三角函数有关的中考数学题展析
中考数学压轴题重难点突破十 几何图形综合题 类型五利用三角函数解决与√2 ,√3,二分之一有关的问题
(3)Ⅰ)如图②,由(2)知△ADG∽△ACE, ∴DCGE=AADC= 22,∴DG= 22CE, ∵四边形 ABCD 是正方形, ∴AD=BC=8 2,AC= AB2+BC2=16, ∵AG= 22AD,∴AG= 22AD=8,
∵四边形 AFEG 是正方形, ∴∠AGE=90°,GE=AG=8, ∵C,G,E 三点共线, ∴CG= AC2-AG2= 162-82=8 3, ∴CE=CG-EG=8 3-8,
(1)解:如图①中,设 AC=CD=x. 在 Rt△ACB 中,AB=10,AC=x,BC=CD+BD=x+2, ∵AB2=AC2+BC2,∴102=x2+(x+2)2, 解得 x=6 或-8(舍弃), ∵12AC·BC=12AB·CE,
∴CE=61×08=254.
(2)证明:如图②中,作 DH⊥CF 于点 H. ∵∠ACD=∠AEC=∠DHC=90°, ∴∠ACE+∠CAE=90°,∵∠ACE+∠BCE=90°, ∴∠CAE=∠DCH,∴△ACE≌△CDH,∴AE=CH, 在 Rt△DHF 中,∵∠DHF=90°,∠F=30°, ∴HF=DF·cos 30°= 23DF, ∴CF=CH+FH=AE+ 23DF.
(3)AB=8 2,AG= 22AD,将正方形 AFEG 绕 A 逆时针方向旋转α(0°<α <360°),当 C,G,E 三点共线时,请直接写出 DG 的长度.
解:(1)∵四边形 ABCD 是正方形,四边形 AFEG 是正方形, ∴∠AGE=∠D=90°,∠DAC=45°, ∴AAEG= 2,EG∥CD,
若题中已知一条边,常以这条边为直角边或斜边构造等腰直角三角形, 就会出现 2倍数量关系.
方法二:构造含 30°角的直角三角形( 3,12倍数量关系)
2023 数学浙教版新中考 考点29锐角三角函数(解析版)
考点29锐角三角函数考点总结1.锐角三角函数的意义:如图,在Rt △ABC 中,设∠C =90°,∠α为Rt △ABC 的一个锐角,则: ∠α的正弦sin α=∠α的对边斜边;∠α的余弦cos α=∠α的邻边斜边;∠α的正切tan α=∠α的对边∠α的邻边2.同角三角函数之间的关系: sin 2A +cos 2A = 1 ,tan A =s inA cos A .3.互余两角三角函数之间的关系:(1)sin α=cos (90°-α),cos α=sin (90°-α). (2)tan α·tan (90°-α)=1.(3)锐角的正弦值或正切值随着角度的增大而增大,锐角的余弦值随着角度的增大而减小.(4)对于锐角A 有0<sin A <1,0<cos A <1,tan A >0. 4.特殊的三角函数值:5.如图,直角三角形的三条边与三个角这六个元素中,有如下的关系:(1)三边的关系(勾股定理):a 2+b 2=c 2. (2)两锐角间的关系:∠A +∠B =90°. (3)边与角的关系:sin A =cos B =a c, cos A =sin B =b c ,tan A =a b ,tan B =b a.6.直角三角形的边角关系在现实生活中有着广泛的应用,它经常涉及测量、工程、航海、航空等,其中包括了一些概念,一定要根据题意理解其中的含义才能正确解题. (1)仰角:向上看时,视线与水平线的夹角,如图.(2)俯角:向下看时,视线与水平线的夹角, (3)坡角:坡面与水平面的夹角.(4)坡度:坡面的铅直高度与水平宽度的比叫做坡度(或坡比),一般情况下,我们用h 表示坡的铅直高度,用l 表示坡的水平宽度,用i 表示坡度,即i =hl=tan α,显然,坡度越大,坡角就越大,坡面也就越陡,如图.(5)方向角:指北或指南的方向线与目标方向线所成的小于90°的锐角叫做方向角,如图324.真题演练一、单选题1.(2021·浙江台州·中考真题)如图,将长、宽分别为12cm ,3cm 的长方形纸片分别沿AB ,AC 折叠,点M ,N 恰好重合于点P .若∠α=60°,则折叠后的图案(阴影部分)面积为( )A .(36-cm 2B .(36-cm 2C .24 cm 2D .36 cm 2【答案】A 【分析】过点C 作CF MN ⊥,过点B 作BE MN ⊥,根据折叠的性质求出60PAC α∠=∠=︒,30EAB PAB ∠=∠=︒,分别解直角三角形求出AB 和AC 的长度,即可求解.【详解】解:如图,过点C 作CF MN ⊥,过点B 作BE MN ⊥,∵长方形纸片分别沿AB ,AC 折叠,点M ,N 恰好重合于点P , ∵60PAC α∠=∠=︒, ∵30EAB PAB ∠=∠=︒,∵90BAC ∠=︒,6cm sin BE AB EAB ==∠,sin CFAC α==,∵12ABCSAB AC =⋅=∵(212336cm ABCS S S=-=⨯-=-阴矩形,故选:A .2.(2021·浙江金华·中考真题)如图是一架人字梯,已知2AB AC ==米,AC 与地面BC 的夹角为α,则两梯脚之间的距离BC 为( )A .4cos α米B .4sin α米C .4tan α米D .4cos α米 【答案】A 【分析】根据等腰三角形的性质得到12BD DC BC ==,根据余弦的定义即可,得到答案. 【详解】过点A 作AD BC ⊥,如图所示:∵AB AC =,AD BC ⊥, ∵BD DC =, ∵DCco ACα=, ∵cos 2cos DC AC αα=⋅=, ∵24cos BC DC α==, 故选:A .3.(2021·浙江温州·中考真题)图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若1AB BC ==.AOB α∠=,则2OC 的值为( )A .211sin α+ B .2sin 1α+ C .211cos α+ D .2cos 1α+【答案】A 【分析】根据勾股定理和三角函数求解. 【详解】∵在Rt OAB 中,AOB α∠=,1AB = ∵1=sin sin AB OB αα= 在Rt OBC 中,1BC =,2222221111sin sin OC OB BC αα⎛⎫=+=+=+ ⎪⎝⎭故选:A .4.(2021·浙江·中考真题)如图,已知在矩形ABCD 中,1,AB BC ==P 是AD 边上的一个动点,连结BP ,点C 关于直线BP 的对称点为1C ,当点P 运动时,点1C 也随之运动.若点P 从点A 运动到点D ,则线段1CC 扫过的区域的面积是( )A .πB .π+C D .2π【答案】B 【分析】先判断出点Q 在以BC 为直径的圆弧上运动,再判断出点C 1在以B 为圆心,BC 为直径的圆弧上运动,找到当点P 与点A 重合时,点P 与点D 重合时,点C 1运动的位置,利用扇形的面积公式及三角形的面积公式求解即可. 【详解】解:设BP 与CC 1相交于Q ,则∵BQC =90°,∵当点P 在线段AD 运动时,点Q 在以BC 为直径的圆弧上运动, 延长CB 到E ,使BE =BC ,连接EC , ∵C 、C 1关于PB 对称, ∵∵EC 1C =∵BQC =90°,∵点C 1在以B 为圆心,BC 为直径的圆弧上运动, 当点P 与点A 重合时,点C 1与点E 重合, 当点P 与点D 重合时,点C 1与点F 重合,此时,tanPC AB PBC BC BC ∠=== ∵∵PBC =30°,∵∵FBP =∵PBC =30°,CQ =12BC =BQ 32=,∵∵FBE =180°-30°-30°=120°,11322BCFS CC BQ =⨯==线段1CC 扫过的区域的面积是2120360BCFSππ⨯+=故选:B .5.(2021·浙江丽水·中考真题)如图,AB 是O 的直径,弦CD OA ⊥于点E ,连结,OC OD .若O 的半径为,m AOD α∠=∠,则下列结论一定成立的是( )A .tan OE m α=⋅B .2sin CD m α=⋅C .cos AE m α=⋅D .2sin CODSm α=⋅【答案】B 【分析】根据垂径定理、锐角三角函数的定义进行判断即可解答. 【详解】解:∵AB 是O 的直径,弦CD OA ⊥于点E , ∵12DE CD =在Rt EDO ∆中,OD m =,AOD α∠=∠ ∵tan =DEOEα ∵=tan 2tan DE CDOE αα=,故选项A 错误,不符合题意; 又sin DEODα=∵sin DE OD α=∵22sin CD DE m α==,故选项B 正确,符合题意; 又cos OEODα=∵cos cos OE OD m αα== ∵AO DO m ==∵cos AE AO OE m m α=-=-,故选项C 错误,不符合题意; ∵2sin CD m α=,cos OE m α=∵2112sin cos sin cos 22COD S CD OE m m m αααα∆=⨯=⨯⨯=,故选项D 错误,不符合题意; 故选B .6.(2021·浙江宁波·中考真题)如图,在ABC 中,45,60,B C AD BC ∠=︒∠=︒⊥于点D ,BD =E ,F 分别为AB ,BC 的中点,则EF 的长为( )A B C .1 D 【答案】C 【分析】根据条件可知∵ABD 为等腰直角三角形,则BD =AD ,∵ADC 是30°、60°的直角三角形,可求出AC 长,再根据中位线定理可知EF =2AC。
“三角函数”中考试题分类汇编(含答案)
1、锐角三角函数要点一:锐角三角函数的基本概念 一、选择题1.(2009·漳州中考)三角形在方格纸中的位置如图所示,则tan α的值是( )A .35B .43 C .34 D .452.(2008·威海中考)在△ABC 中,∠C =90°,tan A =13,则sin B =( )A .1010 B .23C .34D .310103.(2009·齐齐哈尔中考)如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为32,2AC =,则sin B 的值是( )A .23 B .32 C .34 D .434.(2009·湖州中考)如图,在Rt ABC △中,ACB ∠=Rt ∠,1BC =,2AB =,则下列结论正确的是( ) A .3sin A =B .1tan 2A = C .3cosB = D .tan 3B =5.(2008·温州中考)如图,在Rt ABC △中,CD 是斜边AB 上的中线,已知2CD =,3AC =,则sin B 的值是( )A .23B .32C .34D .436.(2007·泰安中考)如图,在ABC △中,90ACB ∠=,CD AB ⊥于D ,若23AC =,32AB =,则tan BCD ∠的值为( )(A )2 (B )22 (C )63(D )33二、填空题7.(2009·梧州中考)在△ABC 中,∠C =90°, BC =6 cm ,53sin =A ,则AB 的长是 cm . .(2009·孝感中考)如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .9.(2009·庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5A =,则这个菱形ACBD的面积= cm 2.答案:60 三、解答题10.(2009·河北中考) 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin ∠DOE =1213.(1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降, 则经过多长时间才能将水排干? 【11.(2009·綦江中考)如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE .(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值.12.(2008·宁夏中考)如图,在△ABC 中,∠C =90°,sin A =54,AB =15,求△ABC 的周长和tan A 的值.DABCEFOEC D14.(2007·芜湖中考)如图,在△ABC 中,AD 是BC 上的高,tan cos B DAC =∠,(1) 求证:AC=BD ; (2)若12sin 13C =,BC =12,求AD 的长.要点二、特殊角的三角函数值 一、选择题1.(2009·钦州中考)sin30°的值为( )A .32B .22C .12D .33答案:C2.(2009·长春中考).菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为( )A .2,B .2),C .211),D .(121),答案:C3.(2009·定西中考)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米 B .3 C 83米 D 43米4.(2008·宿迁中考)已知α为锐角,且23)10sin(=︒-α,则α等于( ) A.︒50 B.︒60 C.︒70 D.︒805.(2008·毕节中考) A (cos60°,-tan30°)关于原点对称的点A 1的坐标是( )A .1323⎛⎫- ⎪ ⎪⎝⎭,B .3323⎛⎫- ⎪ ⎪⎝⎭,C .1323⎛⎫-- ⎪ ⎪⎝⎭, D .1322⎛⎫- ⎪ ⎪⎝⎭, 6.(2007·襄樊中考)计算:2cos 45tan 60cos30+等于( )(A )1 (B )2 (C )2 (D )3 二、填空题7. (2009·荆门中考)104cos30sin 60(2)(20092008)-︒︒+---=______.答案:238.(2009·百色中考)如图,在一次数学课外活动中,测得电线杆底部B 与钢缆固定点C 的距离为4米,钢缆与地面的夹角为60º,则这条钢缆在电线杆上的固定点A 到地面的距离AB 是 米.(结果保留根号).答案:439.(2008·江西中考)计算:(1)1sin 60cos302-= . 答案:1410.(2007·济宁中考)计算sin 60tan 45cos30︒-︒︒的值是 。
备战中考数学综合题专题复习【锐角三角函数】专题解析附答案解析
一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.2.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【答案】(1)证明见解析(2)4(3)20【解析】试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;(2)利用锐角三角函数,即勾股定理即可.试题解析:(1)∵∠ABC=∠ACB,∴AB=AC,∵AC为⊙O的直径,∴∠ANC=90°,∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,∵∠CAB=2∠BCP,∴∠BCP=∠CAN,∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,∵点D在⊙O上,∴直线CP是⊙O的切线;(2)如图,作BF⊥AC∵AB=AC,∠ANC=90°,∴CN=CB=,∵∠BCP=∠CAN,sin∠BCP=,∴sin∠CAN=,∴∴AC=5,∴AB=AC=5,设AF=x,则CF=5﹣x,在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,∴25﹣x2=2O﹣(5﹣x)2,∴x=3,∴BF2=25﹣32=16,∴BF=4,即点B到AC的距离为4.考点:切线的判定3.如图,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,点D在边AC上且BD平分∠ABC,设CD=x.(1)求证:△ABC∽△BCD;(2)求x的值;(3)求cos36°-cos72°的值.【答案】(1)证明见解析;(215-+;(3758+【解析】试题分析:(1)由等腰三角形ABC中,顶角的度数求出两底角度数,再由BD为角平分线求出∠DBC的度数,得到∠DBC=∠A,再由∠C为公共角,利用两对角相等的三角形相似得到三角形ABC与三角形BCD相似;(2)根据(1)结论得到AD=BD=BC,根据AD+DC表示出AC,由(1)两三角形相似得比例求出x的值即可;(3)过B作BE垂直于AC,交AC于点E,在直角三角形ABE和直角三角形BCE中,利用锐角三角函数定义求出cos36°与cos72°的值,代入原式计算即可得到结果.试题解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=36°, ∵∠CBD=∠A=36°,∠C=∠C , ∴△ABC ∽△BCD ; (2)∵∠A=∠ABD=36°, ∴AD=BD , ∵BD=BC , ∴AD=BD=CD=1,设CD=x ,则有AB=AC=x+1, ∵△ABC ∽△BCD ,∴AB BC BD CD =,即111x x +=, 整理得:x 2+x-1=0,解得:x 1=15-+,x 2=15--(负值,舍去),则x=15-+; (3)过B 作BE ⊥AC ,交AC 于点E ,∵BD=CD ,∴E 为CD 中点,即DE=CE=154-+, 在Rt △ABE 中,cosA=cos36°=151514151AE AB -+++==-++ 在Rt △BCE 中,cosC=cos72°=1515414EC BC -+-+==, 则cos36°-cos72°=51+=15-+=12. 【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.黄金分割;4.解直角三角形.4.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D.(1)求证:PA是☉O的切线;(2)若=,且OC=4,求PA的长和tan D的值.【答案】(1)证明见解析;(2)PA =3,tan D=.【解析】试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.试题解析:(1)连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连接BE,∵,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO=,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3.易证,所以,解得,则,在中,.考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.5.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为 cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.【答案】(1);(2)12cm;(3)cm.【解析】试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案:∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.∵∠ACD=30°,∠DAC=90°,AC=12cm,∴(cm).∵点E为CD边上的中点,∴AE=DC=cm.(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,根据轴对称的性质,此时DP+EP值为最小,进而得出答案.(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.试题解析:解:(1).(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,∵E为CD边上的中点,∴DE=AE.∴△ADE为等边三角形.∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°.∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′.∴点E,D′关于直线AC对称.如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.∵△ADE是等边三角形,AD=AE=,∴,即DP+EP最小值为12cm.(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=.在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′(SSS).∴∠D′BG=∠D′BC=45°.∴D′G=GB.设D′G长为xcm,则CG长为cm,在Rt△GD′C中,由勾股定理得,解得:(不合题意舍去).∴点D′到BC边的距离为cm.考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.6.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.BE【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)3【解析】【分析】(1)①补全图形即可,②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=2FG=DG=2GH=6,得出DF2DG=3Rt△DCF中,由勾股定理得出CF=3得出结果.【详解】解:(1)①补全图形如图1所示,②FG=DG,FG⊥DG,理由如下,连接BG,如图2所示,∵四边形ABCD是正方形,∴∠ACB=45°,∵EG⊥AC,∴∠EGC =90°,∴△CEG 是等腰直角三角形,EG =GC , ∴∠GEC =∠GCE =45°, ∴∠BEG =∠GCF =135°, 由平移的性质得:BE =CF ,在△BEG 和△GCF 中,BE CF BEG GCF EG CG =⎧⎪∠=∠⎨⎪=⎩,∴△BEG ≌△GCF (SAS ), ∴BG =GF ,∵G 在正方形ABCD 对角线上, ∴BG =DG , ∴FG =DG ,∵∠CGF =∠BGE ,∠BGE+∠AGB =90°, ∴∠CGF+∠AGB =90°, ∴∠AGD+∠CGF =90°, ∴∠DGF =90°, ∴FG ⊥DG.(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示, 在Rt △ADG 中, ∵∠DAC =45°, ∴DH =AH =2在Rt △DHG 中,∵∠AGD =60°, ∴GH 33236,∴DG =2GH =6, ∴DF 2DG =3 在Rt △DCF 中,CF ()22436-3∴BE =CF =3.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.7.在Rt△ABC中,∠ACB=90°,AB=7,AC=2,过点B作直线m∥AC,将△ABC绕点C 顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在C A′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.