[推荐学习]2016年中考数学总复习全程考点训练18锐角三角函数与解直角三角形含解析

合集下载

中考总复习:锐角三角函数综合复习--知识讲解(提高)

中考总复习:锐角三角函数综合复习--知识讲解(提高)

中考总复习:锐角三角函数综合复习—知识讲解(提高)【考纲要求】1.理解锐角三角函数的定义、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决与直角三角形有关的实际问题.题型有选择题、填空题、解答题,多以中、低档题出现;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题. 【知识网络】 【考点梳理】考点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sin A a A c∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cos A bA c∠==的邻边斜边;锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边.同理sin B b B c ∠==的对边斜边;cos B aB c∠==的邻边斜边;tan B b B B a ∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA ,cosA ,tanA 分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin 与∠A ,cos 与∠A ,tan 与∠A 的乘积.书写时习惯上省略∠A 的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan ∠AEF ”,不能写成“tanAEF ”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA >0. 考点二、特殊角的三角函数值利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下: 要点诠释:(1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就Ca bc是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:sin0︒、、、、sin90︒的值依次为0、、、、1,而cos0︒、、、、cos90︒的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小)②余弦值随锐角度数的增大(或减小)而减小(或增大).考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解. 考点七、解直角三角形相关的知识如图所示,在Rt △ABC 中,∠C =90°, (1)三边之间的关系:222a b c +=; (2)两锐角之间的关系:∠A+∠B =90°; (3)边与角之间的关系:sin cos a A B c ==,cos cos a A B c ==,cos sin b A B c==,1tan tan a A b B==. (4) 如图,若直角三角形ABC 中,CD ⊥AB 于点D ,设CD =h ,AD =q ,DB =p ,则由△CBD ∽△ABC ,得a 2=pc ;由△CAD ∽△BAC ,得b 2=qc ;由△ACD ∽△CBD ,得h 2=pq ;由△ACD ∽△ABC 或由△ABC 面积,得ab =ch .(5)如图所示,若CD 是直角三角形ABC 中斜边上的中线,则 ①CD =AD =BD =12AB ; ②点D 是Rt △ABC 的外心,外接圆半径R =12AB . (6)如图所示,若r 是直角三角形ABC 的内切圆半径,则2a b c abr a b c+-==++. 直角三角形的面积: ①如图所示,111sin 222ABC S ab ch ac B ===△.(h 为斜边上的高) ②如图所示,1()2ABC S r a b c =++△. 【典型例题】类型一、锐角三角函数的概念与性质【高清课堂:锐角三角函数综合复习 ID :408468 播放点:例2】1.(1)如图所示,在△ABC中,若∠C=90°,∠B=50°,AB=10,则BC的长为( ).A.10·tan50° B.10·cos50° C.10·sin50° D.10 sin50°(2)如图所示,在△ABC中,∠C=90°,sinA=35,求cosA+tanB的值.(3)如图所示的半圆中,AD是直径,且AD=3,AC=2,则sinB的值等于________.【思路点拨】(1)在直角三角形中,根据锐角三角函数的定义,可以用某个锐角的三角函数值和一条边表示其他边.(2)直角三角形中,某个内角的三角函数值即为该三角形中两边之比.知道某个锐角的三角函数值就知道了该角的大小,可以用比例系数k表示各边.(3)要求sinB的值,可以将∠B转化到一个直角三角形中.【答案与解析】(1)选B.(2)在△ABC,∠C=90°,3sin5 BCAAB==.设BC=3k,则AB=5k(k>0).由勾股定理可得AC=4k,∴4432 cos tan5315k kA Bk k+=+=.(3)由已知,AD是半圆的直径,连接CD,可得∠ACD=90°∠B=∠D,所以sinB=sinD=23 ACAD=.【总结升华】已知一个角的某个三角函数值,求同角或余角的其他三角函数值时,常用的方法是:利用定义,根据三角函数值,用比例系数表示三角形的边长;(2)题求cosA时,还可以直接利用同角三角函数之间的关系式sin2 A+cos2 A=1,读者可自己尝试完成.举一反三:【变式】(2015•乐山)如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.B.C.D.【答案】D【解析】过B点作BD⊥AC,如图,由勾股定理得,AB==,AD==2cosA===,故选:D.类型二、特殊角的三角函数值【高清课堂:锐角三角函数综合复习 例1】2.解答下列各题: (1)化简求值:tan 60tan 45sin 45sin 30sin 60cos30cos 45--++°°°°°°°;(2)在△ABC 中,∠C =90°,化简12sin cos A A -.【思路点拨】第(2)题可以先利用关系式sin 2 A+cos 2A =1对根号内的式子进行变形,配成完全平方的形式. 【答案与解析】解 (1)tan 60tan 45sin 45sin 30sin 60cos30cos 45--++°°°°°°°(2)∵12sin cos A A -2(sin cos )|sin cos |A A A A =-=-,∴12sin cos A A -cos sin (045)sin cos (4590)A A A A A A -<⎧=⎨-<<⎩°≤°°°.【总结升华】由第(2)题可得到今后常用的一个关系式:1±2sin αcos α=(sin α±cos α)2. 例如,若设sin α+cos α=t ,则21sin cos (1)2t αα=-. 举一反三:【高清课堂:锐角三角函数综合复习 ID :408468 播放点:例1】 【变式】若3sin 22α=,cos sin βα=,(2α,β为锐角),求2tan()3β的值. 【答案】∵3sin 22α,且2α为锐角, ∴2α=60°,α=30°. ∴12cos sin 22βα===, ∴β=45°. ∴23tan()tan 3033β==°. 3.(2015春•凉州区校级月考)如图,在锐角△ABC 中,AB=15,BC=14,S △ABC =84,求: (1)tanC 的值;(2)sinA 的值.【思路点拨】(1)过A 作AD ⊥BC 于点D ,利用面积公式求出高AD 的长,从而求出BD 、CD 、AC 的长,此时再求tanC 的值就不那么难了.(2)同理作AC 边上的高,利用面积公式求出高的长,从而求出sinA 的值. 【答案与解析】 解:(1)过A 作AD ⊥BC 于点D . ∵S △ABC =BC •AD=84, ∴×14×AD=84,∴AD=12. 又∵AB=14, ∴BD==9.∴CD=14﹣9=5. 在Rt △ADC 中,AC==13,∴tanC==;(2)过B 作BE ⊥AC 于点E . ∵S △ABC =AC •EB=84, ∴BE=,∴sin ∠BAC===.【总结升华】考查了锐角三角函数的定义,注意辅助线的添法和面积公式,以及解直角三角形公式的灵活应用. 举一反三:【变式】如图,AB 是江北岸滨江路一段,长为3千米,C 为南岸一渡口,为了解决两岸交通困难,拟在渡口C 处架桥.经测量得A 在C 北偏西30°方向,B 在C 的东北方向,从C 处连接两岸的最短的桥长为多少千米?(精确到)【答案】过点C 作CD ⊥AB 于点D.EABCCD 就是连接两岸最短的桥.设CD=x (千米). 在直角三角形BCD 中,∠BCD=45°,所以BD=CD=x.在直角三角形ACD 中,∠ACD=30°,所以AD=CD ×tan ∠ACD=x ·tan30°=x.因为AD+DB=AB ,所以x+x=3,x=≈答:从C 处连接两岸的最短的桥长约为. 类型三、解直角三角形及应用4.如图所示,D 是AB 上一点,且CD ⊥AC 于C ,:2:3ACD CDB S S =△△,4cos 5DCB ∠=, AC+CD =18,求tanA 的值和AB 的长. 【思路点拨】解题的基本思路是将问题转化为解直角三角形的问题,转化的目标主要有两个,一是构造可解的直角三角形;二是利用已知条件通过设参数列方程. 【答案与解析】解:作DE ∥AC 交CB 于E ,则∠EDC =∠ACD =90°.∵4cos 5CD DCE CE =∠=, 设CD =4k(k >0),则CE =5k ,由勾股定理得DE =3k .∵△ACD 和△CDB 在AB 边上的高相同,∴AD:DB =:2:3ACD CDB S S =△△.即553533AC DE k k ==⨯=. ∴44tan 55CD k A AC k ===.∵AC+CD =18, ∴5k+4k =18,解得k =2. ∴2241241AD AC CD k =+==.∴AB =AD+DB =AD+32AD =541. 【总结升华】在解直角三角形时,常用的等量关系是:勾股定理、三角函数关系式、相等的线段、面积关系等. 5.如图所示,山脚下有一棵树AB ,小华从点B 沿山坡向上走50 m 到达点D ,用高为的测角仪CD 测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB 的高(精确到).(参考数据:sin10°≈°≈°≈°≈°≈°≈ 【思路点拨】本题是求四边形一边长的问题,可以通过添加辅助线构造直角三角形来解. 【答案与解析】解:如图所示,延长CD 交PB 于F ,则DF ⊥PB . ∴DF =DB ·sinl5°≈50× CE =BF =DB ·cos15°≈50× ∴AE =CE ·tan10°≈× ∴≈答:树高约为. 【总结升华】一些特殊的四边形,可以通过切割补图形的方法将其转化为若干个直角三角形来解. 举一反三:【变式】如图所示,正三角形ABC 的边长为2,点D 在BC 的延长线上,CD =3.(1)动点P 在AB 上由A 向B 移动,设AP =t ,△PCD 的面积为y ,求y 与t 之间的函数关系式及自变量t 的取值范围;(2)在(1)的条件下,设PC =z ,求z 与t 之间的函数关系式. 【答案】解:(1)作PE ⊥BC 于E ,则BP =AB-AP =2-t(0≤t <2). ∵∠B =60°, ∴1133sin (2)2222PCD S CD PE CD BP B t ===-△, 即3333(02)42y t t =-+≤<. (2)由(1)不难得出,3(2)2PE t =-,1(2)2BE t =-. ∴112(2)(2)22EC BC BE t t =-=--=+. ∵22222231(2)(2)2444PC PE EC t t t t =+=-++=-+.∴224(02)z t t t =-+≤<.6.如图(1)所示,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙ON 上,梯子与地面的倾斜角α为60°.(1)求AO 与BO 的长.(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.①如图(2)所示,设A 点下滑到C 点,B 点向右滑行到D 点,并且AC:BD =2:3,试计算梯子顶端A 沿NO 下滑了多少米;②如图(3)所示,当A 点下滑到A ′点,B 点向右滑行到B ′点时,梯子AB 的中点P 也随之运动到P ′点,若∠POP ′=15°,试求AA ′的长.【思路点拨】(1)在直角△AOB 中,已知斜边AB ,和锐角∠ABO ,即可根据正弦和余弦的定义求得OA ,OB 的长;(2)△APO 和△P′A′O 都是等腰三角形,根据等腰三角形的两底角相等,即可求得∠PAO 的度数, 和∠P′A′O 的度数,在直角△ABO 和△A′B′O 中,根据三角函数即可求得OA 与OA′,即可求得AA′的长.【答案与解析】解:(1)Rt △AOB 中,∠O =90°,α=60°,∴∠OAB =30°.又AB =4米,∴OB =12AB =2米.OA =AB ·sin 60°=4×2=米). (2)①设AC =2x ,BD =3x ,在Rt △COD 中,OC =2x ,OD =2+3x ,CD =4,根据勾股定理:OC 2+OD 2=CD 2,∴2222)(23)4x x ++=.∴213(120x x +-=.∵x ≠0,∴13120x +-=.∴1213x =.24213AC x ==.即梯子顶端A 沿NO 下滑了2413米. ②∵点P 和点P ′分别是Rt △AOB 的斜边AB 与Rt △A ′OB ′的斜边A ′B ′的中点,∴PA =PO ,P ′A ′=P ′O .∴∠PAO =∠AOP ,∠P ′A ′O =∠A ′OP ′.∴∠P ′A ′O-∠PAO =∠POP ′=15°.∵∠PAO =30°,∴∠P ′A ′O =45°.∴A ′O =A ′B ′·cos 45°=42⨯=∴AA ′=OA-A ′O =米.【总结升华】解答本题的关键是理解题意.此题的妙处在于恰到好处地利用了直角三角形斜边上的中线等于斜边的一半,从而求出∠P′A′O=45°,让我们感受到了数学题真的很有意思,做数学题是一种享受.。

浙江省近年年中考数学总复习 全程考点训练18 锐角三角函数与解直角三角形(含解析)(2021年整理)

浙江省近年年中考数学总复习 全程考点训练18 锐角三角函数与解直角三角形(含解析)(2021年整理)

浙江省2016年中考数学总复习全程考点训练18 锐角三角函数与解直角三角形(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2016年中考数学总复习全程考点训练18 锐角三角函数与解直角三角形(含解析))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2016年中考数学总复习全程考点训练18 锐角三角函数与解直角三角形(含解析)的全部内容。

