正多边形和圆的教学设计与反思

合集下载

人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计

人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计

人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计一. 教材分析人教版九年级数学上册《第二十四章圆24.3正多边形和圆》的内容包括正多边形的定义、性质和圆的定义、性质。

本章节的目的是让学生理解正多边形和圆的关系,掌握正多边形的计算方法,以及了解圆的性质和应用。

本节课的教学内容是24.3正多边形和圆,主要包括正多边形的定义、性质和圆的定义、性质。

二. 学情分析九年级的学生已经掌握了基本的代数和几何知识,对于图形的理解和计算能力有一定的基础。

但是,对于正多边形和圆的关系,以及圆的性质和应用可能还存在一定的困难。

因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索正多边形和圆的性质,提高他们的空间想象能力和思维能力。

三. 教学目标1.知识与技能:使学生掌握正多边形的定义、性质,理解圆的定义、性质,能够运用正多边形和圆的知识解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:正多边形的定义、性质,圆的定义、性质。

2.难点:正多边形和圆的关系,圆的性质和应用。

五. 教学方法1.情境教学法:通过实物、图片、几何画板等直观教具,引导学生观察、操作、思考,激发学生的学习兴趣。

2.问题驱动法:提出问题,引导学生思考,激发学生的求知欲。

3.合作学习法:学生进行小组讨论,培养学生的团队合作意识和交流能力。

4.归纳总结法:引导学生通过总结归纳,形成系统的知识结构。

六. 教学准备1.教学课件:制作精美的课件,包括图片、几何画板等直观教具。

2.教学素材:准备相关的实物、图片等教学素材。

3.教学用具:准备黑板、粉笔、直尺、圆规等教学用具。

七. 教学过程1.导入(5分钟)利用实物、图片等教学素材,引导学生观察正多边形和圆的实例,激发学生的学习兴趣。

初中数学_正多边形和圆教学设计学情分析教材分析课后反思

初中数学_正多边形和圆教学设计学情分析教材分析课后反思

四教学设计(一)教学目标知识与技能1.了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长,边心距,中心角之间的关系.2.会进行相关的计算.过程与方法(二)、教学重、难点重点:讲清正多边形和圆中心,正多边形半径,中心角,弦心距,边长之间的关系.难点探索正多边形和圆的关系.(三)、教学准备多媒体课件(四)、教学方法分组讨论,讲练结合三学情分析学生圆的性质掌握的不牢固,课堂上注意力不持久,对数学问题缺乏兴趣。

需要教师激发学生学习数学的兴趣,帮助学生树立信心,逐步养成良好的学习习惯,提高学生分析问题解决问题的能力.效果分析进一步巩固圆的性质,巩固垂径定理的应用.让学生进一步体会垂径定理在生活中的应用的广泛性,将正多边形问题转化为三角形问题.八.观课记录记录人:时春雷本节课根据学生年龄特征,认知规律及已有的数学知识水准进行教学,所以,根据教学内容和学生实际水平,我认为教师采用了以下的教学方法:1、教师点拨、引导,充分发挥学生的主观能动性,调动学生的理解和分析能力,让学生联系实际,动脑分析,充分体现出教为主导,学为主体的教育原则。

2、采用实验讨论法,让学生在讨论实践的过程中找出应吸取的经验教训,并联系现实,使学生在尝试学习中自主地得出结论,并使结论为现实服务。

3、采用尝试教学法,指导学生自学,让学生动手寻找问题答案,使学生的思维能力和实践创造能力得到提高。

课堂中教师为每一个学生提供参与学习活动的机会,在活动中培养他们的综合能力和合作意识,把课堂还给学生充分体现教师为辅学生为主的原则。

对本节课的学习,学生的热情程度高。

动手操作和课件辅助教学提高了学生的兴趣,使学生的注意力集中,全神贯注。

学生学习态度认真,求知欲高。

从整体来说这节课是非常成功的.二、教材分析:本节课是在学生学习了圆的性质后学习,这些知识为本节的学习起着铺垫作用。

本节内容正多边形和圆也是今后进一步研究圆的性质的基础,在教材中有着承上启下的重要地位。

正多边形与圆教案

正多边形与圆教案

1. 让学生了解正多边形的定义及其性质。

2. 让学生掌握正多边形与圆的关系。

3. 培养学生运用几何知识解决实际问题的能力。

二、教学内容1. 正多边形的定义及性质。

2. 正多边形与圆的关系。

3. 正多边形的计算与应用。

三、教学重点与难点1. 教学重点:正多边形的定义、性质及正多边形与圆的关系。

2. 教学难点:正多边形的计算与应用。

四、教学方法1. 采用问题驱动法,引导学生探究正多边形的性质。

2. 利用几何画板软件,直观展示正多边形与圆的关系。

3. 结合实际例子,让学生运用正多边形的知识解决实际问题。

五、教学过程1. 引入:讲解正多边形的定义,引导学生思考正多边形的性质。

2. 探究:让学生通过观察、操作,发现正多边形与圆的关系。

3. 讲解:讲解正多边形的计算方法,并举例说明。

4. 应用:布置练习题,让学生运用正多边形的知识解决实际问题。

5. 总结:对本节课的内容进行总结,强调正多边形与圆的关系。

6. 作业布置:布置适量作业,巩固所学知识。

1. 通过课堂提问,了解学生对正多边形定义和性质的掌握情况。

2. 通过练习题,评估学生对正多边形与圆的关系的理解程度。

3. 观察学生在实际问题中的应用能力,评估其对正多边形计算方法的掌握。

七、教学资源1. 几何画板软件:用于直观展示正多边形与圆的关系。

2. PPT课件:用于讲解正多边形的性质和计算方法。

3. 练习题:用于巩固学生对正多边形的理解和应用能力。

八、教学进度安排1. 第1周:介绍正多边形的定义及性质。

2. 第2周:讲解正多边形与圆的关系。

3. 第3周:讲解正多边形的计算方法。

4. 第4周:实际问题中的应用练习。

九、教学反思1. 反思教学方法的有效性,根据学生反馈调整教学策略。

2. 考虑如何更好地引导学生发现正多边形与圆的内在联系。

3. 评估作业难度,确保作业能够有效巩固所学知识。

十、拓展与延伸1. 引导学生探究正多边形在现实生活中的应用。

2. 介绍正多边形的相关历史背景和文化意义。

2024年人教版九年级数学上册教案及教学反思第24章24.3 正多边形和圆(第1课时)

2024年人教版九年级数学上册教案及教学反思第24章24.3 正多边形和圆(第1课时)

