(8%) 2.概率(5%)
第23页/共38页
第二十四页,共38页。
几何
(一)平面几何基础知识
1.点线面、相交线与平行线 (2%)
2.轴对称、平移与旋转 (xuánzhuǎn)(8%)
第24页/共38页
第9页/共38页
第十页,共38页。
11.方差(大的不整齐) 12.一元二次方程,知根求字
母的值(简单) 13.圆,三角函数(30°) 14.平面直角坐标系,坐标
(中心对称) 15.计算(1第1)0页/共实38页 数的综合
(zōnghé)运第算十一页,;共38页。(2)化简分
16. 不等式组的解法 17. 解直角三角形(数学建模) 18.反比例、一次函数(待定系数法),求交点坐
第三十页,共38页。
全国中考试题的主要特点: 1.注重考查基础,强调理论联系
实际、基础性、应用性、实践性、 开放性、探究性。 2.突出学科特点,加大探究力度 新建文件夹\北京12、23、 24.doc 3.拓展思维空第30页/共间38页 (kōngjiān), 着眼学生发展
第三十一页,共38页。
北京、上海、武汉、哈尔滨、重庆试题情 况(qíngkuàng)简介
第31页/共38页
第三十二页,共38页。
五、成都市2009中考数学试题主 要特点
1.重视基础(jīchǔ),突出数学 核心内容和基本能力的考查(通 性通法)。
2.注意问题的现实背景,体现数 学的应用价值。
3.注重试题的开放性和探究性, 第32页/共38页 关注数学活动过程的考查。新建
第8页/共38页
2009年四川省成都市数学中考真题(word版含答案)
A. B. C. D.
3.如图所示的是某几何体的三视图,则该几何体的形状是()
A.长方体B.三棱柱C.圆锥D.正方体
4.下列说法正确的是()
A.某市“明天降雨的概率是75%”表示明天有75%的时间会降雨
B.随机抛掷一枚均匀的硬币,落地后正面一定朝上
C.在一次抽奖活动中,“中奖的概率是 ”表示抽奖100次就一定会中奖
13.改革开放30年以来,成都的城市化推进一直保持着快速、稳定的发展态势.据统计,到2008年底,成都市中心五城区(不含高新区)常住人口已达到4 410 000人,对这个常住人口数有如下几种表示:① 人;② 人;③ 人.其中是科学记数法表示的序号为.
14.如图, 内接于 , , , 为 的直径, ,那么 .
(1)用树状图或列表法表示出S的所有可能情况;
(2)分别求出当 和 时的概率.
20.已知 是一段圆弧上的两点,有在直线 的同侧,分别过这两点作 的垂线,垂足为 , 是 上一动点,连结 ,且 .
(1)如图①,如果 ,且 ,求 的长.
(2)如图②,若点E恰为这段圆弧的圆心,则线段 之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当 分别在直线 两侧且 ,而其余条件不变时,线段 之间又有怎样的等量关系?请直接写出结论,不必证明.
18.某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动.他们要测量学校一幢教学楼的高度.如图,他们先在点C测得教学楼AB的顶点A的仰角为30°,然后向教学楼前进60米到达点D,又测得点A的仰角为45°.请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值)
A. B. 且 C. D. 且
2009高考数学四川卷答案以及解析
高考数学参考公式:如果事件A 、B 互斥,那么P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是p,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=kn kkp p p C --)1(球的表面积公式S=4πR 2其中R 表示球的半径 球的体积公式334R V π=其中R 表示球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2009四川,文1)设集合S={x||x|<5},T={x|(x+7)(x-3)<0},则S∩T=( )A.{x|-7<x <-5}B.{x|3<x <5}C.{x|-5<x <3}D.{x|-7<x <5} 答案:C2.(2009四川,文2)函数y=2x+1(x ∈R )的反函数是…( )A.y=1+log 2x(x >0)B.y=log 2(x-1)(x >1)C.y=-1+log 2x(x >0)D.y=log 2(x+1)(x >-1) 答案:C3.(2009四川,文3)等差数列{a n }的公差不为零,首项a 1=1,a 2是a 1和a 5的等比中项,则数列{a n }的前10项之和是( )A.90B.100C.145D.190 答案:B4.(2009四川,文4)已知函数)(x f =sin(2π-x )(x ∈R ),下面结论错误的是( )A.函数)(x f 的最小正周期为2πB.函数)(x f 在区间[0,2π]上是增函数C.函数)(x f 的图象关于直线x=0对称D.函数)(x f 是奇函数 答案:D5.(2009四川,文5)设矩形的长为a ,宽为b ,其比满足b ∶a=215-≈0.618,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中,下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是 ( )A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定 答案:A6.(2009四川,文6)如图,已知六棱锥P —ABCDEF 的底面是正六边形,PA ⊥平面ABC,PA=2AB,则下列结论正确的是( )A.PB ⊥ADB.平面PAB ⊥平面PBCC.直线BC ∥平面PAED.直线PD 与平面ABC 所成的角为45°答案:D7.(2009四川,文7)已知a,b,c,d 为实数,且c >d,则“a >b”是“a -c >b-d”的( ) A.充分而不必要条件 B.必要而不充分条件C.充要条件D.既不充分也不必要条件 答案:B8.(2009四川,文8)已知双曲线12222=-by x(b >0)的左、右焦点分别为F 1、F 2,其一条渐近线方程为y=x,点P (3,y 0)在该双曲线上,则21PF PF ∙=( )A.-12B.-2C.0D.4 答案:C9.(2009四川,文9)如图,在半径为3的球面上有A 、B 、C 三点,∠ABC=90°,BA=BC ,球心O 到平面ABC 的距离是223,则B 、C 两点的球面距离是( )A.3πB.πC.34π D.2π答案:B10.(2009四川,文10)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨、B 原料不超过18吨,那么该企业可获得最大利润是( )A.12万元B.20万元C.25万元D.27万元答案:D11.(2009四川,文11)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A.60B.48C.42D.36 答案:B12.(2009四川,文12)已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf(x+1)=(1+x))(x f ,则)25(f 的值是( )A.0B.21 C.1 D.25答案:A第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.(2009四川,文13)抛物线y 2=4x 的焦点到准线的距离是______. 答案:214.(2009四川,文14)6)212(xx -的展开式的常数项是_______.(用数字作答)答案:-2015.