全程考点训练18 锐角三角函数与解直角三角形一、选择题1.在Rt△ABC中,已知∠C=90°,∠A=40°,BC=3,则AC等于(D) A.3sin 40° B.3sin 50°C.3tan 40° D.3tan 50°【解析】∵tan B=ACBC,∠B=90°-∠A=50°,∴AC=BC·tan B=3tan 50°。

故选D.2.如图,在下列网格中,小正方形的边长均为1,点A,B,O都在格点上,则∠AOB的正弦值是(D)A.错误!B.错误!C.错误!D.错误!(第2题)(第2题解)【解析】如解图,过点A作AC⊥OB交OB延长线于点C,则AC=错误!,AO=错误!=错误!=25,∴sin∠AOB=错误!=错误!=错误!。

故选D。

(第3题)3.如图,某航天飞船在地球表面点P的正上方A处,从A处观测到地球上的最远点Q.若∠QAP=α,地球半径为R,则航天飞船距地球表面的最近距离AP以及P,Q两点间的地面距离分别是(B)A.错误!,错误!B.Rsin α-R,错误!C.错误!-R,错误!D.错误!-R,错误!【解析】连结OQ,则AQ⊥OQ,AO=错误!=错误!,∴AP=错误!-R,l错误!=错误!。

初三数学九下锐角三角函数所有知识点总结和常考题型练习题

初三数学九下锐角三角函数所有知识点总结和常考题型练习题

锐角三角函数知识点1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

2、如下图,在Rt △ABC 中,∠C 为直角, 则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、特殊角的三角函数值5、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

6、正切的增减性:当0°<α<90°时,tan α随α的增大而增大。

1、解直角三角形的概念:已知边和角(两个,其中必有一边)→所有未知的边和角。

依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的概念。

2、应用举例:①仰角:视线在水平线上方的角; ②俯角:视线在水平线下方的角。

对边邻边C③坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即h i l =。

坡度一样写成1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做坡角),那么tan hi l α==。

④从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

如图3,OA 、OB 、OC 、OD 的方向角别离是:45°、135°、225°。

⑤指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。

如图4:OA 、OB 、OC 、OD 的方向角别离是:北偏东30°(东北方向),南偏东45°(东南方向),南偏西60°(西南方向),北偏西60°(西北方向)。

锐角三角函数练习一、选择题一、把Rt △ABC 各边的长度都扩大2倍得Rt △A ′B ′C ′,那么锐角A 、A ′的正弦值的关系为( ). A .sinA =sinA ′ B . sinA =2sinA ′ C .2sinA =sinA ′ D .不能确信二、在Rt △ABC 中,∠C =90°,若AB =5,AC =4,则sinA 的值是( )A . 35B . 45C . 34D . 433、如图,△ABC 的极点都是正方形网格中的格点,则sin ∠BAC 等于( ) A .23 B .55C . 105D .134、若是∠α是等腰直角三角形的一个锐角,则COS α的值是( )A.12 B.22C.1D.25、如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,若56AC =,65AB =,则tan ∠ACD 的值为( )A.5B.55 C.306 D.6:i h l=hlαDCBA六、计算tan 602sin 452cos30+-的结果是( )A .2B.2C .1D .2313-.7、如图,已知等腰梯形ABCD 中,AB ∥CD ,∠A=60°,AB=10,CD=3,则此梯形的周长为( ) A . 25 B . 26 C . 27 D . 28.8、如图,小明利用一个含60°角的直角三角板测量一栋楼的高度,已知他与楼之间的水平距离BD 为10m ,眼高AB 为 (即小明的眼睛距地面的距离),那么这栋楼的高是( )A .(81035+)m B . C . 103m D .103835⎛⎫+ ⎪ ⎪⎝⎭m九、如图,已知AB 是半圆O 的直径,弦AD 、BC 相交于点P ,若∠DPB=α,那么CDAB 等于( )A .sin αB .COS αC .tan αD .1tan α二、填空题10. 在Rt △ABC 中,∠C=90°,a 、b 、c 别离是∠A 、∠B 、∠C 的对边,若b=3a ,则tanA= .11. 在△ABC 中,∠C =90°,cosA =3,c =4,则a =_______.12. 如图,P 是∠α的边OA 上一点,且P 点坐标为(2,3),则sin α=______ . 13.已知:α是锐角,tan α=724,则cos α=_______. 14.在Rt △ABC 中,两边的长别离为3和4,求最小角的正弦值为 15.tan 230°+2sin60°-tan45°·sin90°-tan60°+cos 230°=____________.16.如图,已知Rt △ABC 中,AC=3,BC= 4,过直角极点C 作CA 1⊥A B ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,如此一直做下去,取得了一组线段CA 1,A 1C 1,12C A ,…,则CA 1= ,=5554C A A C 三、解答题17、如图,在△ABC 中,∠ABC=90°,BD ⊥AC 于D ,∠CBD=α,AB=3,•BC=4,•求tan α的值.E DC B A 第8题图 αPD CA 第9题图 αy xP(2,3)O A1八、先化简,再求值:+1,其中,tan 60x = .1九、如图,在Rt △ABC 中,CD 、CE 别离为斜边AB 上的高和中线,BC=a ,AC=b (b>a ),若tan ∠DCE=12,求a b 的值.20、如图,Rt △ABC 中,∠C=90°,D 为CA 上一点,∠DBC=30°,DA=3,tanA 的值.2一、已知:如图,在山脚的C 处测得山顶A 的仰角为︒45,沿着坡度为︒30 的斜坡前进400米到D 处(即︒=∠30DCB ,400=CD 米),测得A 的仰角为︒60,求山的高度AB 。

中考数学【锐角三角函数】考点专项复习教案(含例题、习题、答案)

中考数学【锐角三角函数】考点专项复习教案(含例题、习题、答案)

8.
cos 60°= 1 ,tan 30°=
2
,∴cos 60°-tan 30°≠0,
∴(cos 60°-tan 30°)0=1, 解:原式= 例7 分析
2 +1
3
十+2
2 =3 2 +1.
1 32
1 计算 2
-(π -3.14)0-|1-tan 60°|-
3. 3 +1+ 3 +2=10.
第二十八章
本章小结 小结 1 本章概述
锐角三角函数
锐角三角函数、解直角三角形,它们既是相似三角形及函数的继 续,也是继续学习三角形的基础.本章知识首先从工作和生活中经常 遇到的问题人手, 研究直角三角形的边角关系、 锐角三角函数等知识, 进而学习解直角三角形,进一步解决一些简单的实际问题.只有掌握 锐角三角函数和直角三角形的解法, 才能继续学习任意角的三角函数 和解斜三角形等知识, 同时解直角三角形的知识有利于培养数形结合 思想,应牢固掌握. 小结 2 本章学习重难点 【本章重点】 通过实例认识直角三角形的边角关系,即锐角三 角函数(sin A,cos A,tan A),知道 30°,45°,60°角的三角函数 值,会运用三角函数知识解决与直角三角形有关的简单的实际问题. 【本章难点】 综合运用直角三角形的边边关系、边角关系来解 决实际问题. 【学习本章应注意的问题】 在本章的学习中,应正确掌握四种三角函数的定义,熟记特殊角 的三角函数值,要善于运用方程思想求直角三角形的某些未知元素, 会运用转化思想通过添加辅助线把不规则的图形转化为规则的图形 来求解, 会用数学建模思想和转化思想把一些实际问题转化为数学模 型,从而提高分析问题和解决问题的能力.
.
tan 60°=
解:原式=8-1-
专题 3 锐角三角函数与相关知识的综合运用 【专题解读】 锐角三角函数常与其他知识综合起来运用,考查 综合运用知识解决问题的能力. 例 8 如图 28-124 所示,在△ABC 中,AD 是 BC 边上的高,E 为 AC 边的中点,BC=14,AD=12,sin B =4.

历年初三数学中考解直角三角形练习题及答案

历年初三数学中考解直角三角形练习题及答案
所以 DC=DB+BC=2+
在Rt∆ADC中tanD=tan150=
评注: 利用含300角的直角三角形巧妙地构造出含150角的直角三角形,从而求出150角的三角函数值。利用此图还可以求出750的各三角函数值。
强化训练
一、填空题:
⒈ 在∆ABC中,若AC= 。BC= AB=3,则cosA=____________.
∴AB=4BD
在Rt∆ABD中,AD=
∴ sinB=
cosB=
tanB=
cotB=
[例4]计算
分析:本题主要是考察特殊角的三角函数值和分母有理化知识
解:原式= .
= =
=
[例5] 要求tan300的值.可构造如图19-5所示的直角三角形进行计算,作Rt∆ABC,使C=900,斜边AB=2,直角边AC=1,那么BC= ∠ABC=300,所以 tan300=
在此图的基础上,通过添加适当的辅助线,可求出tan150的值。请你就此图添加辅助线,并求出tan150的值。
分析:只需找出一个150的角,并放入一个可求出各边长的直角三角形中。
解:延长CB至D,使BD=AB。连结AD,如图19-6
A A
2 1
2 1
300
B C D B C
图19-5 图19-6
则BD=2,D=150
6、用计算器计算:sin56050/+cos39030/-tan46010/=_______
分析会用计算器求任意一个锐角的三角函数值,然后进行计算。原式=0.5671.
7、已知方程4x2-2(m+1)x+m=0的两根恰为一个直角三角形两锐角的余弦,则m=______
分析设这个直角三角形的两个锐角分别为α、β,且α+β=900。cosβ=sinα.由一元二次方程根与系数的关系得:cosα+cosβ= ,cosαcosβ=

中考数学 考点系统复习 第四章 三角形 第六节 锐角三角函数与解直角三角形的实际应用

中考数学 考点系统复习 第四章 三角形 第六节 锐角三角函数与解直角三角形的实际应用

模型三:拥抱型
【模型突破】如图①,BF+FC+CE=BE;如图②,BC+CE=BE;如图③, AB=GE,AG=BE,BC+CE=AG,DG+AB=DE.
7.(2015·昆明第 20 题 6 分)如图,两幢建筑物 AB 和 CD,AB⊥BD,CD ⊥BD,AB=15 m,CD=20 m,AB 和 CD 之间有一景观池,小南在 A 点测得 池中喷泉处 E 点的俯角为 42°,在点 C 测得 E 点的俯角为 45°(点 B,E, D 在同一直线上),求两幢建筑物之间的距离 BD.(结果精确到 0.1 m,参 考数据:sin 42°≈0.67,cos 42°≈0.74,tan 42°≈0.90)
主义教育基地后,先从基地门口 A 处向正南方向走 300 米到达革命纪念 碑 B 处,再从 B 处向正东方向走到党史纪念馆 C 处,然后从 C 处向北偏 西 37°方向走 200 米到达人民英雄雕塑 D 处,最后从 D 处回到 A 处.已 知人民英雄雕塑在基地门口的南偏东 65°方向,求革命纪念碑与党史纪 念馆之间的距离(cos 37° ≈0.80,tan 37°≈0.75,sin 65°≈0.91,cos 65°≈0.42,tan 65° ≈2.14)
模型二:子母型
【模型突破】BC 为公共边,如图①,AD+DC=AC; 如图②,DC-BC=DB.
【模型演变】
【模型突破】如图③,DF=EC,DE=FC,BF+DE=BC, AE+DF=AC;如图④,AF=CE,AC=FE,BC+AF=BE.
6.(2016·昆明第 20 题 8 分)如图,大楼 AB 右侧有 一障碍物,在障碍物的旁边有一幢小楼 DE,在小楼 的顶端 D 处测得障碍物边缘点 C 的俯角为 30°,测 得大楼顶端 A 的仰角为 45°(点 B,C,E 在同一水平 直线上),已知 AB=80 m,DE=10 m,求障碍物 B,C 两点间的距离.(结果精确到 0.1 m.参考数据: 2≈1.414, 3≈1.732)

中考复习锐角三角函数与解直角三角形 (1)

中考复习锐角三角函数与解直角三角形 (1)
A.tanA·cotA=1
B.sinA=tanA·cosA
C.cosA=cotA·sinA
D.tan2A+cot2A=1
3.如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为α,那么滑梯长l为()
(第3题图)
A. B. C. D.h·sinα
4.如图所示,河堤横断面迎水坡AB的坡比是1: ,堤高BC=5 m,则坡面AB的长度是()
课时
共课时
学法
自学合作探究
主案
副案(修改栏)
【考点探究】
1.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC= ,BC=2,则sin∠ACD的值为()
A. B. C. D.
2.如图,在Rt△ABC中,∠C=90°,把∠A的邻边与对边的比叫做∠A的余切,记作cotA= .则下列关系式中不成立的是()
A.10 m B.10 m C.15 m D.5 m
(第4题图)
5.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C地,他先沿正东方向走了200 m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么,由此可知,B,C两地相距__________m.
6.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于__________.
A. B. C. D.h·sinα
(第3题图)
4.如图所示,河堤横断面迎水坡AB的坡比是1: ,堤高BC=5 m,则坡面AB的长度是()
A.10 m B.10 m C.15 m D.5 m
(第4题图)
5.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C地,他先沿正东方向走了200 m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么,由此可知,B,C两地相距__________m.