24.3 正多边形和圆第1课时一、教学目标【知识与技能】了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.【过程与方法】结合生活中的正多边形形状的图案,发现正多边形和圆的关系.【情感态度与价值观】学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又服务于生活.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】正多边形与圆的相关概念及其之间的运算.【教学难点】探索正多边形和圆的关系,正多边形半径,中心角、边心距,边长之间的关系.五、课前准备课件、图片、直尺等.六、教学过程(一)导入新课出示课件2,3:观察上边的美丽图案,思考下面的问题:(1)这些都是生活中经常见到的利用正多边形得到的物体,你能找出正多边形吗?(2)你知道正多边形和圆有什么关系吗?怎样做一个正多边形呢?学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.(板书课题)(二)探索新知探究一正多边形的对称性教师问:什么叫做正多边形?(出示课件5)学生答:各边相等,各角也相等的多边形叫做正多边形.教师问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?学生答:矩形不是正多边形,因为矩形不符合各边相等;菱形不是正多边形,因为菱形不符合各角相等;教师强调:正多边形:①各边相等;②各角相等,两个条件,缺一不可.教师问:正三角形、正四边形、正五边形、正六边形都是轴对称图形吗?都是中心对称图形吗?(出示课件6,7)学生动手操作,交流,感受正多边形的对称性.教师归纳:正n边形都是轴对称图形,都有n条对称轴,只有边数为偶数的正多边形既是轴对称图形又是中心对称图形.探究二正多边形的有关概念教师问:以正四边形为例,根据对称轴的性质,你能得出什么结论?(出示课件8,9)师生结合图形共同探究:EF是边AB、CD的垂直平分线,∴OA=OB,OD=OC.GH是边AD、BC的垂直平分线,∴OA=OD,OB=OC.∴OA=OB=OC=OD.∴正方形ABCD有一个以点O为圆心的外接圆.AC是∠DAB及∠DCB的角平分线,BD是∠ABC及∠ADC的角平分线,∴OE=OH=OF=OG.∴正方形ABCD还有一个以点O为圆心的内切圆.出示课件10:教师问:所有的正多边形是不是也都有一个外接圆和一个内切圆?学生答:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.教师问:一个正多边形的各个顶点在同一个圆上?学生答:一个正多边形的各个顶点在同一个圆上,则这个正多边形就是这个圆的一个内接正多边形,圆叫做这个正多边形的外接圆.教师问:所有的多边形是不是都有一个外接圆和内切圆?学生答:多边形不一定有外接圆和内切圆,只有是正多边形时才有,任意三角形都有外接圆和内切圆.教师出示概念:(出示课件11)1.正多边形的外接圆和内切圆的公共圆心,叫做正多边形的中心.2.外接圆的半径叫做正多边形的半径.3.内切圆的半径叫做正多边形的边心距.4.正多边形每一条边所对的圆心角,叫做正多边形的中心角.正多边形的每个中心角都等于360.n练一练:(出示课件12)完成下面的表格:学生计算交流并填表.探究三 正多边形的有关计算出示课件13:如图,已知半径为4的圆内接正六边形ABCDEF :①它的中心角等于 度; ②OC BC(填>、<或=); ③△OBC 是 三角形;④圆内接正六边形的面积是△OBC 面积的 倍. ⑤圆内接正n 边形面积公式:_______________________. 学生计算交流后,教师抽学生口答.①60;②=;③等边;④6;⑤1=2S ⨯⨯正多边形周长边心距出示课件14:例 有一个亭子,它的地基是半径为4m 的正六边形,求地基的周长和面积(精确到0.1m 2).教师分析:根据题意作图,将实际问题转化为数学问题.师生共同解答:(出示课件15)解:过点O 作OM ⊥BC 于M.在Rt △OMB 中,OB =4,MB =4222BC ==,利用勾股定理,可得边心距r ==亭子地基的面积:2112441.6(m ).22S l r =⋅=⨯⨯≈ 巩固练习:(出示课件16)如图所示,正五边形ABCDE 内接于⊙O ,则∠ADE 的度数是( )A .60°B .45°C .36°D .30° 学生独立思考后自主解答:C.教师归纳:圆内接正多边形的辅助线(出示课件17)1.连半径,得中心角;2.作边心距,构造直角三角形. 巩固练习:(出示课件18)已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?学生独立思考后解答,一生板演.解:∵直角三角形两直角边之和为8,设一边长为x. ∴ 另一边长为8-x.则该直角三角形面积:S=(8-x )x ÷2,即214.2s x x =-+ 当x=2b a -=4,另一边为4时,S 有最大值244ac b a -=8.∴当两直角边都是4时,直角面积最大,最大值为8. (三)课堂练习(出示课件19-24)1.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=______度.2.填表:3.若正多边形的边心距与半径的比为1:2,则这个多边形的边数是_____.4.如图是一枚奥运会纪念币的图案,其形状近似看作为正七边形,则一个内角为_____度.(不取近似值)5.要用圆形铁片截出边长为4cm的正方形铁片,则选用的圆形铁片的直径最小要____cm.6.如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,求⊙O的面积.7.如图,正六边形ABCDEF的边长为,点P为六边形内任一点.则点P 到各边距离之和是多少?8.如图,M,N分别是☉O内接正多边形AB,BC上的点,且BM=CN.(1)求图①中∠MON=_______;图②中∠MON=_______;图③中∠MON=_______;(2)试探究∠MON的度数与正n边形的边数n的关系.参考答案:1.360°解析:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°.2.3.34.412875.6.解:∵正方形的面积等于4, ∴正方形的边长AB=2. 则圆的直径AC=2, ∴⊙O 的半径=.∴⊙O 的面积为22.ππ=7.解:过P 作AB 的垂线,分别交AB 、DE 于H 、K ,连接BD ,作CG ⊥BD 于G.22∵六边形ABCDEF 是正六边形, ∴AB ∥DE ,AF ∥CD ,BC ∥EF ,∴P 到AF 与CD 的距离之和,及P 到EF 、BC 的距离之和均为HK 的长. ∵BC=CD ,∠BCD=∠ABC=∠CDE=120°, ∴∠CBD=∠BDC=30°,BD ∥HK ,且BD=HK.∴CG=12BC=.∵CG ⊥BD ,∴BD=2BG=2×=2×3=6.∴点P 到各边距离之和=3BD=3×6=18. 8.解:⑴①120°;②90°;③72°;⑵360MON n ︒∠=.(四)课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?(五)课前预习22BG BC-预习下节课(24.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本节课通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些基本概念,引导学生将实际问题转化为数学问题,体现了化归的思想.。

《正多边形和圆》教学反思

《正多边形和圆》教学反思

《正多边形和圆》教学反思《正多边形和圆》教学反思身为一名优秀的人民教师,课堂教学是我们的任务之一,借助教学反思我们可以快速提升自己的教学能力,优秀的教学反思都具备一些什么特点呢?下面是小编帮大家整理的《正多边形和圆》教学反思,希望对大家有所帮助。

《正多边形和圆》教学反思1昨天在学校上了《正多边形与圆》一节,在前一节课,我花了十分钟的时间已经让学生通过看书感知了中心、中心角、半径、边心距的定义,这节的教学重点是特殊的正多边形和圆中边心距、边长、半径的关系。

我先给了学生五分钟看书上正六边形的例题,在黑板上画了半径为R的正四边形、正六边形、正三角形及其外接圆,点拨例题后我以表格的形式给出学生的第一个问题是:分别用R表示正四边形、正六边形、正三角形的边长、周长、边心距和面积。

以前一直习惯于我讲学生听,这节我试着让学生讲,学生在黑边前的讲解的时候我发现其他学生听的更认真,虽然讲解的学生还存在着声音小、讲解不是太透彻等缺点,但整体还可以,多给学生机会肯定会有提高。

整节课我围绕这个问题花了很长的时间,目的是让更多的学生体会并且学会这种构造直角三角形的思想。

其中我给学生补充的知识有:有一个角是30度的直角三角形的三边比和等腰直角三角形的三边比的推导及结论,我觉得这样可以为学生的运算节省时间。

这节课的第二个问题是:探究正三角形的外接圆半径R 和内切圆的半径r的数量关系,以及它们与正三角形的高之间的数量关系。

在这个过程由两个同学去讲解,田礼厚同学通过连接半径转化R构造直角三角形,而郑文豪同学通过构造弦心距转化r构造直角三角形,同样都是转化,但转化的不一样,我觉得学生的思维表现的很活跃。