【答案】(1)60°;(2)PQ=72;(3)存在,S四边形PA'B′Q=33【解析】【分析】(1)由旋转可得:AC=A'C=2,进而得到BC3=∠A'BC=90°,可得cos∠A'CB3'BCA C==∠A'CB=30°,∠ACA'=60°;(2)根据M为A'B'的中点,即可得出∠A=∠A'CM,进而得到PB3=32=,依据tan∠Q=tan∠A32=BQ=BC3=2,进而得出PQ=PB+BQ72=;(3)依据S四边形PA'B'Q=S△PCQ﹣S△A'CB'=S△PCQ3-S四边形PA'B'Q最小,即S△PCQ最小,而S△PCQ12=PQ×BC3=,利用几何法即可得到S△PCQ的最小值=3,即可得到结论.【详解】(1)由旋转可得:AC =A 'C =2.∵∠ACB =90°,AB 7=,AC =2,∴BC 3=. ∵∠ACB =90°,m ∥AC ,∴∠A 'BC =90°,∴cos ∠A 'CB 3'BC A C ==,∴∠A 'CB =30°,∴∠ACA '=60°;(2)∵M 为A 'B '的中点,∴∠A 'CM =∠MA 'C ,由旋转可得:∠MA 'C =∠A ,∴∠A =∠A 'CM ,∴tan ∠PCB =tan ∠A 3=,∴PB 3=BC 32=. ∵∠BQC =∠BCP =∠A ,∴tan ∠BQC =tan ∠A 3=,∴BQ =BC 3⨯=2,∴PQ =PB +BQ 72=; (3)∵S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ 3-,∴S 四边形PA 'B 'Q 最小,即S △PCQ 最小,∴S △PCQ 12=PQ ×BC 3=PQ , 取PQ 的中点G . ∵∠PCQ =90°,∴CG 12=PQ ,即PQ =2CG ,当CG 最小时,PQ 最小,∴CG ⊥PQ ,即CG 与CB 重合时,CG 最小,∴CG min 3=,PQ min =23,∴S △PCQ 的最小值=3,S 四边形PA 'B 'Q =33-;【点睛】本题属于几何变换综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8.在Rt △ABC 中,∠ACB =90°,CD 是AB 边的中线,DE ⊥BC 于E ,连结CD ,点P 在射线CB 上(与B ,C 不重合)(1)如果∠A =30°,①如图1,∠DCB 等于多少度;②如图2,点P 在线段CB 上,连结DP ,将线段DP 绕点D 逆时针旋转60°,得到线段DF ,连结BF ,补全图2猜想CP 、BF 之间的数量关系,并证明你的结论;(2)如图3,若点P 在线段CB 的延长线上,且∠A =α(0°<α<90°),连结DP ,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)【答案】(1)①∠DCB=60°.②结论:CP=BF.理由见解析;(2)结论:BF﹣BP=2DE•tanα.理由见解析.【解析】【分析】(1)①根据直角三角形斜边中线的性质,结合∠A=30°,只要证明△CDB是等边三角形即可;②根据全等三角形的判定推出△DCP≌△DBF,根据全等的性质得出CP=BF,(2)求出DC=DB=AD,DE∥AC,求出∠FDB=∠CDP=2α+∠PDB,DP=DF,根据全等三角形的判定得出△DCP≌△DBF,求出CP=BF,推出BF﹣BP=BC,解直角三角形求出CE=DEtanα即可.【详解】(1)①∵∠A=30°,∠ACB=90°,∴∠B=60°,∵AD=DB,∴CD=AD=DB,∴△CDB是等边三角形,∴∠DCB=60°.②如图1,结论:CP=BF.理由如下:∵∠ACB=90°,D是AB的中点,DE⊥BC,∠DCB=60°,∴△CDB为等边三角形.∴∠CDB=60°∵线段DP绕点D逆时针旋转60°得到线段DF,∵∠PDF=60°,DP=DF,∴∠FDB=∠CDP,在△DCP和△DBF中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF.(2)结论:BF ﹣BP =2DEtanα.理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α,∴DC =DB =AD ,DE ∥AC ,∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,∴∠BDC =∠A+∠ACD =2α,∵∠PDF =2α,∴∠FDB =∠CDP =2α+∠PDB ,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP =DF ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF ,而 CP =BC+BP ,∴BF ﹣BP =BC ,在Rt △CDE 中,∠DEC =90°,∴tan ∠CDE =CE DE, ∴CE =DEtanα, ∴BC =2CE =2DEtanα,即BF ﹣BP =2DEtanα.【点睛】本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP ≌△DBF 是解此题的关键,综合性比较强,证明过程类似.9.如图,正方形ABCD+1,对角线AC 、BD 相交于点O ,AE 平分∠BAC 分别交BC 、BD 于E 、F ,(1)求证:△ABF ∽△ACE ;(2)求tan ∠BAE 的值;(3)在线段AC 上找一点P ,使得PE+PF 最小,求出最小值.【答案】(1)证明见解析;(2)tan∠EAB=2﹣1;(3)PE+PF的最小值为 .22【解析】【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)如图1中,作EH⊥AC于H.首先证明BE=EH=HC,设BE=EH=HC=x,构建方程求出x 即可解决问题;(3)如图2中,作点F关于直线AC的对称点H,连接EH交AC于点P,连接PF,此时PF+PE的值最小,最小值为线段EH的长;【详解】(1)证明:∵四边形ABCD是正方形,∴∠ACE=∠ABF=∠CAB=45°,∵AE平分∠CAB,∴∠EAC=∠BAF=22.5°,∴△ABF∽△ACE.(2)解:如图1中,作EH⊥AC于H.∵EA平分∠CAB,EH⊥AC,EB⊥AB,∴BE=EB,∵∠HCE=45°,∠CHE=90°,∴∠HCE=∠HEC=45°,∴HC=EH,∴BE=EH=HC,设BE=HE=HC=x,则EC2,∵BC2+1,∴x+x2+1,∴x=1,在Rt△ABE中,∵∠ABE=90°,∴tan ∠EAB =1221BE AB ==+﹣1. (3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小.作EM ⊥BD 于M .BM =EM =22, ∵AC =22AB BC +=2+2,∴OA =OC =OB =12AC =22+ , ∴OH =OF =OA•tan ∠OAF =OA•tan ∠EAB =222+ •(2﹣1)=22, ∴HM =OH+OM =222+, 在Rt △EHM 中,EH =2222222EM HM 22⎛⎫⎛⎫+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭= =22+.. ∴PE+PF 的最小值为22+..【点睛】本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.10.小明坐于堤边垂钓,如图①,河堤AC 的坡角为30°,AC 长米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离(如图②).【答案】1.5米.【解析】试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出在Rt△ACD中,米,CD=2AD=3米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.试题解析:延长OA交BC于点D.∵AO的倾斜角是,∴∵在Rt△ACD中, (米),∴CD=2AD=3米,又∴△BOD是等边三角形,∴(米),∴BC=BD−CD=4.5−3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.。
中考复习初中数学中的三角函数计算题
中考复习初中数学中的三角函数计算题三角函数是中学数学中的重要内容之一,在中考中也是一个常见的考点。
掌握好三角函数的计算方法对于解题非常有帮助。
本文将从不同角度介绍三角函数的计算问题。
一、三角函数的基本概念在介绍计算问题之前,我们首先来回顾一下三角函数的基本概念。
三角函数包括正弦函数sin,余弦函数cos,正切函数tan等。
它们的定义如下:正弦函数sinθ = 对边 / 斜边余弦函数cosθ = 临边 / 斜边正切函数tanθ = 对边 / 临边这些基本的定义是我们进行计算的基础。
二、三角函数的计算方法1. 已知一个角度求三角函数值有时题目可能给出一个角度,要求计算该角度对应的三角函数值。
这种情况下,我们根据角度的定义可以直接计算出sin、cos、tan的值。
例如,如果给定一个角度θ,求sinθ的值,只需根据sin的定义计算出对应的比值即可。
2. 已知一个三角函数值求角度另一种情况是已知一个三角函数值,要求求出对应的角度。
这时我们需要运用反函数来计算。
例如,如果已知sinθ的值,要求求出对应的角度θ,我们需要使用反正弦函数arcsin。
3. 利用三角函数求解三角形的边长和角度三角函数不仅可以应用在一个角度的计算中,还可以在解决三角形的问题中发挥作用。
例如,已知一个三角形的两边长度和夹角,可以利用三角函数计算出第三边的长度。
又如,已知一个三角形的两边长度和一个角度,可以利用三角函数计算出另外两个角度的大小。
4. 利用三角函数解决实际问题除了在纯数学计算中应用,三角函数还可以应用在实际问题的解决中。
例如,要计算一个倾斜面上物体的滑动速度、计算两个建筑物之间的高度差等等。
在这些问题中,我们会利用三角函数的计算来求解。
三、例题分析为了更好地理解三角函数的计算问题,我们来看几个例题:例题1:已知三角形ABC中,∠B = 30°,边AC = 4cm,边BC =6cm,求边AB的长度。
解析:根据已知条件,我们可以利用余弦定理来计算边AB的长度。
一道中考数学压轴题的解法探究及教学启示
一道中考数学压轴题的解法探究及教学启示1. 引言中考数学作为学生升学的重要关卡,其中数学压轴题更是考查学生数学思维和解决问题能力的重要环节。
今天我将带你一起深入探究一道中考数学压轴题的解法,同时分析其教学启示,希望能为老师们提供一些有益的参考。
2. 题目概述这道压轴题是一道关于三角函数的应用题,涉及角度的变化、三角函数的性质和解三角形的相关知识。
题目要求学生计算一个特定角度下的三角函数值,并且利用得出的结论解决实际问题,是一道综合性很强的数学问题。
3. 解题过程我们需要通过数学关系和公式来得出特定角度下三角函数值的具体计算方法。
这一步需要考虑各种可能的情况,比如角度的范围、三角函数的定义等。
我们需要应用得出的三角函数值来解决实际问题,这就需要学生在运用数学知识的结合实际情境进行思考和分析,找出最合适的解决方案。
4. 解题思路在解题过程中,我们可以通过列出角度与对应三角函数值的表格来寻找规律,从而找到正确的解题思路。
利用图形辅助、代数运算等方法也是解题的常用手段,学生需要在解题过程中多角度思考,寻找最合适的解题方法。
5. 教学启示通过对这道压轴题的解题过程和思路的深入探究,我们可以得出一些教学启示。
我们要注重学生数学知识的系统性和逻辑性,只有建立起扎实的数学基础,学生才能更好地应对各种复杂的数学问题。
我们要培养学生的数学思维和解决问题能力,让他们能够从解题的过程中感受到数学的美妙和乐趣。
我们要注重引导学生进行多角度思考,让他们能够从不同的角度去解决问题,培养其灵活的数学思维。
6. 个人观点作为数学老师,我认为数学不仅仅是一门工具性学科,更是一门能够培养学生思维和创新能力的学科。
通过深入探究数学问题和解题思路,我能更好地感受到这种魅力。
我希望通过我的教学,能够激发学生学习数学的兴趣,培养他们的数学思维和解决问题的能力。
总结通过对一道中考数学压轴题的深入探究,我们不仅能够学习到更加全面、深刻的数学知识,同时也可以得出一些有益的教学启示。
2023年中考数学一轮专题练习 ——锐角三角函数(含解析)
2023年中考数学一轮专题练习 ——锐角三角函数一、单选题(本大题共10小题)1. (天津市2022年)tan 45︒的值等于( )A .2B .1C D 2. (陕西省2022年(A 卷))如图,AD 是ABC 的高,若26BD CD ==,tan 2C ∠=,则边AB 的长为( )A .B .C .D .3. (吉林省长春市2022年)如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A ,变幅索的底端记为点B ,AD 垂直地面,垂足为点D ,BC AD ⊥,垂足为点C .设ABC α∠=,下列关系式正确的是( )A .sin ABBCα=B .sin BCABα=C .sin ABACα=D .sin ACABα=4. (湖北省荆州市2022年)如图,在平面直角坐标系中,点A ,B 分别在x 轴负半轴和y 轴正半轴上,点C 在OB 上,:1:2OC BC =,连接AC ,过点O 作OP AB ∥交AC 的延长线于P .若()1,1P ,则tan OAP ∠的值是( )A B .C .13D .35. (四川省广元市2022年)如图,在正方形方格纸中,每个小正方形的边长都相等,A 、B 、C 、D 都在格点处,AB 与CD 相交于点P ,则cos ∠APC 的值为( )A B .C .25D 6. (湖北省江汉油田、潜江、天门、仙桃2022年)由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A ,B ,C 都在格点上,∠O =60°,则tan ∠ABC =( )A .13B .12C D 7. (贵州省黔东南州2022年)如图,PA 、PB 分别与O 相切于点A 、B ,连接PO 并延长与O 交于点C 、D ,若12CD =,8PA =,则sin ADB ∠的值为( )A .45 B .35C .34D .438. (云南省2022年)如图,已知AB 是⊙O 的直径,CD 是OO 的弦,AB ⟂CD .垂足为E .若AB =26,CD =24,则∠OCE 的余弦值为( )A .713B .1213C .712D .13129. (湖南省湘潭市2022年)中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tan α=( )A .2B .32C .12D 10. (黑龙江省省龙东地区2022年)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,点F 是CD 上一点,OE OF ⊥交BC 于点E ,连接AE ,BF 交于点P ,连接OP .则下列结论:①AE BF ⊥;②45OPA ∠=︒;③AP BP -;④若:2:3BE CE =,则4tan 7CAE ∠=;⑤四边形OECF 的面积是正方形ABCD 面积的14.其中正确的结论是( )A .①②④⑤B .①②③⑤C .①②③④D .①③④⑤二、填空题(本大题共12小题) 11. (广东省2022年)sin30°的值为 .12. (山东省滨州市2022年)在Rt △ABC 中,∠C =90°,AC =5,BC =12,则sin A = . 13. (江苏省扬州市2022年)在ABC ∆中,90C ∠=︒,a b c 、、分别为A B C ∠∠∠、、的对边,若2b ac =,则sin A 的值为 .14. (湖南省益阳市2022年)如图,在Rt △ABC 中,∠C =90°,若sin A =45,则cos B =_____.15. (江苏省常州市2022年)如图,在四边形ABCD 中,90A ABC ∠=∠=︒,DB 平分ADC ∠.若1AD =,3CD =,则sin ABD ∠= .16. (四川省凉山州2022年)如图,CD 是平面镜,光线从A 点出发经CD 上点O 反射后照射到B 点,若入射角为α,反射角为β(反射角等于入射角),AC ⊥CD 于点C ,BD ⊥CD 于点D ,且AC =3,BD =6,CD =12,则tanα的值为 .17. (黑龙江省绥化市2022年)定义一种运算;sin()sin cos cos sin αβαβαβ+=+,sin()sin cos cos sin αβαβαβ-=-.例如:当45α=︒,30β=︒时,()sin 4530︒+︒=12=,则sin15︒的值为 . 18. (江苏省连云港市2022年)如图,在66⨯正方形网格中,ABC 的顶点A 、B 、C 都在网格线上,且都是小正方形边的中点,则sin A = .19. (山东省泰安市肥城市汶阳镇初级中学2021-2022学年)如图,矩形ABCD 中,点G ,E 分别在边,BC DC 上,连接,,AG EG AE ,将ABG 和ECG 分别沿,AG EG 折叠,使点B ,C 恰好落在AE 上的同一点,记为点F .若3,4CE CG ==,则sin DAE ∠= .20. (广西河池市2022年)如图,把边长为1:2的矩形ABCD 沿长边BC ,AD 的中点E ,F 对折,得到四边形ABEF ,点G ,H 分别在BE ,EF 上,且BG =EH =25BE =2,AG 与BH 交于点O ,N 为AF 的中点,连接ON ,作OM ⊥ON 交AB 于点M ,连接MN ,则tan ∠AMN = .21. (四川省凉山州2022年)如图,在边长为1的正方形网格中,⊙O 是△ABC 的外接圆,点A ,B ,O 在格点上,则cos ∠ACB 的值是 .22. (湖南省湘西州2022年中考数学试卷)阅读材料:余弦定理是描述三角形中三边长度与一个角余弦值关系的数学定理,运用它可以解决一类已知三角形两边及夹角求第三边或者已知三边求角的问题.余弦定理是这样描述的:在△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,则三角形中任意一边的平方等于另外两边的平方和减去这两边及这两边的夹角的余弦值的乘积的2倍. 用公式可描述为:a 2=b 2+c 2﹣2bc cos A b 2=a 2+c 2﹣2ac cos B c 2=a 2+b 2﹣2ab cos C现已知在△ABC 中,AB =3,AC =4,∠A =60°,则BC =_____. 三、解答题(本大题共9小题)23. (湖南省湘西州20222tan45°+|﹣3|+(π﹣2022)0.24. (2022年西藏中考数学真题试卷)计算:01|()tan 452+︒.25. (湖南省岳阳市2022年)计算:2022032tan 45(1))π--︒+--.26. (湖南省株洲市2022年)计算:()202212sin 30-︒.27. (2022年四川省乐山市中考数学真题)1sin 302-︒28. (湖南省常德市2022年中考数学试题)计算:213sin 30452-︒︒⎛⎫- ⎪⎝⎭29. (浙江省湖州市2022年)如图,已知在Rt △ABC 中,∠C =90°,AB =5,BC =3.求AC 的长和sin A 的值.30. (黑龙江省哈尔滨市2022年)先化简,再求代数式21321211x x x x x -⎛⎫-÷⎪--+-⎝⎭的值,其中2cos451x =︒+.31. (黑龙江省哈尔滨市2021年)先化简,再求代数式2323111a a a a a +⎛⎫-÷⎪---⎝⎭的值,其中2sin 451a =︒-.参考答案1. 【答案】B 【分析】根据三角函数定义:正切=对边与邻边之比,进行求解. 【详解】作一个直角三角形,∠C =90°,∠A =45°,如图:∴∠B =90°-45°=45°,∴△ABC 是等腰三角形,AC =BC , ∴根据正切定义,tan 1BCA AC∠==, ∵∠A =45°, ∴tan 451︒=, 故选 B . 2. 【答案】D 【分析】先解直角ABC 求出AD ,再在直角ABD △中应用勾股定理即可求出AB . 【详解】解:∵26BD CD ==, ∴3CD =,∵直角ADC 中,tan 2C ∠=, ∴tan 326AD CD C =⋅∠=⨯=,∴直角ABD △中,由勾股定理可得,AB === 故选D . 3. 【答案】D 【分析】根据正弦三角函数的定义判断即可. 【详解】∵BC ⊥AC ,∴△ABC 是直角三角形, ∵∠ABC =α, ∴sin ACABα=, 故选:D . 4. 【答案】C 【分析】由()1,1P 可知,OP 与x 轴的夹角为45°,又因为OP AB ∥,则OAB 为等腰直角形,设OC =x ,OB =2x ,用勾股定理求其他线段进而求解. 【详解】∵P 点坐标为(1,1),则OP 与x 轴正方向的夹角为45°, 又∵OP AB ∥,则∠BAO =45°,OAB 为等腰直角形, ∴OA =OB ,设OC =x ,则OB =2OC =2x , 则OB =OA =3x , ∴tan 133OC x OAP OA x ∠===. 5. 【答案】B 【分析】把AB 向上平移一个单位到DE ,连接CE ,则DE ∥AB ,由勾股定理逆定理可以证明△DCE 为直角三角形,所以cos ∠APC =cos ∠EDC 即可得答案. 【详解】解:把AB 向上平移一个单位到DE ,连接CE ,如图.则DE ∥AB , ∴∠APC =∠EDC .在△DCE 中,有EC DC 5DE ==, ∴22252025EC DC DE +=+==, ∴DCE ∆是直角三角形,且90DCE ∠=︒,∴cos ∠APC =cos ∠EDC=DC DE =故选:B . 6. 【答案】C 【分析】证明四边形ADBC 为菱形,求得∠ABC =30°,利用特殊角的三角函数值即可求解. 【详解】解:连接AD ,如图:∵网格是有一个角60°为菱形,∴△AOD 、△BCE 、△BCD 、△ACD 都是等边三角形, ∴AD = BD = BC = AC ,∴四边形ADBC 为菱形,且∠DBC =60°, ∴∠ABD =∠ABC =30°, ∴tan ∠ABC = tan30°= 故选:C . 7. 【答案】A 【分析】连结OA ,根据切线长的性质得出PA =PB ,OP 平分∠APB ,OP ⊥AP ,再证△APD ≌△BPD (SAS ),然后证明∠AOP =∠ADP +∠OAD =∠ADP +∠BDP =∠ADB , 利用勾股定理求出OP=10=,最后利用三角函数定义计算即可. 【详解】 解:连结OA∵PA 、PB 分别与O 相切于点A 、B , ∴PA =PB ,OP 平分∠APB ,OP ⊥AP , ∴∠APD =∠BPD , 在△APD 和△BPD 中, AP BPAPD BPD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△APD≌△BPD(SAS)∴∠ADP=∠BDP,∵OA=OD=6,∴∠OAD=∠ADP=∠BDP,∴∠AOP=∠ADP+∠OAD=∠ADP+∠BDP=∠ADB,在Rt△AOP中,OP10=,∴sin∠ADB=84105 APOP==.故选A.8. 【答案】B 【分析】先根据垂径定理求出12CE CD=,再根据余弦的定义进行解答即可.【详解】解:∵AB是⊙O的直径,AB⟂CD.∴112,902CE CD OEC==∠=︒,OC=12AB=13,∴12 cos13CEOCEOC∠==.故选:B.9. 【答案】A【分析】首先根据两个正方形的面积分别求出两个正方形的边长,然后结合题意进一步设直角三角形短的直角边为a,则较长的直角边为a+1,再接着利用勾股定理得到关于a的方程,据此进一步求出直角三角形各个直角边的边长,最后求出tanα的值即可.