精编人教版九年级数学下册各单元及期末试题(答案)
新人教版九年级数学下册期末考试卷及答案【完美版】
新人教版九年级数学下册期末考试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3 3.如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-14.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33 9.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A .B .C .D .10.如图,DE ∥FG ∥BC ,若DB=4FB ,则EG 与GC 的关系是( )A .EG=4GCB .EG=3GC C .EG=52GCD .EG=2GC二、填空题(本大题共6小题,每小题3分,共18分)1.计算:23⨯=______________.2.因式分解:a 3-a =_____________.3.若代数式1﹣8x 与9x ﹣3的值互为相反数,则x =__________.4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解分式方程:21124x x x -=--2.先化简,再求值:233()111a a a a a -+÷--+,其中a=2+1.3.如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y=ax 2+bx+c 上.(1)求抛物线解析式;(2)在直线BC 上方的抛物线上求一点P ,使△PBC 面积为1;(3)在x 轴下方且在抛物线对称轴上,是否存在一点Q ,使∠BQC=∠BAC ?若存在,求出Q 点坐标;若不存在,说明理由.4.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADE C ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B (5001~10000步),C (10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了 位好友.(2)已知A 类好友人数是D 类好友人数的5倍.①请补全条形图;②扇形图中,“A ”对应扇形的圆心角为 度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、C5、B6、D7、D8、D9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1.2、a(a-1)(a + 1)3、24、12 5.5、1 36、2.5×10-6三、解答题(本大题共6小题,共72分)1、32x=-.2、3、(1)抛物线的解析式为y=﹣13x2+23x+1;(2)点P的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)理由见详解;(2)2BD=1,理由见详解.5、(1)30;(2)①补图见解析;②120;③70人.6、(1)35元/盒;(2)20%.。
人教版九年级数学下册期末试卷及答案【完美版】
人教版九年级数学下册期末试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2019-的倒数是( )A .2019-B .12019-C .12019D .20192.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-3.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠24.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5)5.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x =的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<6.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( )A .c <﹣3B .c <﹣2C .c <14D .c <17.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A.3x2>B.x3>C.3x2<D.x3<8.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.19.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17C.18 D.1910.如图,正五边形ABCDE内接于⊙O,P为DE上的一点(点P不与点D重合),则CPD∠的度数为()A.30B.36︒C.60︒D.72︒二、填空题(本大题共6小题,每小题3分,共18分)112763的结果是__________.2.因式分解:_____________.3.若式子x 2-在实数范围内有意义,则x 的取值范围是__________.4.如图,已知△ABC 的两边AB=5,AC=8,BO 、CO 分别平分∠ABC 、∠ACB ,过点O 作DE ∥BC ,则△ADE 的周长等于__________.5.如图,某校教学楼AC 与实验楼BD 的水平间距153CD =米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30,底部C 点的俯角是45︒,则教学楼AC 的高度是__________米(结果保留根号).6.如图,已知反比例函数y=(k 为常数,k ≠0)的图象经过点A ,过A 点作AB ⊥x 轴,垂足为B ,若△AOB 的面积为1,则K=_______.三、解答题(本大题共6小题,共72分)1.(1)解方程:31122x x x --=-+ (2)解不等式组:()3241213x x x x ⎧--<⎪⎨+≥-⎪⎩2.已知抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.3.已知A (﹣4,2)、B (n ,﹣4)两点是一次函数y=kx+b 和反比例函数y=m x图象的两个交点. (1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式kx+b ﹣m x>0的解集.4.已知AB 是O 的直径,弦CD 与AB 相交,38BAC ∠=︒.(Ⅰ)如图①,若D 为AB 的中点,求ABC ∠和ABD ∠的大小;(Ⅱ)如图②,过点D 作O 的切线,与AB 的延长线交于点P ,若//DP AC ,求OCD ∠的大小.5.共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A 、B 、C 、D的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A、B、C、D表示)6.某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、D5、B6、B7、C8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、3.2、3、x 2≥4、135、36、-2三、解答题(本大题共6小题,共72分)1、(1)x =0;(2)1<x ≤42、(1)2y x 2x 3=-++(2)(1,4)3、(1)反比例函数解析式为y=﹣8x ,一次函数的解析式为y=﹣x ﹣2;(2)6;(3)x <﹣4或0<x <2.4、(1)52°,45°;(2)26°5、(1)14;(2)166、(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.。
新人教版九年级数学下册期末考试及答案【完整版】