整节课设计的问题较少,重点在于让学生体会构造思想和转化思想,学生表现很积极,但是没有练习以及反馈的时间,在接下来的练习课上我觉得困扰学生的不是构造直角三角形的思想而是计算的速度及准确性,但快速准确运算又不是一天两天的功夫,我认为对于我的学生而言,每节课还得给适当的运算来锻炼学生。

正多边形和圆教案

正多边形和圆教案

正多边形和圆教案【教学目标】1. 理解正多边形和圆的定义和特点。

2. 掌握计算正多边形的周长和面积的方法。

3. 掌握计算圆的周长和面积的方法。

【教学重点】1. 正多边形和圆的定义和特点。

2. 正多边形的周长和面积计算。

3. 圆的周长和面积计算。

【教学准备】1. 教师准备:投影仪或黑板、粉笔。

2. 学生准备:几何工具。

【教学过程】一、导入(5分钟)1. 教师出示图形,让学生回顾正多边形和圆的定义。

2. 学生回答正多边形和圆的特点。

二、正多边形(15分钟)1. 教师板书正多边形的定义和性质。

(1)定义:所有边相等,所有角相等的多边形称为正多边形。

(2)性质:内角和公式为180°×(n-2),其中n表示正多边形的边数。

2. 教师出示图形,引导学生计算正多边形的周长和面积。

(1)周长计算:正多边形的周长等于边长乘以边数。

(2)面积计算:正多边形的面积等于边长的平方乘以正多边形的边数,再除以4乘正切180°/n。

三、圆(20分钟)1. 教师板书圆的定义和性质。

(1)定义:平面上的一组点,到圆心的距离都相等的图形。

(2)性质:圆心角的度数等于它所对应的弧的度数。

2. 教师出示图形,引导学生计算圆的周长和面积。

(1)周长计算:圆的周长等于直径乘以π(π取近似值3.14)。

(2)面积计算:圆的面积等于半径的平方乘以π。

四、小结(5分钟)教师总结正多边形和圆的定义、特点以及计算方法。

【教学延伸】1. 学生可以用几何工具绘制正多边形和圆来加深理解。

2. 学生可以通过解决相关练习题来熟练应用计算方法。

【教学反思】本节课通过引导学生理解正多边形和圆的定义和特点,以及掌握计算它们的周长和面积的方法,培养了学生的几何计算能力。

在教学过程中,可适当增加生动的示例和实例计算,以提高学生的学习兴趣和思维能力。

正多边形和圆(教案、教学反思、导学案)

正多边形和圆(教案、教学反思、导学案)