(2009四川,文15)如图,已知正三棱柱ABC —A 1B 1C 1的各条棱长都相等,M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成的角的大小是___________.答案:90°16.(2009四川,文16)设V 是已知平面M 上所有向量的集合,对于映射f:V→V ,a ∈V ,记a 的象为f(a ).若映射f:V→V 满足:对所有a 、b ∈V 及任意实数λ、μ都有f(λa +μb )=λf(a )+μf(b ),则f 称为平面M 上的线性变换,现有下列命题:①设f 是平面M 上的线性变换,a 、b ∈V ,则f(a+b )=f(a )+f(b ); ②若e 是平面M 上的单位向量,对a ∈V ,设f(a )=a+e ,则f 是平面M 上的线性变换; ③对a ∈V ,设f(a )=-a ,则f 是平面M 上的线性变换; ④设f 是平面M 上的线性变换,a ∈V ,则对任意实数k 均有f(k a )=kf(a ). 其中的真命题是___________.(写出所有真命题的编号)答案:①③④三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(2009四川,文17)(本小题满分12分)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对的边分别为a 、b 、c,且1010sin ,55sin ==B A .(1)求A+B 的值; (2)若12-=-b a ,求a 、b 、c 的值.解:(1)∵A 、B 为锐角,55sin =A ,1010sin =B ,∴552sin1cos 2=-=A A ,10103sin 1cos 2=-=B B∴cos (A+B )=cosAcosB-sinAsinB=2210105510103552=⨯-⨯.∵0<A+B <π,∴4π=+B A .(2)由(1)知43π=C ,∴22sin =C .由正弦定理Cc Bb Aa sin sin sin ==,得c b a 2105==,即b a 2=,b c 5=.∵12-=-b a ,∴122-=-b b .∴b=1.∴2=a ,5=c .18.(2009四川,文18)(本小题满分12分)为振兴旅游业,四川省2009年面向国内发行总量为2 000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡).某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中43是省外游客,其余是省内游客,在省外游客中有31持金卡,在省内游客中有32持银卡.(1)在该团中随机采访2名游客,求恰有1人持银卡的概率;(2)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率.解:(1)由题意得,省外游客有27人,其中9人持金卡,省内游客有9人,其中6人持银卡. 设事件A 为“采访该团2人,恰有1人持银卡”,72)(23613016==CC C A P .所以采访该团2人,恰有1人持银卡的概率是72.(2)设事件B 为“采访该团2人中,持金卡人数与持银卡人数相等”, 事件A 1为“采访该团2 人中,0人持金卡,0人持银卡”, 事件A 2为“采访该团2 人中,1人持金卡,1人持银卡”.1054435331)()()(236161923622121=+===+=CC C CC A P A P B P .所以采访该团2人中,持金卡人数与持银卡人数相等的概率是10544.19.(2009四川,文19)(本小题满分12分)如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,AB=AE,FA=FE,∠AEF=45°.(1)求证:EF ⊥平面BCE;(2)设线段CD 、AE 的中点分别为P 、M,求证:PM ∥平面BCE; (3)求二面角F-BD-A 的大小.解法一:(1)证明:因为平面ABEF ⊥平面ABCD,BC ⊂平面ABCD,BC ⊥AB,平面ABEF∩平面ABCD=AB,所以BC ⊥平面ABEF.所以BC ⊥EF.因为△ABE 为等腰直角三角形,AB=AE, 所以∠AEB=45°.又因为∠AEF=45°,所以∠FEB=45°+45°=90°, 即EF ⊥BE.因为BC ⊂平面BCE,BE ⊂平面BCE,BC∩BE=B, 所以EF ⊥平面BCE.(2)证明:取BE 的中点N,连结CN,MN,则MN AB21PC,所以四边形PMNC 为平行四边形,所以PM ∥CN. 因为CN 在平面BCE 内,PM 不在平面BCE 内, 所以PM ∥平面BCE.(3)由EA ⊥AB,平面ABEF ⊥平面ABCD,易知EA ⊥平面ABCD. 作FG ⊥AB,交BA 的延长线于G ,则FG ∥EA.从而,FG ⊥平面ABCD. 作GH ⊥BD 于H,连结FH,则由三垂线定理知,BD ⊥FH. 因此,∠FHG 为二面角F-BD-A 的平面角. 因为FA=FE,∠AEF=45°, 所以∠AFE=90°,∠FAG=45°. 设AB=1,则AE=1,22=AF ,FG=AF·sin ∠FAG=21.在Rt △BGH 中,∠GBH=45°,BG=AB+AG=23211=+,GH=BG·sin ∠GBH=4232223=∙.在Rt △FGH 中,tan ∠FHG=32=GHFG .故二面角F-BD-A 的大小为32arctan .解法二:(1)证明:因为△ABE 为等腰直角三角形,AB=AE , 所以AE ⊥AB.又因为平面ABEF ⊥平面ABCD,AE ⊂平面ABEF,平面ABEF∩平面ABCD=AB, 所以AE ⊥平面ABCD. 所以AE ⊥AD.因此,AD,AB,AE 两两垂直.建立如图所示的直角坐标系A —xyz.设AB=1,则AE=1,B(0,1,0),D(1,0,0),E(0,0,1),C(1,1,0). 因为FA=FE,∠AEF=45°, 所以∠AFE=90°. 从而,F(0,21,21-),EF =(0,21,21-),BE =(0,-1,1),BC =(1,0,0). EF ·BE =021210=-+,EF ·BC =0. 所以EF ⊥BE ,EF ⊥BC.因为BE ⊂平面BCE,BC ⊂平面BCE,BC∩BE=B, 所以EF ⊥平面BCE. (2)证明:M(0,0,21),P(1,21,0).从而PM =(-1,21,21-), 于是PM ·EF =(-1,21,21-)·(0,21,21--)=0. 所以PM ⊥FE.又EF ⊥平面BCE,直线PM 不在平面BCE 内, 故PM ∥平面BCE.(3)设平面BDF 的一个法向量为n 1,并设n 1=(x,y,z). BD =(1,-1,0),BF =(0,21,23-). ⎪⎩⎪⎨⎧=∙=∙.0,011BF n BD n 即⎪⎩⎪⎨⎧=+-=-.02123,0z y y x取y=1,则x=1,z=3.从而n 1=(1,1,3).取平面ABD 的一个法向量为n 2=(0,0,1). cos 〈n 1,n 2〉=111131113||||2121=⨯=∙n n n n .故二面角F-BD-A 的大小为11113arccos.20.(2009四川,文20)(本小题满分12分)已知函数)(x f =x 3+2bx 2+cx-2的图象在与x 轴交点处的切线方程是y=5x-10. (1)求函数)(x f 的解析式; (2)设函数mx x f x g 31)()(+=,若g(x)的极值存在,求实数m 的取值范围以及函数g(x)取得极值时对应的自变量x 的值.解:(1)由已知,切点为(2,0),故有f(2)=0,即4b+c+3=0,① f′(x)=3x 2+4bx+c,由已知,f′(2)=12+8b+c=5,得8b+c+7=0.②联立①②,解得c=1,b=-1,于是函数解析式为)(x f =x 3-2x 2+x-2. (2)mx x x x x g 3122)(23+-+-=,3143)(2m x x x g ++-=',令g′(x)=0.