新人教版九年级数学下册期末考试及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是()A.3B.13C.13-D.3-2.若实数m、n满足402nm-+=-,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8或10 D.63.等式33=11x xxx--++成立的x的取值范围在数轴上可表示为()A.B.C.D.4.如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数25-的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上5.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根6.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是( )A.c<﹣3 B.c<﹣2 C.c<14D.c<17.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A .50°B .60°C .80°D .100° 8.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算(6-18)×13+26的结果是_____________. 2.因式分解:3222x x y xy +=﹣__________. 3.若a 、b 为实数,且b =22117a a a -+-++4,则a+b =__________. 4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,点A ,B 是反比例函数y=k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA ,BC ,已知点C (2,0),BD=2,S △BCD =3,则S △AOC =__________.6.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.如图,在▱ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,且BE=DF(1)求证:▱ABCD 是菱形;(2)若AB=5,AC=6,求▱ABCD 的面积.4.如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E .(1)试判断DE 与⊙O 的位置关系,并说明理由;(2)过点D 作DF ⊥AB 于点F ,若BE=33,DF=3,求图中阴影部分的面积.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.6.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、B5、A6、B7、D8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)12、()2 x x y-3、5或34、10.5、5.6、5三、解答题(本大题共6小题,共72分)1、x=12、3.3、(1)略;(2)S平行四边形ABCD=244、(1)DE与⊙O相切,理由略;(2)阴影部分的面积为25、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)36、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校最多可购买18个乙种足球.。
人教版初三下册《数学》期末考试卷及答案【可打印】
人教版初三下册《数学》期末考试卷及答案一、选择题(每题1分,共5分)1. 如果一个等边三角形的周长是15厘米,那么它的每条边长是()。
A. 3厘米B. 5厘米C. 10厘米D. 15厘米2. 下列哪一个数是有理数?()A. √3B. √9C. √1D. π3. 下列函数中,哪一个函数是增函数?()A. y = x^2B. y = x^3C. y = 2x + 1D. y = 1/x4. 已知一组数据的平均数是10,方差是4,那么这组数据中的数值()。
A. 都大于10B. 都小于10C. 大于10和小于10的都有D. 无法确定5. 下列哪一个图形不是正多边形?()A. 等边三角形B. 等腰梯形C. 矩形D. 正方形二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 0的任何次幂都等于0。
()3. 两个负数相乘,结果是正数。
()4. 一元二次方程的解可以是两个相同的数。
()5. 任何一个数都有相反数。
()三、填空题(每题1分,共5分)1. 如果一个数的平方是36,那么这个数是______。
2. 任何数的零次幂都等于______。
3. 两个数的乘积为负数,那么这两个数______。
4. 一元二次方程ax^2 + bx + c = 0的判别式是______。
5. 如果一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的面积是______平方厘米。
四、简答题(每题2分,共10分)1. 请简要说明等差数列和等比数列的定义。
2. 请简要说明一元二次方程的求解方法。
3. 请简要说明概率的意义和计算方法。
4. 请简要说明相似三角形的性质。
5. 请简要说明圆的周长和面积的计算公式。
五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是2、5、8,求这个数列的第10项。
2. 解方程:2x^2 5x 3 = 0。
3. 已知一个长方体的长、宽、高分别是10厘米、6厘米、4厘米,求这个长方体的体积。
新人教版九年级数学下册期末考试卷(附答案)
新人教版九年级数学下册期末考试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 2.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4 5.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或06.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°8.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.19.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E 在AD的延长线上,则∠CDE的度数为()A.56°B.62°C.68°D.78°10.如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.2539+B.2539+C.18253+D.25318+二、填空题(本大题共6小题,每小题3分,共18分)181__________.2.分解因式:2x3﹣6x2+4x=__________.3.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是__________.4.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D ,且OD =4,△ABC 的面积是__________.5.如图,AB 为△ADC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACD=_____°.6.已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x 时,0y >,正确的是__________(填写序号).三、解答题(本大题共6小题,共72分)1.