24.3正多边形和圆【知识与技能】了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.会用圆规、量角器和直尺来作圆内接正多边形.【过程与方法】结合生活中的正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识,解决正多边形的问题.【情感态度】学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又服务于生活,体现事物之间是相互联系,相互作用的.【教学重点】正多边形与圆的相关概念及其之间的运算.【教学难点】探索正多边形和圆的关系,正多边形半径,中心角、弦心距,边长之间的关系.一、情境导入,初步认识观察这些美丽的图案,都是在日常生活中,我们经常能看到的利用正多边形得到的物体.(1)你能从图案中找出多边形吗?(2)你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来?【教学说明】学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.问题(2)的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索、研究的热情,并有意将注意力集中在正多边形和圆的关系上.二、思考探究,获取新知1.正多边形和圆的关系问题1将一个圆分成5等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是,请你证明这个结论.教师引导学生根据题意画图,并写出已知和求证.已知:如图,在⊙O中,A、B、C、D、E是⊙O的五等分点.依次连接ABCDE 形成五边形.问:五边形ABCDE是正五边形吗?如果是,请证明你的结论.答案:五边形ABCDE是正五边形.====,∴AB=BC=CD=DE=EA,证明:在⊙O中,∵AB BC CD DE EA==,∴∠A=∠B;同理∠B=∠C=∠D=∠E,∴五边形ABCDE 3BCE CDA AB是正五边形.【教学说明】教师引导学生从正多边形的定义入手证明,即证明多边形各边都相等,各角都相等;引导学生观察、分析,教师带领学生完成证明过程.问题2如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?答案:这个n边形一定是正n边形.【教学说明】在这个问题中,教师重点关注学生是否会仿照证明圆内接正五边形的方法证明圆内接正n边形.从问题1到问题2是将结论由特殊推广到一般,这符合学生的认知规律,并教导学生一种研究问题的方法,由特殊到一般.问题3各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明理由;如果不是,举出反例.答案:各边相等的圆内接多边形是正多边形.因为:各边相等的圆内接多边形的各角也相等.各角相等的圆内接多边形不是正多边形.如:矩形.【教学说明】问题3的提出是为了巩固所学知识,使学生明确判定圆内接多边形是正多边形,必须满足各边都相等,各内角也都相等,这两个条件缺一不可.同时教会学生学会举反例.培养学生思维的批判性.2.正多边形的有关概念综合图形,给出正多边形的中心,半径,中心角,边心距等概念.正n边形:中心角为:360°n;内角的度数为:180°(n-2)n3.正多边形和圆有关的计算问题例1(课本106页例题)有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积(结果保留小数点后一位).分析:根据题意作图,将实际问题转化为数学问题.解:如图.∵六边形ABCDEF是正六边形,∴∠BOC=360°/6=60°.∴△BOC是等边三角形.∴R=BC=4m,∴这个亭子地基的周长为:4×6=24(m).过O点作OP⊥BC,垂足为P.在Rt△OCP中,OC=R=4,CP=1/2BC=2..例2填空.【教学说明】例1是让学生了解有关正多边形的概念后,掌握正多边形的计算.同时,通过例1引导学生将实际问题转化为数学问题,将多边形化归为三角形来解决.例2通过网格来呈现问题,在解决例2时,教师指导学生用数形结合的方法来解决问题,加深对有关概念的理解.4.画正多边形画正多边形,通常是通过等分圆周的方法来画的.等分圆周有两种方式:(1)用量角器等分圆周.方法一:由于在同圆或等圆中相等的圆心角所对弧相等,因此作相等的圆心角可以等分圆.方法二:先用量角器画一个等于360°/n的圆心角,这个圆心角所对的弧就是圆的1/n,然后在圆上依次截取这条弧的等弧,就得到圆的几等分点.【教学说明】这两种方法可以任意等分圆,但不可避免地存在误差.(2)用尺规等分圆正方形的作法:如图(1)在⊙O中,尺规作两条垂直的直径,把⊙O四等分,从而作出正方形ABCD.再逐次平分各边所对弧,则可作正八边形、正十六边形等边数逐次倍增的正多边形.正六边形的作法:方法一:如图(2)任意作一条直径AB,再分别以A、B 为圆心,以⊙O的半径为半径作弧,与⊙O交于C、D和E、F,则A、C、E、B、F、D为⊙O的六等分点,顺次连接各等分点,得到正六边形ACEBFD.方法二:如图(3)由于正六边形的半径等于边长.所以在圆上依次截取等于半径的弦,就将圆六等分,顺次连接各等分点即可得到正六边形.【教学说明】尺规作图法是一种比较准确的等分圆的方法,但有较大的局限性,它不能将圆任意等分.三、运用新知,深化理解1.如图,圆内接正五边形ABCDE,对角线AC与BD相交于点P,则∠APB 的度数为_______.2.边长为2/π的正方形的内切圆与外接圆所组成的圆环的面积为_____.3.如果一个正六边形的面积与一个正三角形的面积相等,求正六边形与正三角形的内切圆的半径之比.4.如图,点M、N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,……正n边形的边AB、BC上的点,且BM=CN,连接OM、ON.(1)求图1中的∠MON的度数;(2)在图2中,∠MON的度数为_____,在图3中,∠MON的度数为_____;(3)试探索∠MON的度数与正n边形边数n之间的关系.(直接写出答案)【教学说明】题1、2可由学生自主探索完成,题3、4可先让学生思考,然后教师加以提示,最后共同解答.完成教材第106页、108页的练习.【答案】1.72°4.解:(1)连接OB、OC.∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△BOM≌△CON,∠BOM=∠CON,∴∠MON=∠BOC=120°.(2)90°72°(解法与(1)相同)(3)∠MON=360°/n.四、师生互动,课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?你能画出正多边形吗?【教学说明】教师先提出问题,然后让学生自主思考并回顾,教师再予以补充和点评.1.布置作业:从教材“习题24.3”中选取.2.完成练习册中本课时练习的“课后作业”部分.1.本节课首先从复习正多边形的定义入手,通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些基本概念,引导学生将实际问题转化为数学问题,体现了化归的思想.其次,在这一基础上,又教给学生用等分圆周的方法作正多边形,这可以发展学生的作图能力.2.等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最基本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.24.3正多边形和圆一、新课导入1.导入课题:情景:欣赏下面图片.问题:什么叫正多边形?图中有哪些正多边形?正多边形与圆有哪些关系?2.学习目标:(1)理解正多边形及其半径、边长、边心距、中心角等概念.(2)会进行特殊的与正多边形有关的计算,会画某些正多边形.3.学习重、难点:重点:正多边形的有关概念与计算.难点:正多边形的有关计算.二、分层学习1.自学指导:(1)自学内容:教材第105页至第106页的内容.(2)自学时间:6分钟.(3)自学方法:完成自学参考提纲.(4)自学参考提纲:①什么叫正多边形?矩形是正多边形吗?菱形呢?正方形呢?各边相等、各角也相等的多边形叫做正多边形.矩形和菱形不是正多边形,正方形是正多边形.②正多边形是轴对称图形吗?是中心对称图形吗?是轴对称图形,不一定是中心对称图形.③以正六边形为例,指出右图中正多边形的中心、半径、中心角和边心距.中心:点O.半径:OC、OE、OF.中心角:∠EOF.边心距:OM.④正n 边形的每个内角都为()n ?n -︒2180,每个外角都为n ︒360,中心角为n︒360. ⑤有一个亭子,它的地基是半径为4m 的正六边形,求地基的周长和面积(保留小数点后一位).解:作OM ⊥BC 于M.连接OB 、OC,∵ABCDEF 是正六边形,∴△OBC 为正三角形,∴∠MOC=12∠BOC=30°,OB=BC=OC. ∴l =6BC =6OB =6×4=24(m ).在Rt △OMC 中,∵∠MOC=30°,∴MC=12OC=2m. ∴OM=OC 2-MC 2=23m.∴()OBC S BC OM m ==⨯⨯=2114234322. ∴()正六边形OBC S S .m ==≈26243416.即地基的周长为24m,面积约为41.6m2.2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:明了学生完成自学参考提纲的情况.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:小组内相互交流、研讨.4.强化:(1)正多边形的相关概念.(2)正n 多边形的对称性.(3)填表:1.自学指导:(1)自学内容:教材第107页的内容.(2)自学时间:4分钟.(3)自学要求:阅读并画图,推理以强化理解.(4)自学参考提纲:①两种六等分圆周的方法中,第一种方法的依据是作相等的圆心角;第二种方法的依据是在圆上作相等的弧.②分别在所给的圆中画出正三角形、正方形和正六边形.2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:明了学生是否明白画图的依据.②差异指导:根据学情进行指导.(2)生助生:生生互动,交流、研讨.4.强化:正多边形的画法.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?还有哪些疑惑?2.教师对学生的评价:(1)表现性评价:点评学生学习的态度、积极性、动手情况及学习效果和存在问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)本节课首先从复习正多边形的定义入手,通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些基本概念,引导学生将实际问题转化为数学问题,体现了化归的思想.其次,在这一基础上,又教给学生用等分圆周的方法作正多边形,这可以发展学生的作图能力.(2)等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最基本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)下列说法中正确的是( C )A.各边都相等的多边形是正多边形B.正多边形既是轴对称图形,又是中心对称图形C.各边都相等的圆内接多边形是正多边形D.各角都相等的圆内接多边形是正多边形2.(10分)如果一个正多边形的每个外角都等于36°,则这个多边形的中心角等于(A )A.36°B.18°C.72°D.54°3.(10分) 如图,点O 是正六边形的对称中心,如果用一副三角板的角,借助点O (使直角的顶点落在点O 处),把这个正六边形的面积n 等分,那么n 的所有可能取值的个数是(A )A.4B.5C.6D.74.(20分) 如图,要拧开一个边长为a=6mm 的正六边形螺帽,扳手张开的开口b 至少为多少?解:如图,∠ABC=120°.AB =a,AC =b.过B 作BD ⊥AC 于点D,则AD=DC=12b. 在Rt △ABD 中,∠BAC=30°,∴BD=12AB=3mm. ∴AD AB BD =-=-=22226333(mm ).∴b=2AD=63mm.即扳手张开的开口b 至少要63mm.5.(20分) 如图,正方形的边长为4cm ,剪去四个角后成为一个正八边形,求这个正八边形的边长和面积.解:设正八边形的边长为x cm,则xx -⎛⎫⨯= ⎪⎝⎭22422.即x2+8x-16=0.解得x=-1424,x=--2424(舍去).∴剪去的四个小三角形的面积为()()⎡⎤--⎢⎥⨯⨯=-⎢⎥⎣⎦24424144832222cm2.∴正八边形的边长为()-424cm,面积为()()cm⨯--=-2444832232232.二、综合应用(20分)6.(20分) 如图,已知正五边形ABCDE中,BF与CM相交于点P,CF=DM.(1)求证:△BCF≌△CDM;(2)求∠BPM的度数.(1)证明:∵ABCDE是正五边形,∴BC=CD,∠BCD=∠CDM,又CF=DM,∴△BCF≌△CDM.(2)解:由(1)知∠FBC=∠MCD,∴∠BPM=∠FBC+∠BCM=∠MCD+∠BCM=∠BCF=35×180°=108°.三、拓展延伸(10分)7.(10分) 一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是(B)A.a4>a2>a1B.a4>a3>a2C.a1>a2>a3D.a2>a3>a4。

九年级数学正多边形与圆教案(精选多篇)正文

九年级数学正多边形与圆教案(精选多篇)正文

九年级数学正多边形与圆教案(精选多篇)正文第一篇:九年级数学正多边形与圆教案九年级数学正多边形与圆教案学习目标:1、了解正多边形的概念、正多边形和圆的关系;2、会通过等分圆心角的方法等分圆周,画出所需的正多边形;3、能够用直尺和圆规作图,作出一些特殊的正多边形;4、理解正多边形的中心、半径、边心距、中心角等概念。