中考数学专题复习之锐角三角函数综合训练

中考数学专题复习之锐角三角函数综合训练

中考数学专题复习之锐角三角函数综合训练1.如图为某区域部分交通线路图,其中直线l1∥l2∥l3,直线l与直线l1、l2、l3都垂直,垂足分别为点A、点B和点C,(高速路右侧边缘),l2上的点M位于点A的北偏东30°方向上,且BM=千米,l3上的点N位于点M的北偏东α方向上,且cosα=,MN=2千米,点A和点N是城际线L上的两个相邻的站点.(1)求l2和l3之间的距离;(2)若城际火车平均时速为150千米/小时,求市民小强乘坐城际火车从站点A到站点N 需要多少小时?(结果用分数表示)2.如图,斜坡AB长130米,坡度i=1:2.4,BC⊥AC,现计划在斜坡中点D处挖去部分坡体修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为30°,求平台DE的长;(结果保留根号)(2)斜坡AB正前方一座建筑物QM上悬挂了一幅巨型广告MN,小明在D点测得广告顶部M的仰角为26.5°,他沿坡面DA走到坡脚A处,然后向大楼方向继续行走10米来到P处,测得广告底部N的仰角为53°,此时小明距大楼底端Q处30米.已知B、C、A、M、Q在同一平面内,C、A、P、Q在同一条直线上,求广告MN的长度.(参考数据:sin26.5≈0.45,tan26.5≈0.50,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)3.(1)如图1,△ABC中,∠C=90°,∠ABC=30°,AC=m,延长CB至点D,使BD =AB.①求∠D的度数;②求tan75°的值.(2)如图2,点M的坐标为(2,0),直线MN与y轴的正半轴交于点N,∠OMN=75°.求直线MN的函数表达式.4.在Rt△ABC中,∠ACB=90°,AB=5,,D是斜边AB上一点,过点A 作AE⊥CD,垂足为E,AE交直线BC于点F.(1)当时,求线段BF的长;(2)当点F在边BC上时,设AD=x,BF=y,求y关于x的函数解析式,及其定义域;(3)当时,求线段AD的长.5.阅读下列材料,并解决后面的问题.在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c.过A作AD⊥BC于D(如图),则sin B=,sin C=,即AD=c sin B,AD=b sin C,于是c sin B=b sin C,即.同理有,.所以…(*)即:在一个三角形中,各边和它所对角的正弦的比相等.(1)在锐角三角形中,若已知三个元素a、b、∠A,运用上述结论(*)和有关定理就可以求出其余三个未知元素c、∠B、∠C,请你按照下列步骤填空,完成求解过程:第一步:由条件a、b、∠A∠B;第二步:由条件∠A、∠B∠C;第三步:由条件c.(2)如图,已知:∠A=60°,∠C=75°,a=6,运用上述结论(*)试求b.6.(2020秋•衢江区期末)阅读材料:关于三角函数有如下的公式:sin(α+β)=sinαcosβ+cosαsinβ,tan(α+β)=.利用这些公式可以将两角和的三角函数值转化成两个三角函数值的和(差),如tan75°=tan(30°+45°)==2+.问题解决:根据以上阅读材料,请选择适当的公式解答下列问题.(1)求sin75°;(2)如图,边长为2的正△ABC沿直线滚动,设当△ABC滚动240°时,C点的位置在C′,当△ABC滚动480°时,A点的位置在A′.①求tan∠CAC′的值;②试确定∠CAC′+∠CAA′的度数.7.阅读下面材料:小敏遇到这一个问题:已知α为锐角,且tanα=,求tan2α的值.小敏根据锐角三角函数及三角形有关的学习经验,先画出一个含锐角α的直角三角形:如图1,在Rt△ABC中,∠C=90°,∠B=α.她通过独立思考及与同学进行交流、讨论后,形成了构造2α角的几种方法:方法1:如图2,作线段AB的垂直平分线交BC于点D,连接AD.方法2:如图3,以直线BC为对称轴,作出△ABC的轴对称图形△ABC.方法3:如图4,以直线AB为对称轴,作出△ABC的轴对称图形△ABC.…请你参考上面的想法,根据勾股定理及三角函数等知识帮助小敏求tan2α的值.(一种方法即可)8.如图在等腰三角形ABC中,AB=AC,点D、E分别是AB、BC的中点,过点B作BF⊥AC于点F,BF与DE交于点G.(1)求证:DE⊥BF;(2)连结EF,若S△CEF=S△BDG,求cos∠CEF的值.9.数学老师布置了这样一个问题:如果α,β都为锐角.且tanα=,tanβ=.求α+β的度数.甲、乙两位同学想利用正方形网格构图来解决问题.他们分别设计了图1和图2.(1)请你分别利用图1,图2求出α+β的度数,并说明理由;(2)请参考以上思考问题的方法,选择一种方法解决下面问题:如果α,β都为锐角,当tanα=5,tanβ=时,在图3的正方形网格中,利用已作出的锐角α,画出∠MON,使得∠MON=α﹣β.求出α﹣β的度数,并说明理由.10.如图,已知BC是⊙O的直径,CA平分∠BCE,延长EC交⊙O于点D,连接DO并延长交AB于点F.(1)求证:AO⊥BD;(2)已知tan∠ACE=,求tan∠AFO.。

2016年中考(锐角三角函数中考+填空+解答题)

2016年中考(锐角三角函数中考+填空+解答题)