(1)解方程:31122x x x --=-+ (2)解不等式组:()3241213x x x x ⎧--<⎪⎨+≥-⎪⎩2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.如图,在▱ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,且BE=DF(1)求证:▱ABCD 是菱形;(2)若AB=5,AC=6,求▱ABCD 的面积.4.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、C5、B6、C7、D8、B9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±32、2x (x ﹣1)(x ﹣2).3、30°或150°.4、425、406、①③④.三、解答题(本大题共6小题,共72分)1、(1)x =0;(2)1<x ≤42、3x3、(1)略;(2)S 平行四边形ABCD =244、(1)(m ,2m ﹣5);(2)S △ABC =﹣82a a ;(3)m 的值为72或.5、(1)30;(2)①补图见解析;②120;③70人.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
2024年人教版初中九年级数学(下册)期末试题及答案(各版本)
专业课原理概述部分一、选择题(每题1分,共5分)1.若函数f(x)=x^24x+3,则f(1)的值为()A.0B.1C.2D.32.在直角坐标系中,点P(2,-3)关于y轴的对称点坐标是()A.(-2,3)B.(-2,-3)C.(2,3)D.(3,-2)3.下列哪个数是素数?()A.27B.29C.35D.394.若一组数据的方差为4,则这组数据的标准差是()A.2B.4C.8D.165.在三角形ABC中,若∠A=60°,∠B=70°,则∠C的度数是()A.50°B.60°C.70°D.80°二、判断题(每题1分,共5分)6.任何两个奇数之和都是偶数。
()7.在一次函数y=kx+b中,若k>0,则函数图像是上升的。
()8.平行四边形的对边相等。
()9.圆的周长和直径成正比。
()10.若一个数的平方是负数,则这个数一定是负数。
()三、填空题(每题1分,共5分)11.若a+b=5且ab=3,则a=______,b=______。
12.函数y=2x+1的图像是一条_________。
13.若一个等腰三角形的底边长为8,腰长为10,则这个三角形的面积是_________。
14.在一个比例尺为1:1000的地图上,两城市之间的距离是5厘米,实际距离是_________公里。
15.若一组数据为2,4,6,8,10,则这组数据的平均数是_________。
四、简答题(每题2分,共10分)16.简述平行线的性质。
17.什么是算术平方根?如何计算一个数的算术平方根?18.简述概率的基本公式。
19.什么是相似三角形?相似三角形有哪些性质?20.如何求解一元二次方程?五、应用题(每题2分,共10分)21.某商店进行打折促销,原价为300元的商品打8折,现价是多少?22.一个长方形的长是10厘米,宽是5厘米,求这个长方形的对角线长度。
23.若一个等差数列的首项是2,公差是3,求第10项的值。
人教版九年级数学下册全册单元测试题及答案
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第二十六章 反比例函数全章测试一、填空题 1.反比例函数xm y 1+=的图象经过点(2,1),则m 的值是______. 2.若反比例函数xk y 1+=与正比例函数y =2x 的图象没有交点,则k 的取值范围是____ __;若反比例函数xky =与一次函数y =kx +2的图象有交点,则k 的取值范围是______. 3.如图,过原点的直线l 与反比例函数xy 1-=的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是____________.4.一个函数具有下列性质:①它的图象经过点(-1,1); ②它的图象在第二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大. 则这个函数的解析式可以为____________.5.如图,已知点A 在反比例函数的图象上,AB ⊥x 轴于点B ,点C (0,1),若△ABC 的面积是3,则反比例函数的解析式为____________.6.已知反比例函数xky =(k 为常数,k ≠0)的图象经过P (3,3),过点P 作PM ⊥x 轴于M ,若点Q 在反比例函数图象上,并且S △QOM =6,则Q 点坐标为______. 二、选择题7.下列函数中,是反比例函数的是( ).(A)32x y =(B 32x y =(C)xy 32=(D)x y -=32 8.如图,在直角坐标中,点A 是x 轴正半轴上的一个定点,点B 是双曲线xy 3=(x >0)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( ).(A)逐渐增大 (B)不变(C)逐渐减小(D)先增大后减小9.如图,直线y =mx 与双曲线xky =交于A ,B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM ,若S △ABM =2,则k 的值是( ).(A)2(B)m -2(C)m(D)410.若反比例函数xky =(k <0)的图象经过点(-2,a ),(-1,b ),(3,c ),则a ,b ,c 的大小关系为( ). (A)c >a >b (B)c >b >a (C)a >b >c(D)b >a >c11.已知k 1<0<k 2,则函数y =k 1x 和x ky 2=的图象大致是( ).12.当x <0时,函数y =(k -1)x 与xky 32-=的y 都随x 的增大而增大,则k 满足( ). (A)k >1 (B)1<k <2 (C)k >2 (D)k <113.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.当气球内的气压大于140kPa 时,气球将爆炸.为了安全起见,气体体积应( ).(A)不大于3m 3524(B)不小于3m 3524(C)不大于3m 3724 (D)不小于3m 3724 14.一次函数y =kx +b 和反比例函数axky =的图象如图所示,则有( ).(A)k >0,b >0,a >0 (B)k <0,b >0,a <0 (C)k <0,b >0,a >0 (D)k <0,b <0,a >015.如图,双曲线xky =(k >0)经过矩形OABC 的边BC 的中点E ,交AB 于点D 。
新人教版九年级数学下册期末考试及答案【完美版】