【详解】∵小正方形与每个直角三角形面积均为1,∴大正方形的面积为5,∴小正方形的边长为1设直角三角形短的直角边为a,则较长的直角边为a+1,其中a>0,∴a2+(a+1)2=5,其中a>0,解得:a1=1,a2=-2(不符合题意,舍去),tan α=1a a +=111+=2, 故选:A .10. 【答案】B【分析】分别对每个选项进行证明后进行判断:①通过证明()DOF COE ASA ≌得到EC =FD ,再证明()EAC FBD SAS ≌得到∠EAC =∠FBD ,从而证明∠BPQ =∠AOQ =90°,即AE BF ⊥;②通过等弦对等角可证明45OPA OBA ∠=∠=︒;③通过正切定义得tan BE BP BAE AB AP ∠==,利用合比性质变形得到CE BP AP BP BE ⋅-=,再通过证明AOP AEC ∽得到OP AE CE AO ⋅=,代入前式得OP AE BP AP BP AO BE⋅⋅-=⋅,最后根据三角形面积公式得到AE BP AB BE ⋅=⋅,整体代入即可证得结论正确;④作EG ⊥AC 于点G 可得EG ∥BO ,根据tan EG EG CAE AG AC CG∠==-,设正方形边长为5a ,分别求出EG 、AC 、CG 的长,可求出3tan 7CAE ∠=,结论错误;⑤将四边形OECF 的面积分割成两个三角形面积,利用()DOF COE ASA ≌,可证明S 四边形OECF =S △COE +S △COF = S △DOF +S △COF =S △COD 即可证明结论正确.【详解】①∵四边形ABCD 是正方形,O 是对角线AC 、BD 的交点,∴OC =OD ,OC ⊥OD ,∠ODF =∠OCE =45°∵OE OF ⊥∴∠DOF +∠FOC =∠FOC +∠EOC =90°∴∠DOF =∠EOC在△DOF 与△COE 中ODF OCE OC ODDOF EOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()DOF COE ASA ≌∴EC =FD∵在△EAC 与△FBD 中45EC FD ECA FDB AC BD =⎧⎪∠=∠=︒⎨⎪=⎩∴()EAC FBD SAS ≌∴∠EAC =∠FBD又∵∠BQP =∠AQO∴∠BPQ =∠AOQ =90°∴AE ⊥BF所以①正确;②∵∠AOB =∠APB =90°∴点P 、O 在以AB 为直径的圆上∴AO 是该圆的弦∴45OPA OBA ∠=∠=︒所以②正确; ③∵tan BE BP BAE AB AP ∠== ∴AB AP BE BP = ∴AB BE AP BP BE BP --= ∴AP BP CE BP BE-= ∴CE BP AP BP BE ⋅-=∵,45EAC OAP OPA ACE ∠=∠∠=∠=︒∴AOP AEC ∽ ∴OP AO CE AE= ∴OP AE CE AO⋅= ∴OP AE BP AP BP AO BE⋅⋅-=⋅ ∵1122ABE AE BP AB BE S⋅=⋅= ∴AE BP AB BE ⋅=⋅∴OP AB BE AB AP BP OP AO BE AO⋅⋅-==⋅ 所以③正确;④作EG ⊥AC 于点G ,则EG ∥BO , ∴EG CE CG OB BC OC==设正方形边长为5a ,则BC =5a ,OB =OC , 若:2:3BE CE =,则23BE CE =, ∴233BE CE CE ++= ∴35CE BC =∴35CE EG OB BC =⋅== ∵EG ⊥AC ,∠ACB =45°,∴∠GEC =45°∴CG =EG∴3tan 7EG EG CAE AG AC CG ∠===- 所以④错误;⑤∵()DOF COE ASA ≌,S 四边形OECF =S △COE +S △COF∴S 四边形OECF = S △DOF +S △COF = S △COD∵S △COD =14ABCD S 正方形∴S 四边形OECF =14ABCD S 正方形所以⑤正确;综上,①②③⑤正确,④错误,故选 B11. 【答案】12【详解】根据特殊角的三角函数值计算即可:sin30°=12. 故答案为:1212. 【答案】1213 【分析】根据题意画出图形,进而利用勾股定理得出AB 的长,再利用锐角三角函数关系,即可得出答案.【详解】解:如图所示:∵∠C =90°,AC =5,BC =12,∴AB=13,∴sin A =1213BC AB =.故答案为:1213.13. 【详解】 解:如图所示:在Rt ABC 中,由勾股定理可知:222+=a b c ,2ac b =,22a ac c ∴+=,0a >, 0b >,0c >,2222a ac c c c +∴=,即:21a a c c⎛⎫+= ⎪⎝⎭,求出a c =或a c =∴在Rt ABC 中:in s a c A ==,故答案为: 14. 【答案】45 【分析】根据三角函数的定义即可得到cos B =sin A =45. 【详解】解:在Rt △ABC 中,∠C =90°,∵sin A =BC AB =45, ∴cos B =BC AB =45. 故答案为:45. 【点睛】本题考查了三角函数的定义,由定义可推出互余两角的三角函数的关系:若∠A +∠B =90°,则sin A =cos B ,cos A =sin B .熟知相关定义是解题关键.15. 【分析】 过点D 作BC 的垂线交于E ,证明出四边形ABED 为矩形,BCD △为等腰三角形,由勾股定理算出DE BD =【详解】解:过点D 作BC 的垂线交于E ,90DEB ∴∠=︒90A ABC ∠=∠=︒,∴四边形ABED 为矩形,//,1DE AB AD BE ∴==,ABD BDE ∴∠=∠, BD 平分ADC ∠,ADB CDB ∴∠=∠,//AD BE ,ADB CBD ∴∠=∠,∴∠CDB =∠CBD3CD CB ∴==,1AD BE ==,2CE =∴,DE ∴BD ∴sinBE BDE BD ∴∠==,sin ABD ∴∠=故答案为:16. 【答案】43【分析】如图(见解析),先根据平行线的判定与性质可得,A B αβ∠=∠=,从而可得A B ∠=∠,再根据相似三角形的判定证出AOC BOD △△,根据相似三角形的性质可得OC 的长,然后根据正切的定义即可得.【详解】解:如图,由题意得:OP CD ⊥,AC CD ⊥,AC OP ∴,A α∴∠=,同理可得:B β∠=,αβ=,A B ∴∠=∠,在AOC △和BOD 中,90A B ACO BDO ∠=∠⎧⎨∠=∠=︒⎩, AOCBOD ∴, OC AC OD BD∴=, 3,6,12,AC BD CD OD CD OC ====-,1236OC OC ∴-=, 解得4OC =,经检验,4OC =是所列分式方程的解, 则4tan tan 3OC A AC α===, 故答案为:43.17. 【分析】根据sin()sin cos cos sin αβαβαβ-=-代入进行计算即可.【详解】解:sin15sin(4530)︒=︒-︒=sin 45cos30cos45sin30︒︒︒︒-=12==故答案为: 18. 【答案】45 【分析】如图所示,过点C 作CE ⊥AB 于E ,先求出CE ,AE 的长,从而利用勾股定理求出AC 的长,由此求解即可.【详解】解:如图所示,过点C 作CE ⊥AB 于E ,由题意得43CE AE ==,,∴5AC =, ∴4sin =5CE A AC =, 故答案为:45.19. 【答案】725【分析】根据折叠的性质结合勾股定理求得GE 5=,BC=AD=8,证得Rt △EGF ~Rt △EAG ,求得253EA =,再利用勾股定理得到DE 的长,即可求解. 【详解】矩形ABCD 中,GC=4,CE =3,∠C=90︒,∴5==,根据折叠的性质:BG=GF,GF=GC=4,CE=EF=3,∠AGB=∠AGF,∠EGC=∠EGF,∠GFE =∠C=90︒,∴BG=GF=GC=4,∴BC=AD=8,∵∠AGB+∠AGF+∠EGC+∠EGF=180︒,∴∠AGE=90︒,∴Rt△EGF~Rt△EAG,∴EG EFEA EG=,即535EA=,∴253 EA=,∴73 =,∴773sin DAE25253DEAE∠===,故答案为:725.20. 【答案】58##0.625【分析】先判断出四边形ABEF是正方形,进而判断出△ABG≌△BEH,得出∠BAG=∠EBH,进而求出∠AOB=90°,再判断出△AOB~△ABG,求出OA OB=△OBM~△OAN,求出BM=1,即可求出答案.【详解】解:∵点E,F分别是BC,AD的中点,∴11,22AF AD BE BC==,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,AD=BC,∴12AF BE AD==,∴四边形ABEF是矩形,由题意知,AD=2AB,∴AF =AB ,∴矩形ABEF 是正方形,∴AB =BE ,∠ABE =∠BEF =90°,∵BG =EH ,∴△ABG ≌△BEH (SAS ),∴∠BAG =∠EBH ,∴∠BAG +∠ABO =∠EBH +∠ABO =∠ABG =90°, ∴∠AOB =90°,∵BG =EH =25BE =2, ∴BE =5,∴AF =5,∴AG =∵∠OAB =∠BAG ,∠AOB =∠ABG , ∴△AOB ∽△ABG , ∴OA OB AB AB BG AG ==,即52OA OB ==∴OA OB ==, ∵OM ⊥ON ,∴∠MON =90°=∠AOB ,∴∠BOM =∠AON ,∵∠BAG +∠FAG =90°,∠ABO +∠EBH =90°,∠BAG =∠EBH , ∴∠OBM =∠OAN ,∴△OBM ~△OAN , ∴OB BM OA AN=, ∵点N 是AF 的中点, ∴1522AN AF ==,∴52BM =,解得:BM =1, ∴AM =AB -BM =4, ∴552tan 48AN AMN AM ∠===. 故答案为:5821. 【分析】 取AB 中点D ,由图可知,AB =6,AD =BD =3,OD =2,由垂径定理得OD ⊥AB ,则OB ==cos ∠DOB =13OD OB ==,再证∠ACB =∠DOB ,即可解.【详解】解:取AB 中点D ,如图,由图可知,AB =6,AD =BD =3,OD =2,∴OD ⊥AB ,∴∠ODB =90°,∴OB ==cos ∠DOB =13OD OB ==, ∵OA =OB ,∴∠BOD =12∠AOB ,∵∠ACB =12∠AOB ,∴∠ACB =∠DOB ,∴cos ∠ACB = cos ∠DOB =故答案为:22. 【分析】从阅读可得:BC 2=AB 2+AC 2﹣2AB AC cos A ,将数值代入求得结果.【详解】解:由题意可得,BC 2=AB 2+AC 2﹣2AB •AC •cos A=32+42﹣2×3×4cos60°=13,∴BC故答案为:【点睛】本题考查了阅读理解能力,特殊角锐角三角函数值等知识,解决问题的关键是公式的具体情景运用.23. 【答案】6【分析】先计算算术平方根、绝对值、零指数幂、特殊角三角函数值,再合并即可.【详解】解:原式=4﹣2×1+3+1=4﹣2+3+1=6【点睛】此题考查的是算术平方根、绝对值、零指数幂、特殊角三角函数值,掌握其运算法则是解决此题的关键.24. 【答案】2【分析】根据绝对值的意义,零指数幂的定义,数的开方法则以及特殊角的三角函数的值代入计算即可.【详解】解:01|()tan 452+︒11-2=【点睛】此题考查了实数的运算,熟练掌握运算法则和方法是解本题的关键. 25. 【答案】1【分析】根据特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值等计算法则求解即可.【详解】解:2022032tan 45(1))π--︒+--32111=-⨯+-3211=-+-1=.26. 【答案】3【分析】分别计算负数的偶次幂、二次根式、特殊角的正弦值,再进行加减即可.【详解】解:()2022112sin 3013213132-︒=+-⨯=+-=. 27. 【答案】3【分析】根据特殊角三角函数值、二次根式的性质、负整数指数幂求解即可.【详解】 解:原式113322=+-=. 28. 【答案】1【分析】根据零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质进行计算即可求解.【详解】解:原式=1142-⨯+1=.29. 【答案】AC =4,sin A =35 【分析】根据勾股定理求出AC ,根据正弦的定义计算,得到答案.【详解】解:∵∠C =90°,AB =5,BC =3,∴4AC .3sin 5BC A AB ==.30. 【答案】11x -,2【分析】 先根据分式的混合运算顺序和运算法则化简原式,再根据特殊角三角函数值求出x ,继而代入计算可得.【详解】 解:原式22131(1)(1)2x x x x x ⎡⎤---=-⋅⎢⎥--⎣⎦ 2(1)(3)1(1)2x x x x ----=⋅- 221(1)2x x -=⋅-11x =-∵2112x =⨯+=∴原式==31. 【答案】11a +,【分析】先算分式的减法,再把除法化为乘法进行约分化简,最后代入求值,即可求解.【详解】解:原式=223(1)23111a a a a a a ++-⎛⎫-⋅ ⎪--⎝⎭=33231(1)(1)a a a a a a +---⋅+- =1(1)(1)a a a a a -⋅+- =11a +,当2sin 451a =︒-=21=1时,原时。
最新三角函数有关的中考数学题展析
系,从而解决问题。
命题意图 :了解了锐角三角函数的定义就把握了问题的解决方案, 也就是站
在了解决问题的制高点上。 强化这种定义的方式是衔接初高中数学的一种很好的
方式。为高中数学的进一步学习提供了一个可靠的方法, 那就是要重点把握概念
和定义,也就是把握基础。
读书之法 , 在循序而渐进 ,熟读而精思
三、 三角函数的工具功能 -------- 三角函数应用的广泛面
三角函数值。书中提到:在直角三角形中,如果有一个锐角是 30 0 ,那么另一个
锐角是 60 0 ,设斜边为 2,则两直角边分别是 1, 3 ,从而根据定义得出特殊角 的三角函数值。同理,在等腰直角三角形中,如果有一直角边长为 1,可根据定 义求出 45 0 的三角函数值,列表如下
读书之法 , 在循序而渐进 ,熟读而精思
的,是最有效的。 即具体到直角三角形背景下的锐角的余弦的定义。 在教材中是
这样定义的。
sin B
B的对边 ,cos B, B的邻边
解: 在三角形 ABC中,由角 B 的余弦定义可知
读书之法 , 在循序而渐进 ,熟读而精思
cos B
BC ,即 BC
AB cos40 0
下面就 20XX年与三角函数有关的中考试题做一简要分析 一、 特殊角三角函数的计算 ------ 三角函数应用的着眼点
例 1:(义乌第 17 题)计算: 3sin60
2 cos45 3 8 ;
分析 :要计算这个结果, 需要学生掌握特殊角的三角函数值, 对于 9 个结果
每个都要非常清楚,在教材九年级下册第 5 至 7 页重点研究了定义还有 300 角的
命题意图 :本题对三角函数的考查重在结果的记忆方面, 而对此结果是怎么
2020中考数学专项解析:解直角三角形(三角函数应用)
【文库独家】解直角三角形(三角函数应用)1、(绵阳市)如图,在两建筑物之间有一旗杆,高15米,从A 点经过旗杆顶点恰好看到矮建筑物的墙角C 点,且俯角α为60º,又从A 点测得D 点的俯角β为30º,若旗杆底点G 为BC 的中点,则矮建筑物的高CD 为( A )A .20米B .米C .米D .米[解析]GE//AB//CD ,BC=2GC ,GE=15米,AB=2GE=30米,AF=BC=AB•cot ∠ACB=30×cot60º=10 3 米,DF=AF •tan30º=10 3 ×33=10米,CD=AB-DF=30-10=20米。
2、(杭州)在Rt△ABC 中,∠C=90°,若AB=4,sinA=,则斜边上的高等于( )A .B .C .D .考点:解直角三角形.专题:计算题.分析:在直角三角形ABC 中,由AB 与sinA 的值,求出BC 的长,根据勾股定理求出AC 的长,根据面积法求出CD 的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC 中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S △ABC =AC•BC=AB•CD, ∴CD==. 故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.3、(•绥化)如图,在△ABC 中,AD⊥BC 于点D ,AB=8,∠ABD=30°,∠CAD=45°,求BC 的长.∴AD=AD=4.+44、(•鄂州)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为10 cm.∴OP=5、(安顺)在Rt△ABC中,∠C=90°,,BC=8,则△ABC的面积为.考点:解直角三角形.专题:计算题.分析:根据tanA的值及BC的长度可求出AC的长度,然后利用三角形的面积公式进行计算即可.解答:解:∵tanA==,∴AC=6,∴△ABC的面积为×6×8=24.故答案为:24.点评:本题考查解直角三角形的知识,比较简单,关键是掌握在直角三角形中正切的表示形式,从而得出三角形的两条直角边,进而得出三角形的面积.6、(11-4解直角三角形的实际应用·东营中考)某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60︒,在教学楼三楼D处测得旗杆顶部的仰角为30︒,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB 的高度为米.15. 9.解析:过B 作BE ⊥CD 于点E ,设旗杆AB 的高度为x ,在Rt ABC ∆中,tan AB ACB AC ∠=,所以tan tan 60AB x AC x ACB ====∠︒,在Rt BDE ∆中,BE AC x ==,60BOE ∠=︒,tan BE BDE DE ∠=,所以1tan 3BE DE x BDE===∠,因为CE=AB=x ,所以163DC CE DE x x =-=-=,所以x=9,故旗杆的高度为9米. 7、(•常德)如图,在△ABC 中,AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,sinB=,AD=1.(1)求BC 的长;(2)求tan∠DAE 的值.BD=2sinB=,∴AB==3∴BD==2∴BC=BD+DC=2∴CE=BC=+,CD=﹣∴tan∠DAE==﹣8、(13年山东青岛、20)如图,马路的两边CF 、DE 互相平行,线段CD 为人行横道,马路两侧的A 、B 两点分别表示车站和超市。
中考数学考点解析正弦定理与余弦定理的运用
中考数学考点解析正弦定理与余弦定理的运用中考数学考点解析:正弦定理与余弦定理的运用正弦定理和余弦定理是中学数学中重要的几何定理,广泛应用于解决与三角形相关的各类问题。
本文将针对中考数学中关于正弦定理和余弦定理的考点进行解析,并讨论其运用方法。
一、正弦定理的概念与应用正弦定理是指在任意三角形ABC中,设a、b、c分别为三边AB、BC、AC的边长,A、B、C分别为对应的内角,则有下述关系式成立:sinA/a = sinB/b = sinC/c正弦定理常用于解决三角形边长或角度未知的问题。
根据正弦定理,我们可以通过已知角度和边长的比例关系,求解未知边长或角度的值。
例如,已知在三角形ABC中,角A的度数为30°,边AC的长度为10cm,边BC的长度为8cm,求边AB的长度。
解析:根据正弦定理,我们有sin30°/10 = sinB/8,通过计算可以得到sinB的值为1/2。
根据反三角函数的定义,我们可以求得角B的度数为30°。
然后再利用三角函数的性质,我们可以得到sinC的值为sqrt(3)/2,进而求解出边AB的长度为12cm。
二、余弦定理的概念与应用余弦定理是指在任意三角形ABC中,设a、b、c分别为三边AB、BC、AC的边长,A、B、C分别为对应的内角,则有下述关系式成立:c^2 = a^2 + b^2 - 2ab * cosC余弦定理常用于解决三角形边长或角度未知的问题。
相比正弦定理,余弦定理在求解角度时更为常用,尤其适用于已知三边长度求解对应角度的情况。
例如,已知三角形ABC,边AB的长度为5cm,边AC的长度为8cm,角A的度数为45°,求对边BC的长度。
解析:根据余弦定理,我们有BC^2 = 5^2 + 8^2 - 2 * 5 * 8 * cos45°。
通过计算可以得到BC^2的值为25,再开方可以得到BC的长度为5cm。
三、正弦定理与余弦定理的综合应用正弦定理和余弦定理在解决实际问题中常常需要综合运用。
初三数学三角函数中考题
初三数学三角函数中考题引言:三角函数是初中数学中一个重要的概念,涉及到角度和长度之间的关系。
在初三学习数学时,学生们经常会遇到关于三角函数的考题。
本文将介绍几个常见的初三数学三角函数中的考题。
一、正弦函数1. 已知一个角的正弦值sinα=0.6,求该角的可能大小。
解析:根据正弦函数的定义,正弦值为某个角的对边与斜边之比。
可以利用反正弦函数求解,得到角的大小为sin⁻¹(0.6)≈36.87°。
2. 在直角三角形ABC中,∠ACB=90°,tanA=0.8,求sinB和cosB的值。
解析:根据tanA的定义,tanA为∠ACB的对边与邻边之比,即tanA=AC/CB=0.8。
根据直角三角形的性质,sinB=AC/CB,cosB=BC/CB。
可以利用已知条件求解,得到sinB=0.8/√(1+0.8²)≈0.707,cosB=√(1-0.707²)≈0.707。
二、余弦函数1. 在平面直角坐标系中,已知点P坐标为(2, 3),点P表示角A的终边上的一点,求角A的余弦值cosA。
解析:根据余弦函数的定义,余弦值为角A对应的点P在x轴上的横坐标与点P到原点的距离之比。
可以利用已知点P的坐标求解,得到cosA=2/√(2²+3²)≈0.5547。
2. 已知三角形ABC中,角C=45°,边AC=5,边BC=√10,求sinA和cosB的值。
解析:根据三角形的性质,sinA=BC/AC,cosB=AC/BC。
可以利用已知条件求解,得到sinA=√10/5=2/√10,cosB=5/√10=√10/2。
三、正切函数1. 在直角三角形ABC中,∠B=30°,边AC=5,求tanA的值。
解析:根据正切函数的定义,tanA为∠B的对边与邻边之比,即tanA=BC/AC。
可以利用已知条件求解,得到tanA=BC/AC=√3/5。
2. 已知一个角的正切值tanα=1.732,求该角的可能大小。
中考数学试题分析
18.(6分)(2014.德州)先化简,再求值:
÷
.
-1
其中a=2sin60°-tan45°,b=1.
考点:分式的化简求值;特殊角的三角函数值 分析:先根据分式混合运算的法则把原式进行化简,再求出a 的值,把a、b的值代入进行计算即可.
点评:本题考查了分式的化简求值和特殊角的三角函数值, 要熟记特殊角的三角函数值.
【点评】本题主要考查平均数、方差即列表或画树状图求概 率,根据题意列出所有等可能结果及由表格确定使事件发生 的结果数是解题的关键.
(2014.德州) 20 (8分)目前节能灯在城市已基本普及,
今年山东省面向县级及农村地区推广,为响应号召,某商 场计划购进甲,乙两种节能灯共1200只,这两种节能灯的
进价、售价如下表:
进价(元/只) 售价(元/只)
甲型
25
30
乙型
45
60
(1)如何进货,进货款恰好为46000元?
(2)如何进货,商场销售完节能灯时获利最多且不 超过进货价的30%,此时利润为多少元?