2016年07月17日397679180的初中数学组卷(锐角三角函数中考填空解答题)一.填空题(共7小题)1.(2016•岳阳)如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了米.2.(2016•荆州)全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为18°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为米(参考数据:tan78°12′≈4.8).3.(2016•宁波)如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为m(结果保留根号).4.(2016•上海)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为米.(精确到1米,参考数据:≈1.73)5.(2016•十堰)在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度为米.(结果保留根号)6.(2016•大连)如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为海里(结果取整数)(参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).7.(2016•大庆)一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为海里/小时.二.解答题(共23小题)8.(2016•连云港)如图,在△ABC中,∠C=150°,AC=4,tanB=.(1)求BC的长;(2)利用此图形求tan15°的值(精确到0.1,参考数据:=1.4,=1.7,=2.2)9.(2016•包头)如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.(1)若∠A=60°,求BC的长;(2)若sinA=,求AD的长.(注意:本题中的计算过程和结果均保留根号)10.(2016•上海)如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.11.(2016•厦门)如图,在四边形ABCD中,∠BCD是钝角,AB=AD,BD平分∠ABC,若CD=3,BD=,sin∠DBC=,求对角线AC的长.12.(2016•泰州)如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D间的距离(取1.73,结果精确到0.1千米)13.(2016•台州)保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)14.(2016•邵阳)如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).15.(2016•娄底)芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD 与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH 的长.(结果精确到0.1米,≈1.732)16.(2016•兰州)如图,一垂直于地面的灯柱AB被一钢筋CD固定,CD与地面成45°夹角(∠CDB=45°),在C点上方2米处加固另一条钢线ED,ED与地面成53°夹角(∠EDB=53°),那么钢线ED的长度约为多少米?(结果精确到1米,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)17.(2016•黄冈)“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,计划先用汽车运到与D在同一直线上的C、B、A三个码头中的一处,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OCA=30°,∠OBA=45°CD=20km.若汽车行驶的速度为50km/时,货船航行的速度为25km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).18.(2016•贵州)据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m)(1)求B,C的距离.(2)通过计算,判断此轿车是否超速.19.(2016•烟台)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)20.(2016•淮安)小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.21.(2016•临夏州)图①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON位置运动到与地面垂直的OM位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)(1)求AB的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N点运动到M点的路径的长度.(结果保留π)22.(2016•贵阳)“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC 的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)23.(2016•济宁)某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由.24.(2016•荆门)如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?25.(2016•贺州)如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:=1.414,=1.732)26.(2016•宜宾)如图,CD是一高为4米的平台,AB是与CD底部相平的一棵树,在平台顶C点测得树顶A点的仰角α=30°,从平台底部向树的方向水平前进3米到达点E,在点E处测得树顶A点的仰角β=60°,求树高AB(结果保留根号)27.(2016•昆明)如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),(参考数据:≈1.414,≈1.732)已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)28.(2016•河南)如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)29.(2016•眉山)如图,埃航MS804客机失事后,国家主席亲自发电进行慰问,埃及政府出动了多艘舰船和飞机进行搜救,其中一艘潜艇在海面下500米的A点处测得俯角为45°的前下方海底有黑匣子信号发出,继续沿原方向直线航行2000米后到达B点,在B处测得俯角为60°的前下方海底有黑匣子信号发出,求海底黑匣子C点距离海面的深度(结果保留根号).30.(2016•深圳)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)2016年07月17日397679180的初中数学组卷(锐角三角函数中考填空解答题)参考答案与试题解析一.填空题(共7小题)1.(2016•岳阳)如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了100米.【分析】根据坡比的定义得到tan∠A=,∠A=30°,然后根据含30度的直角三角形三边的关系求解.【解答】解:根据题意得tan∠A===,所以∠A=30°,所以BC=AB=×200=100(m).故答案为100.【点评】本题考查了解直角三角形的应用:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式2.(2016•荆州)全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为18°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为58米(参考数据:tan78°12′≈4.8).【分析】直接利用锐角三角函数关系得出EC的长,进而得出AE的长,进而得出答案.【解答】解:如图所示:由题意可得:CE⊥AB于点E,BE=DC,∵∠ECB=18°48′,∴∠EBC=78°12′,则tan78°12′===4.8,解得:EC=48(m),∵∠AEC=45°,则AE=EC,且BE=DC=10m,∴此塑像的高AB约为:AE+EB=58(米).故答案为:58.【点评】此题主要考查了解直角三角形的应用,根据题意得出EC的长是解题关键.3.(2016•宁波)如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为10\sqrt{3}+1m(结果保留根号).【分析】首先过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,然后在Rt△BAE中,∠BAE=60°,然后由三角形函数的知识求得BE的长,继而求得答案.【解答】解:如图,过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,∵在Rt△BAE中,∠BAE=60°,∴BE=AE•tan60°=10(m),∴BC=CE+BE=10+1(m).∴旗杆高BC为10+1m.故答案为:10+1.【点评】本题考查仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.4.(2016•上海)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为208米.(精确到1米,参考数据:≈1.73)【分析】分别利用锐角三角函数关系得出BD,DC的长,进而求出该建筑物的高度.【解答】解:由题意可得:tan30°===,解得:BD=30,tan60°===,解得:DC=90,故该建筑物的高度为:BC=BD+DC=120≈208(m),故答案为:208.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.5.(2016•十堰)在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度为(30+10\sqrt{3})米.(结果保留根号)【分析】如图作BH⊥EF,CK⊥MN,垂足分别为H、K,则四边形BHCK是矩形,设CK=HB=x,根据tan30°=列出方程即可解决问题.【解答】解:如图作BH⊥EF,CK⊥MN,垂足分别为H、K,则四边形BHCK是矩形,设CK=HB=x,∵∠CKA=90°,∠CAK=45°,∴∠CAK=∠ACK=45°,∴AK=CK=x,BK=HC=AK﹣AB=x﹣30,∴HD=x﹣30+10=x﹣20,在RT△BHD中,∵∠BHD=30°,∠HBD=30°,∴tan30°=,∴=,解得x=30+10.∴河的宽度为(30+10)米.【点评】本题考查解直角三角形的应用、方向角、三角函数等知识,解题的关键是添加辅助线构造直角三角形,学会利用三角函数的定义,列出方程解决问题,属于中考常考题型.6.(2016•大连)如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为11海里(结果取整数)(参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).【分析】作PC⊥AB于C,先解Rt△PAC,得出PC=PA=9,再解Rt△PBC,得出PB=≈11.【解答】解:如图,作PC⊥AB于C,在Rt△PAC中,∵PA=18,∠A=30°,∴PC=PA=×18=9,在Rt△PBC中,∵PC=9,∠B=55°,∴PB=≈≈11,答:此时渔船与灯塔P的距离约为11海里.故答案为11.【点评】本题考查了解直角三角形的应用﹣方向角问题,含30°角的直角三角形的性质,锐角三角函数定义.解一般三角形的问题可以转化为解直角三角形的问题,解决的方法就是作高线.7.(2016•大庆)一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为\frac{40+40\sqrt{3}}{3}海里/小时.【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【解答】解:如图所示:设该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°﹣60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即该船行驶的速度为海里/时;故答案为:.【点评】本题考查了解直角三角形的应用中的方向角问题、等腰直角三角形的性质、含30°角的直角三角形的性质等知识;通过解直角三角形得出方程是解决问题的关键.二.解答题(共23小题)8.(2016•连云港)如图,在△ABC中,∠C=150°,AC=4,tanB=.(1)求BC的长;(2)利用此图形求tan15°的值(精确到0.1,参考数据:=1.4,=1.7,=2.2)【分析】(1)过A作AD⊥BC,交BC的延长线于点D,由含30°的直角三角形性质得AD=AC=2,由三角函数求出CD=2,在Rt△ABD中,由三角函数求出BD=16,即可得出结果;(2)在BC边上取一点M,使得CM=AC,连接AM,求出∠AMC=∠MAC=15°,tan15°=tan∠AMD=即可得出结果.【解答】解:(1)过A作AD⊥BC,交BC的延长线于点D,如图1所示:在Rt△ADC中,AC=4,∵∠C=150°,∴∠ACD=30°,∴AD=AC=2,CD=AC•cos30°=4×=2,在Rt△ABD中,tanB===,∴BD=16,∴BC=BD﹣CD=16﹣2;(2)在BC边上取一点M,使得CM=AC,连接AM,如图2所示:∵∠ACB=150°,∴∠AMC=∠MAC=15°,tan15°=tan∠AMD===≈≈0.27≈0.3.【点评】本题考查了锐角三角函数、含30°的直角三角形性质、三角形的内角和、等腰三角形的性质等知识;熟练掌握三角函数运算是解决问题的关键.9.(2016•包头)如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.(1)若∠A=60°,求BC的长;(2)若sinA=,求AD的长.(注意:本题中的计算过程和结果均保留根号)【分析】(1)要求BC的长,只要求出BE和CE的长即可,由题意可以得到BE和CE的长,本题得以解决;(2)要求AD的长,只要求出AE和DE的长即可,根据题意可以得到AE、DE的长,本题得以解决.【解答】解:(1)∵∠A=60°,∠ABE=90°,AB=6,tanA=,∴∠E=30°,BE=tan60°•6=6,又∵∠CDE=90°,CD=4,sinE=,∠E=30°,∴CE==8,∴BC=BE﹣CE=6﹣8;(2))∵∠ABE=90°,AB=6,sinA==,∴设BE=4x,则AE=5x,得AB=3x,∴3x=6,得x=2,∴BE=8,AE=10,∴tanE====,解得,DE=,∴AD=AE﹣DE=10﹣=,即AD的长是.【点评】本题考查解直角三角形,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答.10.(2016•上海)如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.【分析】(1)由等腰直角三角形的性质得出∠A=∠B=45°,由勾股定理求出AB=3,求出∠ADE=∠A=45°,由三角函数得出AE=,即可得出BE的长;(2)过点E作EH⊥BC,垂足为点H,由三角函数求出EH=BH=BE•cos45°=2,得出CH=1,在Rt△CHE 中,由三角函数求出cot∠ECB==即可.【解答】解:(1)∵AD=2CD,AC=3,∴AD=2,∵在Rt△ABC中,∠ACB=90°,AC=BC=3,∴∠A=∠B=45°,AB===3,∵DE⊥AB,∴∠AED=90°,∠ADE=∠A=45°,∴AE=AD•cos45°=2×=,∴BE=AB﹣AE=3﹣=2,即线段BE的长为2;(2)过点E作EH⊥BC,垂足为点H,如图所示:∵在Rt△BEH中,∠EHB=90°,∠B=45°,∴EH=BH=BE•cos45°=2×=2,∵BC=3,∴CH=1,在Rt△CHE中,cot∠ECB==,即∠ECB的余切值为.【点评】本题考查了解直角三角形、勾股定理、等腰直角三角形的性质、三角函数;熟练掌握等腰直角三角形的性质,通过作辅助线求出CH是解决问题(2)的关键.11.(2016•厦门)如图,在四边形ABCD中,∠BCD是钝角,AB=AD,BD平分∠ABC,若CD=3,BD=,sin∠DBC=,求对角线AC的长.【分析】过D作DE⊥BC交BC的延长线于E,得到∠E=90°,根据三角形函数的定义得到DE=2,推出四边形ABCD是菱形,根据菱形的性质得到AC⊥BD,AO=CO,BO=DO=,根据勾股定理得到结论.【解答】解:过D作DE⊥BC交BC的延长线于E,则∠E=90°,∵sin∠DBC=,BD=,∴DE=2,∵CD=3,∴CE=1,BE=4,∴BC=3,∴BC=CD,∴∠CBD=∠CDB,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠CDB,∴AB∥CD,同理AD∥BC,∴四边形ABCD是菱形,连接AC交BD于O,则AC⊥BD,AO=CO,BO=DO=,∴OC==,∴AC=2.【点评】本题考查了菱形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.12.(2016•泰州)如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D间的距离(取1.73,结果精确到0.1千米)【分析】过B作BE⊥AD于E,三角形的内角和得到∠ADB=45°,根据直角三角形的性质得到AE=2.BE=2,求得AD=2+2,即可得到结论.【解答】解:过B作BE⊥AD于E,∵∠NAD=60°,∠ABD=75°,∴∠ADB=45°,∵AB=6×=4,∴AE=2.BE=2,∴DE=BE=2,∴AD=2+2,∵∠C=90,∠CAD=30°,∴CD=AD=1+.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.13.(2016•台州)保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)【分析】根据锐角三角函数关系得出BD,DC的长,进而结合勾股定理得出答案.【解答】解:他的这种坐姿不符合保护视力的要求,理由:如图2所示:过点B作BD⊥AC于点D,∵BC=30cm,∠ACB=53°,∴sin53°==≈0.8,解得:BD=24,cos53°=≈0.6,解得:DC=18,∴AD=22﹣18=4(cm),∴AB===<,∴他的这种坐姿不符合保护视力的要求.【点评】此题主要考查了解直角三角形的应用,根据题意得出BD,AD的长是解题关键.14.(2016•邵阳)如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).【分析】根据sin75°==,求出OC的长,根据tan30°=,再求出BC的长,即可求解.【解答】解:在直角三角形ACO中,sin75°==≈0.97,解得OC≈38.8,在直角三角形BCO中,tan30°==≈,解得BC≈67.3.答:该台灯照亮水平面的宽度BC大约是67.3cm.【点评】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.15.(2016•娄底)芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD 与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH 的长.(结果精确到0.1米,≈1.732)【分析】设DH=x米,由三角函数得出=x,得出BH=BC+CH=2+x,求出AH=BH=2+3x,由AH=AD+DH得出方程,解方程求出x,即可得出结果.【解答】解:设DH=x米,∵∠CDH=60°,∠H=90°,∴CH=DH•sin60°=x,∴BH=BC+CH=2+x,∵∠A=30°,∴AH=BH=2+3x,∵AH=AD+DH,∴2+3x=20+x,解得:x=10﹣,∴BH=2+(10﹣)=10﹣1≈16.3(米).答:立柱BH的长约为16.3米.【点评】本题考查了解直角三角形的应用;由三角函数求出CH和AH是解决问题的关键.16.(2016•兰州)如图,一垂直于地面的灯柱AB被一钢筋CD固定,CD与地面成45°夹角(∠CDB=45°),在C点上方2米处加固另一条钢线ED,ED与地面成53°夹角(∠EDB=53°),那么钢线ED的长度约为多少米?(结果精确到1米,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】根据题意,可以得到BC=BD,由∠CDB=45°,∠EDB=53°,由三角函数值可以求得BD的长,从而可以求得DE的长.【解答】解:设BD=x米,则BC=x米,BE=(x+2)米,在Rt△BDE中,tan∠EDB=,即,解得,x≈6.06,∵sin∠EDB=,即0.8=,解得,ED≈10即钢线ED的长度约为10米.【点评】本题考查解直角三角形的应用,解题的关键是明确题意,利用三角函数值求出相应的边的长度.17.(2016•黄冈)“一号龙卷风”给小岛O造成了较大的破坏,救灾部门迅速组织力量,从仓储D处调集救援物资,计划先用汽车运到与D在同一直线上的C、B、A三个码头中的一处,再用货船运到小岛O.已知:OA⊥AD,∠ODA=15°,∠OCA=30°,∠OBA=45°CD=20km.若汽车行驶的速度为50km/时,货船航行的速度为25km/时,问这批物资在哪个码头装船,最早运抵小岛O?(在物资搬运能力上每个码头工作效率相同,参考数据:≈1.4,≈1.7).【分析】利用三角形外角性质计算出∠COD=15°,则CO=CD=20,在Rt△OCA中利用含30度的直角三角形三边的关系计算出OA=OC=10,CA=OA≈17,在Rt△OBA中利用等腰直角三角形的性质计算出BA=OA=10,OB=OA≈14,则BC=7,然后根据速度公式分别计算出在三个码头装船,运抵小岛所需的时间,再比较时间的大小进行判断.【解答】解:∵∠OCA=∠D+∠COD,∴∠COD=30°﹣15°=15°,∴CO=CD=20,在Rt△OCA中,∵∠OCA=30°,∴OA=OC=10,CA=OA=10≈17,在Rt△OBA中,∵∠OBA=45°,∴BA=OA=10,OB=OA≈14,∴BC=17﹣10=7,当这批物资在C码头装船,运抵小岛O时,所用时间=+=1.2(小时);当这批物资在B码头装船,运抵小岛O时,所用时间=+=1.1(小时);当这批物资在A码头装船,运抵小岛O时,所用时间=+=1.14(小时);所以这批物资在B码头装船,最早运抵小岛O.【点评】本题考查了解直角三角形:将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).18.(2016•贵州)据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m)(1)求B,C的距离.(2)通过计算,判断此轿车是否超速.【分析】(1)在直角三角形ABD与直角三角形ACD中,利用锐角三角函数定义求出BD与CD的长,由BD﹣CD求出BC的长即可;(2)根据路程除以时间求出该轿车的速度,即可作出判断.【解答】解:(1)在Rt△ABD中,AD=24m,∠B=31°,∴tan31°=,即BD==40m,在Rt△ACD中,AD=24m,∠ACD=50°,∴tan50°=,即CD==20m,∴BC=BD﹣CD=40﹣20=20m,则B,C的距离为20m;(2)根据题意得:20÷2=10m/s<15m/s,则此轿车没有超速.【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.19.(2016•烟台)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)【分析】如图作CM∥AB交AD于M,MN⊥AB于N,根据=,求出CM,在RT△AMN中利用tan72°=,求出AN即可解决问题.【解答】解:如图作CM∥AB交AD于M,MN⊥AB于N.由题意=,即=,CM=,在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.3,∵MN∥BC,AB∥CM,∴四边形MNBC是平行四边形,∴BN=CM=,∴AB=AN+BN=13.8米.【点评】本题考查解直角三角形、三角函数,影长等知识,解题的关键是正确添加辅助线,构造直角三角形解决问题,属于中考常考题型.20.(2016•淮安)小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.【分析】根据题意作出合适的辅助线,画出相应的图形,可以分别求得CM、DN的长,由于AB=CN﹣CM,从而可以求得AB的长.【解答】解:作AM⊥EF于点M,作BN⊥EF于点N,如右图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,∴CM=米,DN=米,∴AB=CD+DN﹣CM=100+20﹣60=(40+20)米,即A、B两点的距离是(40+20)米.【点评】本题考查解直角三角形的应用,解题的关键是明确题意,画出相应的图形,利用数形结合的思想解答问题.21.(2016•临夏州)图①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON位置运动到与地面垂直的OM位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)(1)求AB的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N点运动到M点的路径的长度.(结果保留π)【分析】(1)过B作BE⊥AC于E,求出AE,解直角三角形求出AB即可;(2)求出∠MON的度数,根据弧长公式求出即可.【解答】解:(1)过B作BE⊥AC于E,则AE=AC﹣BD=0.66米﹣0.26米=0.4米,∠AEB=90°,AB==≈1.17(米);(2)∠MON=90°+20°=110°,所以的长度是=π(米).【点评】本题考查了弧长公式,解直角三角形的应用,能把实际问题转化成数学问题是解此题的关键.22.(2016•贵阳)“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC 的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)。

九年级数学解直角三角形总复习全面版

九年级数学解直角三角形总复习全面版
初三数学总复习十三
——解直角三角形
店 前 中 心 学 校

一、锐角三角函数 a sinA=
c
B

b cosA= c
c
a

a tanA= b
0<sinA<1
A
b
C
二、∠A是锐角,请说一说sinA和cosA的取值范围. 0<cosA<1
tanA的取值范围是多少?
tanA>0