新人教版九年级数学下册期末考试及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中能与23合并的是( )A .8B .13C .18D .92.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±33.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .()3,6--B .()3,0-C .()3,5--D .()3,1--4.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天 5.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠36.正十边形的外角和为( )A .180°B .360°C .720°D .1440°7.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=,则1∠的大小为( )A.14B.16C.90α-D.44α-8.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<19.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°10.直线y=23x+4与x轴、y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(-3,0) B.(-6,0) C.(-52,0) D.(-32,0)二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.分解因式:2x3﹣6x2+4x=__________.3.若代数式32xx+-有意义,则实数x的取值范围是__________.4.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为__________.5.如图,AB为△ADC的外接圆⊙O的直径,若∠BAD=50°,则∠ACD=_____°.6.菱形的两条对角线长分别是方程214480x x-+=的两实根,则菱形的面积为__________.三、解答题(本大题共6小题,共72分)1.解方程:33122 xx x-+=--2.先化简,再求值(32m++m﹣2)÷2212m mm-++;其中m2+1.3.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.6.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、B5、C6、B7、A8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、2x (x ﹣1)(x ﹣2).3、x ≥-3且x ≠24、5、406、24三、解答题(本大题共6小题,共72分)1、4x =2、11m m +-,原式=.3、(1)略;(24、(1)略;(2)4.95、(1)215;(2)39件;仅从工资收入的角度考虑,小明应到乙公司应聘.6、(1)w =﹣x 2+90x ﹣1800;(2)当x =45时,w 有最大值,最大值是225;(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.。
人教版九年级下册《数学》期末考试卷及答案【可打印】
一、选择题(每题1分,共5分)1. 已知a=3,b=4,则a²+b²=()。
A. 5B. 7C. 9D. 252. 下列函数中,y随x增大而增大的是()。
A. y=2x+1B. y=3x2C. y=1/2x+3D. y=4x+53. 已知a²+b²=10,ab=6,则a+b=()。
A. 2B. 4C. 6D. 84. 下列四个数中,最大的数是()。
A. 3/5B. 0.4C. 0.5D. 0.65. 若函数y=2x+1与y=3x2的交点坐标为(x,y),则x的值为()。
A. 1B. 2C. 3D. 4二、判断题(每题1分,共5分)1. 对于任意实数a,都有a²≥0。
()2. 两个数的平方和一定大于等于这两个数的和的平方。
()3. 函数y=2x+1与y=3x2的图像一定相交。
()4. 两个函数的图像可能没有交点。
()5. 对于任意实数a,都有a²=|a|。
()三、填空题(每题1分,共5分)1. 若a²+b²=10,ab=6,则a+b=______。
2. 已知函数y=2x+1,当x=2时,y的值为______。
3. 两个数的平方和一定大于等于这两个数的和的平方,这个说法是______。
4. 函数y=2x+1与y=3x2的交点坐标为(x,y),则x的值为______。
5. 对于任意实数a,都有a²=|a|,这个说法是______。
四、简答题(每题2分,共10分)1. 简述二次函数的定义及图像特征。
2. 简述一次函数的定义及图像特征。
3. 简述正比例函数的定义及图像特征。
4. 简述反比例函数的定义及图像特征。
5. 简述函数的交点及其求解方法。
五、应用题(每题2分,共10分)1. 已知a²+b²=10,ab=6,求a+b的值。
2. 已知函数y=2x+1,当x=2时,求y的值。
3. 已知函数y=2x+1与y=3x2的交点坐标为(x,y),求x的值。
人教版九年级数学下册期末考试卷及答案【完美版】
人教版九年级数学下册期末考试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2019-的倒数是( )A .2019-B .12019-C .12019D .20192.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <3.关于x 的一元二次方程2(3)0x k x k -++=的根的情况是( )A .有两不相等实数根B .有两相等实数根C .无实数根D .不能确定4.下列方程组中,是二元一次方程组的是( )A .4237x y x y +=⎧⎨+=⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x ⎧=⎨=⎩D .284x y x y +=⎧⎨-=⎩5.如图,二次函数2y ax bx c =++的图象经过点1,0A ,()5,0B ,下列说法正确的是( )A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x =6.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .77.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<8.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°9.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B +∠BDC=180°10.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°二、填空题(本大题共6小题,每小题3分,共18分)1.计算31)(31)的结果等于___________.2.分解因式:x 3﹣16x =_____________.3.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB=8,CD=6,则BE=______.6.如图,平面直角坐标系中,矩形OABC 的顶点A (﹣6,0),C (0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的一动点,求△BCP 面积的最大值;(3)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.4.如图,在平面直角坐标系中,一次函数1y ax b =+的图象与反比例函数2k y x=的图象交于点()A 1,2和()B 2,m -. (1)求一次函数和反比例函数的表达式;(2)请直接写出12y y >时,x 的取值范围;(3)过点B 作BE //x 轴,AD BE ⊥于点D ,点C 是直线BE 上一点,若AC 2CD =,求点C 的坐标.5.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图①中m的值为;(2)求统计的这组数据的平均数、众数和中位数;(3)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?6.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、A5、D6、C7、C8、B9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、22、x (x +4)(x –4).3、k<6且k ≠34、125.5、6、(,6)三、解答题(本大题共6小题,共72分)1、4x =2、3.3、(1)这个二次函数的表达式是y=x 2﹣4x+3;(2)S △BCP 最大=278;(3)当△BMN 是等腰三角形时,m ,1,2.4、(1)反比例函数的解析式为22y x =,一次函数解析式为:1y x 1=+;(2)当2x 0-<<或x 1>时,12y y >;(3)当点C 的坐标为()11-或)1,1-时,AC 2CD =.5、(1)28. (2)平均数是1.52. 众数为1.8. 中位数为1.5. (3)200只.6、(1)w=﹣x2+90x﹣1800;(2)当x=45时,w有最大值,最大值是225;(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.。