• 考点:一次函数的应用;一元一次方程的应用
• 分析:
• (1)设商场购进甲型节能灯x只,则购进乙型节 能灯(1200-x)只,根据两种节能灯的总价为 46000元建立方程求出其解即可;
中考数学真题专项汇编解析—解直角三角形
中考数学真题专项汇编解析—解直角三角形一.选择题1.(2022·天津)tan 45︒的值等于( )A .2B .1C D 【答案】B【分析】根据三角函数定义:正切=对边与邻边之比,进行求解. 【详解】作一个直角三角形,∠C =90°,∠A =45°,如图:∠∠B =90°-45°=45°,∠∠ABC 是等腰三角形,AC =BC , ∠根据正切定义,tan 1BCA AC∠==, ∠∠A =45°,∠tan 451︒=,故选 B .【点睛】本题考查了三角函数,熟练理解三角函数的定义是解题关键. 2.(2022·四川乐山)如图,在Rt ABC 中,90C ∠=︒,BC =D 是AC 上一点,连接BD .若1tan 2A ∠=,1tan 3ABD ∠=,则CD 的长为( )A.B .3 C D .2【答案】C【分析】先根据锐角三角函数值求出AC =5,AB =过点D作DE AB ⊥于点E ,依据三角函数值可得11,,23DE AE DE BE ==从而得32BE AE =,再由5AE BE +=得AE =2,DE =1,由勾股定理得AD CD .【详解】解:在Rt ABC 中,90C ∠=︒,BC ∠1tan 2BC A AC ∠==∠2AC BC ==由勾股定理得,5AB == 过点D 作DE AB ⊥于点E ,如图,∠1tan 2A ∠=,1tan 3ABD ∠=,∠11,,23DE DE AE BE == ∠11,,23DE AE DE BE == ∠1123AE BE = ∠32BE AE = ∠5,AE BE += ∠352AE AE += ∠2,AE = ∠1DE =, 在Rt ADE ∆中,222AD AE DE =+ ∠AD∠AD CD AC +== ∠CD AC AD =-=故选:C【点睛】本题主要考查了勾股定理,由锐角正切值求边长,正确作辅助线求出DE 的长是解答本题的关键.3.(2022·浙江杭州)如图,已知∠ABC 内接于半径为1的∠O ,∠BAC =θ(θ是锐角),则∠ABC 的面积的最大值为( )A .()cos 1cos θθ+B .()cos 1sin θθ+C .()sin 1sin θθ+D .()sin 1cos θθ+ 【答案】D【分析】要使∠ABC 的面积S =12BC •h 的最大,则h 要最大,当高经过圆心时最大.【详解】解:当∠ABC 的高AD 经过圆的圆心时,此时∠ABC 的面积最大, 如图所示,∠AD ∠BC ,∠BC =2BD ,∠BOD =∠BAC =θ, 在Rt ∠BOD 中,sin θ=1BD BD OB =,cos θ=1OD ODOB =, ∠BD =sin θ,OD =cos θ,∠BC =2BD =2sin θ,AD =AO +OD =1+cos θ, ∠S △ABC =12AD •BC =12•2sin θ(1+cos θ)=sin θ(1+cos θ).故选:D .【点睛】本题主要考查锐角三角函数的应用与三角形面积的求法.4.(2022·云南)如图,已知AB 是∠O 的直径,CD 是OO 的弦,AB ∠CD .垂足为E .若AB =26,CD =24,则∠OCE 的余弦值为( )A .713B .1213C .712D .1312【答案】B【分析】先根据垂径定理求出12CE CD =,再根据余弦的定义进行解答即可. 【详解】解:∠AB 是∠O 的直径,AB ∠CD . ∠112,902CE CD OEC ==∠=︒,OC =12AB =13, ∠12cos 13CE OCE OC ∠==.故选:B . 【点睛】此题考查的是垂径定理,锐角三角函数的定义,熟练掌握垂径定理,锐角三角函数的定义是解答此题的关键.5.(2022·陕西)如图,AD 是ABC 的高,若26BD CD ==,tan 2C ∠=,则边AB 的长为( )B.C.D.A.【答案】D【分析】先解直角ABC求出AD,再在直角ABD△中应用勾股定理即可求出AB.【详解】解:∠26CD=,BD CD==,∠3∠直角ADC中,tan2∠=,∠tan326C=⋅∠=⨯=,AD CD C∠直角ABD△中,由勾股定理可得,AB D.【点睛】本题考查利用锐角函数解直角三角形和勾股定理,难度较小,熟练掌握三角函数的意义是解题的关键.6.(2022·浙江金华)一配电房示意图如图所示,它是一个轴对称图形,已知∠=,则房顶A离地面EF的高度为()6mBC=,ABCαA .(43sin )m α+B .(43tan )m α+C .34m sin α⎛⎫+ ⎪⎝⎭ D .34m tan a ⎛⎫+ ⎪⎝⎭【答案】B【分析】过点A 作AD ∠BC 于D ,根据轴对称图形得性质即可得BD =CD ,从而利用锐角三角函数正切值即可求得答案. 【详解】解:过点A 作AD ∠BC 于D ,如图所示:∠它是一个轴对称图形,∠132BD DC BC ===m ,tan 3AD ADBD α∴==,即3tan AD α=, ∴房顶A 离地面EF 的高度为(43tan )m α+,故选B .【点睛】本题考查解直角三角形,熟练掌握利用正切值及一条直角边求另一条直角边是解题的关键.7.(2022·浙江丽水)如图,已知菱形ABCD 的边长为4,E 是BC 的中点,AF 平分EAD ∠交CD 于点F ,FG AD ∥交AE 于点G ,若1cos 4B =,则FG 的长是( )A.3B.83CD.52【答案】B【分析】过点A作AH垂直BC于点H,延长FG交AB于点P,由题干所给条件可知,AG=FG,EG=GP,利用∠AGP=∠B可得到cos∠AGP=14,即可得到FG的长;【详解】过点A作AH垂直BC于点H,延长FG交AB于点P,由题意可知,AB=BC=4,E是BC的中点,∠BE=2,又∠1cos4B=,∠BH=1,即H是BE的中点,∠AB=AE=4,又∠AF是∠DAE的角平分线,AD∠FG,∠∠F AG=∠AFG,即AG=FG,又∠PF∠AD,AP∠DF,∠PF=AD=4,设FG=x,则AG=x,EG=PG=4-x,∠PF∠BC,∠∠AGP=∠AEB=∠B,∠cos∠AGP=12PGAG=22xx-=14,解得x=83;故选B.【点睛】本题考查菱形的性质、角平分线的性质、平行线的性质和解直角三角形,熟练掌握角平分线的性质和解直角三角形的方法是解决本题的关键.8.(2022·四川广元)如图,在正方形方格纸中,每个小正方形的边长都相等,A、B、C、D都在格点处,AB与CD相交于点P,则cos∠APC的值为()A B C.2D5【答案】B【分析】把AB向上平移一个单位到DE,连接CE,则DE∠AB,由勾股定理逆定理可以证明∠DCE为直角三角形,所以cos∠APC=cos∠EDC即可得答案.【详解】解:把AB向上平移一个单位到DE,连接CE,如图.则DE∠AB,∠∠APC=∠EDC.在∠DCE中,有DE=,EC=DC==5∠222EC DC DE+=+==,52025∠DCE∠=︒,∆是直角三角形,且90DCE∠cos∠APC =cos∠EDC =DC DE = 故选:B .【点睛】本题考查了解直角三角形、平行线的性质,勾股定理,作出合适辅助线是解题关键.9.(2022·湖北随州)如图,已知点B ,D ,C 在同一直线的水平,在点C 处测得建筑物AB 的顶端A 的仰角为α,在点D 处测得建筑物AB 的顶端A 的仰角为β,CD a =,则建筑物AB 的高度为( )A .tan tan a αβ- B .tan tan a βα- C .tan tan tan tan a αβαβ- D .tan tan tan tan a αββα-【答案】D【分析】设AB =x ,利用正切值表示出BC 和BD 的长,CD =BC -BD ,从而列出等式,解得x 即可.【详解】设AB =x ,由题意知,∠ACB =α,∠ADB =β,∠tan x BD β=,tan xBC α=, ∠CD =BC -BD ,∠tan tan x x a αβ-=,∠tan tan tan tan a x αββα=-,即AB =tan tan tan tan a αββα-,故选:D . 【点睛】本题考查了解直角三角形,熟记锐角三角函数的定义是解题的关键. 二.填空题10.(2022·山东泰安)如图,某一时刻太阳光从窗户射入房间内,与地面的夹角30DPC ∠=︒,已知窗户的高度2m AF =,窗台的高度1m CF =,窗外水平遮阳篷的宽0.8m AD =,则CP 的长度为______(结果精确到0.1m ).【答案】4.4m##4.4米【分析】根据题意可得AD ∠CP ,从而得到∠ADB =30°,利用锐角三角函数可得tan 0.46m AB AD ADB =⨯∠=≈,从而得到BC =AF +CF -AB =2.54m ,即可求解.【详解】解:根据题意得:AD ∠CP , ∠∠DPC =30°,∠∠ADB =30°,∠0.8m AD =,∠tan 0.80.46m AB AD ADB =⨯∠=≈, ∠AF =2m ,CF =1m ,∠BC =AF +CF -AB =2.54m , ∠ 2.544.4m tan tan 30BC CP BPC ︒==≈∠,即CP 的长度为4.4m .故答案为:4.4m.【点睛】本题主要考查了解直角三角形、平行线的性质,熟练掌握锐角三角函数是解题的关键.11.(2022·天津)如图,在每个小正方形的边长为1的网格中,圆上的点A ,B ,C 及DPF ∠的一边上的点E ,F 均在格点上.(∠)线段EF 的长等于___________;(∠)若点M ,N 分别在射线,PD PF 上,满足90MBN ∠=︒且BM BN =.请用无刻..度.的直尺,在如图所示的网格中,画出点M ,N ,并简要说明点M ,N 的位置是如何找到的(不要求证明)___________.【答案】 见解析【分析】(∠)根据勾股定理,从图中找出EF 所在直角三角形的直角边的长进行计算;(∠)由图可找到点Q ,EQ BQ EF BF ====EFBQ 是正方形,因为90BM BN MBN =∠=︒,,所以BQM BFN ∆≅∆,点M 在EQ 上,BM 、BN 与圆的交点为直径端点,所以EQ 与PD 交点为M ,通过BM 与圆的交点G 和圆心O 连线与圆相交于H ,所以H 在BN 上,则延长BH 与PF 相交点即为N .【详解】解:(∠)从图中可知:点E 、F 水平方向距离为3,竖直方向距离为1,所以EF ;(∠)连接AC ,与竖网格线相交于点O ,O 即为圆心;取格点Q (E 点向右1格,向上3格),连接EQ 与射线PD 相交于点M ;连接MB 与O 相交于点G ;连接GO 并延长,与O 相交于点H ;连接BH 并延长,与射线PF 相交于点N ,则点M ,N 即为所求,理由如下:连接,BQ BF由勾股定理算出BQ QE EF BF ====由题意得90MQB QEF BFE QBF ∠=∠=∠=∠=︒,∴四边形BQEF 为正方形,在Rt BQM 和Rt BFN 中,BQ BF =,1tan tan 3QBA FBC ∠=∠=,QBA FBC ∴∠=∠, AOG COH ∠=∠,AG CH ∴=,ABG HBC ∴∠=∠,MBQ NBF ∴∠=∠()Rt BQM Rt BFN ASA ∴≌BM BN ∴=,90QBM MBF MBF FBN ∠+∠=∠+∠=︒90MBN ∴∠=,从而确定了点,M N 的位置.【点睛】本题考查作图,锐角三角函数、圆周角定理,三角形全等的判定及性质,解题的关键是掌握圆周角的定理.12.(2022·江苏扬州)在ABC ∆中,90C ∠=︒,a b c 、、分别为A B C ∠∠∠、、的对边,若2b ac =,则sin A 的值为__________.【详解】解:如图所示:在Rt ABC 中,由勾股定理可知:222+=a b c ,2ac b =,22a ac c ∴+=,0a >, 0b >,0c >,2222a ac c c c +∴=,即:21a a c c ⎛⎫+= ⎪⎝⎭,求出ac =a c =,∴在Rt ABC 中:in s a c A == 【点睛】本题考查了锐角三角函数的概念及勾股定理,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt ABC 中,sin A A ∠=的对边斜边 ,cos A A ∠=的邻边斜边,tan A A A ∠=∠的对边的邻边. 13.(2022·湖南衡阳)回雁峰座落于衡阳雁峰公园,为衡山七十二峰之首.王安石曾赋诗联“万里衡阳雁,寻常到此回”.峰前开辟的雁峰广场中心建有大雁雕塑,为衡阳市城徽.某课外实践小组为测量大雁雕塑的高度,利用测角仪及皮尺测得以下数据:如图,10m AE =,30BDG ∠=︒,60BFG ∠=︒.已知测角仪DA 的高度为1.5m ,则大雁雕塑BC 的高度约为_________m .(结果精确到0.1m .参考数据:1.732)【答案】10.2【分析】先根据三角形外角求得30∠=∠=,再根据三角形的等角对等边DBF BDG得出BF=DF=AE=10m,再解直角三角形求得BG即可求解.【详解】解:∠30∠=︒,BFGBDG∠=︒且60∠30∠=∠-∠=︒,DBF BFG BDG∠∠=∠DBF BDG,即10mBF DF AE===.∠=⋅=≈,BG BF︒sin608.66m∠8.66 1.510.2mBC BG GC BG DA=+=+=+≈,故答案为:10.2m.【点睛】本题考查了三角形的外角性质、等腰三角形的判定、解直角三角形的应用,熟练掌握等腰三角形的判定和解直角三角形的解题方法是解答的关键.14.(2022·浙江嘉兴)如图,在ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为_________.【分析】先求解33,,3AB AD 再利用线段的和差可得答案. 【详解】解:由题意可得:1,15123,DE DC 30,90,A ABC 33,tan 603BC AB 同理:13,tan 6033DE AD 3233,33BD AB AD【点睛】本题考查的是锐角的正切的应用,二次根式的减法运算,掌握“利用锐角的正切求解三角形的边长”是解本题的关键.15.(2022·浙江绍兴)如图,10AB =,点C 在射线BQ 上的动点,连接AC ,作CD AC ⊥,CD AC =,动点E 在AB 延长线上,tan 3QBE ∠=,连接CE ,DE ,当CE DE =,CE DE ⊥时,BE 的长是______.【答案】5或35 4【分析】过点C作CN∠BE于N,过点D作DM∠CN延长线于M,连接EM,设BN=x,则CN =3x,由∠ACN∠∠CDM可得AN=CM=10+x,CN=DM=3x,由点C、M、D、E四点共圆可得∠NME是等腰直角三角形,于是NE=10-2x,由勾股定理求得AC可得CE,在Rt∠CNE中由勾股定理建立方程求得x,进而可得BE;【详解】解:如图,过点C作CN∠BE于N,过点D作DM∠CN延长线于M,连接EM,设BN=x,则CN=BN•tan∠CBN=3x,∠∠CAD,∠ECD都是等腰直角三角形,∠CA=CD,EC=ED,∠EDC=45°,∠CAN+∠ACN=90°,∠DCM+∠ACN=90°,则∠CAN=∠DCM,在∠ACN和∠CDM中:∠CAN=∠DCM,∠ANC=∠CMD=90°,AC=CD,∠∠ACN∠∠CDM(AAS),∠AN=CM=10+x,CN=DM=3x,∠∠CMD=∠CED=90°,∠点C、M、D、E四点共圆,∠∠CME=∠CDE=45°,∠∠ENM=90°,∠∠NME 是等腰直角三角形,∠NE =NM =CM -CN =10-2x ,Rt ∠ANC 中,ACRt ∠ECD 中,CD =AC ,CE =2CD , Rt ∠CNE 中,CE 2=CN 2+NE 2,∠()()()()2222110331022x x x x ⎡⎤++=+-⎣⎦, 2425250x x -+=,()()4550x x --=,x =5或x =54,∠BE =BN +NE =x +10-2x =10-x ,∠BE =5或BE =354; 故答案为:5或354; 【点睛】本题考查了三角函数,全等三角形的判定和性质,圆内接四边形的性质,勾股定理,一元二次方程等知识;此题综合性较强,正确作出辅助线是解题关键. 16.(2022·山东泰安)如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点处前行30m 到达斜坡CE 的底部点C 处,然后沿斜坡CE 前行20m 到达最佳测量点D 处,在点D 处测得塔顶A 的仰角为30,已知斜坡的斜面坡度i =A ,B ,C ,D ,在同一平面内,小明同学测得古塔AB 的高度是___________.+【答案】(20mm,求出x=10,【分析】过D作DF∠BC于F,DH∠AB于H,设DF=x m,CF则BH=DF=,CF=,DH=BF,再求出AH DH,即可求解.【详解】解:过D作DF∠BC于F,DH∠AB于H,∠DH=BF,BH=DF,∠斜坡的斜面坡度i=1∠:DF CF=m,设DF=x m,CF∠CD==,220x∠x=10,∠BH=DF=10m,CF=,∠DH=BF=(m),∠∠ADH =30°,∠AH10=+m ), ∠AB =AH +BH =20103(m ),故答案为:(20m +.【点睛】本题考查了解直角三角形的应用-仰角俯角问题、坡角坡度问题,正确的作出辅助线构造直角三角形是解题的关键.17.(2022·江苏连云港)如图,在66⨯正方形网格中,ABC 的顶点A 、B 、C 都在网格线上,且都是小正方形边的中点,则sin A =_________.【答案】45【分析】如图所示,过点C 作CE ∠AB 于E ,先求出CE ,AE 的长,从而利用勾股定理求出AC 的长,由此求解即可.【详解】解:如图所示,过点C 作CE ∠AB 于E ,由题意得43CE AE ==,,∠5AC , ∠4sin =5CE A AC =,故答案为:45.【点睛】本题主要考查了求正弦值,勾股定理与网格问题正确作出辅助线,构造直角三角形是解题的关键.18.(2022·四川凉山)如图,CD 是平面镜,光线从A 点出发经CD 上点O 反射后照射到B 点,若入射角为α,反射角为β(反射角等于入射角),AC ∠CD 于点C ,BD ∠CD 于点D ,且AC =3,BD =6,CD =12,则tanα的值为_______.【答案】43【分析】如图(见解析),先根据平行线的判定与性质可得,A B αβ∠=∠=,从而可得A B ∠=∠,再根据相似三角形的判定证出AOC BOD △△,根据相似三角形的性质可得OC 的长,然后根据正切的定义即可得.【详解】解:如图,由题意得:OP CD ⊥,AC CD ⊥,AC OP ∴,A α∴∠=,同理可得:B β∠=,αβ=,A B ∴∠=∠,在AOC △和BOD 中,90A B ACO BDO ∠=∠⎧⎨∠=∠=︒⎩, AOCBOD ∴, OC AC OD BD∴=, 3,6,12,AC BD CD OD CD OC ====-,1236OC OC ∴-=, 解得4OC =,经检验,4OC =是所列分式方程的解, 则4tan tan 3OC A AC α===, 故答案为:43.【点睛】本题考查了相似三角形的判定与性质、正切等知识点,正确找出两个相似三角形是解题关键.19.(2022·四川凉山)如图,在边长为1的正方形网格中,∠O 是∠ABC 的外接圆,点A ,B ,O 在格点上,则cos∠ACB 的值是________.【分析】取AB 中点D ,由图可知,AB =6,AD =BD =3,OD =2,由垂径定理得OD ∠AB ,则OB==cos∠DOB =13OD OB ==,再证∠ACB =∠DOB ,即可解.【详解】解:取AB 中点D ,如图,由图可知,AB =6,AD =BD =3,OD =2,∠OD ∠AB ,∠∠ODB =90°,∠OB==cos∠DOB =OD OB ==, ∠OA =OB ,∠∠BOD =12∠AOB ,∠∠ACB =12∠AOB ,∠∠ACB =∠DOB ,∠cos∠ACB = cos∠DOB【点睛】本题考查勾股定理,垂径定理,圆周角定理,解直角三角形,取AB 中点D ,得Rt ∠ODB 是解题的关键.20.(2022·山东滨州)在Rt ∠ABC 中,∠C =90°,AC =5,BC =12,则sin A =______. 【答案】1213【分析】根据题意画出图形,进而利用勾股定理得出AB 的长,再利用锐角三角函数关系,即可得出答案.【详解】解:如图所示:∠∠C =90°,AC =5,BC =12,∠AB ,∠sin A =1213BC AB =. 故答案为:1213. 【点睛】在直角三角形中求正弦函数值是本题的考点,根据勾股定理求出AB 的长是解题的关键.21.(2022·湖北黄冈)如图,有甲乙两座建筑物,从甲建筑物A 点处测得乙建筑物D 点的俯角α为45︒,C 点的俯角β为58︒,BC 为两座建筑物的水平距离.已知乙建筑物的高度CD 为6m ,则甲建筑物的高度AB 为________m .(sin580.85︒≈,cos580.53︒≈,tan58 1.60︒≈,结果保留整数).【答案】16【分析】过D 点作DE AB ⊥于点E ,则6BE CD ==,45ADE ∠=︒,58ACB ∠=︒,在Rt ADE △中,45ADE ∠=︒,设AE x =,则DE x =,BC x =,6AB AE BE x =+=+,在Rt ABC 中,6tan tan 58 1.60AB x ACB BC x+∠=︒==≈,解得10x ≈,进而可得出答案. 【详解】解:如图,过D 点作DE AB ⊥于点E ,设AE x =,根据题意可得:AB BC ⊥,DC BC ⊥,∠90AED BED ABC DCB ∠=∠=∠=∠=︒,∠四边形BCDE 是矩形,∠从甲建筑物A 点处测得乙建筑物D 点的俯角α为45︒,C 点的俯角β为58︒,BC 为两座建筑物的水平距离,乙建筑物的高度CD 为6,∠6BE CD ==,45ADE ∠=︒,58ACB ∠=︒,在Rt ADE △中,45ADE ∠=︒,∠9045EAD ADE ∠=︒-∠=︒,∠EAD ADE ∠=∠,∠DE AE x ==,∠BC DE x ==,∠6AB AE BE x =+=+,在Rt ABC 中,tan ∠=AB ACB BC 即6tan 58 1.60x x+︒=≈, ∠6tan tan 58 1.60AB x ACB BC x +∠=︒==≈ 解得10x ≈,经检验10x ≈是原分式方程的解且符合题意,∠()616AB x m =+≈.故答案为:16.【点睛】本题考查解直角三角形的应用一仰角俯角问题,涉及到锐角三角函数,矩形的判定和性质,等腰三角形的性质,直角三角形两锐角互余,分式方程等知识.熟练掌握锐角三角函数的定义是解答本题的关键.22.(2022·四川广元)如图,直尺AB 垂直竖立在水平面上,将一个含45°角的直角三角板CDE 的斜边DE 靠在直尺的一边AB 上,使点E 与点A 重合,DE =12cm .当点D 沿DA 方向滑动时,点E 同时从点A 出发沿射线AF 方向滑动.当点D 滑动到点A 时,点C 运动的路径长为 _____cm .【答案】(24-【分析】由题意易得CD CE DE ===,则当点D 沿DA 方向下滑时,得到D C E '''△,过点C '作C N AB '⊥于点N ,作C M AF '⊥于点M ,然后可得D C N E C M ''''≌,进而可知点D 沿DA 方向下滑时,点C ′在射线AC 上运动,最后问题可求解.