当函数有极值时,Δ≥0,方程031432=++-m x x 有实根,由Δ=4(1-m)≥0,得m≤1. ①当m=1时,g′(x)=0有实根32=x ,在32=x 左右两侧均有g′(x)>0,故函数g(x)无极值.②当m <1时,g′(x)=0有两个实根,)12(31),12(3121m x m x -+=--=,当x 变化时,g′(x)、g(x)的变化情况如下表:x (-∞,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞) g′(x) +0 - 0 + g(x)极大值极小值故在m ∈(-∞,1)时,函数g(x)有极值: 当)12(31m x --=时,g(x)有极大值; 当)12(31m x -+=时,g(x)有极小值.21.(2009四川,文21)(本小题满分12分)已知椭圆12222=+by ax (a >b >0)的左、右焦点分别为F 1、F 2,离心率22=e ,右准线方程为x=2.(1)求椭圆的标准方程;(2)过点F 1的直线l 与该椭圆相交于M 、N 两点,且3262||22=+N F MF ,求直线l 的方程.解:(1)由条件有⎪⎪⎩⎪⎪⎨⎧==,2a,222c a c 解得2=a ,c=1.∴122=-=ca b .∴所求椭圆的方程为122=+2y x.(2)由(1)知,F 1(-1,0)、F 2(1,0).若直线l 的斜率不存在,则直线l 的方程为x=-1, 将x=-1代入椭圆方程,得22±=y .不妨设M(-1,22)、N(-1,22-),∴N F M F 22+=(-2,22)+(-2,22-)=(-4,0).∴4||22=+N F M F ,与题设矛盾.∴直线l 的斜率存在.设直线l 的斜率为k,则直线l 的方程为y=k(x+1). 设M(x 1,y 1)、N(x 2,y 2),联立⎪⎩⎪⎨⎧+==+),1(,1222x k y y x 消y 得(1+2k 2)x 2+4k 2x+2k 2-2=0.由根与系数的关系知2221214kkx x +-=+,从而y 1+y 2=k(x 1+x 2+2)=2212kk +.又∵M F 2=(x 1-1,y 1),N F 2=(x 2-1,y 2), ∴N F M F 22+=(x 1+x 2-2,y 1+y 2). ∴|M F 2+N F 2|2=(x 1+x 2-2)2+(y 1+y 2)2 =2222)212()2128(k k kk++++=144)1916(42424++++kkkk .∴22424)3262(144)1916(4=++++kkkk .化简得40k 4-23k 2-17=0. 解得k 2=1或40172-=k (舍).∴k=±1.∴所求直线l 的方程为y=x+1或y=-x-1.22.(2009四川,文22)(本小题满分14分)设数列{a n }的前n 项和为S n ,对任意的正整数n,都有a n =5S n +1成立,记nn n a a b -+=14(n ∈N *).(1)求数列{a n }与数列{b n }的通项公式;(2)设数列{b n }的前n 项和为R n ,是否存在正整数k,使得R k ≥4k 成立?若存在,找出一个正整数k;若不存在,请说明理由;(3)记c n =b 2n -b 2n-1(n ∈N *),设数列{c n }的前n 项和为T n ,求证:对任意正整数n ,都有23<n T .解:(1)当n=1时,a 1=5a 1+1,∴411-=a .又∵a n =5S n +1,a n+1=5S n+1+1, ∴a n+1-a n =5a n+1,即n n a a 411-=+.∴数列{a n }成等比数列,其首项411-=a ,公比41-=q .∴nn a )41(-=.∴nnn b )41(1)41(4---+=.(2)不存在正整数k,使得R k ≥4k 成立.下证:对任意的正整数n,都有R n <4n 成立. 由(1)知1)4(54--+=nn b .∵1)4(51)4(58212212--+--+=+--kk k k b b=4162011658+--+kk=8)416)(116(4016158<+--⨯-kkk.∴当n 为偶数时,设n=2m(m ∈N *),则R n =(b 1+b 2)+(b 3+b 4)+…+(b 2m-1+b 2m )<8m=4n; 当n 为奇数时,设n=2m-1(m ∈N *),则R n =(b 1+b 2)+(b 3+b 4)+…+(b 2m-3+b 2m-2)+b 2m-1 <8(m-1)+4=8m-4=4n.∴对一切的正整数n,都有R n <4n. ∴不存在正整数k,使得R k ≥4k 成立. (3)由(1)知1)4(54--+=nn b .北京天梯志鸿教育科技有限责任公司∴c n =b 2n -b 2n-1=145145122++--n n=)416)(116(1625+-⨯nnn=nnnnnn1625)16(16254163)16(162522=⨯<-⨯+⨯.又b 1=3,3132=b ,∴341=c .当n=1时,231<T .当n≥2时,1611])161(1[1612534)161161161(25341232--⨯+=+++⨯+<-n nn T234869161116125342<=-⨯+<.。
成都市中考数学试题(含答案)
成都市中考数学试题(含答案)(含成都市初三毕业会考)数 学注意事项:1. 全卷分A 卷和B 卷.A 卷满分100分.B 卷满分50分;考试时间120分钟.2. 五城区及高新区的考生使用答题卡作答.郊区(市)县的考生使用机读卡加答题卷作答。
3. 在作答前.考生务必将自己的姓名、准考证号涂写在答题卡(机读卡加答题卷)上。
考试结束.监考人员将试卷和答题卡(机读卡加答题卷) 一并收回。
4.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写.字体工整、笔迹清楚。
5.请按照题号在答题卡(机读卡加答题卷)上各题目对应的答题区域内作答.超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
6.保持答题卡面(机读卡加答题卷)清洁.不得折叠、污染、破损等。
A 卷(共100分) 第Ⅰ卷(选择题.共30分)一、选择题:(每小题3分.共3 0分)每小题均有四个选项.其中只有一项符合题目要求。
1. 4的平方根是(A)±16 (B)16 (C )±2 (D)2 2.如图所示的几何体的俯视图是3. 在函数12y x =-x 的取值范围是 (A)12x ≤(B) 12x < (C) 12x ≥ (D) 12x > 4. 近年来.随着交通网络的不断完善.我市近郊游持续升温。
据统计.在今年“五一”期间.某风景区接待游览的人数约为20.3万人.这一数据用科学记数法表示为(A)420.310⨯人 (B) 52.0310⨯人 (C) 42.0310⨯人 (D) 32.0310⨯人 5.下列计算正确的是 (A )2x x x += (B)2x x x ⋅= (C)235()x x =(D)32x x x ÷=6.已知关于x 的一元二次方程20(0)mx nx k m ++=≠有两个实数根.则下列关于判别式24n mk -的判断正确的是(A) 240n mk -< (B)240n mk -=BC D E ABCDE30(C)240n mk -> (D)240n mk -≥ 7.如图.若AB 是⊙0的直径.CD 是⊙O 的弦.∠ABD=58°. 则∠BCD=(A)116° (B)32° (C)58° (D)64°8.已知实数m 、昆在数轴上的对应点的位置如图所示.则下列判断正确的是 (A)0m > (B)0n < (C)0mn < (D)0m n ->9. 为了解某小区“全民健身”活动的开展情况.某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计.并绘制成如图所示的条形统计图.根据图中提供的信息.这50人一周的体育锻炼时间的众数和中位数分别是(A)6小时、6小时 (B) 6小时、4小时 (C) 4小时、4小时 (D)4小时、6小时10. 已知⊙O 的面积为9π2cm .若点0到直线l 的距离为πcm .则直线l 与⊙O 的位置关系是(A)相交 (B)相切 (C)相离 (D)无法确定第Ⅱ卷《非选择题.共7()分)二、填空题:(每小题4分.共l 6分)11. 分解因式:.221x x ++=________________。