新人教版九年级数学下册期末考试题及答案【完整】
新人教版九年级数学下册期末考试题及答案【完整】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.若实数m、n满足02m-,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8或10 D.63.如果a与1互为相反数,则|a+2|等于()A.2 B.-2 C.1 D.-14.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是() A.平均数B.中位数C.众数D.方差5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=2106.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是( )A.c<﹣3 B.c<﹣2 C.c<14D.c<17.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°8.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a 9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.已知0ab <,一次函数y ax b =-与反比例函数a y x =在同一直角坐标系中的图象可能( )A .B .C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫---+÷=⎪⎝⎭____________.2.分解因式:2ab a-=_______.3.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是__________.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m.6.如图是一张矩形纸片,点E在AB边上,把BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=_____,BE=__________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根12,x x .(1)求实数k 的取值范围.(2)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值.3.如图,在▱ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,且BE=DF(1)求证:▱ABCD 是菱形;(2)若AB=5,AC=6,求▱ABCD 的面积.4.如图,四边形ABCD 内接于⊙O ,∠BAD=90°,点E 在BC 的延长线上,且∠DEC=∠BAC .(1)求证:DE 是⊙O 的切线;(2)若AC ∥DE ,当AB=8,CE=2时,求AC 的长.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、D5、B6、B7、A8、C9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、a(b+1)(b﹣1).3、30°或150°.4、10.5、1 36、 1三、解答题(本大题共6小题,共72分)1、2x=2、(1)k﹥34;(2)k=2.3、(1)略;(2)S平行四边形ABCD=244、(1)略;(2)AC5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)4元或6元;(2)九折.。
新人教版九年级数学下册期末考试题【及参考答案】
新人教版九年级数学下册期末考试题【及参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣53.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直4.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.下列说法正确的是( )A .负数没有倒数B .﹣1的倒数是﹣1C .任何有理数都有倒数D .正数的倒数比自身小6.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或97.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算:02(3)π-+-=_____________.2.因式分解:a 3-ab 2=____________.3.若式子x 1x+有意义,则x 的取值范围是_______. 4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为__________.5.如图,点A ,B 是反比例函数y=k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA ,BC ,已知点C (2,0),BD=2,S △BCD =3,则S △AOC =__________.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根12,x x .(1)求实数k 的取值范围.(2)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值.3.如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、C5、B6、A7、B8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、32、a (a+b )(a ﹣b )3、x 1≥-且x 0≠4、﹣2<x <25、5.6、49三、解答题(本大题共6小题,共72分)1、x=32、(1)k ﹥34;(2)k=2. 3、(1)y=x 2-4x+3.(2)当m=52时,四边形AOPE 面积最大,最大值为758.(3)P 点的坐标为 :P 112-),P 2(352,2),P 3,2),P 4). 4、(1)略;(2)4.95、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)36、(1)120件;(2)150元.。
2022—2023年人教版九年级数学下册期末考试(及参考答案)