学习重点:正多边形的概念及正多边形与圆的关系。

学习难点:利用直尺与圆规作特殊的正多边形。

学习过程:一、情境创设:观察下列图形,你能说出这些图形的特征吗?提问:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?二、探索活动:活动一观察生活中的一些图形,归纳它们的共同特征,引入正多边形的概念概念:叫做正多边形。

(注:各边相等与各角相等必须同时成立)提问:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.活动二用量角器作正多边形,探索正多边形与圆的内在联系1、用量角器将一个圆n(n≥3)等分,依次连接各等分点所得的n边形是这个圆的内接正n边形;圆的内接正n边形将圆n等分;2、正多边形的外接圆的圆心叫正多边形的中心。

活动三探索正多边形的对称性问题:正三角形、正方形、正五边形、正六边形、正八边形中,哪些是轴对称图形?哪些是中心对称图形?哪些既是轴对称图形,又是中心对称图形?如果是轴对称图形,画出它的对称轴;如果是中心对称图形,找出它的对称中心。

问题:正多边形与圆有什么关系呢?什么是正多边形的中心?发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆.圆心就是正多边形的中心。

分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?你知道为什么吗?思考:任何一个正多边形既是轴对称图形,又是中心对称图形吗?跟边数有何关系?结论:正多边形都是轴对称图形,一个正n边形有条对称轴,每条对称轴都通过正n边形的;一个正多边形,如果有偶数条边,那么它既是轴对称图形,又是中心对称图形。

正多边形和圆的教学设计与反思

正多边形和圆的教学设计与反思

“正多边形和圆”的教学设计与反思课时安排:共两课时第一课时教学目标:知识与技能:1.了解多边形和圆的关系2.了解用量角器等与圆心角三等分圆,掌握用圆规作图内接正方形和正六边形,并且能尺规作图正八边形,正三角形,正十二边形。

数学思考和解决问题:通过画图培养学生的画图能力,提高学生的审美能力。

情感与态度:学生与人合作,交流,体验数学在生产,生活中的应用。

教学重点:1.会用量角器等分圆心角等分圆周。

(等分圆周法)2.会用尺规作圆内接正方形和正六边形。

教学难点:准确作图教学方法和方式手段:提出问题→解决问题→归纳总结→应用创新教学过程设计:问题1:什么叫正多边形?(复习提问)什么叫圆内多边形?互动方式:口答解答:正多边形:各边相等,各角也相等的多边形。

比如:正三角形、正方形、正五边形。

圆内接正多边形:各个顶点都在圆上的正多边形就叫做圆内接正多边形,比如圆内接正三角形。

反馈练习:(课本P105。

练习1,2)互动方式:通过口答,发表见解。

1.矩形是正多边形吗?菱形呢?正方形呢?为什么?解答:矩形各角相等,但各边不相等,它不是正多边形;菱形各边相等,但各角不相等,也不是正多边形;正方形四边,四角都相等,四正多边形。

2.各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是多边形呢?如果是,说明为什么,如果不是,举出反例。

解答:∵各边相等的圆内接多边形的各个角也相等。

∴各边相等的圆内接多边形是正多边形。

各角相等的圆内接多边形不是正多边形。

例如:矩形问题2:你会作出任意一个正多边形吗?(大约一分钟后提示:本节教你了一个作图方法,请问在课本哪个位子?)解答:课本p104。

第2段第一行“只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形”,这也是正多边形和圆的关系。

(这种方法叫做等分圆周法)分析问1:那么这种作画的根据是什么?也就是说为什么这样做,就可以得到一个正多边形呢?解答:因为根据“弧、弦、圆心角之间的关系定理”在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

初中数学_正多边形和圆教学设计学情分析教材分析课后反思

初中数学_正多边形和圆教学设计学情分析教材分析课后反思

初中数学_正多边形和圆教学设计学情分析教材分析课后反思四教学设计(一)教学目标知识与技能1.了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长,边心距,中心角之间的关系.2.会进行相关的计算.过程与方法(二)、教学重、难点重点:讲清正多边形和圆中心,正多边形半径,中心角,弦心距,边长之间的关系.难点探索正多边形和圆的关系.(三)、教学准备多媒体课件(四)、教学方法分组讨论,讲练结合三学情分析学生圆的性质掌握的不牢固,课堂上注意力不持久,对数学问题缺乏兴趣。

需要教师激发学生学习数学的兴趣,帮助学生树立信心,逐步养成良好的学习习惯,提高学生分析问题解决问题的能力.效果分析进一步巩固圆的性质,巩固垂径定理的应用.让学生进一步体会垂径定理在生活中的应用的广泛性,将正多边形问题转化为三角形问题.八.观课记录记录人:时春雷本节课根据学生年龄特征,认知规律及已有的数学知识水准进行教学,所以,根据教学内容和学生实际水平,我认为教师采用了以下的教学方法:1、教师点拨、引导,充分发挥学生的主观能动性,调动学生的理解和分析能力,让学生联系实际,动脑分析,充分体现出教为主导,学为主体的教育原则。

2、采用实验讨论法,让学生在讨论实践的过程中找出应吸取的经验教训,并联系现实,使学生在尝试学习中自主地得出结论,并使结论为现实服务。

3、采用尝试教学法,指导学生自学,让学生动手寻找问题答案,使学生的思维能力和实践创造能力得到提高。

课堂中教师为每一个学生提供参与学习活动的机会,在活动中培养他们的综合能力和合作意识,把课堂还给学生充分体现教师为辅学生为主的原则。

对本节课的学习,学生的热情程度高。

动手操作和课件辅助教学提高了学生的兴趣,使学生的注意力集中,全神贯注。

学生学习态度认真,求知欲高。

从整体来说这节课是非常成功的.二、教材分析:本节课是在学生学习了圆的性质后学习,这些知识为本节的学习起着铺垫作用。

本节内容正多边形和圆也是今后进一步研究圆的性质的基础,在教材中有着承上启下的重要地位。

正多边形和圆教案

正多边形和圆教案

正多边形和圆教案一、教学目标:1. 知识与技能:(1)理解正多边形的定义及其性质;(2)掌握圆的定义及其基本性质;(3)能够运用正多边形和圆的知识解决实际问题。

2. 过程与方法:(1)通过观察、思考、交流,培养学生的逻辑思维能力和团队协作能力;(2)学会用图形软件绘制正多边形和圆,提高学生的动手实践能力。

3. 情感、态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神;(3)培养学生珍惜自然资源,爱护环境的美好情感。

二、教学重点与难点:1. 教学重点:(1)正多边形的定义及其性质;(2)圆的定义及其基本性质;(3)正多边形和圆在实际问题中的应用。

2. 教学难点:(1)正多边形边数与圆周率的关系;(2)圆的面积公式的推导。

三、教学准备:1. 教具准备:(1)正多边形和圆的模型;(2)多媒体教学设备;(3)绘图软件。

2. 学生准备:(1)掌握基本的几何知识;(2)具备一定的观察和思考能力。

四、教学过程:1. 导入新课:(1)利用模型展示正多边形和圆;(2)引导学生观察和思考,激发学生的兴趣和好奇心。

2. 自主探究:(1)让学生通过观察、思考、交流,总结正多边形的定义及其性质;(2)引导学生探索圆的定义及其基本性质;(3)组织学生讨论正多边形和圆在实际问题中的应用。