往年成都中考数学试题及答案
往年成都中考数学试题及答案往年成都中考数学试题及答案是考生备考中的重要参考资料,通过查阅这些历年试题,考生可以了解中考数学的考点、题型分布以及难易程度。
本文将对往年成都中考数学试题及答案进行整理和介绍,供考生进行参考和复习。
第一部分:选择题1. 下列选项中,哪一个不是整数?A. -4B. 0C. 3/4D. 1答案:C2. 已知正整数a,b满足a/b=5/8,且(a-b)/(a+b)=3/5,则a的值是多少?A. 5/2B. 10/3C. 15/4D. 20/7答案:B3. 在平面直角坐标系中,点A(-3,4)关于y轴的对称点是?A. (-3,-4)B. (3,-4)C. (4,-3)D. (-4,3)答案:D4. 从0~9中共有多少个整数不含7?A. 3B. 4C. 5D. 6答案:D5. 若正数a和b满足a+b=12,且a/b=3/5,则a的值是多少?A. 4B. 6C. 8D. 10答案:C第二部分:填空题1. 用12构成一个不超过100的最大的偶数共有__个。
答案:82. 设函数f(x) = 5x - 3,那么f(2) = __。
答案:73. 化简√(24/4)的值为__。
答案:2√34. 若a:b = 3:4,b:c = 2:5,则a:c = __:__。
答案:6:105. 设平行四边形的长是2x+1,宽是x-5,则其周长等于__。
答案:6x-6第三部分:解答题1. 解方程6x+3=9。
解答:将等式两边减去3得到6x=6,再将等式两边除以6得到x=1。
因此,方程的解为x=1。
2. 某商品原价为120元,现在降价20%,求现价。
解答:原价120元降价20%,即价格减少120×0.2=24元。
因此,现价为120-24=96元。
3. 已知正方形的面积是16平方厘米,求正方形的边长。
解答:设正方形的边长为x厘米,根据面积的定义可得x²=16。
解方程得到x=4。
因此,正方形的边长为4厘米。
2009年成都市中考数学试题分析
学大教育成都分公司八宝校区
彭明江
1
2012-4-10
一、试题总体情况
本卷共有28题,满分150分,试卷分 为A卷和B卷。A卷满分100分,B卷满分50 分。A卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择 题,第Ⅱ卷为其他类型的题。试卷考查内 容涵盖了《课程标准》四个知识领域中的 主要部分:数与代数约73分左右,所占比例为 48.67%,空间与图形约61分,所占比例为 40.67%,统计与概率约占16分左右,所占比 例为10.67%.
4
表二:概率与统计部分试题分值分布表
知识领域
知识点
题号
分值
能力要求
合计
百分 比
统计
平均数、极差计算
9
3
理解
概 率 与 统 计 概率
找出确定与不确定事件
4
3
理解
16
10.67
计算简单事件发生的概率
19
10
运用
5
2012-4-10
表三: 表三:空间与图形部分试题分值分布表
题 知识领域 知识点 号 分值 能力要求 合计 百分比
2012-4-10 10
例如: 例如:
4.下列说法正确的是 (A)某市“明天降雨的概率是75%”表示明天有 (A)某市“明天降雨的概率是75%”表示明天有 75%的时间会降雨 75%的时间会降雨 (B)随机抛掷一枚均匀的硬币,落地后正面一定 (B)随机抛掷一枚均匀的硬币,落地后正面一定 朝上 (C)在一次抽奖活动中,“中奖的概率是1/100” (C)在一次抽奖活动中,“中奖的概率是1/100” 表示抽奖l00次就一定会中奖 表示抽奖l00次就一定会中奖 (D)在平面内,平行四边形的两条对角线一定相 (D)在平面内,平行四边形的两条对角线一定相 交 考察了学生随机事件、不可能事件等概念的 理解和应用。 。
成都七中九年级数学试卷
成都七中九年级数学试卷1、下列各角终边在第三象限的是()[单选题] *A. 60°B. 390°C. 210°(正确答案)D. -45°2、21.|x|>3表示的区间是()[单选题] *A.(-∞,3)B.(-3,3)C. [-3,3]D. (-∞,-3)∪(3,+ ∞)(正确答案)3、46、在直角三角形ABC中,,,则的三条高之和为()[单选题] * A.8.4B.9.4(正确答案)C.10.4D.11.4、若10?=3,10?=2,则10的值为( ) [单选题] *A. 5B. 6(正确答案)C. 8D. 95、2.如果规定收入为正,那么支出为负,收入2元记作,支出5元记作().[单选题] *A.5元B. -5元(正确答案)C .-3元D. 7元6、下列计算正确的是( ) [单选题] *A. (-a)·(-a)2·(-a)3=-a?B. (-a)·(-a)3·(-a)?=-a?C. (-a)·(-a)2·(-a)?=a?D. (-a)·(-a)?·a=-a?(正确答案)7、下列表示正确的是()[单选题] *A、0={0}B、0={1}C、{x|x2 =1}={1,-1}(正确答案)D、0∈φ8、1、如果P(ab,a+b)在第四象限,那么Q(a,﹣b)在()[单选题] *A.第一象限B.第二象限(正确答案)C.第三象限D.第四象限9、20.如图,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式中正确的是()[单选题] *21.A.∠COD=∠AOBB.∠AOD=∠AOBC.∠BOD=∠AODD.∠BOC=∠AOD(正确答案)10、x? ?1·()=x? ?1,括号内应填的代数式是( ) [单选题] *A. x? ?1B. x? ?1C. x2(正确答案)D. x11、由数字1、2、3、4、5可以组成多少个不允许有重复数字的三位数?()[单选题]*A、125B、126C、60(正确答案)D、12012、16.“x2(x平方)-4x-5=0”是“x=5”的( ) [单选题] *A.充分不必要条件B.必要不充分条件(正确答案)C.充要条件D.既不充分也不必要条件13、30°角是()[单选题] *A、第一象限(正确答案)B、第一象限C、第三象限D、第四象限14、3.如图,OC为∠AOB内的一条射线,下列条件中不能确定OC平分∠AOB的()[单选题] *A.∠AOC=∠BOCB.∠AOC+∠COB=∠AOB(正确答案)C.∠AOB=2∠BOCD.15、f(x)=-2x+5在x=1处的函数值为()[单选题] *A、-3B、-4C、5D、3(正确答案)16、x+2=3的解为()[单选题] *A. x=1(正确答案)B. x=2C. x=3D. x=417、37、已知A(3,﹣2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则x+y的值是()[单选题] *A.﹣1B.0C.1(正确答案)D.218、下列说法有几种是正确的()(1)空间三点确定一个平面(2)一条直线和直线外一点确定一个平面(3)两条直线确定一个平面(4)两条平行直线确定一个平面[单选题] *A、1B、2(正确答案)C、3D、419、已知二次函数f(x)=2x2-x+2,那么f(0)的值为()。
成都市中考数学真题及答案