2022—2023年人教版九年级数学下册期末考试(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中,最简二次根式的是()A.15B.0.5C.5D.502.若实数m、n满足402nm-+=-,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12 B.10 C.8或10 D.63.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.24.已知一个多边形的内角和等于900º,则这个多边形是()A.五边形B.六边形C.七边形D.八边形5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=2106.正十边形的外角和为()A.180°B.360°C.720°D.1440°7.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°8.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°9.已知,a b 是非零实数,a b >,在同一平面直角坐标系中,二次函数21y ax bx =+与一次函数2y ax b =+的大致图象不可能是( )A .B .C .D .10.如图,⊙O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC ,若∠A=60°,∠ADC=85°,则∠C 的度数是( )A .25°B .27.5°C .30°D .35°二、填空题(本大题共6小题,每小题3分,共18分)1.27的立方根为__________.2.因式分解:x 2y ﹣9y =________.3.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为__________. 4.如图,ABCD 的对角线AC ,BD 相交于点O ,点E ,F 分别是线段AO ,BO 的中点,若AC+BD=24厘米,△OAB 的周长是18厘米,则EF=__________厘米.5.如图,AB 为△ADC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACD=_____°.6.如图,点A 是反比例函数y=4x(x >0)图象上一点,直线y=kx+b 过点A 并且与两坐标轴分别交于点B ,C ,过点A 作AD ⊥x 轴,垂足为D ,连接DC ,若△BOC 的面积是4,则△DOC 的面积是__________.三、解答题(本大题共6小题,共72分)1.解方程:22142x x x +=--2.在平面直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,ABC 三点中的两点. (1)判断点B 是否在直线y x m =+上.并说明理由;(2)求,a b 的值;(3)平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y轴交点纵坐标的最大值.3.如图,在口ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证:△ABF≌△EDA;(2)延长AB与CF相交于G,若AF⊥AE,求证BF⊥BC.4.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.5.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.6.某商店以每件40元的价格进了一批商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时销售此商品每月的利润可达到4000元.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、C5、B6、B7、A8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、32、y (x+3)(x ﹣3)3、-154、35、406、23﹣2.三、解答题(本大题共6小题,共72分)1、x=-32、(1)点B 在直线y x m =+上,理由见详解;(2)a=-1,b=2;(3)54 3、(1)略;(2)略.4、(1)略;(2)四边形ACEF 是菱形,理由略.5、(1)600(2)见解析(3)3200(4)6、(1)20%;(2)60元。
新人教版九年级数学下册期末考试及完整答案
新人教版九年级数学下册期末考试及完整答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.2-的相反数是( )A .2-B .2C .12D .12- 2.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .43.下列结论成立的是( )A .若|a|=a ,则a >0B .若|a|=|b|,则a =±bC .若|a|>a ,则a ≤0D .若|a|>|b|,则a >b .4.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上 5.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠36.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为( )A .()11362x x -=B .()11362x x += C .()136x x -= D .()136x x +=7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,AB 、是函数12y x =上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)123.2.因式分解:a 3-a =_____________.3.函数2y x =-x 的取值范围是__________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的一动点,求△BCP 面积的最大值;(3)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?6.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、B5、C6、A7、D8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1.2、a(a-1)(a + 1)3、2x4、425、x=26、2.5×10-6三、解答题(本大题共6小题,共72分)1、x=12、3.3、(1)这个二次函数的表达式是y=x2﹣4x+3;(2)S△BCP最大=278;(3)当△BMN是等腰三角形时,m,1,2.4、河宽为17米5、(1)34;(2)1256、(1)w=﹣x2+90x﹣1800;(2)当x=45时,w有最大值,最大值是225;(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.。
精编人教版九年级数学下册各单元及期末试题(答案)
九年级数学下册各单元及期末试题(答案)第二十六章 二次函数单元练习说明:本试题可能用到的性质:抛物线y=ax 2+bx +c (a≠0)的顶点坐标为(ab ac a b 44,22--) 一、选择题(8小题,每小题4分,共32分)1.抛物线y=41x 2,y=4x 2,y=-2x 2的图像中,开口最大的是( )A 、y=41x 2B 、y=4x 2C 、y=-2x 2D 、无法确定2.对于抛物线y=31x 2和y=-31x 2在同一坐标系里的位置,下列说法错误的是( ) A 、两条抛物线关于x 轴对称B 、两条抛物线关于原点对称C 、两条抛物线关于y 轴对称D 、两条抛物线的交点为原点3.二次函数y=(x -1)2-2的顶点坐标是( ) A 、(-1,-2) B 、(-1,2)C 、(1,-2)D 、(1,2)4. 根据抛物线y=x 2+3x -1与x 轴的交点的坐标,可以求出下列方程中哪个方程的近似解。