【详解】解:由题意得:∠DEC =45°,DE =12cm ,∠2CD CE DE ===, 如图,当点D 沿DA 方向下滑时,得到D C E '''△,过点C '作C N AB '⊥于点N ,作C M AF '⊥于点M ,∠∠DAM =90°,∠四边形NAMC ′是矩形,∠90NC M '∠=︒,∠90D C N NC E NC E E C M ''''''''∠+∠=∠+∠=︒,∠D C N E C M ''''∠=∠,∠,90D C E C D NC E MC ''''''''=∠=∠=︒,∠D C N E C M ''''≌,∠C N C M ''=,∠C N AB '⊥,C M AF '⊥,∠AC '平分∠NAM ,即点D 沿DA 方向下滑时,点C ′在射线AC 上运动,∠当C D AB ''⊥时,此时四边形C D AE '''是正方形,CC ′的值最大,最大值为(12cm AD AC -=-,∠当点D 滑动到点A 时,点C 运动的路径长为((21224cm ⨯-=-;故答案为(24-.【点睛】本题主要考查正方形的性质、全等三角形的性质与判定、等腰直角三角形的性质及角平分线的判定定理,熟练掌握正方形的性质、全等三角形的性质与判定、等腰直角三角形的性质及角平分线的判定定理是解题的关键.23.(2022·湖北宜昌)如图,C岛在A岛的北偏东50︒方向,C岛在B岛的北偏西35︒方向,则ACB∠的大小是_____.【答案】85︒【分析】过C作CF DA∥交AB于F,根据方位角的定义,结合平行线性质即可求解.【详解】解:C岛在A岛的北偏东50︒方向,50∴∠=︒,DACC岛在B岛的北偏西35︒方向,35∴∠=︒,CBE过C作CF DA∥交AB于F,如图所示:∴∥∥,DA CF EB50,35∴∠=∠=︒∠=∠=︒,FCA DAC FCB CBEACB FCA FCB∴∠=∠+∠=︒,85故答案为:85︒.【点睛】本题考查方位角的概念与平行线的性质求角度,理解方位角的定义,并熟练掌握平行线的性质是解决问题的关键.三.解答题24.(2022·江苏宿迁)如图,某学习小组在教学楼AB的顶部观测信号塔CD底部的俯角为30°,信号塔顶部的仰角为45°.已知教学楼AB的高度为20m,求信号塔的高度(计算结果保冒根号).20)m.【答案】(【分析】过点A作AE∠CD于点E,则四边形ABDE是矩形,DE=AB=20m,在Rt∠ADE中,求出AE的长,在Rt∠ACE中,∠AEC=90°,求出CE的长,即可得到CD的长,得到信号塔的高度.【详解】解:过点A作AE∠CD于点E,由题意可知,∠B=∠BDE=∠AED=90°,∠四边形ABDE是矩形,∠DE=AB=20m,在Rt ∠ADE 中,∠AED =90°,∠DAE =30°,DE =20m ,∠tan∠DAE =DE AE ,∠20tan tan 30DE AE DAE ===∠︒, 在Rt ∠ACE 中,∠AEC =90°,∠CAE =45°,∠∠ACE 是等腰直角三角形, ∠CE AE =m ,∠CD =CE +DE =(20)m , ∠信号塔的高度为(20)m .【点睛】此题考查了解直角三角形的应用仰角俯角问题、矩形的判定和性质、等腰直角三角形的判定和性质、特殊角的锐角三角函数等知识,借助仰角俯角构造直角三角形与矩形是解题的关键.25.(2022·天津)如图,某座山AB 的项部有一座通讯塔BC ,且点A ,B ,C 在同一条直线上,从地面P 处测得塔顶C 的仰角为42︒,测得塔底B 的仰角为35︒.已知通讯塔BC 的高度为32m ,求这座山AB 的高度(结果取整数).参考数据:tan350.70tan 420.90︒≈︒≈,.【答案】这座山AB 的高度约为112m【分析】在Rt PAB 中,·tan AB PA APB =∠,在Rt PAC △中,·tan AC PA APC =∠,利用AC AB BC =+,即可列出等式求解.【详解】解:如图,根据题意,324235BC APC APB ︒∠︒=∠==,,.在Rt PAC △中,tan AC APC PA ∠=, ∠tan AC PA APC =∠. 在Rt PAB 中,tan AB APB PA ∠=, ∠tan AB PA APB =∠. ∠AC AB BC =+, ∠tan tan AB BC AB APC APB+=∠∠. ∠()tan 32tan 35320.70112m tan tan tan 42tan 350.900.70BC APB AB APC APB ⋅∠⨯︒⨯==≈=∠-∠︒-︒-.答:这座山AB 的高度约为112m .【点睛】本题考查三角函数测高,解题的关键在运用三角函数的定义表示出未知边,列出方程.26.(2022·浙江湖州)如图,已知在Rt ∠ABC 中,∠C =90°,AB =5,BC =3.求AC 的长和sin A 的值.【答案】AC =4,sin A =35【分析】根据勾股定理求出AC ,根据正弦的定义计算,得到答案.【详解】解:∠∠C =Rt ∠,AB =5,BC =3,∠4AC =.3sin 5BC A AB ==. 【点睛】本题考查的是勾股定理、锐角三角函数的定义,掌握正弦的定义是解题的关键.27.(2022·新疆)周米,王老师布置了一项综合实践作业,要求利用所学知识测量一栋楼的高度.小希站在自家阳台上,看对面一栋楼顶部的仰角为45︒,看这栋楼底部的俯角为37︒,已知两楼之间的水平距离为30m ,求这栋楼的高度.(参考数据:sin 370.60,cos370.80,tan 370.75︒≈︒≈︒≈)【答案】这栋楼的高度为:52.5米【分析】如图,过A 作AE ∠BC 于E ,在Rt ∠AEB 和Rt ∠AEC 中,根据正切的概念分别求出BE 、EC ,计算即可.【详解】解:过A 作AE BC ⊥于E ,∠90AEB AEC ∠=∠=︒由依题意得:45,37,30EAB CAE CD AE ∠=︒∠=︒==,Rt AEB 和Rt AEC 中, ∠tan BAE BE AE ∠=,tan CE CAE AE∠= ∠tan 4530130BE AE =⨯︒=⨯=,tan37300.7522.5CE AE =⨯︒≈⨯=∠3022.552.5BC BE CE =+=+=∠这栋楼的高度为:52.5米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟练运用锐角三角函数的定义是解题的关键.28.(2022·湖南邵阳)如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60︒方向上,继续航行1h到达B处,这时测得灯塔C在北偏东45︒方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.1.414 1.732≈)【答案】这艘轮船继续向正东方向航行是安全的,理由见解析【分析】如图,过C作CD∠AB于点D,根据方向角的定义及余角的性质求出∠BAC=30°,∠CBD=45°,解Rt∠ACD和Rt∠BCD,求出CD即可.【详解】解:过点C作CD∠AB,垂足为D.如图所示:根据题意可知∠BAC=90°−60°=30°,∠DBC=90°-45°=45°,AB=30×1=30(km),在Rt∠BCD中,∠CDB=90°,∠DBC=45°,tan∠DBC=CDBD ,即CDBD=1∠CD=BD设BD=CD=x km,在Rt∠ACD中,∠CDA=90°,∠DAC=30°,∠tan∠DAC =CD AD ,即30x x =+解得x,∠40.98km>40km∠这艘船继续向东航行安全.【点睛】此题考查了解直角三角形的应用;解题的关键是熟练掌握锐角三角函数定义.29.(2022·湖南怀化)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A 位于C 村西南方向和B 村南偏东60°方向上,C 村在B 村的正东方向且两村相距2.4千米.有关部门计划在B 、C 两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明.≈1.41)【答案】不穿过,理由见解析【分析】先作AD ∠BC ,再根据题意可知∠ACD=45°,∠ABD =30°,设CD =x ,可表示AD 和BD ,然后根据特殊角三角函数值列出方程,求出AD ,与800米比较得出答案即可.【详解】不穿过,理由如下:过点A 作AD ∠BC ,交BC 于点D ,根据题意可知∠ACD=45°,∠ABD =30°. 设CD =x ,则BD=2.4-x ,在Rt ∠ACD 中,∠ACD=45°,∠∠CAD=45°,∠AD=CD =x .在Rt ∠ABD 中,tan 30AD BD ︒=,即2.4x x =-, 解得x =0.88,可知AD=0.88千米=880米,因为880米>800米,所以公路不穿过纪念园.【点睛】本题主要考查了解直角三角形的应用,构造直角三角形是解题的关键.30.(2022·四川成都)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈)【答案】约为19cm【分析】在Rt ∠ACO 中,根据正弦函数可求OA =20cm ,在Rt ∠A DO '中,根据正弦函数求得A D '的值.【详解】解:在Rt ∠ACO 中,∠AOC =180°-∠AOB =30°,AC =10cm ,∠OA =10201sin 302OC,在Rt ∠A DO '中,18072A OC A OB ,20OA OA '==cm , ∠sin72200.9519A D OA cm .【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.31.(2022·四川泸州)如图,海中有两小岛C ,D ,某渔船在海中的A 处测得小岛C 位于东北方向,小岛D 位于南偏东30°方向,且A ,D 相距10 nmile .该渔船自西向东航行一段时间后到达点B ,此时测得小岛C位于西北方向且与点B 相距nmile.求B,D 间的距离(计算过程中的数据不取近似值).【答案】B,D间的距离为14nmile.【分析】如图,过点D作DE∠AB于点E,根据题意可得,∠BAC=∠ABC=45°,nmile.再根据锐角三角函数即可求出B,∠BAD=60°,AD=10 nmile,BCD间的距离.【详解】解:如图,过点D作DE∠AB于点E,nmile.根据题意可得,∠BAC=∠ABC=45°,∠BAD=60°,AD=10 nmile,BC在Rt∠ABC中,AC=BC=16(nmile),∠AB在Rt∠ADE中,AD=10 nmile,∠EAD=60°,∠DE=AD,AE=1AD=5 (nmile),2∠BE=AB-AE=11(nmile),∠BD=14(nmile),答:B,D间的距离为14nmile.【点睛】本题考查了解直角三角形的应用-方向角问题,解决本题的关键是掌握方向角定义.32.(2022·浙江台州)如图1,梯子斜靠在竖直的墙上,其示意图如图2,梯子与地面所成的角α为75°,梯子AB长3m,求梯子顶部离地竖直高度BC.(结果精确到0.1m ;参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【答案】梯子顶部离地竖直高度BC 约为2.9m .【分析】根据竖直的墙与梯子形成直角三角形,利用锐角三角函数即可求出AC 的长.【详解】解:在Rt ∠ABC 中,AB =3,∠ACB =90°,∠BAC =75°,∠BC =AB ∠sin75°≈3×0.97=2.91≈2.9(m).答:梯子顶部离地竖直高度BC 约为2.9m .【点睛】本题考查了解直角三角形的应用,解决本题的关键是掌握锐角三角函数.33.(2022·湖南湘潭)湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片.某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动.小文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中0.618DH AH≈):伞柄AH 始终平分BAC ∠,20cm AB AC ==,当120BAC ∠=︒时,伞完全打开,此时90BDC ∠=︒.请问最少需要准备多长的伞柄?(结果保留整数,1.732)【答案】72cm【分析】过点B 作BE AH ⊥于点E ,解Rt ,Rt ABE BED ,分别求得,AE ED ,进而求得AD ,根据黄金比求得DH ,求得AH 的长,即可求解.【详解】如图,过点B 作BE AH ⊥于点EAB AC =,120BAC ∠=︒,AH 始终平分BAC ∠, 60BAE CAD ∴∠=∠=︒1cos 60102AE AB AB ∴=︒⨯==,BE ==,,AB AC BAD CAD AD AD =∠=∠= ADC ADB ∴≌90BDC ∠=︒45ADB ADC ∴∠=∠=︒BE ED ∴=1027.32AD AE ED ∴=+=+ 0.618DHAH ≈0.618DH DH AD∴≈+ 解得44.2DH ≈27.3244.271.5272AH AD DH ∴=+=+=≈答:最少需要准备72cm 长的伞柄【点睛】本题考查了解直角三角形的应用,掌握直角三角形中边角关系是解题的关键.34.(2022·湖南常德)第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图是其示意图,已知:助滑坡道50AF =米,弧形跳台的跨度7FG =米,顶端E 到BD 的距离为40米,HG BC ∥,40AFH ∠=︒,25EFG ∠=︒,36ECB ∠=︒.求此大跳台最高点A 距地面BD 的距离是多少米(结果保留整数).(参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈,sin 250.42︒≈,cos250.91︒≈,tan 250.47︒≈,sin360.59︒≈,cos360.81︒≈,tan360.73︒≈)【答案】70【分析】过点E 作EN BC ⊥,交GF 于点M ,则四边形HBNM 是矩形,可得HB MN =,在Rt AHF △中,求得AH ,根据,tan tan tan EM EM EM FM MG EFG EGF ECB===∠∠∠,7FG =,求得FM ,进而求得MN ,根据AB AH HB AH MN =+=+即可求解.【详解】如图,过点E 作EN BC ⊥,交GF 于点M ,则四边形HBNM 是矩形, HB MN ∴=,50AF =,40AFH ∠=︒,在Rt AHF △中,sin 500.6432AH AF AFH =⋅∠≈⨯=米,HG BC ∥,EGF ECB ∴∠=∠25EFG ∠=︒,36ECB ∠=︒,7FG =,tan tan tan EM EM EM FM MG EFG EGF ECB===∠∠∠ 70.470.73EM EM ∴+=, 解得2EM ≈,顶端E 到BD 的距离为40米,即40EN =米40238MN EN EM ∴=-=-=米.323870AB AH HB AH MN ∴=+=+=+=米.【点睛】本题考查了解直角三角形的应用,掌握直角三角形中的边角关系是解题的关键.35.(2022·湖北宜昌)知识小提示:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足5372α︒≤≤︒.如图,现有一架长4m 的梯子AB 斜靠在一竖直的墙AO 上.(1)当人安全使用这架梯子时,求梯子顶端A 与地面距离的最大值;(2)当梯子底端B 距离墙面1.64m 时,计算ABO ∠等于多少度?并判断此时人是否能安全使用这架梯子?(参考数据:sin530.80︒≈,cos530.60︒≈,tan53 1.33︒≈,sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈,sin660.91︒≈,cos660.41︒≈,tan66 2.25︒≈)【答案】(1)梯子顶端A 与地面的距离的最大值3.8米(2)66ABO ∠=︒,人能安全使用这架梯子【分析】(1)AB 的长度固定,当∠ABO 越大,OA 的高度越大,当72α=︒时,AO 取最大值,此时,根据∠ABO 的正弦三角函数计算出OA 长度即可;(2)根据AB=4,OB=1.64,利用∠ABO的余弦函数值,即可求出∠ABO的大小,从而得到答案.(1)∠5372α︒≤≤︒当72α=︒时,AO取最大值,在Rt AOB中,sinAO ABOAB∠=,∠sin4sin7240.95 3.8AO AB ABO=∠=︒≈⨯=,所以梯子顶端A与地面的距离的最大值3.8米.(2)在Rt AOB中,cosBO ABOAB∠=,cos 1.6440.41ABO∠=÷=,cos660.41︒≈,∠66ABO∠=︒,∠5372α︒≤≤︒,∠人能安全使用这架梯子.【点睛】本题考查三角函数的应用,属于中考常见考题,利用图形中的直角三角形,建立三角函数模型是解题的关键.36.(2022·湖南株洲)如图1所示,某登山运动爱好者由山坡∠的山顶点A处沿线段AC至山谷点C处,再从点C处沿线段CB至山坡∠的山顶点B处.如图2所示,将直线l视为水平面,山坡∠的坡角30ACM∠=︒,其高度AM为0.6千米,山坡∠的坡度1:1i=,BN l⊥于N,且CN。
中考数学:锐角三角函数试卷解析
中考数学:锐角三角函数试卷解析一、选择题1.(2021四川巴中,第8题3分)在Rt△ABC中,C=90,sinA=1/2,则t anB的值为()A.1B.3C.1/2D.2考点:锐角三角函数.分析:依照题意作出直角△ABC,然后依照sinA=,设一条直角边BC 为5x,斜边AB为13x,依照勾股定理求出另一条直角边AC的长度,然后依照三角函数的定义可求出tanB.解答:∵sinA=,设BC=5x,AB=13x,则AC==12x,故tanB==.故选D.点评:本题考查了互余两角三角函数的关系,属于基础题,解题的关键是把握三角函数的定义和勾股定理的运用.2.(2021山东威海,第8题3分)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则AOB的正弦值是()A.1B.1/2C.3/5D.2/3考点:锐角三角函数的定义;三角形的面积;勾股定理分析:作ACOB于点C,利用勾股定理求得AC和AB的长,依照正弦的定义即可求解.解答:解:作ACOB于点C.则AC=AB===2,则sinAOB===.故选D.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.(2021四川凉山州,第10题,4分)在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则C的度数是()A.45B.60C.75D.105考点:专门角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理分析:依照非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,依照三角形的内角和定理可得出C的度数.解答:解:由题意,得cosA=,tanB=1,A=60,B=45,C=180﹣A﹣B=180﹣60﹣45=75.故选:C.点评:此题考查了专门角的三角形函数值及绝对值、偶次方的非负性,属于基础题,关键是熟记一些专门角的三角形函数值,也要注意运用三角形的内角和定理.4.(2021甘肃兰州,第5题4分)如图,在Rt△ABC中,C=90,BC=3,A C=4,那么cosA的值等于()A.1/2B.3/5C.2D.1/5考点:锐角三角函数的定义;勾股定理.分析:第一运用勾股定理求出斜边的长度,再利用锐角三角函数的定义求解.解答:解:∵在Rt△ABC中,C=90,AC=4,BC=3,AB=.cosA=,故选:D.点评:本题要紧考查了锐角三角函数的定义:在直角三角形中,锐角的余弦为邻边比斜边.5.(2021广州,第3题3分)如图1,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,则().(A)(B)(C)(D)【考点】正切的定义.【分析】.【答案】D6.(2021浙江金华,第6题4分)如图,点A(t,3)在第一象限,OA与x 轴所夹的锐角为,则t的值是【】A.1B.1.5C.2D.3【答案】C.【解析】7.(2021滨州,第11题3分)在Rt△ACB中,C=90,AB=10,sinA=,c osA=,tanA=,则BC的长为()A.6B.7.5C.8D.12.5考点:解直角三角形分析:依照三角函数的定义来解决,由sinA==,得到BC==.解答:解:∵C=90AB=10,sinA=,BC=AB=10=6.故选A.点评:本题考查了解直角三角形和勾股定理的应用,注意:在Rt△AC B中,C=90,则sinA=,cosA=,tanA=.8.(2021扬州,第7题,3分)如图,已知AOB=60,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.6(第1题图)考点:含30度角的直角三角形;等腰三角形的性质分析:过P作PDOB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN 中点,依照MN求出MD的长,由OD﹣MD即可求出OM的长.解答:解:过P作PDOB,交OB于点D,在Rt△OPD中,cos60==,OP=12,OD=6,∵PM=PN,PDMN,MN=2,MD=ND=MN=1,OM=OD﹣MD=6﹣1=5.故选C.点评:此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练把握直角三角形的性质是解本题的关键.9.(2021四川自贡,第10题4分)如图,在半径为1的⊙O中,AOB=4 5,则sinC的值为()A.1B.1/2C.2D.3考点:圆周角定理;勾股定理;锐角三角函数的定义专题:压轴题.分析:第一过点A作ADOB于点D,由在Rt△AOD中,AOB=45,可求得AD与OD的长,继而可得BD的长,然后由勾股定理求得AB的长,继而可求得sinC的值.解答:解:过点A作ADOB于点D,∵在Rt△AOD中,AOB=45,OD=AD=OAcos45=1=,BD=OB﹣OD=1﹣,AB==,∵AC是⊙O的直径,ABC=90,AC=2,sinC=.故选B.点评:此题考查了圆周角定理、三角函数以及勾股定理.此题难度适中,注意把握辅助线的作法,注意数形结合思想的应用.10.(2021浙江湖州,第6题3分)如图,已知Rt△ABC中,C=90,AC =4,tanA=,则BC的长是()A.2B.8C.2D.4分析:依照锐角三角函数定义得出tanA=,代入求出即可.解:∵tanA==,AC=4,BC=2,故选A.点评:本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,C=90,sinA=,cosA=,tanA=.11.(2021广西来宾,第17题3分)如图,Rt△ABC中,C=90,B=30,BC=6,则AB的长为4考点:解直角三角形.分析:依照cosB=及专门角的三角函数值解题.解答:解:∵cosB=,即cos30=,AB===4.故答案为:4.点评:本题考查了三角函数的定义及专门角的三角函数值,是基础知识,需要熟练把握.12.(2021年贵州安顺,第9题3分)如图,在Rt△ABC中,C=90,A= 30,E为AB上一点且AE:EB=4:1,EFAC于F,连接FB,则tanCFB的值等于()A.30B.45C.60D.15考点:锐角三角函数的定义..