秘密姓名:准考证号:成都市二〇一五年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数学A卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.3-的倒数是(A)31-(B)31(C)3-(D)3【答案】:A【解析】:根据倒数的定义,很容易得到3-的倒数是13-,选A。
2.如图所示的三棱柱的主视图是(A)(B)(C)(D)【答案】:B解密时间:20XX年6月14日上午9:00【解析】:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中。
从正面看易得三棱柱的一条棱位于三棱柱的主视图内,选B 。
3.今年5月,在成都举行的世界机场城市大会上,成都新机场规划蓝图首次亮相。
新机场建成后,成都将成为继北京、上海之后,国内第三个拥有双机场的城市,按照远期规划,新机场将新建的4个航站楼的总面积约为126万平方米,用科学计数法表示126万为(A )410126⨯ (B )51026.1⨯ (C )61026.1⨯ (D )71026.1⨯【答案】:C【解析】: 科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数。
确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同。
当原数绝对值>1时,n 是正数; 当原数的绝对值<1时,n 是负数。
将126万用科学记数法表示1.26×106元,选B 。
4.下列计算正确的是(A )4222a a a =+ (B )632a a a =⋅ (C )422)(a a =- (D )1)1(22+=+a a 【答案】:C【解析】: A 、2a 与 2a 是同类项,能合并,2222a a a +=。
故本选项错误。
B 、2a 与 3a 是同底数幂,根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加。
09年成都市中考科目及分值
09年成都市中考科目及分值请注意,本人只需要成都石室中学(4中)、树德中学(9中)、育才中学(7中)三所高校的预测分数线,只要本部就可以了,分校情况可有可无。
我来帮他解答满意回答这三所一般情况是比重点线高出60分+的。
比如某年重点线是560,九中620左右,四中628+,七中635+追问那么实验班呢?回答实验班比普通收分高上十多分左右11年4,7,9的录取分数线大概是630,660,625. 是不是感觉分数好高了,其实拿高分也是有策略的。
像思,史,地,生这几门功课一定要争取拿满分,10年嘉祥网站上公布的是他们学校全体学生这几门功课都是满分。
另外,体育是50分,和化学的分值是一样的,千万别忽视哦,后面一篇博文专门会介绍体考项目和具体分值。
还有一个非常重要的是中考加分,这往往决定了你是否能上国重学校哦,哪些项目加多少分,后面的博文也将介绍。
历年的中考中,七中育才,七中嘉祥是加分的大户,因为那里的学生100%都会参加中考。
如果有把握能通过外国语学校直升考试,并且100%决定会就读外国语学校的同学,可以忽略这个加分,因为直升考试不看这个加分。
思,史,地,生这几门功课也不参加直生考试。
如果不是这100%里的同学,加分的事情从现在该拿到议事日程上来了哦!该参加什么比赛,该拿什么三好,都该准备了!下表是11年成都市中考科目及分值。
科目满分A卷B卷备注语文150 100 50毕业考试和升学考试一同进行数学150 100 50毕业考试和升学考试一同进行英语150 100 50毕业考试和升学考试一同进行物理70 90笔试+10 实验20毕业考试和升学考试一同进行实验提前在四月份举行A卷成绩*50%+B卷成绩为满分70分化学50 90笔试+10实验9年级结束时毕业考试和升学考试一同进行实验提前在四月份举行A卷成绩*50%为满分50分体育50 9年级下期四月底以前单独进行思想品德历史生物地理各20分按A(20分),B(16)分,C(12分)D(8分)等级计入升学考试成绩总分70011年成都市中考体考项目及分值附表1000米(男生)800米(女生)得分3分48秒以下3分39秒以下153分49秒-4分18秒3分40秒-4分09秒134分19秒-4分38秒4分10秒-4分29秒104分39秒及以上4分30秒及以上9立定跳远(男生)立定跳远(女生)得分246CM以上196CM以上20236-245CM 189-195CM 18222-235CM 176-188CM 17210-221CM 165-175CM 15202-209CM 158-164CM 13180-201CM 137-157CM 12179以下136以下10坐位体前屈(男生)坐位体前屈(女生)得分16.1CM以上17.4CM以上1514.0-16.0CM 15.2-17.3CM 1310.1-13.9CM 11.5-15.1CM 126.4-10.0CM 8.0-11.4CM 114.0-6.4CM 6.0-7.9CM 103.0-3.9 CM 1.0-5.9CM 93.1以下 1.1以下8语数外各150,共450;物理A卷100/2 + B卷20 =70;化学100/2=50 (物化都要折合分数,这当中还包括物理、化学实验操作考试给10分,再折合到总分中);体育50(坐位体前屈15+ 立定跳远20+ 长跑15);政治、历史、地理、生物各20分(100分卷考上80就是20了,往后就只有16,12,8三个分数段),共计:700。
2009年四川省成都中考数学试卷与答案
2009年四川省成都市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1、(2009•成都)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A、k>﹣1B、k>﹣1且k≠0C、k<1D、k<1且k≠0考点:根的判别式。
分析:方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.注意考虑“一元二次方程二次项系数不为0”这一条件.解答:解:因为方程kx2﹣2x﹣1=0有两个不相等的实数根,则b2﹣4ac>0,即(﹣2)2﹣4k×(﹣1)>0,解得k>﹣1.又结合一元二次方程可知k≠0,故选B.点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.本题容易出现的错误是忽视k≠0这一条件.2、(2009•成都)在平面直角坐标系xOy中,已知点A(2,3),若将OA绕原点O逆时针旋转180°得到0A′,则点A′在平面直角坐标系中的位置是在()A、第一象限B、第二象限C、第三象限D、第四象限考点:坐标与图形变化-旋转。
分析:若将OA绕原点O逆时针旋转180°得到0A′,则点A′与点A关于原点对称,横、纵坐标都互为相反数.解答:解:旋转后得到的点A′与点A成中心对称,旋转后A′的坐标为(﹣2,﹣3),所以在第三象限.故选C.点评:本题考查旋转的性质,解答本题关键要理解旋转180°即成中心对称.3、(2009•成都)若一个圆锥的底面圆的周长是4πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角的度数是()A、40°B、80°C、120°D、150°考点:弧长的计算。
分析:正确理解圆锥侧面与其展开得到的扇形的关系:圆锥的母线长等于扇形的半径,圆锥的底面周长等于扇形的弧长.因而圆锥的侧面展开图扇形的弧长是4πcm,半径是6cm,根据扇形的弧长公式l=,就可以求出n的值.解答:解:圆锥侧面展开图的扇形面积半径为6cm,弧长为4πcm,代入扇形弧长公式l=,即4π=,解得n=120,即扇形圆心角为120度.故选C.点评:本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.4、(2009•成都)为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了15户家庭的日用电量,结果如下表:5 6 7 8 10日用电量(单位:度)户数 2 5 4 3 l则关于这15户家庭的日用电量,下列说法错误的是()A、众数是6度B、平均数是6.8度C、极差是5度D、中位数是6度考点:中位数;算术平均数;众数;极差。