( )A 、x 2-1=-3xB 、x 2+3x+1=0C 、3x 2+x -1=0D 、x 2-3x+1=05.二次函数y=(x -3)(x+2)的图象的对称轴是 ( ) A 、x=3B 、x=—2C 、x=—12D 、x=126. 抛物线y=2x 2-5x+3与坐标轴的交点共有( ) A 、1个B 、2个C 、3个D 、4个7.如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx +c 的大致图象为( )8. 如图,是铅球运动员掷铅球的高度ym 与水平距离xm 之间的函数关系的图象,其函数关系式为y=-121x 2+32x+35,则该运动员此次掷铅球的成绩是(A 、6mB 、12mC 、8mD 、10m二、填空题(8小题,每小题3分,共24分)9.若点A (3,m )是抛物线y=-x 2上一点,则m= . 10.当m 时,y=(m -2)x 22-m是二次函数。
11.函数y=2(x+1)2是由y=2x 2向 平移 单位得到的.12.抛物线y=3x 2与直线y=kx +3的交点为(2,b ),则k= ,b= .13.若将二次函数223y x x =--配方为()2y x h k =-+的形式,则y = .14.把40表示成两个正数的和,使这两个正数的乘积最大,则这两个数分别是_________。
【人教版】九年级数学下期末试题(含答案)
一、选择题1.如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是()A.9 B.10 C.11 D.122.下列几何体中,三视图有两个相同而另一个不同的是()A.(1)(2)B.(2)(3)C.(2)(4)D.(3)(4)3.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.64.已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.6个B.7个C.8个D.9个5.如图是有一些相同的小正方体构成的立体图形的三视图.这些相同的小正方体的个数是()A .4B .5C .6D .76.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,延长PO 交⊙O 于点C ,若60APB ∠=︒,6PC =,则AC 的长为( )A .4B .22C .23D .337.如图,在正方形方格纸中,每个小方格边长为1,A ,B ,C ,D 都在格点处,AB 与CD 相交于点O ,则sin ∠BOD 的值等于( )A .1010B .310C .210D .1058.在Rt ABC 中,90,C a b c ∠=︒、、分别是A B C ∠∠∠、、的对边,如果3,4a b ==,那么下列等式中正确的是( )A .4sin 3A =B .4cos 3A =C .4tan 3A =D .4cot 3A = 9.如图,四边形 ABCD 中,BD 是对角线,AB=BC ,∠ABC=60°,CD=4,∠ADC=60°,则△BCD 的面积为( )A .3B .8C .3D .3610.西南大学附中初2020级小李同学想利用学过的知识测量棵树的高度,假设树是竖直生长的,用图中线段AB 表示,小李站在C 点测得∠BCA =45°,小李从C 点走4米到达了斜坡DE 的底端D 点,并测得∠CDE =150°,从D 点上斜坡走了8米到达E 点,测得∠AED =60°,B ,C ,D 在同一水平线上,A 、B 、C 、D 、E 在同一平面内,则大树AB 的高度约为( )米.(结果精确到0.12≈1.413≈1.73)A .24.3B .24.4C .20.3D .20.411.如图,在ABCD 中,7AB =,3BC =,ABC ∠的平分线交CD 于点F ,交的延长线于点E ,若2BF =,则线段EF 的长为( )A .4B .3C .83 D.7412.如图,OABC 是平行四边形,对角线OB 在轴正半轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线y =1k x和y =2k x 的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M和N ,则有以下的结论:①12||AM CN ||k k =;②阴影部分面积是12(k 1+k 2);③当∠AOC =90°时,|k 1|=|k 2|;④若OABC 是菱形,则两双曲线既关于x 轴对称,也关于y 轴对称.其中正确的结论是( )A .①②B .①④C .③④D .①②③二、填空题13.如图所示是一种棱长分别是2cm ,3cm ,4cm 的长方体积木,现要用若干块这样的积木来搭建大长方体,如果用6块积木来搭,那么搭成的大长方体的表面积最小是________2cm .14.桌上摆满了朋友们送来的礼物,小狗贝贝好奇地想看个究竟.①小狗先是站在地面上看;②然后抬起了前腿看;③唉,还是站到凳子上看吧;④最后,它终于爬上了桌子….请你根据小狗四次看礼物的顺序,把下面四幅图片按对应字母正确排序为_________________.15.如图,一几何体的三视图如图:那么这个几何体是______.16.如果在某建筑物的A 处测得目标B 的俯角为37°,那么从目标B 可以测得这个建筑物的A 处的仰角为_____.17.如图,在Rt ABC 中,,906A AC cm ∠==,8AB cm =,把AB 边翻折,使边落在BC 边上,点A 落在点E 处,折痕为BD ,则tan DBE ∠的值为_______ .18.已知ABC 中,16,3AB AC cosB ===,则边BC 的长度为____________. 19.如图,矩形ABCD 中,2AB =,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ BC ⊥于点Q ,则PQ =________.20.已知点(,7)M a 在反比例函数21y x=的图象上,则a=______. 三、解答题21.如图是一个几何体从三个方向看所得到的形状图.(1)写出这个几何体的名称;(2)画出它的一种表面展开图;(3)若从正面看的高为4cm ,从上面看三角形的边长都为3 cm ,求这个几何体的侧面积.22.如图,由几个相同的小正方体搭成一个几何体,请画出这个几何体的三种视图.(在所提供的方格内涂上相应的阴影即可)23.如图,在一次数学课外实践活动中,要求测教学楼的高度AB 、小刚在D 处用高1.5m 的测角仪CD ,测得教学楼顶端A 的仰角为30°,然后向教学楼前进40m 到达E ,又测得教学楼顶端A 的仰角为60°.求这幢教学楼的高度AB .(结果带根号)24.计算:101()8|12|2sin 60tan 602-++--︒︒25.如图,过直线2y x =上的点A 作x 轴的垂线,垂足为点B (4,0),与双曲线交于点C ,且点A 、C 关于x 轴对称.(1)求该双曲线的解析式;(2)如果点D 在直线2y x =上,且DAB ∆是以AB 为腰的等腰三角形,求点D 的坐标; (3)如果点E 在双曲线上,且ABE ∆的面积为20,求点E 的坐标.26.如图①,四边形ABCD 中,对角线AC 和BD 交于O 点,且AD ⊥BD ,过C 点作CF ∥AD 交BD 于F 点,E 为AC 的中点,连接ED ,EF .(1)求证:DE =EF ;(2)如图②,若BA =BC ,连接BE 交CF 于M 点.①求证:△EFM ∽△CBM ;②求证:△DEF ∽△ABC .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据主视图与俯视图得出答案.【详解】解:根据几何体的主视图和俯视图,可以得出那个主视图看最少5个,那个俯视图看,最左边正方形前后可以有三列,分别有三个故最多有332=11⨯+个.故选C .【点睛】本题考查了三视图的应用,根据从俯视图看,最左边正方形前后可以有三列,分别有三个从而得出答案是解决问题的关键.2.B解析:B【解析】【分析】根据三视图的定义即可解答.【详解】正方体的三视图都是正方形,故(1)不符合题意;圆柱的主视图、左视图都是矩形,俯视图是圆,故(2)符合题意;圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;三棱锥主视图是、左视图是,俯视图是三角形,故(4)不符合题意;故选B.