例5、某路线规定汽车的最高行驶速度不能超过60㎞/h,交通管 理部门在离该公路100m处设置了一速度监测点A,在如图所示的 坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在点A的北 偏西600方向上,点C在点A的北偏东450方向上。 (1)请在图中画出表示北偏东450方向的射线AC并标出点C的位 置;(2)求B、C的坐标;(3)一辆汽车从点B行驶到点C,所 用的时间为15S,请判断该汽车在限速公路上是否超速。
三、请说一说互为余角的三角函数之间的关系 sin(900-A)=cosA B cos(900 –A)=sinA 请从图上分析这种关系 c a 四、同角的三角函数关系 1、平方关系: C A 2 2 b sin A+cos A=1 2、商数关系: s in A tanA=
conA

3、你能证明以上的这两种关系吗?

k
B
1、如何求AB的长?
1.6m H
过B作AH的垂线,垂足为K。
2、你能找出AK的长吗? 3、通过解直角三角形求出AB。
F
C G

例8、用作图的方法求tan150的值
A M
15 °
30° B C N

中考数学总复习第15讲-锐角三角函数与解直角三角形

中考数学总复习第15讲-锐角三角函数与解直角三角形

2016年中考数学总复习第15讲-锐角三角函数与解直角三角形-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIANb c a B C A D B C Ah l斜坡B C A b c aB C A 2016年中考数学总复习第15讲:锐角三角函数与解直角三角形【基础知识回顾】一、锐角三角函数定义:在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 在Rt △ABC 中,锐角∠A 的对边与斜边的比值叫做∠A 的正弦,记作sinA . 在Rt △ABC 中,锐角∠A 的邻边与斜边的比值叫做∠A 的余弦,记作cosA . 在Rt △ABC 中,锐角∠A 的对边与邻边的比值叫做∠A 的正切,记作tanA . 如图,则:sinA= ,∠cosA = ,tanA= .sine[英][sa ɪn][美][sa ɪn] ;cosine[英][‵k əʊsa ɪn][美][‵ko ʊsa ɪn];tangent[英][‵tænd ʒənt][美][‵tænd ʒənt] . 作图归纳:sinα cosα tanα3004506001、三个特殊角的三角函数值都是根据定义应用直角三角形性质算出来的,要在理解的基础上结合图形进行记忆.2、三角函数可以进行变换.三、解直角三角形:1、定义:由直角三角形中除直角外的 个已知元素,求出另外 个未知元素的过程叫解直角三角形.2、解直角三角形的依据: Rt △ABC 中,∠C=900 ,三个角的三边对应分别为a 、b 、c ,如图: ⑴三边关系: ; ⑵两锐角关系 ; ⑶边角之间的关系:sinA= ,cosA ,tanA .sinB= ,cosB ,tanB .注:1、解直角三角形中已知的两个元素应至少有一个是 .2、当没有直角三角形时应注意构造直角三角形,再利用相应三角函数的边角关系解决. 3、解直角三角形应用中的有关概念:⑴仰角和俯角:如图:∠ABC 为仰角,∠DAB 为俯角.⑵坡度坡角:如图:斜坡AB 的垂直度AC 和水平宽度BC 的比叫做坡度, 用i 表示,即i= ,坡面与水平面得夹角为 , 用字母α表示,则i=h l = . ⑶方位角:是指南北方向线与目标方向所成的小于900的角,方位角先说南北再说东西.4、利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数字问题(画出平面图形,转化为解直角三角形的问题).⑵根据条件特点选取合适的锐角三角函数去解直角三角形.⑶解数学问题答案,从而得到实际问题的答案.注:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决.【重点考点例析】考点一:锐角三角函数的概念例1.(2012•内江)如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( )A.12 B.55 C.1010 D.255例2.(2012•贵港)在平面直角坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于()A.55 B.52 C.32 D.12考点二:特殊角的三角函数值例3.(2012•孝感)计算:cos245°+tan30°•sin60°=.例4.(2012•南昌)计算:sin30°+cos30°•tan60°= ..考点三:化斜三角形为直角三角形例5.(2012•安徽)如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.例6.(2012•重庆)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)考点四:解直角三角形的应用例7.(2013•益阳)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.5°,∠PBA=26.5.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米)(参考数据:sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.50)例8.(2013•娄底)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C 的深度.(精确到0.1米,参考数据:)例9.(2013•呼和浩特)如图,A 、B 两地之间有一座山,汽车原来从A 地到B 地经过C 地沿折线A→C→B 行驶,现开通隧道后,汽车直接沿直线AB 行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A 地到B 地比原来少走多少千米(结果保留根号)【综合训练】一、选择题1.(2012•哈尔滨)如图,在Rt △ABC 中,∠C=90°,AC=4,AB=5,则sinB 的值是( )A .23B .35C .34D .45 2.(2012•天津)2cos60°的值等于( ) A .1 B .2 C .3 D .23. 如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .1003mC .150mD .503m4.(2012•泰安)如图,为测量某物体AB 的高度,在D 点测得A 点的仰角为30°,朝物体AB 方向前进20米,到达点C ,再次测得点A 的仰角为60°,则物体AB 的高度为( )A .310米B .10米C .320米D .3320米第3题图 第4题图二、填空题5.(2012•宁夏)在△ABC 中∠C=90°,AB=5,BC=4,则tanA= .三、解答题6.(2012•遵义)为促进我市经济的快速发展,加快道路建设,某高速公路建设工程中需修隧道AB ,如图,在山外一点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,3≈1.73,精确到个位)7.(2012•资阳)小强在教学楼的点P处观察对面的办公大楼.为了测量点P到对面办公大楼上部AD的距离,小强测得办公大楼顶部点A的仰角为45°,测得办公大楼底部点B的俯角为60°,已知办公大楼高46米,CD=10米.求点P到AD的距离(用含根号的式子表示).。

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)知识点一:锐角三角函数的定义 1.锐角三角函数 正弦: sin A =∠A 的对边斜边=ac余弦: cos A =∠A 的邻边斜边=bc正切: tan A =∠A 的对边∠A 的邻边=ab.来源:学&科&网]2.特殊角的三角函数值[来 度数三角函数[来源:Z 。

xx 。

]30°[来源:学#科#网] 45° 60°sinA1222 32 cosA32 2212tanA 331 33、锐角三角函数的增减性当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) 变式练习1:如图,在平面直角坐标系中,点A 的坐标为注意:根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.[(4,3),那么cos α的值是( ) A. 34 B. 43 C. 35 D. 45【解析】D 如解图,过点A 作AB ⊥x 轴于点B ,∵A (4,3),∴OB =4,AB =3,∴OA =32+42=5,∴cos α=OB OA =45.变式练习2:在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,则sinA =________. 【解析】∵在Rt △ABC 中,由勾股定理得AC =22AB BC +=32+42=5,∴sin A =BC AC =45. 变式练习3:在Rt △ABC 中,∠C =90°,sin A =35,BC =6,则AB =( D )A .4B .6C .8D .10变式练习4:如图,若点A 的坐标为(1,3),则sin ∠1=__32__. ,知识点二 :解直角三角形 1.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形. 2.解直角三角形的常用关系在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c (1)三边之间的关系:a 2+b 2=c 2;(2)锐角之间的关系:∠A +∠B =90°; (3)边角之间的关系:,tan ,cos ,sin ;,tan ,cos ,sin abB c a B c b B b a A c b A c a A ======(sinA==cosB=ac,c osA=sinB=bc,tanA=ab.)变式练习1:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.变式练习2:如图,Rt△ACB中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D.以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI =90°.若AC=a,求CI的长.解:在Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB,∴∠A=60°,∵AC=a,∴CD=AC·sin60°=32a,依此类推CH=(32)3a=338a,在Rt△CHI中,∵∠CHI=60°,∴CI=CH·tan60°=338a×3=98a.变式练习3:如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是( D )A.433B.4 C.8 3 D.4 3,灵活选择解直角三角形的方法顺口溜:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.变式练习4:如图,一山坡的坡度为i=1∶3,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了__100__米., ,变式练习5:一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为___40+4033___海里/小时.知识点三:解直角三角形的应用1.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα.(如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)2.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.注意:解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解变式练习1:如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10 m ,到达B 点,点B 处测得树顶C 的仰角为60°(A 、B 、D 三点在同一直线上).请你根据他们的测量数据计算这棵树CD 的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈ 1.732)解:如解图,由题意可知∠CAB =30°,∠CBD =60°,AB =10 m ,∵∠CBD =∠CAB +∠BCA ,∴∠BCA =∠CBD -∠CAB =60°-30°=30°=∠CAB , ∴BC =AB =10 m . 在Rt △BCD 中,∵sin ∠CBD =CDBC,∴CD =BC ·sin ∠CBD =10×sin60°=10×32=53≈5×1.732≈8.7 m . 答:这棵树CD 的高度大约是8.7 m .变式练习2:如图,小山岗的斜坡AC 的坡度是tan α=34,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6°,求小山岗的高AB (结果取整数;参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50).解:设AB =x 米,在Rt △ABD 中,∠D =26.6°,∴BD =tan 26.6x≈2x ,在Rt △ABC 中,tan α=AB BC =34,∴BC =43x ,∵BD -BC =CD ,CD =200,∴2x-43x=200,解得x=300.答:小山岗的高AB约为300米.变式练习3:如图,小明所在教学楼的每层高度为3.5 m,为了测量旗杆MN的高度,他在教学楼一楼的窗台A处测得旗杆顶部M的仰角为45°,他在二楼窗台B 处测得M的仰角为30°,已知每层楼的窗台离该层的地面高度均为1 m,求旗杆MN的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈1.732)解:如解图,过点M的水平线交直线AB于点H,由题意,得∠AMH=∠MAH=45°,∠BMH=30°,AB=3.5 m,设MH=x m,则AH=x m,BH=x·tan30°=33x≈0.58x m,∴AB=AH-BH=x-0.58x=0.42x=3.5 m,解得x≈8.3,则MN=x+1=9.3 m.答:旗杆MN的高度约为9.3 m.变式练习4:小明去爬山,如图,在山脚看山顶的角度为30°,小明在坡比为5∶12的山坡上走了1300米,此时小明看山顶的角度为60°,则山高为( )A. (600-2505)米B. (6003-250)米C. (350+3503)米D. 500 3 米【解析】B如解图,∵BE∶AE=5∶12,∴设BE=5k,AE=12k,∴AB=2()5K+(12k)2=13k,∴BE∶AE∶AB=5∶12∶13,∵AB=1300米,∴AE=1200米,BE =500米,设EC=FB=x米,∵∠DBF=60°,∴DF=3x米,则DC=(3x+500)米,又∵∠DAC=30°,∴AC=3CD,即1200+x=3(3x+500),解得x=600-2503,∴DF=3x=(6003-750)米,∴CD=DF+CF=(6003-250)米,即山高CD为(6003-250)米.变式练习5:某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)解:如解图,过点A作AD⊥BC交BC于点D,过点B作BH⊥水平线交水平线于点H,由题意∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°,∵AB=4×8=32米,∴CD=AD=AB·sin30°=16米,BD=AB·cos30°=32×32=163米,∴BC=CD+BD=(16+163)米,∴BH=BC·sin30°=(16+163)×12=(8+83)米.答:这架无人飞机的飞行高度为(8+83)米.变式练习6:如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30°的方向上,随后渔政船以80海里/小时的速度向北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在渔政船的北偏西60°的方向上,求此时渔政船距钓鱼岛A的距离AB.(结果保留小数点后一位,其中3≈1.732) 解:∵CD∥BE,∴∠EBC+∠DCB=180°.∵∠ABE=60°,∠DCB=30°,∴∠ABC=90°.…………(4分)由题知,BC=80×12=40(海里),∠ACB=60°.在Rt△ABC中,AB=BC·tan60°=403≈40×1.732≈69.3(海里).答:此时渔政船距钓鱼岛A的距离AB的长约为69.3海里.。