2009年 全国 117个地区中考试卷及答案
2009年全国各地中考试题及答案112份下载地址(截止到7月11日)(7月7日前的为红色)2009年安徽省初中毕业学业考试数学试题及答案2009年安徽省芜湖市初中毕业学业考试题及答案2009年北京高级中学中等学校招生考试数学试题及答案2009年福建省福州市课改实验区中考试卷及参考答案2009年福建省龙岩市初中毕业、升学考试试题及答案2009年福建省宁德市初中毕业、升学考试试题及答案2009年福建省莆田市初中毕业、升学考试试卷及答案2009年福建省泉州市初中毕业、升学考试试题及答案2009年福建省漳州市初中毕业暨高中阶段招生题及答案2009年甘肃省定西市中考数学试卷及答案2009年甘肃省兰州市初中毕业生学业考试试卷及答案2009年甘肃省庆阳市高中阶段学校招生考试题及答案2009年广东省佛山市高中阶段学校招生考试题及答案2009年广东省茂名市高中阶段招生考试试题及答案2009年广东省梅州市初中毕业生学业考试试题及答案2009年广东省清远市初中毕业生学业考试试题及答案2009年广东省深圳市初中毕业生学业考试试卷及答案2009年广东省肇庆市初中毕业生学业考试试题及答案2009年广西省崇左市初中毕业升学考试数学试题及答案2009年广西省桂林市百色市初中毕业暨升学试卷及答案2009年广西省河池市初中毕业暨升学统一考试卷及答案2009年广西省贺州市初中毕业升学考试试卷及答案2009年广西省柳州市初中毕业升学考试数学试卷及答案2009年广西省南宁市中等学校招生考试题及答案2009年广西省钦州市初中毕业升学考试试题卷及答案2009年广西省梧州市初中毕业升学考试卷及答案2009年贵州省安顺市初中毕业、升学招生考试题及答案2009年贵州省黔东南州初中毕业升学统一考试题及答案2009年河北省初中毕业生升学文化课考试试卷及答案2009年河南省初中学业水平暨高级中等学校招生卷及答2009年黑龙江省哈尔滨市初中升学考试题及答案2009年黑龙江省牡丹江市初中毕业学业考试题及答案2009年黑龙江省齐齐哈尔市初中毕业学业考试题及答案2009年黑龙江省绥化市初中毕业学业考试卷及答案(答案为扫描版)2009年湖北省鄂州市初中毕业及高中阶段招生题及答案2009年湖北省恩施自治州初中毕业生学业考试题及答案2009年湖北省黄冈市初中毕业生升学考试试卷及答案2009年湖北省黄石市初中毕业生学业考试联考卷及答案2009年湖北省黄石市初中毕业生学业考试试题及答案2009年湖北省十堰市初中毕业生学业考试试题及答案2009年湖北省武汉市初中毕业生学业考试试题及答案2009年湖北省襄樊市初中毕业、升学统一考试题及答案2009年湖北省孝感市初中毕业生学业考试试题及答案2009年湖北省宜昌市初中毕业生学业考试试题及答案2009年湖南省长沙市初中毕业学业考试试卷及答案2009年湖南省常德市初中毕业学业考试试题及答案2009年湖南省郴州市初中毕业考试数学试题及答案2009年湖南省衡阳市初中毕业学业考试试卷及参考答案2009年湖南省怀化市初中毕业学业考试卷及答案2009年湖南省娄底市初中毕业学业考试试题及答案2009年湖南省邵阳市初中毕业学业水平考试卷及答案2009年湖南省湘西自治州初中毕业学业考试卷及答案2009年湖南省益阳市普通初中毕业学业考试试卷及答2009年湖南省株洲市初中毕业学业考试数学试题及答案2009年吉林省长春市初中毕业生学业考试试题及答案2009年吉林省初中毕业生学业考试数学试题及答案2009年江苏省苏州市中考数学试题及答案(答案为扫描版)2009年江苏省中考数学试卷及参考答案2009年江西省中等学校招生考试数学试题及参考答案2009年辽宁省本溪市初中毕业生学业考试试题及答案2009年辽宁省朝阳市初中升学考试数学试题及答案2009年辽宁省抚顺市初中毕业生学业考试试卷及答案2009年辽宁省锦州市中考数学试题及答案2009年辽宁省铁岭市初中毕业生学业考试试题及答案2009年内蒙古赤峰市初中毕业、升学统一考试题及答案(答案为扫描版)2009年内蒙古自治区包头市高中招生考试试卷及答案2009年宁夏回族自治区初中毕业暨高中阶段招生题及答案2009年山东省德州市中等学校招生考试数学试题及答案2009年山东省东营市中等学校招生考试试题及答案2009年山东省济南市高中阶段学校招生考试试题及答案2009年山东省济宁市高中阶段学校招生考试试题及答案2009年山东省临沂市中考数学试题及参考答案2009年山东省日照市中等学校招生考试试题及参考答案2009年山东省泰安市高中段学校招生考试试题及答案2009年山东省威海市初中升学考试数学试卷及参考答案2009年山东省潍坊市初中学业水平考试数学试题及答案2009年山东省烟台市初中学生学业考试试题及答案2009年山东省枣庄市中等学校招生考试数学试题及答案2009年山东省中等学校招生考试数学试题及参考答案2009年山东省淄博市中等学校招生考试试题及答案2009年山西省初中毕业学业考试数学试卷及答案2009年山西省太原市初中毕业学业考试试卷及答案2009年陕西省初中毕业学业考试数学试题及答案2009年上海市初中毕业统一学业考试数学试卷及答案2009年四川省成都市高中学校统一招生考试试卷及答案2009年四川省达州市高中招生统一考试题及答案2009年四川省高中阶段教育学校招生统一考试题及答案2009年四川省泸州市高中阶段学校招生统一考试题及答(答案为扫描版)2009年四川省眉山市高中阶段教育学校招生试题及答案2009年四川省南充市高中阶段学校招生统一考试卷及答2009年四川省遂宁市初中毕业生学业考试试题及答案2009年台湾第一次中考数学科试题及答案2009年天津市初中毕业生学业考试数学试题及答案2009年新疆维吾尔自治区初中毕业生学业考试题及答案2009年云南省高中(中专)招生统一考试试题及答案2009年浙江省杭州市各类高中招生文化考试试题与答案2009年浙江省湖州市初中毕业生学业考试试题及答案2009年浙江省嘉兴市初中毕业生学业考试试卷及答案2009年浙江省金华市初中毕业生学业考试试卷及答案2009年浙江省丽水市初中毕业生学业考试试卷及答案2009年浙江省丽水市初中毕业生学业考试试题及答案2009年浙江省宁波市初中毕业生学业考试试题及答案2009年浙江省衢州市初中毕业生学业考试数学卷及答案2009年浙江省台州市初中学业考试数学试题及参考答案2009年浙江省温州市初中毕业生学业考试试题及答案(答案为扫描版)2009年浙江省义乌市初中毕业生学业考试题及参考答案2009年浙江省舟山市初中毕业生学业考试数学卷及答案2009年重庆市初中毕业暨高中招生考试数学试题及答案2009年重庆市江津市初中毕业学业暨高中招生试题及答2009年重庆市綦江县初中毕业暨高中招生考试题及答案。
成都中考数学试题及答案
成都中考数学试题及答案在成都的中考中,数学科目是学生们非常重视的一门学科。
以下是一套模拟的成都中考数学试题及其答案,供学生们练习和参考。