3. 教师讲解:(1)讲解正多边形边数与圆周率的关系;(2)讲解圆的面积公式的推导。

4. 实践操作:(1)让学生利用绘图软件绘制正多边形和圆;(2)引导学生运用正多边形和圆的知识解决实际问题。

5. 课堂小结:(1)回顾本节课所学内容,加深学生对正多边形和圆的认识;(2)强调正多边形和圆在实际问题中的应用价值。

五、课后作业:1. 完成教材上的相关练习题;2. 收集生活中的正多边形和圆的实例,下节课分享。

教学反思:本节课通过观察、思考、交流等环节,让学生掌握了正多边形和圆的基本知识,培养了学生的动手实践能力。

《正多边形和圆》教学设计

《正多边形和圆》教学设计

《正多边形和圆》教学设计正多边形和圆是数学中比较重要的概念,也是小学生及初中生学习数学知识时常涉及到的知识点。

有了对正多边形和圆必要的认识,学生对几何形状的理解也会更加深入,从而为深入学习几何和数学打下基础。

本文将介绍正多边形和圆的概念,以及如何在课堂上设计一系列相应的教学活动,以广泛和深入的了解正多边形和圆的特点与几何意义。

首先,让学生了解正多边形和圆的定义和特点,以及它们之间的区别。

正多边形是一种几何图形,其边数大于等于三条时,其定义是指每条边相等且彼此相互平行。

圆是一种特殊的多边形,其定义为圆心处有等距离,故无论位置如何,半径的值都是相同的。

此外,学生还需要了解正多边形和圆的各种参数,如多边形的边数、圆的半径等,以及这些参数如何影响图形的外观和形状。

其次,培养学生熟练掌握正多边形和圆的计算公式以及相关物理知识,进行准确的计算和分析。

学生需要学习半径、角度等参数与周长或面积之间的关系,以及多边形的面积和总角度等内容,以便求解应用问题,并能够使用这些公式。

此外,学生还需要学习正多边形和圆的几何变换,理解反射、旋转、缩放等几何操作如何影响图形的形状和大小,以及变换后图形参数之间的关系。

还可以通过一些程序语言来描绘几何图形,利用算法探究正多边形和圆的规律,以深入理解几何学知识并熟练掌握相关计算方法。

最后,为使学生更加深入的理解和掌握此类概念,教师可以安排各种形式的实践活动,让学生动手实践,拓展学习知识的广度和深度。

例如安排学生用圆规、原纸和尺子来绘制图形,做比较观察,了解多边形和圆的内外属性及其变化;或者让学生用形状象征性的方法来学习,如利用正多边形和圆图景来表示诗词中的美感。

经过这系列教学活动,学生将更深入地了解正多边形和圆的几何特点、几何意义,以及其与其他几何图形的比较和关联,并能够对几何问题进行准确的计算和分析,最终建立完整的正多边形和圆的概念知识。

《正多边形与圆》教学设计(2020区优质课一等奖教案)

《正多边形与圆》教学设计(2020区优质课一等奖教案)

《正多边形与圆》教学设计(2020区优质课一等奖教案)《正多边形与圆》教学设计(2020区优质课一等奖教案)一、教学目标知识与技能1. 理解正多边形的定义及其性质。

2. 掌握圆的定义及其性质。

3. 能够运用正多边形和圆的知识解决实际问题。

过程与方法1. 通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。

2. 学会用数学语言描述和解释几何图形。

情感态度与价值观1. 培养学生对数学的兴趣和好奇心。

2. 培养学生的团队合作意识和沟通能力。

二、教学内容1. 正多边形1.1 正多边形的定义:一个多边形如果所有角相等,且所有边相等,就称为正多边形。

1.2 正多边形的性质:正多边形的中心角等于 \( \frac{360°}{n} \),其中 \( n \) 是正多边形的边数。

2. 圆2.1 圆的定义:平面上到一个固定点距离相等的所有点的集合。

2.2 圆的性质:圆心到圆上任意一点的距离等于半径;圆上任意两点关于圆心对称。

三、教学过程1. 导入1分钟:通过展示一些生活中的正多边形和圆的图片,如圆桌、足球、车轮等,引导学生关注这些几何图形,激发学生的学习兴趣。

2. 新课导入5分钟:介绍正多边形和圆的定义和性质,让学生通过观察、操作、思考,理解正多边形和圆的本质特征。

3. 课堂讲解20分钟:详细讲解正多边形和圆的性质,通过例题展示如何运用正多边形和圆的知识解决实际问题。

4. 课堂练习10分钟:安排一些练习题,让学生巩固所学知识,并能够灵活运用。

5. 总结与反思5分钟:让学生总结本节课所学内容,反思自己的学习过程,提出疑问。

四、教学评价通过课堂讲解、练习题和课后作业,评价学生对正多边形和圆的定义、性质的理解和运用程度。

同时,观察学生在课堂上的参与程度、思维能力和团队合作意识,全面评价学生的学习效果。

五、教学资源1. 正多边形和圆的图片素材。

2. 正多边形和圆的练习题。

3. 教学课件和教案。

六、教学建议1. 注重学生的主体地位,鼓励学生积极参与课堂讨论和练习。

数学人教版九年级上册24.3正多边形和圆教案、学案、教学反思

数学人教版九年级上册24.3正多边形和圆教案、学案、教学反思

《24.3正多边形和圆》教学过程设计——吴志文问题与情境师生行为设计意图[活动1]观看视频问题1从视频中你看到了哪些几何图形?复习正多边形的概念,展示并欣赏常见的几种正多边形及图片问题2你知道正多边形和圆有什么关系吗?你能借助圆做出一个正多边形吗?教师播放视频,提出问题1.学生观察图案,感受生活中的正多边形.教师关注:(1)学生能否从这些图案中找到正多边形;(2)学生能否从这些图案中发现正多边形和圆的关系.教师提出问题2,引导学生观察、思考.学生讨论、交流,发表各自见解.教师关注:学生能否联想到等分圆周作出正多边形.通过观看美丽的图案,欣赏生活中正多边形形状的物体,让学生感受到数学来源于生活,并从中感受到数学美.问题2的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索,研究的热情,调动学生学习的积极性,并有意将注意力集中在正多边形与圆的关系上.[活动2]问题1将一个圆五等分,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是请你证明这个结论.教师演示作图:把圆分成相等的5段弧,依次连接各个分点得到五边形.教师引导学生从正多边形的定义入手,证明多边形各边都相等,各角都相等,引导学生观察、分析.教师关注:(1)学生能否看出:将圆分成五等份,可以得到5段相等的弧,这些弧所对的弦也是相等的,这些弦就是五边形的各边,进而证明五边形的各边相等;(2)学生能否观察发现圆内接五边形的各内角都是圆周角;(3)学生能否发现每一个圆周角所对弧都是三等份的弧;(4)学生能否利用这些圆周角所对的弧都相等,证明五边形的各内角相等,从而证明圆内接五边形是正五边形.教师带领学生完成证明过程.教师提出问题2,学生思考,同学间交流,回答问题.教师关注:学生是否会仿造证明圆内接正五边形的方法证明圆内接正n边形.在活动1中学生们发现了正多边形与圆有着密切的关系,只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形.活动2的设计就是要学生在教师的指导下进行逻辑推理,论证所发现的结论的正确性,从而培养学生科学严谨的治学态度,和运用所学知识解决问题的能力.问题2如果将圆n等分,依次连接各分点得到一个n边形,这n边形一定是正n边形吗?问题3各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形呢?如果是,说明为什么?如果不是,举出反例.教师根据学生的回答给以总结:将圆n等分,依次连接各分点得到一个n边形,这n边形一定是正n边形.教师提出问题3,学生讨论,思考回答.教师关注:(1)学生能否利用正多边形定义进行判断;(2)学生能否由圆内接多边形各边相等,得到弦相等及弦所对的弧相等,进而证明圆内接多边形的各内角相等;(3)学生能否举出反例说明各角相等的圆内接多边形不一定是正多边形.教师讲评.问题2的设计是将结论由特殊推广到一般.这符合学生的认知规律.并教给学生一种研究问题的方法:由特殊到一般.问题3的提出是为了巩固所学知识,使学生明确判定圆内接多边形是正多边形,必须满足各边都相等,且各内角都相等,这两个条件缺一不可.同时教给学生学会举反例,培养学生思维的批判性.[活动3]学生观看课件,理解概念.例题1矗立在瑞金“一苏大”的革命烈士纪念亭,它的地基是半径为4m的正六边形,求地基的周长和面积(精确到0.1m2)变式练习 1.瑞金“一苏大”罕见的三角形纪念亭——公略亭,三个角寓意为黄公略将军在第三次反围剿中牺牲的,它的地基是边心距为m的正三角形,求地基的边长。