初中数学锐角三角函数练习、解直角三角形练习及详细解答

初中数学锐角三角函数练习、解直角三角形练习及详细解答

初中三角函数练习及解答1.锐角三角函数1.比较下列各组三角函数值的大小:(1)sin19︒与cos70︒;(2)cot 65︒与cos40︒;(3)cos1︒,tan 46︒,sin88︒和cot 38︒.2.化简求值:(1)tan1tan 2tan3tan89︒⋅︒⋅︒⋅⋅︒ ;(2sin83︒;(3)2222tan sin tan sin αααα⋅-;(4cos 79sin 79-︒-︒;3.若tan 3α=求2sin sin 13sin cos αααα-+的值.4.下列四个数中哪个最大:A .tan 48cot 48︒+︒B .sin 48cos48︒+︒C .tan 48cos48︒+︒D .cot 48sin 48︒+︒5.设x 为锐角,且满足sin 3cos x x =,求sin cos x x .6.已知sin cos αα+=,求sin cos αα的值.7.已知m 为实数,且sin α、cos α是关于x 的方程2310x mx -+=的两根.求44sin cos αα+的值.8.设A 、B 是一个直角三角形的两个锐角,满足2sin sin 2A B -=.求sin A 及sin B 的值.9.已知关于x 的一元二次方程()()22211120m x m x +--+=的两个根是一个直角三角形的两个锐角的正弦,求实数m 的值.10.已知方程2450x x k -+=的两根是直角三角形的两个锐角的正弦,求k .11.若直角三角形中的两个锐角A 、B 的正弦是方程20x px q ++=的两个根;(1)那么,实数p 、q 应满足哪些条件?(2)如果p 、q 满足这些条件,方程20x px q ++=的两个根是否等于直角三角形的两个锐角A 、B 的正弦?12.已知方程()24210x m x m -++=的两个根恰好是一个直角三角形的两个锐角的余弦,试求m 的值.13.不查表,求15︒的四种三角函数值.14.求22.5︒角的正切值(不查表,不借助计算器).15.求sin18︒的值.16.若x 、y 为实数,221x y +=,α为锐角,求证:sin cos x y αα+的绝对值不大于1.2解直角三角形1.如图,在直角三角形ABC 中,90C ∠=︒,AD 是A ∠的平分线,且CD =,DB =求ABC △的三边长.2.在Rt ABC △中(如图),D 、E 是斜边AB 的三等分点,已知sin CD x =,()cos 090CE x x =︒<<︒.试求AB 的长.3.如图,ABC △中,90C ∠=︒,10AB =,6AC =,AD 是BAC ∠的平分线,求点B 到直线AD 的距离BH .4.已知ABC △是非等腰直角三角形,90BAC ∠=︒,在BC 所在直线上取两点D 、E 使DB BC CE ==,连结AD 、AE .已知45BAD ∠=︒.求tan CAE ∠的值.5.设有一张矩形纸片ABCD (如图),3AB =,4BC =.现将纸片折叠,使C 点与A 点重合,试求折痕EF 的长.6.已知三角形两边之和是10,这两边的夹角为30︒,面积为254,求证:此三角形为等腰三角形.7.在ABC △中,90C ∠=︒,其周长为2+,且已知斜边上的中线长为1.如果BC AC >,求tan A的值.8.已知a 、b 、c 分别是ABC △中A ∠、B ∠,C ∠的对边,且a 、b 是关于x 的一元二次方程()()2 424x c c x ++=+的两个根.(1)判断ABC △的形状;(2)若3tan 4A =求a 、b 、c .9.在Rt ABC △中,90C ∠=︒,12ABC S m =△,且两直角边长满足条件32a b m +=.(1)证明:24m ≥;(2)当m 取最小值时,求ABC △中最小内角的正切值.10.如图所示.90A BEF EBC ECD ∠=∠=∠=∠=︒,30ABF ∠=︒,45BFE ∠=︒,60ECB ∠=︒且2AB CD =.求tan CDE ∠的值.11.如图所示.在锐角ABC △中,4sin 5B =,tan 2C =,且10ABC S =△.求BC .12.如图所示.在ACD △中,45A ∠=︒,5CB =,7CD =,3BD =.求CBD ∠及AC .13.如图,已知ABC △中,1AB =,D 是AB 的中点,90DCA ∠=︒,45DCB ∠=︒.求BC 的长.14.如图,ABC △中,90ACB ∠=︒,CD AB ⊥于D ,DE AC ⊥于E ,DF BC ⊥于F .求证:33AE AC BF BC =.15.如图,在ABC △中,90A ∠=︒,AB AC =,M 是AC 边的中点,AD 垂直于BM 且交BC 于D .求证:AMB CMD ∠=∠.16.如图(a ),正方形ABCD 的边长E 、F 分别是AB 、BC 的中点,AF 分别交DE 、DB 于点M 、N ,求DMN △的面积.17.已知a 、b 、c 是ABC △三边的长,其中b a c >=,且方程20ax c +=两根的差的绝对值等.求ABC △中最大角的度数.18.如图,AB 是圆的直径,弦CD AB ∥,AC 与BD 相交于E ,已知AED θ∠=,试求:CDE ABE S S △△.19.如图所示,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上.如果CD与地面成45︒,60A ∠=︒,4m CD =,(m BC =-,求电线杆AB 的长(精确到0.1m ).20.如图,某岛S 周围42海里内存在着大量的暗礁.现在一轮船自西向东以每小时15海里的速度航行,在、A 处测得S 在北偏东60︒,2小时后在B 处测得S 在正东北方向,试问轮船是否需要改变航行方向行驶,才能避免触礁危险,说明理由.21.如图,某污水处理站计划砌一段截面为等腰梯形的排污渠,如果渠深为h ,截面积为S ,试求当倾角θ为多少时造价最小?1.锐角三角函数(详细解答)1.比较下列各组三角函数值的大小:(1)sin19︒与cos70︒;(2)cot 65︒与cos40︒;(3)cos1︒,tan 46︒,sin88︒和cot 38︒.解析(1)利用互余角的三角函数关系式,将cos70︒化sin 20︒,再与sin19︒比大小.因为()cos70cos 9020sin 20︒=︒-︒=︒,而sin19sin 20︒<︒,所以sin19cos70︒<︒.(2)余切函数与余弦函数无法化为同名函数,但是可以利用某些特殊的三角函数值,间接比较它们的大小.32cot 60cos 4532︒=<︒=,再将cot 65︒,cos40︒分别与cot 60︒,cos45︒比大小.因为cot 65cot 60︒<︒=,cos 40cos 45︒>︒>,所以cot 60cos45︒<︒,所以cot 65cos40︒<︒.(3)tan 451︒=,显然cos1︒,sin88︒均小于1,而tan 46︒,cot 38︒均大于1.再分别比较cos1︒与sin88︒,以及tan 46︒与cot 38︒的大小即可.因为()cos38cot 9052tan52︒=︒-︒=︒,所以tan52tan 46tan 451︒>︒>︒=.因为()cos1cos 9089sin89︒=︒-︒=︒,所以sin88sin891︒<︒<,所以cot 38tan 46cos1sin88︒>︒>︒>︒.评注比较三角函数值的大小,一般分为三种类型:(1)同名的两个锐角三角函数值,可直接利用三角函数值随角变化的规律,通过比较角的大小来确定三角函数值的大小.(2)互为余函数的两锐角三角函数值,可利用互余角的三角函数关系式化为同名三角函数,比较其大小.(3)不能化为同名的两个三角函数,可通过与某些“标准量”比大小,间接判断它们的大小关系,常选择的标准量有:0,1以及其他一些特殊角如30︒,45︒,60︒的三角函数值.2.化简求值:(1)tan1tan 2tan3tan89︒⋅︒⋅︒⋅⋅︒ ;(2sin83︒;(3)2222tan sin tan sin αααα⋅-;(4cos 79sin 79-︒-︒;解析(1)原式=tan1tan 2tan3tan 44tan 45cot 44cot 43cot 3cot 2cot1︒⋅︒⋅︒⋅⋅︒⋅︒⋅︒⋅︒⋅⋅︒⋅︒⋅︒ ()()()tan1cot1tan 2cot 2tan 44cot 44tan 45=︒⋅︒⋅︒⋅︒⋅⋅︒⋅︒⋅︒ 1111=⋅⋅⋅= .(2)原式1cos7cos71cos7=︒=⋅︒=︒.(3)原式()22442242222sin sin sin sin cos 1sin sin sin 1cos sin cos ααααααααααα⋅====--.(4)原式sin11cos11sin11cos11sin11cos110-︒-︒=︒-︒-︒-︒=.3.若tan 3α=求2sin sin 13sin cos αααα-+的值.原式2222sin cos sin sin cos sin 13sin cos sin cos 3sin cos αααααααααααα--==+++2222tan tan 336tan 13tan 313319αααα--===-++++⨯.4.下列四个数中哪个最大:A .tan 48cot 48︒+︒B .sin 48cos48︒+︒C .tan 48cos48︒+︒D .cot 48sin 48︒+︒解析显然0sin 481<︒<,0cos481<︒<0<cos48°<1.因此有:sin 48sin 48tan 48cos 48︒︒<=︒︒,cos 48cos 48cot 48sin 48︒︒<=︒︒所以A 最大.5.设x 为锐角,且满足sin 3cos x x =,求sin cos x x .解析我们将sin 3cos x x =代入22sin cos 1x x +=,得到210cos 1x =,并且x 是锐角,因此cos x=所以sin x =.因此3sin cos 10x x =.6.已知sin cos αα+=,求sin cos αα的值.解析由sin cos αα+=两边平方得()22sin cos αα+=.又22sin cos 1αα+=,所以12sin cos 2αα+=,得1sin cos 2αα=.7.已知m 为实数,且sin α、cos α是关于x 的方程2310x mx -+=的两根.求44sin cos αα+的值.解析由根与系数的关系知1sin cos 3αα=.则有()()2244227sin cos sin cos 2sin cos 9αααααα+=+-=.8.设A 、B 是一个直角三角形的两个锐角,满足2sin sin 2A B -=.求sin A 及sin B 的值.解析由于90A B +=︒,故由互余关系得()sin sin 90cos B A A =︒-=.因此条件即为sin cos A A -=,①将上式平方,得221sin cos 2sin cos 2A A A A +-=,由正、余弦的平方关系,即有12sin cos 2A A =,所以()2223sin cos sin cos 2sin cos 12sin cos 2A A A A A A A A +=++=+=,因sin A 、cos A 均为正数,故sin cos 0A A +>.因此由上式得sin cos A A +=,②由①、②得sin A =,cos A =sin B =9.已知关于x 的一元二次方程()()22211120m x m x +--+=的两个根是一个直角三角形的两个锐角的正弦,求实数m 的值.解析设方程的两个实根1x 、2x 分别是直角三角形ABC 的锐角A 、B 的正弦.则()22222212sin sin sin cos 190x x A B A A A B +=+=+=+=︒,又122112m x x m -+=+,12122x x m =+,所以()2222111212211242122m x x x x x x m m -⎛⎫+=+-=-= ⎪++⎝⎭.化简得224230m m -+=,解得1m =或23.检验,当1m =时,()()22114820m m =--+<△;当23m =时,()()22114820m m =--+△≥.所以23m =.评注本题是三角函数与一元二次方程的综合,基本解法是利用韦达定理和22sin cos 1αα+=列方程求解.要注意最后检验方程有无实数根.10.已知方程2450x x k -+=的两根是直角三角形的两个锐角的正弦,求k .解析根据韦达定理,有12125 , 4.4x x k x x ⎧+=-⎪⎪⎨⎪=⎪⎩并且由于其两根是直角三角形的两个锐角的正弦,所以又有22121x x +=.于是有()2222121212512244k x x x x x x ⎛⎫=+=+-=--⨯ ⎪⎝⎭.解得98k =.11.若直角三角形中的两个锐角A 、B 的正弦是方程20x px q ++=的两个根;(1)那么,实数p 、q 应满足哪些条件?(2)如果p 、q 满足这些条件,方程20x px q ++=的两个根是否等于直角三角形的两个锐角A 、B 的正弦?解析(1)设A 、B 是某个直角三角形两个锐角,sin A 、sin B 是方程20x px q ++=的两个根,则有240p q =-△≥.①由韦达定理,sin sin A B p +=-,sin sin A B q =.又sin 0A >,sin 0B >,于是0p <,0q >.由于()sin sin 90cos B A A =︒-=.所以sin cos A A p +=-,sin cos A A q =,所以()()22sin cos 1sin cos 12p A A A A q -=+=+=+,即221p q -=.由①得21240q p q -=-≥,则12q ≤.故所求条件是0p <,102p <≤,221p q -=.②(2)设条件②成立,则24120p q q -=-≥,故方程有两个实根:α==,β==.由②知p -=p <=-,所以0p p <--+,故0βα>≥.又()2222221p q αβαβαβ+=+-=-=,故01αβ<<≤.12.已知方程()24210x m x m -++=的两个根恰好是一个直角三角形的两个锐角的余弦,试求m 的值.解析设题中所述的两个锐角为A 及B ,由题设得()241160 , 1cos cos , 2cos cos .4m m m A B m A B ⎧=+-⎪⎪+⎪+=⎨⎪⎪=⎪⎩△≥因为cos sin B A =,故()2, 1cos sin , 2cos sin , 410m A A m A m m A ++==⎧=-⇒⎪⎪⎪⎨⎪⎪⎪⎩可△≥取任意实数①②①式两边平方,并利用恒等式22sin cos 1A A +=,得()()221cos sin 12sin cos 4m A A A A ++=+=.再由②得()21124m m ++=,解得m =.由cos 0A >,sin 0A >及②知0m >.所以m =.13.不查表,求15︒的四种三角函数值.解析30︒、45︒、60︒这些特殊角的三角函数值,我们可以利用含有这些特殊角的直角三角形的几何性质及勾股定理直接推出.同样,15︒角的三角函数值,也可以利用直角三角形的性质将其推出.如图所示.在ABC △中,90C ∠=︒,30ABC ∠=︒,延长CB 到D ,使BD BA =,则1152D BAD ABC ∠=∠=∠=︒.设1AC =,则2AB =,3BC =2BD =,所以 23CD CB BD =+=+所以()()())2222123843242323123162AD AC CD =++++++=+=+.所以162sin15462AC AD -︒===+,2362cos15462CD AD ++︒===+1tan152323AC CD ︒===-+cot1523CDAC︒==.评注将15︒角的三角函数求值问题,通过构造适当的三角形,将它转化为30︒角的三角函数问题,这种将新的未知问题通过一定途径转化为旧的已解决了的问题的方法,是我们研究解决新问题的重要方法.根据互余三角函数关系式,我们很容易得到75︒角的四种三角函数值.14.求22.5︒角的正切值(不查表,不借助计算器).