分析:tanCFB的值确实是直角△BCF中,BC与CF的比值,设BC=x,则BC与CF就能够用x表示出来.就能够求解.解答:解:依照题意:在Rt△ABC中,C=90,A=30,∵EFAC,EF∥BC,∵AE:EB=4:1,=5,设AB=2x,则BC=x,AC=x.在Rt△CFB中有CF=x,BC=x.则tanCFB==.故选C.点评:本题考查锐角三角函数的概念:在直角三角形中,正弦等于对比斜;余弦等于邻边比斜边;正切等于对边比邻边.13.(2021年广东汕尾,第7题4分)在Rt△ABC中,C=90,若sinA=,则cosB的值是()A.1B.3C.2D.-1分析:依照互余两角的三角函数关系进行解答.解:∵C=90,B=90,cosB=sinA,∵sinA=,cosB=.故选B.点评:本题考查了互余两角的三角函数关系,熟记关系式是解题的关键.14.(2021毕节地区,第15题3分)如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CDAB交AB于D.已知cosACD=,BC =4,则AC的长为()A.1B.4C.3D.2考点:圆周角定理;解直角三角形分析:由以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CDAB交AB于D.易得ACD=B,又由cosACD=,BC=4,即可求得答案.解答:解:∵AB为直径,ACB=90,ACD+BCD=90,∵CDAB,BCD+B=90,ACD,∵cosACD=,cosB=,tanB=,∵BC=4,tanB===,AC=.故选D.点评:此题考查了圆周角定理以及三角函数的性质.此题难度适中,注意把握数形结合思想的应用.15.(2021年天津市,第2题3分)cos60的值等于()A.1/2B.1C.3D.5点:专门角的三角函数值.分析:依照专门角的三角函数值解题即可.解答:解:cos60=.故选A.点评:本题考查专门角的三角函数值,准确把握专门角的函数值是解题关键.二、填空题1.(2021年贵州黔东南11.(4分))cos60=.考点:专门角的三角函数值.分析:依照专门角的三角函数值运算.解答:解:cos60=.点评:本题考查专门角三角函数值的运算,专门角三角函数值运算在中考中经常显现,要把握专门角度的三角函数值.2.(2021江苏苏州,第15题3分)如图,在△ABC中,AB=AC=5,BC=8.若BPC=BAC,则tanBPC=.考点:锐角三角函数的定义;等腰三角形的性质;勾股定理分析:先过点A作AEBC于点E,求得BAE=BAC,故BPC=BAE.再在Rt△BAE中,由勾股定理得AE的长,利用锐角三角函数的定义,求得tanBPC=tanBAE=.解答:解:过点A作AEBC于点E,∵AB=AC=5,BE=BC=8=4,BAE=BAC,∵BPC=BAC,BPC=BAE.在Rt△BAE中,由勾股定理得AE=,tanBPC=tanBAE=.故答案为:.点评:求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.3.(2021四川内江,第23题,6分)如图,AOB=30,OP平分AOB,P COB于点C.若OC=2,则PC的长是.考点:含30度角的直角三角形;勾股定理;矩形的判定与性质.专题:运算题.分析:延长CP,与OA交于点Q,过P作PDOA,利用角平分线定理得到PD=PC,在直角三角形OQC中,利用锐角三角函数定义求出QC的长,在直角三角形QDP中,利用锐角三角函数定义表示出PQ,由QP+PC=QC,求出PC的长即可.解答:解:延长CP,与OA交于点Q,过P作PDOA,∵OP平分AOB,PDOA,PCOB,PD=PC,在Rt△QOC中,AOB=30,OC=2,QC=OCtan30=2=,APD=30,在Rt△QPD中,cos30==,即PQ=DP=PC,QC=PQ+PC,即PC+PC=,解得:PC=.故答案为:点评:此题考查了含30度直角三角形的性质,锐角三角函数定义,熟练把握直角三角形的性质是解本题的关键.4.(2021四川宜宾,第16题,3分)规定:sin(﹣x)=﹣sinx,cos(﹣x)=co sx,sin(x+y)=sinxcosy+cosxsiny.据此判定下列等式成立的是②③④(写出所有正确的序号)①cos(﹣60②sin75③sin2x=2sinx④sin(x﹣y)=sinxcosy﹣cosxsiny.考点:锐角三角函数的定义;专门角的三角函数值.专题:新定义.分析:依照已知中的定义以及专门角的三角函数值即可判定.解答:解:①cos(﹣60)=cos60=,命题错误;②sin75=sin(30+45)=sin30cos45+cos30sin45=+=+=,命题正确;③sin2x=sinxcosx+cosxsinx═2sinxcosx,故命题正确;④sin(x﹣y)=sinxcos(﹣y)+cosxsin(﹣y)=sinxcosy﹣cosxsiny,命题正确.故答案是:②③④.点评:本题考查锐角三角函数以及专门角的三角函数值,正确明白得题目中的定义是关键.5.(2021甘肃白银、临夏,第15题4分)△ABC中,A、B差不多上锐角,若sinA=,cosB=,则C=.考点:专门角的三角函数值;三角形内角和定理.分析:先依照专门角的三角函数值求出A、B的度数,再依照三角形内角和定理求出C即可作出判定.解答:解:∵△ABC中,A、B差不多上锐角sinA=,cosB=,B=60.C=180﹣A﹣B=180﹣60﹣60=60.故答案为:60.点评:本题考查的是专门角的三角函数值及三角形内角和定理,比较简单.6.(2021广西贺州,第18题3分)网格中的每个小正方形的边长差不多上1,△ABC每个顶点都在网格的交点处,则sinA=.考点:锐角三角函数的定义;三角形的面积;勾股定理.分析:依照正弦是角的对边比斜边,可得答案.解答:解:如图,作ADBC于D,CEAB于E,由勾股定理得AB=AC=2,BC=2,AD=3,由BCAD=ABCE,观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。
中考数学与锐角三角函数有关的压轴题含答案解析
一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.已知在平面直角坐标系中,点()()()3,0,3,0,3,8A B C --,以线段BC 为直径作圆,圆心为E ,直线AC 交E 于点D ,连接OD . (1)求证:直线OD 是E 的切线;(2)点F 为x 轴上任意一动点,连接CF 交E 于点G ,连接BG : ①当1an 7t ACF ∠=时,求所有F 点的坐标 (直接写出); ②求BG CF的最大值. 【答案】(1)见解析;(2)①143,031F ⎛⎫⎪⎝⎭,2(5,0)F ;② BG CF 的最大值为12. 【解析】【分析】(1)连接DE ,证明∠EDO=90°即可;(2)①分“F 位于AB 上”和“F 位于BA 的延长线上”结合相似三角形进行求解即可; ②作GM BC ⊥于点M ,证明1~ANF ABC ∆∆,得12BG CF ≤,从而得解. 【详解】(1)证明:连接DE ,则:∵BC 为直径∴90BDC ∠=︒∴90BDA ∠=︒∵OA OB =∴OD OB OA ==∴OBD ODB ∠=∠∵EB ED =∴EBD EDB ∠=∠∴EBD OBD EDB ODB ∠+∠=∠+∠即:EBO EDO ∠=∠∵CB x ⊥轴∴90EBO ∠=︒∴90EDO ∠=︒∴直线OD 为E 的切线.(2)①如图1,当F 位于AB 上时:∵1~ANF ABC ∆∆ ∴11NF AF AN AB BC AC == ∴设3AN x =,则114,5NF x AF x == ∴103CN CA AN x =-=-∴141tan 1037F N x ACF CN x ∠===-,解得:1031x = ∴150531AF x == 1504333131OF =-= 即143,031F ⎛⎫⎪⎝⎭如图2,当F 位于BA 的延长线上时:∵2~AMF ABC ∆∆∴设3AM x =,则224,5MF x AF x ==∴103CM CA AM x =+=+∴241tan 1037F M x ACF CM x ∠===+ 解得:25x =∴252AF x ==2325OF =+=即2(5,0)F②如图,作GM BC ⊥于点M ,∵BC 是直径∴90CGB CBF ∠=∠=︒∴~CBF CGB ∆∆ ∴8BG MG MG CF BC == ∵MG ≤半径4= ∴41882BG MG CF =≤= ∴BG CF 的最大值为12.【点睛】本题考查了圆的综合题:熟练掌握切线的判定定理、解直角三角形;相似三角形的判定和性质和相似比计算线段的长;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.2.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB 的延长线于切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=,求FG的长.【答案】(1)证明见解析;(2)AC∥EF,证明见解析;(3)FG= .【解析】试题分析:(1)如图1,连接OG.根据切线性质及CD⊥AB,可以推出∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;(2)AC与EF平行,理由为:如图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;(3)如图3所示,连接OG,OC,先求出KE=GE,再求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.试题解析:(1)如图1,连接OG.∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.(2)AC∥EF,理由为连接GD,如图2所示.∵KG2=KD•GE,即,∴,又∵∠KGE=∠GKE,∴△GKD∽△EGK,∴∠E=∠AGD,又∵∠C=∠AGD,∴∠E=∠C,∴AC∥EF;(3)连接OG,OC,如图3所示,∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.∵sinE=sin∠ACH=,设AH=3t,则AC=5t,CH=4t,∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即(3t)2+t2=(2)2,解得t=.设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,由勾股定理得:OH2+CH2=OC2,即(r-3t)2+(4t)2=r2,解得r= t=.∵EF为切线,∴△OGF为直角三角形,在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH=,∴FG=【点睛】此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.3.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.考点:1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.4.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高度为1.6米,请计算主教学楼AB的高度.(3≈1.73,结果精确到0.1米)【答案】22.4m【解析】【分析】首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解.【详解】解:在Rt△AFG中,tan∠AFG3,∴FG =tan 3AG AFG =∠, 在Rt △ACG 中,tan ∠ACG =AG CG , ∴CG =tan AG ACG∠=3AG . 又∵CG ﹣FG =24m , 即3AG ﹣3=24m , ∴AG =123m ,∴AB =123+1.6≈22.4m .5.如图,在△ABC 中,∠A=90°,∠ABC=30°,AC=3,动点D 从点A 出发,在AB 边上以每秒1个单位的速度向点B 运动,连结CD ,作点A 关于直线CD 的对称点E ,设点D 运动时间为t (s ).(1)若△BDE 是以BE 为底的等腰三角形,求t 的值;(2)若△BDE 为直角三角形,求t 的值;(3)当S △BCE ≤92时,所有满足条件的t 的取值范围 (所有数据请保留准确值,参考数据:tan15°=23【答案】(133;(23秒或3秒;(3)6﹣3 【解析】【分析】(1)如图1,先由勾股定理求得AB 的长,根据点A 、E 关于直线CD 的对称,得CD 垂直平分AE ,根据线段垂直平分线的性质得:AD=DE ,所以AD=DE=BD ,由3,可得t 的值;(2)分两种情况:①当∠DEB=90°时,如图2,连接AE,根据t的值;②当∠EDB=90°时,如图3,根据△AGC≌△EGD,得AC=DE,由AC∥ED,得四边形CAED 是平行四边形,所以AD=CE=3,即t=3;(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,①当△BCE在BC的下方时,②当△BCE在BC的上方时,分别计算当高为3时对应的t的值即可得结论.【详解】解:(1)如图1,连接AE,由题意得:AD=t,∵∠CAB=90°,∠CBA=30°,∴BC=2AC=6,∴∵点A、E关于直线CD的对称,∴CD垂直平分AE,∴AD=DE,∵△BDE是以BE为底的等腰三角形,∴DE=BD,∴AD=BD,∴t=AD=;2(2)△BDE为直角三角形时,分两种情况:①当∠DEB=90°时,如图2,连接AE,∵CD垂直平分AE,∴AD=DE=t,∵∠B=30°,∴BD=2DE=2t,∴∴②当∠EDB=90°时,如图3,连接CE,∵CD垂直平分AE,∴CE=CA=3,∵∠CAD=∠EDB=90°,∴AC∥ED,∴∠CAG=∠GED,∵AG=EG,∠CGA=∠EGD,∴△AGC≌△EGD,∴AC=DE,∵AC∥ED,∴四边形CAED是平行四边形,∴AD=CE=3,即t=3;综上所述,△BDE为直角三角形时,t的值为3秒或3秒;(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,①当△BCE在BC的下方时,过B作BH⊥CE,交CE的延长线于H,如图4,当AC=BH=3时,此时S△BCE=12AE•BH=12×3×3=92,易得△ACG≌△HBG,∴CG=BG,∴∠ABC=∠BCG=30°,∴∠ACE=60°﹣30°=30°,∵AC=CE,AD=DE,DC=DC,∴△ACD≌△ECD,∴∠ACD=∠DCE=15°,tan∠ACD=tan15°=t3=2﹣3,∴t=6﹣33,由图形可知:0<t<6﹣33时,△BCE的BH越来越小,则面积越来越小,②当△BCE在BC的上方时,如图3,CE=ED=3,且CE⊥ED,此时S△BCE=12CE•DE=12×3×3=92,此时t=3,综上所述,当S△BCE≤92时,t的取值范围是6﹣33≤t≤3.【点睛】本题考查三角形综合题、平行四边形的判定和性质、直角三角形的性质、三角形的面积问题、轴对称等知识,解题的关键是灵活运用所学知识,学会用分类讨论的思想思考问题,学会寻找特殊点解决问题,属于中考压轴题.6.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A,B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.(1)用含t的代数式表示线段DC的长:_________________;(2)当t =__________时,点Q与点C重合时;(3)当线段PQ的垂直平分线经过△ABC一边中点时,求出t的值.【答案】(1);(2)1;(3)t的值为或或.【解析】【分析】(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AQ=AC,即可得出结论;(3)分三种情况,利用锐角三角函数,即可得出结论.【详解】(1)∵AP= , AB=4,∠A=30°∴AC= , AD=∴CD=;(2)AQ=2AD=当AQ=AC时,Q与C重合即=∴t=1;(3)①如图,当PQ的垂直平分线过AB的中点F时,∴∠PGF =90°,PG =PQ =AP =t ,AF =AB =2.∵∠A =∠AQP =30°,∴∠FPG =60°,∴∠PFG =30°,∴PF =2PG =2t ,∴AP +PF =2t +2t =2,∴t =②如图,当PQ 的垂直平分线过AC 的中点N 时,∴∠QMN =90°,AN =AC =,QM =PQ =AP =t. 在Rt △NMQ 中,∵AN +NQ =AQ ,∴③如图,当PQ 的垂直平分线过BC 的中点F 时,∴BF =BC =1,PE =PQ =t ,∠H =30°.∵∠ABC =60°,∴∠BFH =30°=∠H ,∴BH =BF =1.在Rt △PEH 中,PH =2PE =2t.∵AH =AP +PH =AB +BH ,∴2t +2t =5,∴t =.即当线段PQ 的垂直平分线经过△ABC 一边中点时,t 的值为或或.【点睛】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.7.如图①,在菱形ABCD 中,60B ︒∠= ,4AB =.点P 从点A 出发以每秒2个单位的速度沿边AD 向终点D 运动,过点P 作PQ AC ⊥交边AB 于点Q ,过点P 向上作//PN AC ,且32PN PQ =,以PN 、PQ 为边作矩形PQMN .设点P 的运动时间为t(秒),矩形PQMN 与菱形ABCD 重叠部分图形的面积为S .(1)用含t 的代数式表示线段PQ 的长.(2)当点M 落在边BC 上时,求t 的值.(3)当0t 1<<时,求S 与t 之间的函数关系式,(4)如图②,若点O 是AC 的中点,作直线OM .当直线OM 将矩形PQMN 分成两部分图形的面积比为12:时,直接写出t 的值【答案】(1)23PQ t =;(2)45;(3)2193403163t t -+-;(4) 23t = 或87t = . 【解析】【分析】(1)由菱形性质得∠D=∠B=60°,AD=AB=CD=4,△ACD 是等边三角形,证出△APQ 是等腰三角形,得出PF=QF ,3,即可得出结果;(2)当点M 落在边BC 上时,由题意得:△PDN 是等边三角形,得出PD=PN ,由已知得PN=32PQ=3t ,得出PD=3t ,由题意得出方程,解方程即可; (3)当0<t≤45时,3t ,3,S=矩形PQMN 的面积=PQ×PN ,即可得出结果;当45<t <1时,△PDN 是等边三角形,得出PE=PD=AD-PA=4-2t ,∠FEN=∠PED=60°,得出NE=PN-PE=5t-4,33(5t-4),S=矩形PQMN 的面积-2△EFN 的面积,即可得出结果;(4)分两种情况:当0<t ≤45时,△ACD 是等边三角形,AC=AD=4,得出OA=2,OG 是△MNH 的中位线,得出OG=4t-2,NH=2OG=8t-4,由面积关系得出方程,解方程即可; 当45<t≤2时,由平行线得出△OEF ∽△MEQ ,得出EF OF EQ MQ =233t t EF t -=+,解得EF=243232t t t -,得出2332234t t t t -+,由三角形面积关系得出方程,解方程即可.【详解】(1)∵在菱形ABCD中,∠B=60°,∴∠D=∠B=60°,AD=AB=CD=4,△ACD是等边三角形,∴∠CAD=60°,∵PQ⊥AC,∴△APQ是等腰三角形,∴PF=QF,PF=PA•sin60°=2t×32=3t,∴PQ=23t;(2)当点M落在边BC上时,如图2所示:由题意得:△PDN是等边三角形,∴PD=PN,∵PN=32PQ=32×23t=3t,∴PD=3t,∵PA+PD=AD,即2t+3t=4,解得:t=45.(3)当0<t≤45时,如图1所示:3,333t=3t,S=矩形PQMN的面积33t2;当45<t<1时,如图3所示:∵△PDN是等边三角形,∴PE=PD=AD-PA=4-2t,∠FEN=∠PED=60°,∴NE=PN-PE=3t-(4-2t)=5t-4,∴FN=3NE=3(5t-4),∴S=矩形PQMN的面积-2△EFN的面积=63t2-2×12×3(5t-4)2=-19t2+403t-163,即S=-19t2+403t-163;(4)分两种情况:当0<t≤45时,如图4所示:∵△ACD是等边三角形,∴AC=AD=4,∵O是AC的中点,∴OA=2,OG是△MNH的中位线,∴OG=3t-(2-t)=4t-2,NH=2OG=8t-4,∴△MNH的面积=12MN×NH=12×23t×(8t-4)=13×63t2,解得:t=23;当45<t≤2时,如图5所示:∵AC∥QM,∴△OEF ∽△MEQ , ∴EF OF EQ MQ =,即233t t EF t-=+, 解得:EF=243232t t t --, ∴EQ=2332234t t t t --+, ∴△MEQ 的面积=12×3t×(23323t t t -+)=13×63t 2, 解得:t=87; 综上所述,当直线OM 将矩形PQMN 分成两部分图形的面积比为1:2时,t 的值为23或87. 【点睛】本题是四边形综合题目,考查了菱形的性质、矩形的性质、等边三角形的判定与性质、勾股定理、相似三角形的判定与性质、三角形中位线定理等知识;本题综合性强,难度较大,熟练掌握菱形和矩形的性质,综合运用知识,进行分类讨论是解题的关键.8.抛物线y=ax²+bx+4(a≠0)过点A(1, ﹣1),B(5, ﹣1),与y 轴交于点C .(1)求抛物线表达式;(2)如图1,连接CB ,以CB 为边作▱CBPQ ,若点P 在直线BC 下方的抛物线上,Q 为坐标平面内的一点,且▱CBPQ 的面积为30,①求点P 坐标;②过此二点的直线交y 轴于F, 此直线上一动点G,当GB+2GF 2最小时,求点G 坐标. (3)如图2,⊙O1过点A 、B 、C 三点,AE 为直径,点M 为 上的一动点(不与点A ,E 重合),∠MBN 为直角,边BN 与ME 的延长线交于N ,求线段BN 长度的最大值【答案】(1)y=x²﹣6x+4(2)①P(2, -4)或P(3, -5) ②G(0, -2)(3)313【解析】【分析】(1)把点A(1,-1),B(5,-1)代入抛物线y=ax2+bx+4解析式,即可得出抛物线的表达式;(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,可求得直线BC的解析式为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),因为▱CBPQ的面积为30,所以S△PBC=1 2×(−t+4−t2+6t−4)×5=15,解得t的值,即可得出点P的坐标;②当点P为(2,-4)时,求得直线QP的解析式为:y=-x-2,得F(0,-2),∠GOR=45°,因为GB+2 2GF=GB+GR,所以当G于F重合时,GB+GR最小,即可得出点G的坐标;当点P为(3,-5)时,同理可求;(3)先用面积法求出sin∠ACB=213,tan∠ACB=23,在Rt△ABE中,求得圆的直径,因为MB⊥NB,可得∠N=∠AEB=∠ACB,因为tanN=MBBN=23,所以BN=32MB,当MB为直径时,BN的长度最大.