正多边形和圆教案

正多边形和圆教案

正多边形和圆教案一、教材分析本节内容正多边形和圆也是今后进一步研究圆的性质的基础,在教材中有着承上启下的重要地位。

本节课从定性、定量的两个角度去讨论,挖掘蕴含的数学知识,把感性认识转化成理性认识,具体到抽象,让学生主动参与,亲身体验知识的发生与发展的过程。

利用正多边形和圆的位置关系,把形的问题转化成了数的问题,体现了数形结合的思想。

二、教学目标通过对正多边形与圆的关系的探索,培养学生观察、猜想、推理、迁移及归纳能力。

使学生初步掌握正多边形与圆的关系的定理,进一步向学生渗透“特殊——一般”再“一般——特殊”的唯物辩证法思想。

也要通过日常生活中观察到的正多边形图案及运用正多边形和等分圆周设计图案培养学生动手能力,体会图形来源于现实,服务于现实。

三、教学重点讲清正多边形和圆中心正多边形半径、中心角、弦心距、边长之间的关系.四、教学难点通过例题使学生理解四者:正多边形半径、中心角、弦心距、边长之间的关系.五、教学用具三角板,圆规六、教学过程一、复习引入请同学们口答下面两个问题.1.什么叫正多边形?2.从你身边举出两三个正多边形的实例,正多边形具有轴对称、中心对称吗?其对称轴有几条,对称中心是哪一点?老师点评:1.各边相等,各角也相等的多边形是正多边形.2.正多边形是轴对称图形,对称轴有无数多条;正多边形是中心对称图形,其对称中心是正多边形对应顶点的连线交点.二、探索新知如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,正五边形ABCDE,以OA为半径作圆,那么肯定B、C、D、E、都在这个圆上.因此,正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.又∴弧BCE=弧CDA=3×弧AB∴∠A=∠B同理可证:∠B=∠C=∠D=∠E=∠A又五边形ABCDE的顶点都在⊙O上∴五边形ABCDE是正五边形中心:把一个正多边形的外接圆的圆心叫做正多边形的中心半径:外接圆的半径叫做正多边形的半径中心角:正多边形每一边所对的圆心角叫做正多边形的中心角边心距:中心到正多边形的一边的距离让学生分别指出正三角形与正方形的中心,半径,边心距,中心角。

正多边形和圆教学反思[精选.]

正多边形和圆教学反思[精选.]

正多边形和圆教学反思儋州市西联中学邓高春正多边形和圆,下面对这节课教学进行如下反思:一、成功之处:1、本节课的教学从生活实际出发(观看美丽图案),引导学生得出定义。

这一做法渗透了数学来源于实践,反过来又作用于实践的辨证唯物主义思想。

对定义的教学,不是简单地由教师告诉学生,而是由学生自己观察、猜想、探究得出结论,让学生体验知识的产生过程。

2、学生走上讲台,拉近了师生之间的距离。

教师不是高高在上,而是与学生处在同等位置上,培养了学生能力。

3、备课仔细,对课堂上可能出现的问题作了充分地考虑。

如在探究正多边形的定义的时候,对学生可能得出的结论作了充分的准备。

反映了教师的基本功扎实。

4、整堂课都体现了对学生动手能力的培养。

在探究正多边形和圆的关系时,让学生自己动手操作,画圆,实验并进行猜想,这正是新大纲教改思路的体现。

5、注重学生间的合作交流。

表现形式有同位或小组讨论。

实验表明学生之间的知识交流比师生间交流更利于学生的知识掌握。

同时,这种形式也培养了学生将来走向社会后能够充分地表达自己的见解,听取别人的意见。

6、注重学法指导。

在进行正多边形和圆关系的第二个结论时,指导学生自学,教给学生学习的方法,“授学生以渔”,为学生将来的终身教育打下基础。

7、小结的形式。

8、本节课一个突破性的地方就是在课堂上让学生质疑,让学生对本节课不明白的地方或是与老师意见不一致的地方敢于提出自己的见解。

尽管在这方面做得不是很到位,但是已跨出大胆的一步。

二、不足之处:1、在讨论时应该放得更开一些,可以采用多种形式,如:下位找自己熟悉的同学讨论,或是不局限有于一个小组,而进行多组合作,或是与老师(甚至是听课老师)讨论。

2、应注意多媒体板演的示范作用,投影应适时。

最新文件仅供参考已改成word文本。

方便更改。

正多边形和圆教学设计

正多边形和圆教学设计

正多边形和圆教学设计一、教学目标通过本节课的学习,使学生了解正多边形和圆的概念,学会绘制正多边形和圆形,掌握正多边形和圆的基本性质,培养学生的观察力、表达力和创造力。

二、教学重点和难点1.重点:正多边形和圆的概念、绘制方法和基本性质2.难点:圆的周长和面积计算方法三、教学准备1.教学PPT2.讲义和练习册3.黑板和彩色粉笔4.直尺、圆规和铅笔四、教学步骤步骤一:导入新知识1.利用教学PPT或黑板,简单介绍正多边形和圆的概念,引发学生对这两个图形的兴趣。