解析4522.52︒︒=,所以设法构造一个含22.5︒角的直角三角形,用定义求值.如图,Rt ABC △中,90C ∠=︒,45B ∠=︒,延长CB 到D ,使BD BA =,则122.52D B ∠=∠=︒.设AC b =,有222AB b b b =+=,()21DC DB BC b =+=+.故()tan 22.52121ACDCb︒==+.15.求sin18︒的值.解析构造一个顶角A 为36︒的等腰ABC △,AB AC =,如图,作内角平分线则36ABD DBC ∠=∠=︒,设1AC =,BC x =.由于36DBA DAB ∠=∠=︒,72BDC BCD ∠=∠=︒,故CB BD DA x ===,而CAB △∽CBD △(36CAB CBD ∠=∠=︒),故AC BC BC DC =,故11xx x=-,有512x -=(舍去512-).再作AH BC ⊥于H ,则18CAH ∠=︒,514CH -=.所以1sin184-︒=.评注本题所构造的等腰三角形是圆内接正十边形的相邻顶点与圆心确定的三角形,利用它可以求出半径为R 的圆内接正十边形的边长.16.若x 、y 为实数,221x y +=,α为锐角,求证:sin cos x y αα+的绝对值不大于1.解析由221x y +=,22sin cos 1αα+=,得()()2222sin cos 1x y αα++=,即22222222sin cos cos sin 1x y x y αααα+++=,加一项减一项,得22222222sin 2sin cos cos cos 2cos sin sin 1x xy y x xy y αααααααα+++-+=.即()()2sin cos cos sin 1x y x y αααα2++-=,因为()2cos sin 0x y αα-≥,所以()2sin cos 1x y αα+≤,故sin cos 1x y αα+≤.2解直角三角形(详细解答)1.如图,在直角三角形ABC 中,90C ∠=︒,AD 是A ∠的平分线,且CD =,DB =求ABC △的三边长.解析由角平分线想到对称性,考虑过D 作DE AB ⊥,交AB 于E ,则由90C ∠=︒得CD DE ==.在直角三角形BDE 中,1sin 2DE B DB ==,则60B ∠=︒,所以3tan3AC BC B ==+⋅=,2sin ACAB AC B===,BC CD DB =+=.故ABC △的三边长分别为,.2.在Rt ABC △中(如图),D 、E 是斜边AB 的三等分点,已知sin CD x =,()cos 090CE x x =︒<<︒.试求AB 的长.解析作DF AC ⊥于F ,EG AC ⊥于G ;DP BC ⊥于P ,EQ BC ⊥于Q .令BP PQ QC a ===,AG GF FC b ===.则2DF a =,EG a =.在Rt CDF △和Rt CEG △中,由勾股定理,得()2222sin a b x +=,及()2222cos a b x +=,两式相加得()2251a b +=,2215a b +=.所以35AB BD ===.3.如图,ABC △中,90C ∠=︒,10AB =,6AC =,AD 是BAC ∠的平分线,求点B 到直线AD 的距离BH .解析已知Rt ABH △中,10AB =,要求BH ,可求出BAH ∠的正弦值,而BAH CAD ∠=∠,因而可先求出DC 的长.作DE AB ⊥于E ,有6AE AC ==,ED CD =.设3DC k =,由三角形内角平分线性质有106BD DC =,则5BD k =.Rt BDE △中,222DE BE BD +=,即()()()22231065k k +-=,得1k =.33CD k ==,AD ==sin10BHDAC ∠==,故BH =.4.已知ABC △是非等腰直角三角形,90BAC ∠=︒,在BC 所在直线上取两点D 、E 使DB BC CE ==,连结AD 、AE .已知45BAD ∠=︒.求tan CAE ∠的值.解析如图,过B 、C 两点作BM AC ∥、CN AB ∥分别交AD 、AE 于M 、N .易知2AC BM =,2AB CN =,tan BM BAD AB ∠=,tan CNCAE AC∠=,从而,1tan tan 4BAD CAE ∠∠=.因为tan 1BAD ∠=,则1tan 4CAE ∠=.5.设有一张矩形纸片ABCD (如图),3AB =,4BC =.现将纸片折叠,使C 点与A 点重合,试求折痕EF 的长.解析设O 是矩形对角线AC 的中点.连结CF ,由折叠知CF AF =,故FO AC ⊥,即EF AC ⊥.由3AB =,4BC =,得5AC =,从而1522AO AC ==.在Rt AOF △中,90AOF ∠=︒,故tan OF AO FAO =⋅∠.又由Rt ADC △得3tan tan 4DC FAO DAC AD ∠=∠==,所以5315248OF =⋅=,1524EF OF ==.7.已知三角形两边之和是10,这两边的夹角为30︒,面积为254,求证:此三角形为等腰三角形.解析由题意可设10a b +=,30α=︒,则125sin 24S ab α==△,即1125224ab ⋅=,得25ab =.于是,由10a b +=,25ab =,得a 、b 是方程210250x x -+=的两个根.而此方程有两个相等的根,所以5a b ==,即此三角形为等腰三角形.评注也可以直接由()()2240a b a b ab -=+-=,得a b =.7.在ABC △中,90C ∠=︒,其周长为2+,且已知斜边上的中线长为1.如果BC AC >,求tan A的值.解析由于斜边长是斜边上中线长的2倍,故2AB c ==.于是,由题设及勾股定理,得224. a b a b ⎧++==⎪⎨⎪⎩①②把①式两边平方,得2226a ab b ++=.再由②得1ab =.③由①、③知,a 、b 分别是二次方程210u +=的两根,解得622u ±=.因为BC AC >(即a b >),故12BC =,12AC =,所以tan 2BC A AC ===+.8.已知a 、b 、c 分别是ABC △中A ∠、B ∠,C ∠的对边,且a 、b 是关于x 的一元二次方程()()2 424x c c x ++=+的两个根.(1)判断ABC △的形状;(2)若3tan 4A =求a 、b 、c .解析(1)根据题意,尝试从边来判断.因为4a b c +=+,()42ab c =+,所以()2222a b a b ab +=+-()()224242c c c =+-⨯+=,从而知ABC △是直角三角形,90C ∠=︒.(2)由90C ∠=︒,3tan 4A ∠=,得34a b =.令3a =,()40b k k =>,则5c k =,于是754k k =+,得2k =,从而有6a =,8b =,10c =.9.在Rt ABC △中,90C ∠=︒,12ABC S m =△,且两直角边长满足条件32a b m +=.(1)证明:24m ≥;(2)当m 取最小值时,求ABC △中最小内角的正切值.解析(1)由题设得 , 32.ab m a b m =⎧⎨+=⎩消去b ,得32m a a m -⎛⎫= ⎪⎝⎭,故实数a 满足二次方程2320x mx m -+=.①所以()224240m m m m =-=-△≥.因为0m >,所以24m ≥.10.如图所示.90A BEF EBC ECD ∠=∠=∠=∠=︒,30ABF ∠=︒,45BFE ∠=︒,60ECB ∠=︒且2AB CD =.求tan CDE ∠的值.解析因为tan CECDE CD∠=,已知2AB CD =,因此,只需求出AB 与CE 的比值即可.不妨设1CD =,则2AB =.在Rt ABF △中,90A ∠=︒,30ABF ∠=︒,所以cos30AB BF ==︒.在Rt BEF △中,90BEF ∠=︒,45BFE ∠=︒,所以2cos 452BE BF =︒==在Rt BEC △中,90EBC ∠=︒,60ECB ∠=︒,42sin 603BE CE ===︒,所以42tan 3CE CDE CD ∠==.11.如图所示.在锐角ABC △中,4sin 5B =,tan 2C =,且10ABC S =△.求BC.解析作AD BC ⊥于D ,设AD x =,在Rt ABD △中,因为4sin 5B =,所以3cos 5B ==,所以sin 4tan cos 3B B B ==,所以43AD BD =,34BD x =.在Rt ADC △中,因为tan 2AD C DC ==,所以22AD x CD ==,所以35424x BC BD CD x x =+=+=.①因为1102ABC S BC AD =⨯=△,所以151024x x ⨯⋅=,所以4x =.由①知5454BC =⨯=.评注在一般三角形中,在适当位置作高线,将其转化为直角三角形求解,这是解斜三角形常采用的方法.12.如图所示.在ACD △中,45A ∠=︒,5CB =,7CD =,3BD =.求CBD ∠及AC.解析作CE AD ⊥于E ,设CE x =,BE y =,则有()2222225 , 37. x y x y ⎧+=⎪⎨++=⎪⎩①②②-①得22697524y +=-=,所以52y =.因为2x =,所以512cos 52BE CBE CB ∠===,所以60CBE ∠=︒,18060120CBD ∠=︒-︒=︒,所以5356sin 4522CE AC ==︒.13.如图,已知ABC △中,1AB =,D 是AB 的中点,90DCA ∠=︒,45DCB ∠=︒.求BC 的长.解析作BE AC ⊥B ,交AC 的延长线于E ,设BC x =.则sin 45BE BC =⨯︒=,cos 45CE BC =⋅︒=由DC BE ∥,D 是AB 的中点,知2AE EC ==.而222AE BE AB +=,得221+=.即x =,所以BC =.评注通过构造直角三角形,使用三角函数、勾股定理等知识将边角联系起来是求线段长的常用方法.14.如图,ABC △中,90ACB ∠=︒,CD AB ⊥于D ,DE AC ⊥于E ,DF BC ⊥于F .求证:33AE AC BF BC =.解析ADE ACD B ∠=∠=∠,而tan AE ADE DE ∠=,tan ED ACD EC ∠=,tan DFB BF=,所以tan AE ED DFB DE EC FB===,又DF EC =,所以3tan AE ED EC B DE EC BF ⋅⋅=,所以3tan AEB BF=.又tan ACB BC=,所以33AE AC BF BC =.15.如图,在ABC △中,90A ∠=︒,AB AC =,M 是AC 边的中点,AD 垂直于BM 且交BC 于D .求证:AMB CMD ∠=∠.解析作DF AC ⊥于F ,不妨设3AB =,因AD BM ⊥,90BAM ∠=︒,所以DAF ABM ∠=∠.又112tan 2AC MA ABM AB AB ∠===.1tan 2DF DAF FA ∠==.又90BAC ∠=︒,AB AC =,45C ∠=︒,而90DFC ∠=︒,故FC FD =.由于12FC FA =,而3FC FA +=,1FC =,2FA =,而32MC =,31122FM =-=,1FD =,即1tan 212FD CMD FM ∠===,又tan 2AB AMB AM ∠==,AMB ∠,CMD ∠是锐角.因此AMB CMD ∠=∠.16.如图(a ),正方形ABCD的边长E 、F 分别是AB 、BC 的中点,AF 分别交DE 、DB 于点M 、N ,求DMN △的面积.解析记正方形ABCD 的边长为2a .由题设易知BFN △∽DAN △,则有21AD AN DN BF NF BN ===,得2AN NF =,所以23AN AF =.在直角ABF △中,2AB a =,BF a =,则AF ==,于是cos 5AB BAF AF ∠==.由题设可知ADE △≌BAF△,所以AED AFB ∠=∠,18018090AME BAF AED BAF AFB ∠=︒-∠-∠=︒-∠-∠=︒.于是cos AM AE BAF =⋅∠=,23MN AN AM AF AM =-=-=,从而415MND AFD S MN S AF ==△△.又()()212222AFD S a a a =⋅⋅=△,所以2481515MND AFD S S a ==△△.因a =8MND S =△.17.已知a 、b 、c 是ABC △三边的长,其中b a c >=,且方程20ax c +=两根的差的绝对值等.求ABC △中最大角的度数.解析由已知条件b a c >=可知,这是一个等腰三角形,且底边b 最长,则最大角为B ∠,求出ABC △中的底角A (或C )即可.我们可以先求角A (或C )的三角函数值,再确定角的大小,如图所示.由图知2cos 2b AD b A AB c c===,则关键是求出b 与c 的比值.通过一元二次方程中的条件,可得到关于c 、b 的方程,则问题得到解决.因为a c =,所以方程为20cx c +=.设1x 、2x 为方程的两个根,则有122b x x c +=,121x x =.因为12x x -=,()2122x x -=,即()2121242x x x x +-=,所以2242c ⎛⎫-= ⎪ ⎪⎝⎭,c =,b c =,所以cos 22b A c ==,所以30A ∠=︒,所以1803030120B ∠=︒-︒-︒=︒.评注这是一道方程与几何知识的综合题.三角形的边是一元二次方程的系数,利用方程条件导出边的关系,由边的关系再进一步求角的大小.18.如图,AB 是圆的直径,弦CD AB ∥,AC 与BD 相交于E ,已知AED θ∠=,试求:CDE ABE S S △△.解析由AB CD ∥,得CDE △∽ABE △.所以22::CDE ABE S S DE BE =△△.连结AD ,则90ADB ∠=︒.故由Rt ADE △,有cos DE AEθ=,又AE BE =,所以2:cos CDE ABE S S θ=△△.19.如图所示,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上.如果CD 与地面成45︒,60A ∠=︒,4m CD =,(m BC =-,求电线杆AB 的长(精确到0.1m ).解析如图,延长AD 交地面于点E ,过点D 作DF CE ⊥于点F .因为45DCF ∠=︒,60A ∠=︒,4CD =,所以2sin 4542CF DF CD ==︒=⨯=,tan 60EF DF =︒==.因为3tan 303AB BE =︒=,所以(()8.5m 33AB BE ==++⨯=≈.20.如图,某岛S 周围42海里内存在着大量的暗礁.现在一轮船自西向东以每小时15海里的速度航行,在、A 处测得S 在北偏东60︒,2小时后在B 处测得S 在正东北方向,试问轮船是否需要改变航行方向行驶,才能避免触礁危险,说明理由.解析若设船不改变航向,与小岛S 的最近距离为SC .则有tan 60tan 45152SC SC ︒-︒=⨯,解得1542SC =<.因此需要改变航向,以免触礁.21.如图,某污水处理站计划砌一段截面为等腰梯形的排污渠,如果渠深为h ,截面积为S ,试求当倾角θ为多少时造价最小?解析要使造价最小,只需考虑AD DC CB ++最小,故首先设法用h 、S 、θ表示AD DC CB ++.()()()1122cot cot 22S AB CD h CD h h CD h h θθ=+=+=+.有cot S CD h h θ=-,则2AD DC CB AD CD ++=+2cot sin h S h θθ⎛⎫=+- ⎪⎝⎭()2cos sin h S hθθ-=+.因S 、h 为常数,则要求AD DC CB ++的最小值,只需求2cos sin m θθ-=的最小值.设2cos sin m θθ-=,两边平方整理得()()2221cos 4cos 40m m θθ+---=,cos θ=由上式知()2230m m -≥,解得m m =时,2cos sin θθ-有最小值.当m =时,221cos 12m θ==+,从而得60θ=︒,此时排污渠造价最小.。