【详解】(1) 解:(1)∵抛物线y=ax2+bx+4(a≠0)过点A(1,-1),B(5,-1),∴1412554a ba b-++⎧⎨-++⎩=,=解得16ab⎧⎨-⎩=,=∴抛物线表达式为y=x²﹣6x+4.(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,设直线BC的解析式为y=kx+m,∵B(5,-1),C(0,4),∴154k mm-+⎧⎨⎩==,解得14km=,=-⎧⎨⎩∴直线BC的解析式为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),∵▱CBPQ的面积为30,∴S△PBC=12×(−t+4−t2+6t−4)×5=15,解得t=2或t=3,当t=2时,y=-4当t=3时,y=-5,∴点P坐标为(2,-4)或(3,-5);②当点P为(2,-4)时,∵直线BC解析式为:y=-x+4, QP∥BC,设直线QP的解析式为:y=-x+n,将点P代入,得-4=-2+n,n=-2,∴直线QP的解析式为:y=-x-2,∴F(0,-2),∠GOR=45°,∴GB+2GF=GB+GR当G于F重合时,GB+GR最小,此时点G的坐标为(0,-2),同理,当点P为(3,-5)时,直线QP的解析式为:y=-x-2,同理可得点G的坐标为(0,-2),(3) )∵A(1,-1),B(5,-1)C(0,4),∴,,∵S△ABC=12AC×BCsin∠ACB=12AB×5,∴sin∠tan∠ACB=23,∵AE为直径,AB=4,∴∠ABE=90°,∵sin∠AEB=sin∠4AE,∴∵MB⊥NB,∠NMB=∠EAB,∴∠N=∠AEB=∠ACB,∴tanN=MBBN =23,∴BN=32MB,当MB为直径时,BN的长度最大,为【点睛】题考查用到待定系数法求二次函数解析式和一次函数解析式,圆周角定理,锐角三角函数定义,平行四边形性质.解决(3)问的关键是找到BN 与BM 之间的数量关系.9.如图所示,一堤坝的坡角62ABC ∠=︒,坡面长度25AB =米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角50ADB ∠=︒,则此时应将坝底向外拓宽多少米?(结果保留到0.01 米)(参考数据:sin620.88︒≈,cos620.47︒≈,tan50 1.20︒≈)【答案】6.58米【解析】试题分析:过A 点作AE ⊥CD 于E .在Rt △ABE 中,根据三角函数可得AE ,BE ,在Rt △ADE 中,根据三角函数可得DE ,再根据DB=DE ﹣BE 即可求解.试题解析:过A 点作AE ⊥CD 于E . 在Rt △ABE 中,∠ABE=62°. ∴AE=AB•sin62°=25×0.88=22米,BE=AB•cos62°=25×0.47=11.75米, 在Rt △ADE 中,∠ADB=50°, ∴DE==18米,∴DB=DE ﹣BE≈6.58米. 故此时应将坝底向外拓宽大约6.58米.考点:解直角三角形的应用-坡度坡角问题.10.如图,A (0,2),B (6,2),C (0,c )(c >0),以A 为圆心AB 长为半径的BD交y轴正半轴于点D,BD与BC有交点时,交点为E,P为BD上一点.(1)若c=63+2,①BC=,DE的长为;②当CP=62时,判断CP与⊙A的位置关系,井加以证明;(2)若c=10,求点P与BC距离的最大值;(3)分别直接写出当c=1,c=6,c=9,c=11时,点P与BC的最大距离(结果无需化简)【答案】(1)①12,π;②详见解析;(2)①65;②65(3)答案见详解【解析】【分析】(1)①先求出AB,AC,进而求出BC和∠ABC,最后用弧长公式即可得出结论;②判断出△APC是直角三角形,即可得出结论;(2)分两种情况,利用三角形的面积或锐角三角函数即可得出结论;(3)画图图形,同(2)的方法即可得出结论.【详解】(1)①如图1,∵c=3+2,∴OC=3,∴AC=3﹣2=3∵AB=6,在Rt△BAC中,根据勾股定理得,BC=12,tan∠ABC=ACAB3∴∠ABC =60°,∵AE =AB ,∴△ABE 是等边三角形,∴∠BAE =60°,∴∠DAE =30°,∴DE 的长为306180π⨯=π, 故答案为12,π;②CP 与⊙A 相切. 证明:∵AP =AB =6,AC =OC ﹣OA =63,∴AP 2+CP 2=108,又AC 2=(63)2=108,∴AP 2+PC 2=AC 2.∴∠APC =90°,即:CP ⊥AP .而AP 是半径,∴CP 与⊙A 相切.(2)若c =10,即AC =10﹣2=8,则BC =10.①若点P 在BE 上,AP ⊥BE 时,点P 与BC 的距离最大,设垂足为F ,则PF 的长就是最大距离,如图2,S △ABC =12AB ×AC =12BC ×AF , ∴AF =AB AC BC ⋅=245, ∴PF =AP ﹣AF =65; ②如图3,若点P 在DE 上,作PG ⊥BC 于点G ,当点P与点D重合时,PG最大.此时,sin∠ACB=PG AB CP BC=,即PG=AB CPBC⋅=65∴若c=10,点P与BC距离的最大值是65;(3)当c=1时,如图4,过点P作PM⊥BC,sin∠BCP=AB PM BC CD=∴PM=67423737AB CDBC⋅⨯===423737;当c=6时,如图5,同c=10的①情况,PF=6﹣1213=1213613-,当c=9时,如图6,同c=10的①情况,PF=4285685 -,当c=11时,如图7,点P和点D重合时,点P到BC的距离最大,同c=10时②情况,DG 18117.【点睛】此题是圆的综合题,主要考查了弧长公式,勾股定理和逆定理,三角形的面积公式,锐角三角函数,熟练掌握锐角三角函数是解本题的关键.。
中考数学培优 易错 难题(含解析)之锐角三角函数附详细答案
中考数学培优 易错 难题(含解析)之锐角三角函数附详细答案一、锐角三角函数1.如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°.小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF=1米,从E 处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【答案】6.4米 【解析】解:∵底部B 点到山脚C 点的距离BC 为6 3 米,山坡的坡角为30°. ∴DC=BC•cos30°=3639=⨯=米, ∵CF=1米, ∴DC=9+1=10米, ∴GE=10米, ∵∠AEG=45°, ∴AG=EG=10米, 在直角三角形BGF 中, BG=GF•tan20°=10×0.36=3.6米, ∴AB=AG-BG=10-3.6=6.4米, 答:树高约为6.4米首先在直角三角形BDC 中求得DC 的长,然后求得DF 的长,进而求得GF 的长,然后在直角三角形BGF 中即可求得BG 的长,从而求得树高2.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60︒︒,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处.(1)求之间的距离(2)求从无人机'A 上看目标的俯角的正切值.【答案】(1)120米;(2)235. 【解析】 【分析】(1)解直角三角形即可得到结论;(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==,'30CE AA ==3,在Rt △ABC 中,求得DC=33AC=203,然后根据三角函数的定义即可得到结论. 【详解】解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m ,∴AB=sin 30AC︒=6012=120(m )(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3,在Rt △ABC 中, AC=60m ,∠ADC=60°,∴DC=3AC=203∴DE=503∴tan ∠A 'A D= tan ∠'A DC='A E DE =503=235答:从无人机'A 上看目标D 的俯角的正切值是235.【点睛】本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键.3.小红将笔记本电脑水平放置在桌子上,显示屏OB 与底板OA 所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO '后,电脑转到AO 'B '位置(如图3),侧面示意图为图4.已知OA=OB=24cm ,O 'C ⊥OA 于点C ,O 'C=12cm .(1)求∠CAO'的度数.(2)显示屏的顶部B'比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°.【解析】试题分析:(1)通过解直角三角形即可得到结果;(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm,∴sin∠CAO′=,∴∠CAO′=30°;(2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×=12,∵O′C⊥OA,∠CAO′=30°,∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°,∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,∴显示屏的顶部B′比原来升高了(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,理由:∵显示屏O′B与水平线的夹角仍保持120°,∴∠EO′F=120°,∴∠FO′A=∠CAO′=30°,∵∠AO′B′=120°,∴∠EO′B′=∠FO′A=30°,∴显示屏O′B′应绕点O′按顺时针方向旋转30°.考点:解直角三角形的应用;旋转的性质.4.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.5.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)【答案】(1)证明见解析;(2);(3).【解析】试题分析:(1)应用圆周角定理证明∠APD=∠FPC,得到∠APC=∠FPD,又由∠PAC=∠PDC,即可证明结论.(2)由AC=2BC,设,应用勾股定理即可求得BC,AC的长,则由AC=2BC得,由△ACE∽△ABC可求得AE,CE的长,由可知△APB是等腰直角三角形,从而可求得PA的长,由△AEF是等腰直角三角形求得EF=AE=4,从而求得DF的长,由(1)△PAC∽△PDF得,即可求得PD的长.(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.又∵∠PAC=∠PDC,∴△PAC∽△PDF.(2)连接BP,设,∵∠ACB=90°,AB=5,∴.∴.∵△ACE∽△ABC,∴,即. ∴.∵AB⊥CD,∴.如图,连接BP,∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.由(1)△PAC∽△PDF得,即.∴PD的长为.(3)如图,连接BP,BD,AD,∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.∵,∴.∵△AGP∽△DGB,∴.∵△AGD∽△PGB,∴.∴,即.∵,∴.∴与之间的函数关系式为.考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.6.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D.(1)求证:PA是☉O的切线;(2)若=,且OC=4,求PA的长和tan D的值.【答案】(1)证明见解析;(2)PA =3,tan D=.【解析】试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.试题解析:(1)连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连接BE,∵,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO=,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3.易证,所以,解得,则,在中,.考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.7.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)CD AB,动点P、Q分别在线段OC、CD已知:如图,AB是半圆O的直径,弦//,AP的延长线与射线OQ相交于点E、与弦CD相交于点F(点F与上,且DQ OP点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP =【解析】 【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去. 【详解】(1)联结OD ,∵OC OD =, ∴OCD ODC ∠=∠, ∵//CD AB , ∴OCD COA ∠=∠, ∴POA QDO ∠=∠. 在AOP ∆和ODQ ∆中,{OP DQPOA QDO OA DO=∠=∠=, ∴AOP ∆≌ODQ ∆, ∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=,∴4455OH OP x ==,35PH x =, ∴132AOP S AO PH x ∆=⋅=. ∵//CD AB , ∴PFC ∆∽PAO ∆, ∴2210()()AOPy CP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时,∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =, ∴2360300x x y x-+=50(10)13x <<; (3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=; ②当90POE ∠=o 时,1010254cos cos 25OC CQ QCO AOC ====∠∠,∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=o 时,∵//CD AB , ∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆, ∴DQO APO ∠=∠, ∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.8.如图,已知正方形在直角坐标系中,点分别在轴、轴的正半轴上,点在坐标原点.等腰直角三角板的直角顶点在原点,分别在上,且将三角板绕点逆时针旋转至的位置,连结(1)求证:(2)若三角板绕点逆时针旋转一周,是否存在某一位置,使得若存在,请求出此时点的坐标;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,或【解析】(1)证明:∵四边形为正方形,∴∵三角板是等腰直角三角形,∴又三角板绕点逆时针旋转至的位置时,∴···························· 3分(2)存在.································· 4分∵∴过点与平行的直线有且只有一条,并与垂直,又当三角板绕点逆时针旋转一周时,则点在以为圆心,以为半径的圆上,························ 5分∴过点与垂直的直线必是圆的切线,又点是圆外一点,过点与圆相切的直线有且只有2条,不妨设为和此时,点分别在点和点,满足·························· 7分当切点在第二象限时,点在第一象限,在直角三角形中,∴∴∴点的横坐标为:点的纵坐标为:∴点的坐标为··························· 9分当切点在第一象限时,点在第四象限,同理可求:点的坐标为综上所述,三角板绕点逆时针旋转一周,存在两个位置,使得此时点的坐标为或································ 11分(1)根据旋转的性质找到相等的线段,根据SAS定理证明;(2)由于△OEF是等腰Rt△,若OE∥CF,那么CF必与OF垂直;在旋转过程中,E、F的轨迹是以O为圆心,OE(或OF)长为半径的圆,若CF⊥OF,那么CF必为⊙O的切线,且切点为F;可过C作⊙O的切线,那么这两个切点都符合F点的要求,因此对应的E点也有两个;在Rt△OFC中,OF=2,OC=OA=4,可证得∠FCO=30°,即∠EOC=30°,已知了OE 的长,通过解直角三角形,不难得到E点的坐标,由此得解.9.如图,AB是⊙O的直径,PA、PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.(1)求证:∠EPD=∠EDO;(2)若PC=3,tan∠PDA=34,求OE的长.【答案】(1)见解析;(25.【解析】【分析】(1)由切线的性质即可得证.(2)连接OC,利用tan∠PDA=34,可求出CD=2,进而求得OC=32,再证明△OED∽△DEP,根据相似三角形的性质和勾股定理即可求出OE的长.【详解】(1)证明:∵PA,PC与⊙O分别相切于点A,C,∴∠APO=∠CPO, PA⊥AO,∵DE⊥PO,∴∠PAO=∠E=90°,∵∠AOP=∠EOD,∴∠APO=∠EDO,∴∠EPD=∠EDO.(2)连接OC,∴PA=PC=3,∵tan∠PDA=34,∴在Rt△PAD中,AD=4,PD=22PA AD+=5,∴CD=PD-PC=5-3=2,∵tan∠PDA=34,∴在Rt△OCD中,OC=32,OD=22OC CD+=52,∵∠EPD=∠ODE,∠OCP=∠E=90°,∴△OED∽△DEP,∴PDDO =PEDE=DEOE=2,∴DE=2OE,在Rt△OED中,OE2+DE2=OD2,即5OE2=252⎛⎫⎪⎝⎭=254,∴OE=5.【点睛】本题考查了切线的性质;锐角三角函数;勾股定理和相似三角形的判定与性质,充分利用tan∠PDA=34,得线段的长是解题关键.10.如图,正方形OABC的顶点O与原点重合,点A,C分别在x轴与y轴的正半轴上,点A的坐标为(4,0),点D在边AB上,且tan∠AOD=12,点E是射线OB上一动点,EF⊥x轴于点F,交射线OD于点G,过点G作GH∥x轴交AE于点H.(1)求B,D两点的坐标;(2)当点E在线段OB上运动时,求∠HDA的大小;(3)以点G为圆心,GH的长为半径画⊙G.是否存在点E使⊙G与正方形OABC的对角线所在的直线相切?若不存在,请说明理由;若存在,请求出所有符合条件的点E的坐标.【答案】(1)B(4,4),D(4,2);(2)45°;(3)存在,符合条件的点为(8﹣2,8﹣2)或(2,2)或42164216,77⎛⎫⎪ ⎪⎝⎭或16421642--⎝⎭,理由见解析【解析】【分析】(1)由正方形性质知AB=OA=4,∠OAB=90°,据此得B(4,4),再由tan∠AOD= 12得AD=12OA=2,据此可得点D坐标;(2)由1tan2GFGOFOF∠==知GF=12OF,再由∠AOB=∠ABO=45°知OF=EF,即GF=12EF,根据GH∥x轴知H为AE的中点,结合D为AB的中点知DH是△ABE的中位线,即HD∥BE,据此可得答案;(3)分⊙G与对角线OB和对角线AC相切两种情况,设PG=x,结合题意建立关于x的方程求解可得.【详解】解:(1)∵A(4,0),∴OA=4,∵四边形OABC为正方形,∴AB=OA=4,∠OAB=90°,∴B(4,4),在Rt△OAD中,∠OAD=90°,∵tan∠AOD=12,∴AD=12OA=12×4=2,∴D(4,2);(2)如图1,在Rt△OFG中,∠OFG=90°∴tan∠GOF=GFOF =12,即GF=12OF,∵四边形OABC为正方形,∴∠AOB=∠ABO=45°,∴OF=EF,∴GF=12EF,∴G为EF的中点,∵GH∥x轴交AE于H,∴H为AE的中点,∵B(4,4),D(4,2),∴D为AB的中点,∴DH是△ABE的中位线,∴HD∥BE,∴∠HDA=∠ABO=45°.(3)①若⊙G与对角线OB相切,如图2,当点E在线段OB上时,过点G作GP⊥OB于点P,设PG=x,可得PE=x,EG=FG=2x,OF=EF=22x,∵OA=4,∴AF=4﹣22x,∵G为EF的中点,H为AE的中点,∴GH为△AFE的中位线,∴GH=12AF=12×(4﹣22x)=2﹣2x,则x=2﹣2x,解得:x=22﹣2,∴E(8﹣42,8﹣42),如图3,当点E在线段OB的延长线上时,x2x﹣2,解得:x=2∴E(2,2②若⊙G与对角线AC相切,如图4,当点E在线段BM上时,对角线AC,OB相交于点M,过点G 作GP ⊥OB 于点P ,设PG =x ,可得PE =x , EG =FG =2x , OF =EF =22x , ∵OA =4, ∴AF =4﹣22x ,∵G 为EF 的中点,H 为AE 的中点, ∴GH 为△AFE 的中位线, ∴GH =12AF =12×(4﹣22x )=2﹣2x , 过点G 作GQ ⊥AC 于点Q ,则GQ =PM =3x ﹣22, ∴3x ﹣22=2﹣2x , ∴4227x +=, ∴42164216,E ⎛⎫++ ⎪ ⎪⎝⎭; 如图5,当点E 在线段OM 上时,GQ =PM =23x ,则23x =22, 解得4227x =,∴16421642,E ⎛⎫-- ⎪⎪⎝⎭; 如图6,当点E 在线段OB 的延长线上时,3x ﹣22x ﹣2, 解得:4227x =(舍去); 综上所述,符合条件的点为(8﹣2,8﹣2)或(2,2)或42164216,77⎛⎫ ⎪ ⎪⎝⎭或16421642,77⎛-- ⎝⎭. 【点睛】本题是圆的综合问题,解题的关键是掌握正方形和直角三角形的性质、正切函数的定义、三角形中位线定理及分类讨论思想的运用.11.如图,在平面直角坐标系中,菱形ABCD 的边AB 在x 轴上,点B 坐标(﹣6,0),点C 在y 轴正半轴上,且cos B =35,动点P 从点C 出发,以每秒一个单位长度的速度向D 点移动(P 点到达D 点时停止运动),移动时间为t 秒,过点P 作平行于y 轴的直线l 与菱形的其它边交于点Q . (1)求点D 坐标;(2)求△OPQ 的面积S 关于t 的函数关系式,并求出S 的最大值; (3)在直线l 移动过程中,是否存在t 值,使S =320ABCD S 菱形?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)点D 的坐标为(10,8).(2)S 关于t 的函数关系式为S =24(04)220(410)33t t t t t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503.(3)3或7. 【解析】 【分析】(1)在Rt △BOC 中,求BC,OC,根据菱形性质再求D 的坐标;(2)分两种情况分析:①当0≤t ≤4时和②当4<t ≤10时,根据面积公式列出解析式,再求函数的最值;(3)分两种情况分析:当0≤t ≤4时,4t =12,;当4<t ≤10时,22201233t t -+= 【详解】解:(1)在Rt △BOC 中,∠BOC =90°,OB =6,cos B =35, 10cos OBBC B∴== 228OC BC OB ∴=-=∵四边形ABCD 为菱形,CD ∥x 轴, ∴点D 的坐标为(10,8).