2.引导学生观察身边的事物,提问:你们能看到哪些正多边形和圆?步骤二:正多边形的绘制1.讲解正多边形的定义:所有边相等,所有角相等的多边形称为正多边形。

2.演示如何用直尺和圆规绘制正三边形、正四边形和正五边形。

3.让学生自己尝试绘制,并检查和纠正错误。

步骤三:圆的绘制1.讲解圆的定义:平面上距离一个点(中心)相等的所有点组成的图形称为圆。

2.演示如何使用圆规绘制圆。

3.让学生自己尝试绘制,并检查和纠正错误。

步骤四:正多边形和圆的性质1.正多边形的性质:–所有边相等,所以每个角都相等。

–任意一条对角线都在多边形内部。

2.圆的性质:–圆上任意两点之间的线段都是相等的。

–圆的直径是圆上任意两点之间通过圆心的线段。

–圆的周长等于直径乘以π。

–圆的面积等于半径的平方乘以π。

步骤五:练习和巩固1.发放练习册,让学生完成相关练习。

2.收回练习册,互相批改并讲解答案。

3.总结本节课的重点内容,并回答学生的问题。

五、教学延伸1.鼓励学生观察和探索,找出更多的正多边形和圆的实例。

2.引导学生思考:正多边形和圆在日常生活中的应用有哪些?六、课堂评估1.在课堂上随堂评估学生对正多边形和圆的理解程度。

2.根据学生的表现,进行个别辅导或提供更多练习机会。

以上是一节关于正多边形和圆的教学设计,通过引入有趣的实例和演示,让学生积极参与,培养他们的观察力和创造力。

同时,通过练习和评估,帮助学生巩固所学内容,确保他们对正多边形和圆的概念和性质有深入的理解。

正多边形和圆教案

正多边形和圆教案

正多边形和圆教案教案标题:探索正多边形和圆的特性教案目标:1. 了解正多边形和圆的定义及其特性。

2. 能够识别和绘制正多边形和圆。

3. 掌握计算正多边形和圆的周长和面积的方法。

4. 发展学生的几何思维和问题解决能力。

教案步骤:引入活动:1. 引导学生回顾并复习关于多边形和圆的基本概念。

2. 引出正多边形的概念,并与学生一起探讨正多边形的特性。

主体活动:步骤1:正多边形的定义和特性1. 通过展示图片或实物,让学生观察和描述正多边形的特点。

2. 引导学生发现正多边形的边数、边长和角度的关系。

3. 提供一些例子,让学生观察并总结正三角形、正四边形、正五边形等的特性。

步骤2:绘制正多边形1. 教授学生如何使用直尺和量角器绘制正多边形。

2. 指导学生绘制正三角形、正四边形、正五边形等,并检查他们的绘图结果。

步骤3:圆的定义和特性1. 引导学生回顾圆的定义和性质。

2. 讨论圆的半径、直径、周长和面积的计算方法。

3. 提供一些实际问题,让学生运用所学知识计算圆的周长和面积。

巩固活动:1. 给学生一些练习题,巩固他们对正多边形和圆的理解。

2. 提供一些拓展问题,鼓励学生运用所学知识解决更复杂的几何问题。

3. 鼓励学生展示他们的解题思路和方法。

总结:1. 回顾本节课所学的内容,强调正多边形和圆的特性。

2. 鼓励学生思考和讨论正多边形和圆在实际生活中的应用。

教案评估:1. 观察学生在课堂活动中的参与度和理解程度。

2. 收集学生完成的练习题和解题思路,评估他们对正多边形和圆的掌握程度。

3. 提供个别辅导和反馈,帮助学生克服困难和提高学习效果。

教学资源:1. 图片或实物展示正多边形和圆的例子。

2. 直尺、量角器等几何工具。

3. 练习题和拓展问题。

教学延伸:1. 引导学生进一步探索正多边形和圆的特性,例如正多边形的对称性质、圆的切线等。

2. 引导学生运用所学知识解决更复杂的几何问题,如正多边形和圆的组合问题。

备注:根据教学实际情况,教案中的步骤和活动可以适当调整和修改。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“正多边形和圆”的教学设计与反思
课时安排:共两课时
第一课时
教学目标:
知识与技能:
1.了解多边形和圆的关系
2.了解用量角器等与圆心角三等分圆,掌握用圆规作图内接正方形和正六边
形,并且能尺规作图正八边形,正三角形,正十二边形。

数学思考和解决问题:
通过画图培养学生的画图能力,提高学生的审美能力。

情感与态度:
学生与人合作,交流,体验数学在生产,生活中的应用。

教学重点:
1.会用量角器等分圆心角等分圆周。

(等分圆周法)
2.会用尺规作圆内接正方形和正六边形。

教学难点:
准确作图
教学方法和方式手段:
提出问题→解决问题→归纳总结→应用创新
教学过程设计:
问题1:什么叫正多边形?(复习提问)
什么叫圆内多边形?
互动方式:口答
解答:正多边形:各边相等,各角也相等的多边形。

比如:正三角形、正方形、正五边形。

圆内接正多边形:各个顶点都在圆上的正多边形就叫做圆内接正多边形,比如圆内接正三角形。

反馈练习:(课本P105。

练习1,2)
互动方式:通过口答,发表见解。

1.矩形是正多边形吗?菱形呢?正方形呢?为什么?
解答:矩形各角相等,但各边不相等,它不是正多边形;
菱形各边相等,但各角不相等,也不是正多边形;
正方形四边,四角都相等,四正多边形。

2.各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是多
边形呢?如果是,说明为什么,如果不是,举出反例。

解答:∵各边相等的圆内接多边形的各个角也相等。

∴各边相等的圆内接多边形是正多边形。

各角相等的圆内接多边形不是正多边形。

例如:矩形
问题2:
你会作出任意一个正多边形吗?(大约一分钟后提示:本节教你了一个作图方法,请问在课本哪个位子?)
解答:课本p104。

第2段第一行“只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形”,这也是正多边形和圆的关系。

(这种方法叫做等分圆
周法)
分析问1:那么这种作画的根据是什么?也就是说为什么这样做,就可以得到一个正多边形呢?
解答:因为根据“弧、弦、圆心角之间的关系定理”在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

还根据“圆周角定理”:“在同圆或等圆中,同弧或等弧所对的圆周角相等”
问题3:如何利用“等分圆周法画正五边形呢?”
解答;1.任画一个圆⊙o
(分析问1:为什么“任画”?解答因为正五边形的大小没有要求)
2.以点o为顶点,任意一条半径为一边,利用量角器作出∠AOB=180°。

3.在⊙o上依次截取BC=CD=DE=AB。

4.顺次连接AB=BC=CD=DE=DA 则五边形ABCDE就是所以画的的正五边形。

D
分析问2:那么这样画出的五边形为什么是正五边形呢?
解答:证明:∵AB=BC=CD=DE=DA E C
∴AB=BC=CD=DE=DA ·o
B C E=AEC=3AB A B
∴∠D=∠C
同理可证:∠A=∠D=∠B=∠C=∠E
∴五边形ABCDE为正五边形。

问题4:如何等分正六边形,正四边形(正方形)呢?
归纳总结:“等分圆周法”。

1.画一个圆。

2.画一个等于360°/n的圆心角。

3.在圆上依次截取与这个圆心角所对的弧相等的弧,就得到各个等分点。

4.顺次连接各分点就得到所要画的正多边形。

问题5:正六边形,正四边形还有其他画法吗?
问题6:正十二边形,正八边形如何画呢?
归纳总结:用圆规和直尺:
1.在半径为r的圆上依次截取等于r的弦就可以将圆六等分。

顺次连
接各分点。

即可得到半径为r的正六边形。

2.用直尺和圆规作两条互相垂直的直径,就可以把圆四等分。

3.过圆心作圆内接正方形的各边的垂线与⊙O相交。

或做圆内接正方形和各边的垂直平分线与⊙O相交。

或作圆内接正方形各中心角的角平分线与⊙O相交。

4.过圆心做圆内接正六边形的各边的垂线与⊙O相交。

即可得到正十
二边形。

课堂总结:
知识点:1.正多边形和圆的关系。

2.用量角器等分圆周作正N边形。

3.用尺规作正方形及由此扩展做正八边形,用尺规做正六边形及由此
扩展做正十二边形、正三角形。

思想方法:作图法。

布置作业:1.预习P106.预习作业.P107练习1、2
2.利用:“等分圆周法”作正六边形
板书设计:
主板书副板书
∮24.3正多边形和圆过程展示
一、正多边形和圆的关系
二、等分圆周法作正多边形
教学反思:
教学过程适当引领学生反思总结,使教学过程在师领导性下学生的一种自主探索的学习活动过程。

相关文档
最新文档