备战中考数学平行四边形综合练习题及详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、平行四边形真题与模拟题分类汇编(难题易错题)

1.在图1中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.

操作示例

当2b<a时,如图1,在BA上选取点G,使BG=b,连结FG和CG,裁掉△FAG和△CGB 并分别拼接到△FEH和△CHD的位置构成四边形FGCH.

思考发现

小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连结CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH (如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.

实践探究

(1)正方形FGCH的面积是;(用含a, b的式子表示)

(2)类比图1的剪拼方法,请你就图2—图4的三种情形分别画出剪拼成一个新正方形的示意图.

联想拓展

小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移.当b>a时(如图5),能否剪拼成一个正方形?若能,请你在图5中画出剪拼成的正方形的示意图;若不能,简要说明理由.

【答案】(1)a2+b2;(2)见解析;联想拓展:能剪拼成正方形.见解析.

【解析】分析:实践探究:根据正方形FGCH的面积=BG2+BC2进而得出答案;

应采用类比的方法,注意无论等腰直角三角形的大小如何变化,BG永远等于等腰直角三角形斜边的一半.注意当b=a时,也可直接沿正方形的对角线分割.

详解:实践探究:正方形的面积是:BG2+BC2=a2+b2;

剪拼方法如图2-图4;

联想拓展:能,

剪拼方法如图5(图中BG=DH=b).

点睛:本题考查了几何变换综合,培养学生的推理论证能力和动手操作能力;运用类比方法作图时,应根据范例抓住作图的关键:作的线段的长度与某条线段的比值永远相等,旋转的三角形,连接的点都应是相同的.

2.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到到B′的位置,AB′与CD交于点E.

(1)求证:△AED≌△CEB′

(2)若AB = 8,DE = 3,点P为线段AC上任意一点,PG⊥AE于G,PH⊥BC于H.求PG + PH的值.

【答案】(1)证明见解析;(2).

【解析】

【分析】

(1)由折叠的性质知,,,,则由得到;

(2)由,可得,又由,即可求得的长,然后在中,利用勾股定理即可求得的长,再过点作于,由角平分线的性质,可得,易证得四边形是矩形,继而可求得答案.

【详解】

(1)四边形为矩形,

,,

又,

(2),

在中,,

过点作于,

,,

,,

、、共线,

四边形是矩形,

.

【点睛】

此题考查了折叠的性质、矩形的性质、角平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意掌握辅助线的作法,注意数形结合思想的应用.

3.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.

(1)求证:AD=EC;

(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.

【答案】(1)见解析;

(2)见解析.

【解析】

【分析】

(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;

(2)由∠BAC=90°,AD是边BC上的中线,得AD=BD=CD,即可证明.

【详解】

(1)证明:∵AE∥BC,DE∥AB,

∴四边形ABDE是平行四边形,

∴AE=BD,

∵AD是边BC上的中线,

∴BD=DC,

∴AE=DC,

又∵AE∥BC,

∴四边形ADCE是平行四边形.

(2) 证明:∵∠BAC=90°,AD是边BC上的中线.

∴AD=CD

∵四边形ADCE是平行四边形,

∴四边形ADCE是菱形.

【点睛】

本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.

4.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作

PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.

证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)

(变式探究)(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由;

请运用上述解答中所积累的经验和方法完成下列两题:

(结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD =16,CF=6,求PG+PH的值.

(迁移拓展)(3)在直角坐标系中,直线l1:y=-4

3

x+8与直线l2:y=﹣2x+8相交于点

A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标.

相关文档
最新文档