一、选择题(每题3分,共30分)1. 下列哪个选项是一次函数的表达式?A. y = 2x + 3B. y = x^2 + 1C. y = 3x - 2/xD. y = √x + 1答案:A2. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B3. 如果一个三角形的两边长分别为3和4,那么第三边的长x的范围是?A. 1 < x < 7B. 1 < x < 5C. 3 < x < 7D. 4 < x < 7答案:C4. 以下哪个数是无理数?A. 0.33333...B. √2C. 22/7D. 3.14答案:B5. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A6. 一个等腰三角形的底角是45度,那么顶角的度数是多少?A. 90度B. 45度C. 60度D. 30度答案:A7. 一个多项式3x^3 - 6x^2 + 9x - 4可以被哪个一次因式整除?A. x - 1B. x + 1C. x - 2D. x + 2答案:A8. 一个等差数列的前三项分别是2,5,8,那么它的第10项是多少?A. 23B. 20C. 27D. 21答案:A9. 一个扇形的圆心角是60度,半径是4厘米,那么它的面积是多少平方厘米?A. 4πB. 8πC. 6πD. 2π答案:C10. 一个二次函数y = ax^2 + bx + c的图像开口向上,那么a的取值范围是?A. a > 0B. a < 0C. a = 0D. a ≠ 0答案:A二、填空题(每题3分,共15分)11. 一个正数的平方根是3,那么这个数是_9_。
12. 一个数的绝对值是5,那么这个数可以是_±5_。
四川省成都市中考数学试题及答案
精品基础教育教学资料,仅供参考,需要可下载使用!成都市高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:1. 全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2. 在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方,考试结束,监考人员将试卷和答题卡一并收回。
3.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚。
4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
5.保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 在-3,-1,1,3四个数中,比-2小的数是( ) (A) -3 (B) -1 (C) 1 (D) 32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )3. 成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一,今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流记录,这也是今年以来第四次客流记录的刷新,用科学记数法表示181万为( )(A) 18.1×105 (B) 1.81×106 (C) 1.81×107 (D) 181×104 4. 计算()23x y -的结果是( )(A) 5x y - (B) 6x y (C) 32x y - (D) 62x y 5. 如图,2l l 1∥,∠1=56°,则∠2的度数为( ) (A) 34° (B) 56°(C) 124° (D) 146°6. 平面直角坐标系中,点P (-2,3)关于x 轴对称的点的坐标为( )(A)(-2,-3) (B)(2,-3) (C)(-3,2) (D)(3, -2)7. 分式方程213xx =-的解为( ) (A) x=-2 (B) x=-3 (C) x=2 (D) x=38.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x (单位:分)及方差2s 如下表所示:甲 乙 丙 丁 x7 8 8 7 2s11.211.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( ) (A) 甲 (B) 乙 (C) 丙 (D) 丁9. 二次函数223y x =-的图象是一条抛物线,下列关于该抛物线的说法,正确的是( ) (A) 抛物线开口向下 (B) 抛物线经过点(2,3) (C) 抛物线的对称轴是直线x=1 (D) 抛物线与x 轴有两个交点10.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠OCA=50°,AB=4,则BC ︵的长为( )(A) 103π (B) 109π (C) 59π (D) 518π第Ⅱ卷(非选择题,共70分)二、填空题 (本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11. 已知|a+2|=0,则a = ______.12. 如图,△ABC ≌△'''A B C ,其中∠A =36°,∠C ′=24°,则∠B=___°. 13. 已知P 1(x 1,y 1),P 2(x 2 ,y 2)两点都在反比例函数2y x=的图象上,且x 1< x 2 <0,则y 1 ____ y 2.(填“>”或“<”)14. 如图,在矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为_________.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15. (本小题满分12分,每题6分)(1)计算:()()302162sin302016π-+-+-(2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围.16.(本小题满分6分)化简:22121x x x x x x -+⎛⎫-÷ ⎪-⎝⎭17.(本小题满分8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A 处安置测倾器,量出高度AB =1.5m ,测得旗杆顶端D 的仰角∠DBE =32°,量出测点A 到旗杆底部C 的水平距离AC =20m. 根据测量数据,求旗杆CD 的高度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都市二0 0九年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学全卷分A 卷和B 卷,A 卷满分100分,8卷满分50分;考试时间l20分钟。
A 卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。
A 卷(共100分)第Ⅰ卷(选择题,共30分)注意事项:1.第Ⅰ卷共2页。
答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求。
每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上。
请注意机读答题卡的横竖格式。
一、选择题:(每小题3分,共30分) 1. 计算2×(12-)的结果是 (A)-1 (B) l (C)一2 (D) 2 2. 在函数131y x =-中,自变量x 的取值范围是 (A)13x < (B) 13x ≠- (C) 13x ≠ (D) 13x >3. 如图所示的是某几何体的三视图,则该几何体的形状是左视图俯视图主视图 (A)长方体 (B)三棱柱 (C)圆锥 (D)正方体 4. 下列说法正确的是(A)某市“明天降雨的概率是75%”表示明天有75%的时间会降雨 (B)随机抛掷一枚均匀的硬币,落地后正面一定朝上(C)在一次抽奖活动中,“中奖的概率是1100”表示抽奖l00次就一定会中奖 (D)在平面内,平行四边形的两条对角线一定相交5. 已知△ABC∽△DEF,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为 (A)1:2 (B)1:4 (C)2:1 (D)4:16. 在平面直角坐标系xOy 中,已知点A(2,3),若将OA 绕原点O 逆时针旋转180°得到0A′, 则点A ′在平面直角坐标系中的位置是在(A)第一象限 (B)第二象限 (c)第三象限 (D)第四象限7. 若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是(A)1k >- (B) 1k >-且0k ≠ (c)1k < (D) 1k <且0k ≠8. 若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是 (A)40° (B)80° (C)120° (D)150°AB CDEA′定,那么旅客可携带的免费行李的最大质量为(A)20kg (B)25kg(C)28kg (D)30kg10.为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了l5户家庭的日用电量,结果如下表:则关于这l5户家庭的日用电量,下列说法错误的是 (A)众数是6度 (B)平均数是6.8度 (C)极差是5度 (D)中位数是6度成都市二0 0九年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学注意事项: 1.A 卷的第Ⅱ卷和B 卷共l0页,用蓝、黑钢笔或圆珠笔直接答在试卷上。