(2)∵AB =BC =10,点B 的坐标为(﹣6,0), ∴点A 的坐标为(4,0). 分两种情况考虑,如图1所示.①当0≤t ≤4时,PQ =OC =8,OQ =t ,∴S =12PQ •OQ =4t ,∵4>0,∴当t =4时,S 取得最大值,最大值为16;②当4<t ≤10时,设直线AD 的解析式为y =kx +b (k ≠0), 将A (4,0),D (10,8)代入y =kx +b ,得:4k b 010k b 8+=⎧⎨+=⎩,解得:4k 316b 3⎧=⎪⎪⎨⎪=-⎪⎩,∴直线AD 的解析式为41633y x =-. 当x =t 时,41633y t =-, 41648(10)333PQ t t ⎛⎫∴=--=- ⎪⎝⎭21220233S PQ OP t t ∴=⋅=-+ 22202502(5),033333S t t t =-+=--+-<Q ∴当t =5时,S 取得最大值,最大值为503. 综上所述:S 关于t 的函数关系式为S =24(04)220(410)33t t t t t ⎧⎪⎨-+<⎪⎩剟…,S 的最大值为503.(3)S 菱形ABCD =AB •OC =80. 当0≤t ≤4时,4t =12, 解得:t =3; 当4<t ≤10时,222033t t -+=12, 解得:t 1=5﹣7(舍去),t 2=5+ 7. 综上所述:在直线l 移动过程中,存在t 值,使S =320ABCD S 菱形,t 的值为3或5+7.【点睛】考核知识点:一次函数和二次函数的最值问题.数形结合,分类讨论是关键.12.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到万丰路(直线AO )的距离为120米的点P 处.这时,一辆小轿车由西向东匀速行驶,测得此车从A 处行驶到B 处所用的时间为5秒且∠APO =60°,∠BPO =45°. (1)求A 、B 之间的路程;(2)请判断此车是否超过了万丰路每小时65千米的限制速度?请说明理由.(参考数据:2 1.414,3 1.73≈≈).【答案】【小题1】73.2【小题2】超过限制速度.【解析】解:(1)100(31)AB =-73.2 (米).…6分 (2) 此车制速度v==18.3米/秒13.如图①,在菱形ABCD 中,60B ︒∠= ,4AB =.点P 从点A 出发以每秒2个单位的速度沿边AD 向终点D 运动,过点P 作PQ AC ⊥交边AB 于点Q ,过点P 向上作//PN AC ,且3PN PQ =,以PN 、PQ 为边作矩形PQMN .设点P 的运动时间为t (秒),矩形PQMN 与菱形ABCD 重叠部分图形的面积为S .(1)用含t 的代数式表示线段PQ 的长.(2)当点M 落在边BC 上时,求t 的值.(3)当0t 1<<时,求S 与t 之间的函数关系式,(4)如图②,若点O 是AC 的中点,作直线OM .当直线OM 将矩形PQMN 分成两部分图形的面积比为12:时,直接写出t 的值【答案】(1)23PQ t =;(2)45;(3)2193403163t t -+-;(4) 23t = 或87t = . 【解析】【分析】(1)由菱形性质得∠D=∠B=60°,AD=AB=CD=4,△ACD 是等边三角形,证出△APQ 是等腰三角形,得出PF=QF,PF=P A•sin60°=3t,即可得出结果;(2)当点M落在边BC上时,由题意得:△PDN是等边三角形,得出PD=PN,由已知得PN=3PQ=3t,得出PD=3t,由题意得出方程,解方程即可;(3)当0<t≤45时,PQ=23t,PN=3PQ=3t,S=矩形PQMN的面积=PQ×PN,即可得出结果;当45<t<1时,△PDN是等边三角形,得出PE=PD=AD-PA=4-2t,∠FEN=∠PED=60°,得出NE=PN-PE=5t-4,FN=3NE=3(5t-4),S=矩形PQMN的面积-2△EFN的面积,即可得出结果;(4)分两种情况:当0<t≤45时,△ACD是等边三角形,AC=AD=4,得出OA=2,OG是△MNH的中位线,得出OG=4t-2,NH=2OG=8t-4,由面积关系得出方程,解方程即可;当45<t≤2时,由平行线得出△OEF∽△MEQ,得出EF OFEQ MQ=,即233ttEF t-=+,解得EF=2332t t-,得出EQ=23323t tt-+,由三角形面积关系得出方程,解方程即可.【详解】(1)∵在菱形ABCD中,∠B=60°,∴∠D=∠B=60°,AD=AB=CD=4,△ACD是等边三角形,∴∠CAD=60°,∵PQ⊥AC,∴△APQ是等腰三角形,∴PF=QF,PF=PA•sin60°=2t×32=3t,∴PQ=23t;(2)当点M落在边BC上时,如图2所示:由题意得:△PDN是等边三角形,∴PD=PN,∵333t=3t,∴PD=3t,∵PA+PD=AD,即2t+3t=4,解得:t=45.(3)当0<t≤45时,如图1所示:PQ=23t,PN=3PQ=3×23t=3t,S=矩形PQMN的面积=PQ×PN=23t×3t=63t2;当45<t<1时,如图3所示:∵△PDN是等边三角形,∴PE=PD=AD-PA=4-2t,∠FEN=∠PED=60°,∴NE=PN-PE=3t-(4-2t)=5t-4,∴335t-4),∴S=矩形PQMN的面积-2△EFN的面积32-2×1235t-4)2=-19t233,即S=-19t233(4)分两种情况:当0<t≤45时,如图4所示:∵△ACD 是等边三角形,∴AC=AD=4,∵O 是AC 的中点,∴OA=2,OG 是△MNH 的中位线,∴OG=3t-(2-t )=4t-2,NH=2OG=8t-4,∴△MNH 的面积=12MN×NH=12×23t×(8t-4)=13×63t 2, 解得:t=23; 当45<t≤2时,如图5所示:∵AC ∥QM ,∴△OEF ∽△MEQ ,∴EF OF EQ MQ =233t t EF t-=+, 解得:2332t t -, ∴23323t t t - ∴△MEQ 的面积=12×3t×23323t t t -+=1332, 解得:t=87; 综上所述,当直线OM 将矩形PQMN 分成两部分图形的面积比为1:2时,t 的值为23或87.【点睛】本题是四边形综合题目,考查了菱形的性质、矩形的性质、等边三角形的判定与性质、勾股定理、相似三角形的判定与性质、三角形中位线定理等知识;本题综合性强,难度较大,熟练掌握菱形和矩形的性质,综合运用知识,进行分类讨论是解题的关键.14.已知:如图,在Rt △ABO 中,∠B =90°,∠OAB =30°,OA =3.以点O 为原点,斜边OA 所在直线为x 轴,建立平面直角坐标系,以点P (4,0)为圆心,PA 长为半径画圆,⊙P 与x 轴的另一交点为N ,点M 在⊙P 上,且满足∠MPN =60°.⊙P 以每秒1个单位长度的速度沿x 轴向左运动,设运动时间为ts ,解答下列问题:(发现)(1)MN n的长度为多少;(2)当t =2s 时,求扇形MPN (阴影部分)与Rt △ABO 重叠部分的面积.(探究)当⊙P 和△ABO 的边所在的直线相切时,求点P 的坐标.(拓展)当MN n 与Rt △ABO 的边有两个交点时,请你直接写出t 的取值范围.【答案】【发现】(1)MN n 的长度为π3;(2)重叠部分的面积为38;【探究】:点P 的坐标为10(,);或23 0)或23 0();【拓展】t 的取值范围是23t ≤<或45t ≤<,理由见解析.【解析】【分析】发现:(1)先确定出扇形半径,进而用弧长公式即可得出结论;(2)先求出PA =1,进而求出PQ ,即可用面积公式得出结论;探究:分圆和直线AB 和直线OB 相切,利用三角函数即可得出结论;拓展:先找出·MN和直角三角形的两边有两个交点时的分界点,即可得出结论. 【详解】[发现](1)∵P (4,0),∴OP =4.∵OA =3,∴AP =1,∴·MN 的长度为6011803ππ⨯=. 故答案为3π; (2)设⊙P 半径为r ,则有r =4﹣3=1,当t =2时,如图1,点N 与点A 重合,∴PA =r =1,设MP 与AB 相交于点Q .在Rt △ABO 中,∵∠OAB =30°,∠MPN =60°.∵∠PQA =90°,∴PQ 12=PA 12=,∴AQ =AP ×cos30°32=,∴S 重叠部分=S △APQ 12=PQ ×AQ 38=. 即重叠部分的面积为38. [探究]①如图2,当⊙P 与直线AB 相切于点C 时,连接PC ,则有PC ⊥AB ,PC =r =1. ∵∠OAB =30°,∴AP =2,∴OP =OA ﹣AP =3﹣2=1;∴点P 的坐标为(1,0);②如图3,当⊙P 与直线OB 相切于点D 时,连接PD ,则有PD ⊥OB ,PD =r =1,∴PD ∥AB ,∴∠OPD =∠OAB =30°,∴cos ∠OPD PD OP =,∴OP 12330cos ==︒,∴点P 的坐标为(23,0); ③如图4,当⊙P 与直线OB 相切于点E 时,连接PE ,则有PE ⊥OB ,同②可得:OP 23=; ∴点P 的坐标为(23-,0);[拓展]t 的取值范围是2<t ≤3,4≤t <5,理由:如图5,当点N 运动到与点A 重合时,·MN与Rt △ABO 的边有一个公共点,此时t =2; 当t >2,直到⊙P 运动到与AB 相切时,由探究①得:OP =1,∴t 411-==3,·MN 与Rt △ABO 的边有两个公共点,∴2<t ≤3.如图6,当⊙P运动到PM与OB重合时,·MN与Rt△ABO的边有两个公共点,此时t=4;直到⊙P运动到点N与点O重合时,·MN与Rt△ABO的边有一个公共点,此时t=5;∴4≤t<5,即:t的取值范围是2<t≤3,4≤t<5.【点睛】本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.15.如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;(2)若EF=y,求y关于x的函数关系式;(3)连结OF,CG.①若△AOF为等腰三角形,求⊙O的面积;②若BC=3,则30CG+9=______.(直接写出答案).【答案】(1)证明见解析;(2)y=18x2(x>0);(3)①163π或8π或(17+2)π;21.【解析】【分析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;(2)只要证明△AEF∽△ACB,可得AE EFAC BC解决问题;(3)①分三种情形分别求解即可解决问题;②只要证明△CFG∽△HFA,可得GFAF=CGAH,求出相应的线段即可解决问题;【详解】(1)证明:∵GH垂直平分线段AD,∴HA=HD,GA=GD,∵AB是直径,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四边形AGDH是菱形.(2)解:∵AB是直径,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴AE EF AC BC=,∴124x yx=,∴y=18x2(x>0).(3)①解:如图1中,连接DF.∵GH垂直平分线段AD,∴FA=FD,∴当点D与O重合时,△AOF是等腰三角形,此时AB=2BC,∠CAB=30°,∴AB=833,∴⊙O的面积为163π.如图2中,当AF=AO时,∵AB =22AC BC +=216x +,∴OA =216x +, ∵AF =22EF AE +=2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭, ∴216x +=2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭, 解得x =4(负根已经舍弃),∴AB =42,∴⊙O 的面积为8π.如图2﹣1中,当点C 与点F 重合时,设AE =x ,则BC =AD =2x ,AB =2164x +,∵△ACE ∽△ABC ,∴AC 2=AE•AB ,∴16=2164x +解得x 2=17﹣2(负根已经舍弃),∴AB 2=16+4x 2=17+8,∴⊙O 的面积=π•14•AB 2=(17+2)π综上所述,满足条件的⊙O的面积为163π或8π或(217+2)π;②如图3中,连接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=52,∴AE=32,∴OE=OA﹣AE=1,∴EG=EH2512⎛⎫-⎪⎝⎭212,∵EF=18x2=98,∴FG=212﹣98,AF22AE EF+158,AH22AE EH+302,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴GF CGAF AH=,∴219281530 8-=∴CG=705﹣33010,∴30=21.故答案为21【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.。
中考三角函数题型及解题方法
中考三角函数题型及解题方法中考三角函数题型及解题方法一、正弦、余弦定理正弦定理•用途:求解三角形中的任意一边或角度。
•公式:a sinA =bsinB=csinC余弦定理•用途:求解三角形中的任意一边或角度。
•公式:c2=a2+b2−2abcosC 二、特殊角的三角函数值30°, 45°, 60°角的三角函数值角度正弦值余弦值正切值30°√32√3 345°√22√221角度正弦值余弦值正切值60°√3√32三、三角函数的性质1. 正弦函数的性质•定义域:(−∞,+∞)•值域:[−1,1]•周期:2π•奇偶性:奇函数2. 余弦函数的性质•定义域:(−∞,+∞)•值域:[−1,1]•周期:2π•奇偶性:偶函数3. 正切函数的性质+nπ,其中n为整数。
•定义域:(−∞,+∞),除去π2•值域:(−∞,+∞)•周期:π•奇偶性:奇函数四、解三角形问题1. 已知两边及包含的夹角•使用余弦定理求解第三边的长度。
2. 已知两边及非夹角的一对角度•使用余弦定理求解第三边的长度。
•使用正弦定理求解夹角的度数。
3. 已知两角及夹边的长度•使用余弦定理求解第三边的长度。
4. 已知三边•使用余弦定理求解角度的度数。
5. 已知一边及夹角的度数•使用正弦定理求解第二边的长度。
•使用余弦定理求解第三边的长度。
6. 已知两边及其夹角的度数•使用正弦定理求解第三边的长度。
7. 已知一角及夹两边的长度•使用正切函数求解某边与角度之间的关系。
总结:根据已知信息的不同组合,运用正弦定理、余弦定理以及三角函数的性质,我们可以灵活地解决不同类型的三角函数题目。
以上是中考三角函数题型及解题方法的总结,希望对您的学习有所帮助!五、解题技巧和注意事项1. 理解数学概念在解题前,先明确数学概念,例如正弦、余弦、正切函数的定义和性质。
熟悉数学公式和定理,有助于理解题目和选择合适的解题方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数有关的中考数学题展析
温州
三角函数在高中是一个非常重要的函数,用途很广泛,而在初中关于锐角三角函数的定义给初中直角三角形问题的解决同样起了关键作用。
在去年的浙江省各市的中考试题中多次出现运用三角函数定义来解决直角三角形的问题,且分值可观。
我们知道初中的几何与代数的联系的一个重要环节就是利用三角函数,我们常遇见直角三角形中三边的关系用勾股定理,而要联系角和边就需要借助三角函数,因此透过三角函数的定义和本身的意义的考查确实是检测学生各方面的知识和能力的好方法。
因此我们也会发现一个共同的问题,归纳起来就是要回到定义,这种定义法思想在2008年浙江省的各市中考数学试题中体现的非常明显。
当我们去看2009年的考试说明时:我们发现了(1)认识锐角三角函数(sinA, cosA, tan A),知道00060,45,30角的三角函数值,(2)会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角(3)运用三角函数解决与直角三角形有关的简单实际问题----要求是C ,即能在理解的基础上,把对象运用到新的情境中,能综合运用知识,灵活,合理地选择与运用有关的方法完成给定的数学任务;主动参与特定的数学活动,通过观察,实验,推理等活动发现对象的某些特征或与其他对象的区别和联系。
下面就2008年与三角函数有关的中考试题做一简要分析
一、 特殊角三角函数的计算------三角函数应用的着眼点
例1:(义乌第17题)计算:
分析:要计算这个结果,需要学生掌握特殊角的三角函数值,对于9个结果每个都要非常清楚,在教材九年级下册第5至7页重点研究了定义还有030角的三角函数值。
书中提到:在直角三角形中,如果有一个锐角是030,那么另一个锐角是060,设斜边为2,则两直角边分别是1,3,从而根据定义得出特殊角的三角函数值。
同理,在等腰直角三角形中,如果有一直角边长为1,可根据定义求出045的三角函数值,列表如下
解= 222
+=2.5 评析:本题以三角函数和正数的立方根为考查对象,全面考查学生对特殊角的三角函数值的掌握情况,以及实数之间的基本运算,是对学生运算能力的一次大检阅。
命题意图:本题对三角函数的考查重在结果的记忆方面,而对此结果是怎么来的并不做考究,学生想把握好这些计算内容就是在理解的基础上要加强记忆,记忆也是数学学习的一个重要方法。
而死记硬背不是好方法,好方法就是在两个特殊的直角三角形中去分析把握。
二、 锐角三角函数的定义--------三角函数应用的起跑线
例2:(湖州第10题)如图,已知直角三角形ABC 中,斜
边AB 的长为m ,40B ∠= ,则直角边BC 的长是( )
A .sin 40m
B .cos 40m
C .tan 40m
D .tan 40m 分析:本题考查学生的分析能力,在这样的一个直角三角形中,已知斜边和一个锐角,怎样求其它量的问题。
学生首先得分析出运用哪个三角函数是最直接的,是最有效的。
即具体到直角三角形背景下的锐角的余弦的定义。
在教材中是这样定义的。
,的邻边
的对边,斜边的邻边,斜边的对边B B B B B B B ∠∠=∠=∠=tan cos sin 解:在三角形ABC 中,由角B 的余弦定义可知
0040cos 40cos cos m AB BC AB
BC B =⋅==,即 选B 评析:这是湖州中考卷的第10题,难度值不大,但是体现的信息是从定义角度入手,成功加以解决,要求学生对三角函数的定义非常清晰,能迅速找到定义中所需要的各边,将各边按照定义的方式先写出,从而再进行必要的转化。
命题意图:考查学生对于教材的把握程度,引导学生回归课本,哪怕是一个很小的定义,也要充分的理解和把握,不能忽略。
所以中考的复习阶段要重点抓住两个方面展开,一个考试说明,二是课本教材上的定义,定理和典型例题练习。
例3:(义乌第18题). 如图,小明用一块有一个锐角为30 的直角三角板测量树高,已知小明离树的距离为4米,DE 为1.68米,那么这棵树大约有多高?(精确到0.1米)
分析:本题考查如何将实验问题转化为数学几何
问题的能力,要明确求树高CE 可以转化为求CD 和DE ,
而DE 就是小明的身高,所以只需求CD ,再利用三角
函数的定义寻找CD 与AD 之间的关联就可以。
这是一
个常见的实际应用题,而这个应用的解法中需要用到
三角函数的定义,
解:∵ 0tan30=
4CD AD CD = ,
∴ CD =
∴ CE 1.68 4.0+≈ ∴ 这棵树的高大约有4.0米高.
评析:这是义乌卷的一道大题,看似简单,但蕴涵的信息却很多,首先是线段的分解,其次是直角三角形中已知一个角和一条直角边求其它量的问题。
学生不仅要会转化线段,也要学会利用角的正切的定义分析已知与未知量之间的关系,从而解决问题。
命题意图:了解了锐角三角函数的定义就把握了问题的解决方案,也就是站在了解决问题的制高点上。
强化这种定义的方式是衔接初高中数学的一种很好的方式。
为高中数学的进一步学习提供了一个可靠的方法,那就是要重点把握概念和定义,也就是把握基础。
三、三角函数的工具功能--------三角函数应用的广泛面
(一)解决圆问题中的特殊三角形问题
例4:(金华第20题)如图, CD切⊙O于点D,连结OC, 交⊙O于点B,过点B作
弦A B⊥OD,点E为垂足,已知⊙O的半径为10,sin∠COD=4
5
.
求:(1)弦A B的长;
(2)CD的长;
分析
到已知某个锐角的三角函数值如何建立边之间的关系问题,体现了三角函数作为工具在圆问题中的关键作用。
分析已知量与未知量之间的关系,灵活多变地逆用三角函数,达到解决问题,提高思维能力的效果。
解:(1)∵ AB⊥OD,∴∠OEB=900
在Rt△OEB中,BE=OB×sin∠COD=10×4
5
=8
由垂径定理得AB=2BE=16
所以弦AB的长是16
(2)方法(一)
在Rt△OEB中, =6.
∵CD切⊙O于点D, ∴∠ODC=900, ∴∠OEB=∠ODC. ∵∠BOE=∠COD, ∴△BOE∽△COD,
∴CD OD
BE OE
=, ∴
10
86
CD
= , ∴CD=
40
3
.
所以 CD的长是40 3
方法(二)由sin∠COD=4
5
可得tan∠COD=
4
3
,
在Rt△ODC中,tan∠COD= CD OD
,
∴CD=OD•tan∠COD=10×4
3
=
40
3
评析:本题中不仅用到了条件所给的正弦值,还巧妙地得到了正切值,从而在第二步中迅速解决问题,这就反映了对三角函数的灵活运用。
命题意图:这是金华卷的一道大题,旨在全面考查作为工具特征的三角函数
D
是否能够灵活云运用到解决圆的问题。
三角函数在解决问题中起到了非常关键作用。
(二)代数与几何的综合问题方面
例5(衢州第24题)已知直角梯形纸片OABC 在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,32),C(0,32),点T 在线段OA 上(不与线段端点重合),将纸片折叠,使点A 落在射线AB 上(记为点A ′),折痕经过点T ,折痕TP 与射线AB 交于点P ,设点T 的横坐标为t ,折叠后纸片重叠部分(图中的阴影部分)的面积为S ;
(1) 求∠OAB 的度数,并求当点A ′在线段AB 上时,S 关于t 的函数关系式;
分析:本题考查几何图形的变换而产生的函数的问题,三角函数作为工具在其中体现了桥梁的作用,运用正切,正弦等三角函数综合解决问题。
解:(1) ∵A ,B 两点的坐标分别是A(10,0)和B(8,32),
∴38
1032OAB tan =-=∠, ∴︒=∠60OAB 当点A ´在线段AB 上时,∵︒=∠60OAB ,TA=TA ´,
∴△A ´TA 是等边三角形,且A T TP '⊥,
∴)t 10(2
360sin )t 10(T P -=︒-=,)t 10(21AT 21AP P A -===', ∴2TP A )t 10(8
3T P P A 21S S -=⋅'=='∆,当A ´与B 重合时,AT=AB=460sin 32=︒
, 所以此时10t 6<≤。
评析:本题很好地考查了学生运用三角函数知识解决实际问题的能力
命题意图:在复杂问题中,检测学生运用三角函数工具的灵活力,从而提升学生的思维能力。
总之,以三角函数为载体或是工具,都能很好地检测学生的数学能力和对数学概念本身的理解程度,这是2008年三角函数中考题的显著特点,也必定是以后命题的主要方向,值得我们去认真思考,提高。