第18讲 锐角三角函数与解直角三角形

第18讲 锐角三角函数与解直角三角形

.
[变式2]如图所示,在由边长为1的小正方形组成的网格中,点A,B,C都在格点上,以AB为直径的圆经

过点C和点D,则tan∠ADC=
.
考点二
特殊角的三角函数值
[例2] (2022燕山一模)计算:
3tan 30°-tan245°+2sin 60°.
2
解:3tan 30°-tan 45°+2sin 60°
第18讲
知识点一
锐角三角函数与解直角三角形
锐角三角函数的概念
在 Rt△ABC 中,∠C=90°,AB=c,BC=a,AC=b
正弦
余弦
正切
∠的对边
sin A=
斜边
∠的邻边
cos A=
斜边
∠的对边
tan A=
∠的邻边

=
=


=


知识点二
特殊角的三角函数值
三角
函数
sin α
30°
45°

在 Rt△BCD 中,∠BDC=90°-53°=37°,CD=90 米,
∴BD=CD·cos 37°≈90×0.80=72(米).
在 Rt△ABD 中,∠A=37°,BD≈72 米,∴AB=

°
答:A,B 两点间的距离约 96 米.


=96(米).
.
[变式7](2022海南)无人机在实际生活中应用广泛.如图所示,小明利用无人机测量大楼的高度,无人
位于 B 的北偏西 45°方向,则从 B 到达 C 需要多少小时?
解:如图所示,过点 C 作 CD⊥AB 于点 D.由题意,得 AE∥CD,BF∥CD,
∴∠ACD=∠CAE=60°,∠BCD=∠CBF=45°.

北师大版中考数学知识点复习课件第18讲解直角三角形

北师大版中考数学知识点复习课件第18讲解直角三角形

第18讲解直角三角形知识点一:锐角三角函数的定义关键点拨与对应举例1.锐角三角函数正弦: sin A=∠A的对边斜边=ac余弦: cos A=∠A的邻边斜边=bc正切: tan A=∠A的对边∠A的邻边=ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数三角函数30°45°60°sinA122232 cosA322212 tanA331 3知识点二:解直角三角形3.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.例:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.4.解直角三角形的常用关系(1)三边之间的关系:a2+b2=c2;(2)锐角之间的关系:∠A+∠B=90°;(3)边角之间的关系:sin A==cosB=ac,cos A=sinB=bc,tan A=ab.知识点三:解直角三角形的应用5.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα. (如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[推荐学习]2016年中考数学总复习全程考点训练18锐角三角函数与解直角三角形含解析全程考点训练18 锐角三角函数与解直角三角形一、选择题1.在Rt△ABC中,已知∠C=90°,∠A=40°,BC=3,则AC等于(D)A.3sin 40° B.3sin 50°C.3tan 40° D.3tan 50°【解析】∵tan B=ACBC,∠B=90°-∠A=50°,∴AC=BC·tan B=3tan 50°.故选D.2.如图,在下列网格中,小正方形的边长均为1,点A,B,O都在格点上,则∠AOB的正弦值是(D)A.31010B.12C.13D.1010(第2题)(第2题解)【解析】如解图,过点A作AC⊥OB交OB延长线于点C,则AC=2,AO=22+42=20=25,∴sin∠AOB=ACAO=225=1010.故选D.(第3题)3.如图,某航天飞船在地球表面点P的正上方A处,从A处观测到地球上的最远点Q.若∠QAP=α,地球半径为R,则航天飞船距地球表面的最近距离AP 以及P,Q两点间的地面距离分别是(B)A.Rsin α,παR180B.Rsin α-R,(90-α)πR180C.Rsin α-R,(90+α)πR180D.Rcos α-R,(90-α)πR180【解析】连结OQ,则AQ⊥OQ,AO=OQsin α=Rsinα,∴AP=Rsin α-R,lPQ︵=(90-α)πR180.4.身高相等的四名同学甲、乙、丙、丁参加放风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是(D)筝线长m m m m线与地面夹角30°45°45°60°A.甲 B.乙C.丙 D.丁【解析】h甲=140sin 30°=70,h乙=100sin 45°=50 2,h丙=95sin 45°=9522,h丁=90sin 60°=453,∴h丁>h乙>h甲>h丙.(第5题)5.周末,身高均为1.6 m的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A处测得她看塔顶的仰角α为45°,小丽站在B处(A,B与塔的轴心共线)测得她看塔顶的仰角β为30°.她们又测出A,B两点的距离为30m.假设她们的眼睛离头顶都为10 cm,则可计算出塔高约为(结果精确到0.01,参考数据:2≈1.414,3≈1.732)(D)A.36.21 m B.37.71 mC.40.98 m D.42.48 m【解析】设塔高为x,则x-1.6+0.1tan β-x-1.6+0.1 tan α=AB,即x=30tan 30°·tan 45°tan 45°-tan 30°+1.5≈42.48(m).二、填空题6.某水库大坝的横断面是梯形,其中坝内斜坡的坡度i=1∶3,坝外斜坡的坡度i=1∶1,则两个坡角的和为75°.【解析】∵tan α=i=13,∴α=30°.∵tan β=i=1,∴β=45°,∴α+β=75°. 7.已知传送带与水平面所成斜坡的坡度i=1∶2.4,用它把物体送到离地面10 m 高的地方,那么物体所经过的路程为__26__m.(第7题解)【解析】 如解图.由题意,得AE ⊥BD ,i =AE BE=12.4,AE =10, ∴BE =24.∴在Rt △ABE 中,AB =AE 2+BE 2=26(m).(第8题)8.如图是一张宽为m 的矩形台球桌ABCD ,一球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的点P .如果MC =n ,∠CMN =α,那么点P 到点B 的距离为m -n tan αtan α.【解析】由题意,得∠MNC=∠BNP,∠B=∠C,∴∠NPB=∠NMC=α.又∵CN=CM·tanα=n tan α,∴BN=m-n tan α,∴PB=m-n tan αtan α.(第9题)9.如图,已知在△ABC中,AB=AC=1,∠A=36°,∠ABC的平分线BD交AC于点D,则AD的长是5-1 2,cos A的值是5+14(结果保留根号).【解析】易得AD=BD=BC,△ABC∽△BCD,则ABBC=BCCD.设BC=x,则1x=x1-x,得x=-1±52.∵x>0,∴x=5-1 2,∴AD=5-12.过点B作BH⊥CD于点H,在Rt△ABH中,cos A =AHAB=AD+CD2AB=5+14.(第10题)10.如图,某同学在楼房的A处测得荷塘的一端B处的俯角为30°,荷塘另一端D处与点C,B在同一条直线上.已知AC=32 m,CD=16 m,则荷塘的宽BD为39m(3≈1.73,结果保留整数).【解析】依题意,得∠BAC=60°,在Rt△ABC 中,BC=AC·tan∠BAC=32·tan 60°=32 3(m),∴荷塘宽BD=BC-CD=32 3-16≈39(m).三、解答题(第11题)11.如图,一天,我国一渔政船航行到A处时,发现正东方向我国领海区域B处有一可疑渔船正以12海里/时的速度向西北方向航行,我国渔政船立即沿北偏东60°方向航行追赶.1.5 h后,在我国领海区域的C处截获可疑渔船.问:我国渔政船的航行路程是多少海里(结果保留根号)?【解析】过点C作CD⊥AB于点D.∵南北方向⊥AB,∴∠CAD=30°,∠CBD=45°.在Rt△BCD中,BC=12×1.5=18(海里),∴CD=18sin 45°=9 2(海里).在Rt△ACD中,CD=AC·sin 30°,∴AC=18 2海里.(第12题)12.如图,在△ABC中,CD⊥AB,垂足为D.若AB=12,CD=6,tan A=32,求sin B+cos B的值.【解析】∵CD⊥AB,∴∠ADC=∠BDC=90°.在Rt△ACD中,∠ADC=90°,∴tan A=CDAD=6AD=32,∴AD=4,∴BD=AB-AD=12-4=8.在Rt△BCD中,∵∠BDC=90°,BD=8,CD=6,∴BC=BD2+CD2=10,∴sin B=CDBC=35,cos B=BDBC=45,∴sin B+cos B=35+45=75.(第13题)13.如图,已知在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD,AE分别与CD,CB交于点H,E,AH=2CH.(1)求sin B的值.(2)如果CD=5,求BE的值.【解析】(1)∵∠ACB=90°,CD是斜边AB上的中线,∴CD=BD,∴∠B=∠BCD.∵AE⊥CD,∴∠CAH+∠ACH=90°.又∵∠BCD+∠ACH=90°,∴∠CAH=∠BCD.∴∠B=∠CAH.∵AH=2CH,∴由勾股定理,得AC=5CH,∴sin B=sin∠CAH=CHAC=55.(2)∵CD=5,∴AB=2 5.在Rt△ABC中,∵sin B=ACAB=55,∴AC=2.在Rt△ACE中,∵tan∠CAH=CHAH=12,∴CE=AC·tan∠CAH=1.在Rt△ABC中,∵BC=AB2-AC2=4,∴BE=BC-CE=3.(第14题)14.一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3 m,已知木箱高BE=3m,斜面坡角为30°,求木箱顶点E距地面AC的高度EF.【解析】连结AE.在Rt△ABE中,∵AB=3,BE=3,∴AE=AB2+BE2=2 3.又∵tan∠EAB=BEAB=33,∴∠EAB=30°.在Rt△AEF中,∠EAF=∠EAB+∠BAC=60°,∴EF=AE·sin∠EAF=23×sin60°=23×3=3(m).2答:木箱端点E距地面AC的高度是3 m.。

相关文档
最新文档