2.答卷前将密封线内的项目填写清楚。
第Ⅱ卷(非选择题,共70分) 二、填空题:(每小题4分,共16分) 将答案直接写在该题目中的横线上. 11.分式方程2131x x =+的解是_________ 12.如图,将矩形ABCD 沿BE 折叠,若∠CBA′=30°则∠BEA′=_____.13.改革开放30年以来,成都的城市化推进一直保持着快速、稳定的发展态势.据统计,到2008年底,成都市中心五城区(不含高新区)常住人口已达到4 410 000人,对这个常住人口数有如下几种表示:①54.4110⨯人;②64.4110⨯人;③544.110⨯人.其中是科学记数法表示的序号为_________. 14.如图,△ABC 内接于⊙O ,AB=BC ,∠ABC=120°,AD 为⊙O 的直径,AD =6么BD =_________.三、(第15题每小题6分,第16题6分,共18分)15.解答下列各题: (1032(2009)4sin 45(1)π--+-。
-5-4-3-2-15xAB CD (2)先化简,再求值:22(3)(2)1x x x x x -+-+,其中x =。
16.解不等式组312(1)312x x x -<+⎧⎪⎨+≥⎪⎩,,并在所给的数轴上表示出其解集。
四、(每小题8分,共16分)17.已知一次函数2y x =+与反比例函数ky x=,其中一次函数2y x =+的图象经过点P(k ,5). (1)试确定反比例函数的表达式;(2)若点Q 是上述一次函数与反比例函数图象在第三象限的交点,求点Q 的坐标.18.某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C 测得教学楼AB 的顶点A 的仰角为30°,然后向教学楼前进60米到达点D ,又测得点A 的仰角为45°。
请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值)图①图②五、(每小题10分,共20分)19.有一枚均匀的正四面体,四个面上分别标有数字l ,2,3,4,小红随机地抛掷一次,把着地一面的数字记为x ;另有三张背面完全相同,正面上分别写有数字一2,一l ,1的卡片,小亮将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y ;然后他们计算出S=x+y 的值. (1)用树状图或列表法表示出S 的所有可能情况;(2)分别求出当S=0和S<2时的概率.20.已知A 、D 是一段圆弧上的两点,且在直线l 的同侧,分别过这两点作l 的垂线,垂足为B 、C ,E 是BC 上一动点,连结AD 、AE 、DE ,且∠AED=90°。
(1)如图①,如果AB=6,BC=16,且BE:CE=1:3,求AD 的长。
(2)如图②,若点E 恰为这段圆弧的圆心,则线段AB 、BC 、CD 之间有怎样的等量关系?请写出你的结论并予以证明。
再探究:当A 、D 分别在直线l 两侧且AB ≠CD ,而其余条件不变时,线段AB 、BC 、CD 之间又有怎样的等量关系?请直接写出结论,不必证明。
B 卷(共50分)一、填空题:(每小题4分,共20分) 将答案直接写在该题目中的横线上.21.化简:22221369x y x y x y x xy y+--÷--+=_______ 22.如图,A 、B 、c 是⊙0上的三点,以BC 为一边,作∠CBD=∠ABC,过BC 上一点P ,作PE∥AB 交BD 于点E .若∠AOC=60°,BE=3,则点P 到弦AB 的距离为_______. 23.已知21(123...)(1)n a n n ==+,,,,记112(1)b a =-,2122(1)(1)b a a =--,…,122(1)(1)...(1)n n b a a a =---,则通过计算推测出n b 的表达式n b =_______.(用含n 的代数式表示)24.如图,正方形OABC 的面积是4,点B 在反比例函数(00)ky k x x=><,的图象上.若点R 是该反比例函数图象上异于点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S .则当S=m(m 为常数,且0<m<4)时,点R 的坐标是________________________ (用含m 的代数式表示)25.已知M(a ,b)是平面直角坐标系xOy 中的点,其中a 是从l ,2,3三个数中任取的一个数,b 是从l ,2,3,4四个数中任取的一个数.定义“点M(a ,b)在直线x+y=n 上”为事件Q n (2≤n≤7,n 为整数),则当Q n 的概率最大时,n 的所有可能的值为______.二、(共8分)26.某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x≤30,且x 为整数);又知前20天的销售价格1Q (元/件)与销售时间x(天)之间有如下关系:11Q 302x =+ (1≤x≤20,且x 为整数),后10天的销售价格2Q (元/件)与销售时间x(天)之间有如下关系:2Q =45(21≤x≤30,且x 为整数).(1)试写出该商店前20天的日销售利润1R (元)和后l0天的日销售利润2R (元)分别与销售时间x(天)之间的函数关系式;(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润. 注:销售利润=销售收入一购进成本.B三、(共10分)27.如图,Rt△ABC 内接于⊙O,AC=BC ,∠BAC 的平分线AD 与⊙0交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连结CD ,G 是CD 的中点,连结0G .(1)判断0G 与CD 的位置关系,写出你的结论并证明;(2)求证:AE=BF ; (3)若3(2OG DE ⋅=,求⊙O 的面积。
四、(共12分)28.在平面直角坐标系xOy 中,已知抛物线y=2(1)(0)a x c a ++>与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,其顶点为M,若直线MC 的函数表达式为3y kx =-,与x 轴的交点为N ,且COS∠BCO=10。
(1)求此抛物线的函数表达式;(2)在此抛物线上是否存在异于点C 的点P ,使以N 、P 、C 为顶点的三角形是以NC 为一条直角边的直角三角形?若存在,求出点P 的坐标:若不存在,请说明理由;(3)过点A 作x 轴的垂线,交直线MC 于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ 总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?。