【点睛】本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.3.C解析:C【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选C.【点睛】本题主要考查了由三视图判断几何体,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解题的关键.4.B解析:B【详解】解:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.综合三视图可知,这个几何体的底层有4个小正方体,第二层有2个小正方体,第,三层有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+2+1=7个.故选B.考点:由三视图判断几何体.5.B解析:B【解析】根据题意可知:第一行第一列只能有1个正方体,第二列有3个正方体,第一行第3列有1个正方体,共需正方体1+3+1=5.故选B .6.C解析:C【分析】如图,设CP 交⊙O 于点D ,连接OA 、AD .由切线的性质易证△AOP 是含30度角的直角三角形,所以该三角形的性质求得半径=2;然后在等边△AOD 中得到AD=OA=2;最后通过解直角△ACD 来求AC 的长度.【详解】解:如图,设CP 交⊙O 于点D ,连接OA 、AD .设⊙O 的半径为r .∵PA 、PB 是⊙O 的切线,∠APB=60°,∴OA ⊥AP ,∠APO=12∠APB=30°. ∴OP=2OA ,∠AOP=60°,∴PC=2OA+OC=3r=6,则r=2,易证△AOD 是等边三角形,则AD=OA=2,又∵CD 是直径,∴∠CAD=90°,∴∠ACD=30°,∴AC=tan 30?AD 3故选:C .【点睛】 本题考查了切线的性质,圆周角定理.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.B解析:B【分析】根据平行线的性质和锐角三角函数定义以及勾股定理,通过转化的数学思想可以求得sin ∠BOD 的值,本题得以解决.【详解】解:连接AE 、EF ,如图所示,则AE ∥CD ,∴∠FAE=∠BOD ,∵每个小正方形的边长为1, 则222222112,2425,3332,AE AF EF =+==+==+=∴△FAE 是直角三角形,∠FEA=90°, ∴32310sin 1025EF FAE AF ∠=== ∴310sin 10BOD ∠=故选:B .【点睛】本题考查了解直角三角形、锐角三角函数定义、勾股定理和勾股定理的逆定理等知识,熟练掌握勾股定理和勾股定理的逆定理是解题的关键. 8.D解析:D【分析】分别算出∠A 的各个三角函数值即可得到正确选项.【详解】 解:由题意可得:2222345c a b =++=, ∴3434sin ,cos ,tan ,,5543a b a b A A A cotA c c b a ======== ∴正确答案应该是D ,故选D .【点睛】 本题考查锐角三角函数的定义,正确理解锐角三角函数的定义是解题关键.9.A解析:A【分析】先证明△ABC 是等边三角形,以C 为圆心,CD 为半径作圆,交AD 边与点M ,可得△CDM是等边三角形,进而得到∆BCM ≅∆ACD ,可得到60BMC ∠=︒,得到BM ∥CD ,过点M 作MH CD ⊥,根据△BCD 的面积等于△CDM 的面积求解即可;【详解】∵BD 是对角线,AB=BC ,∠ABC=60°,∴△ABC 是等边三角形,以C 为圆心,CD 为半径作圆,交AD 边与点M ,延长BC ,交C 于点N ,如图所示,∵∠ADC=60°,CM=CD ,∴△CDM 是等边三角形,∴60MCD ∠=︒,∴∠ACB+∠ACM=∠MCD+∠ACM ,即:∠BCM=∠ACD ,∴∆BCM ≅∆ACD ,∴∠BMC=∠ADC=60°,∴∠BMC=∠MCD ,∴BM ∥CD ,根据平行线间的距离相等得到△BCD 的面积等于△CDM 的面积,过点M 作MH CD ⊥,∵CD=4,∴2==CH HD , ∴tan 602MH MH DH ︒==, ∴23MH =, ∴△△1423432BDC CDM S S ==⨯⨯= 故答案选A .【点睛】本题主要考查了四边形综合,结合等边三角形性质,构造等边△CDM 是解题的关键. 10.B解析:B【分析】过E 作EG ⊥AB 于G ,EF ⊥BD 于F ,则BG=EF ,EG=BF ,求得∠EDF=30°,根据直角三角形的性质得到EF=12DE=4,DF=43,得到CF=CD+DF=4+43,根据三角函数的定义列方程即可得到结论.【详解】过E 作EG ⊥AB 于G ,EF ⊥BD 于F ,则BG =EF ,EG =BF ,∵∠CDE =150°,∴∠EDF =30°,∵DE =8,∴EF =12DE =4,DF =43, ∴CF =CD +DF =4+43,∵∠ABC =90°,∠ACB =45°,∴AB =BC ,∴GE =BF =AB +4+43,AG =AB ﹣4,∵∠AED =60°,∠GED =∠EDF =30°,∴∠AEG =30°,∴tan30°=3443AG GE AB ==++ , 解得:AB =14+63≈24.4,故选:B .【点睛】此题考查解直角三角形的应用-坡度坡角问题,根据题意作出辅助线是解题的关键. 11.C解析:C【分析】平行四边形的对边相等且平行,利用平行四边形的性质以及平行线的基本性质求解.【详解】解:∵平行四边形ABCD∴AD ∥CB ,AD=BC=4.∴∠CBE=∠AEB∵∠ABC 的平分线交AD 于点E∴∠ABE=∠CBE∴∠ABE=∠AEB∴AE=AB=7∴DE=AE-AD=7-3=4.∵AD∥CB,∴△DEF∽△CBF∴EF DEBF BC=∴423EF=即83 EF=故选:C.【点睛】本题主要考查了平行四边形的性质和相似三角形的性质和判定,掌握相关知识是解题的关键.12.B解析:B【分析】作AE⊥y轴于点E,CF⊥y轴于点F,根据平行四边形的性质得S△AOB=S△COB,利用三角形面积公式得到AE=CF,则有OM=ON,再利用反比例函数k的几何意义和三角形面积公式得到S△AOM=12|k1|=12OM•AM,S△CON=12|k2|=12ON•CN,所以有12kAMCN k=;由S△AOM=12|k1|,S△CON=12|k2|,得到S阴影部分=S△AOM+S△CON=12(|k1|+|k2|)=12(k1-k2);当∠AOC=90°,得到四边形OABC是矩形,由于不能确定OA与OC相等,则不能判断△AOM≌△CNO,所以不能判断AM=CN,则不能确定|k1|=|k2|;若OABC是菱形,根据菱形的性质得OA=OC,可判断Rt△AOM≌Rt△CNO,则AM=CN,所以|k1|=|k2|,即k1=-k2,根据反比例函数的性质得两双曲线既关于x轴对称,也关于y轴对称.【详解】作AE⊥y轴于E,CF⊥y轴于F,如图,∵四边形OABC是平行四边形,∴S△AOB=S△COB,∴AE=CF ,∴OM=ON ,∵S △AOM =12|k 1|=12OM•AM ,S △CON =12|k 2|=12ON•CN , ∴12k AM CN k ,故①正确; ∵S △AOM =12|k 1|,S △CON =12|k 2|, ∴S 阴影部分=S △AOM +S △CON =12(|k 1|+|k 2|), 而k 1>0,k 2<0,∴S 阴影部分=12(k 1-k 2),故②错误; 当∠AOC=90°,∴四边形OABC 是矩形,∴不能确定OA 与OC 相等,而OM=ON ,∴不能判断△AOM ≌△CNO ,∴不能判断AM=CN ,∴不能确定|k 1|=|k 2|,故③错误;若OABC 是菱形,则OA=OC ,而OM=ON ,∴Rt △AOM ≌Rt △CNO ,∴AM=CN ,∴|k 1|=|k 2|,∴k 1=-k 2,∴两双曲线既关于x 轴对称,也关于y 轴对称,故④正确.故选:B .【点睛】本题属于反比例函数的综合题,考查了反比例函数的图象、反比例函数k 的几何意义、平行四边形的性质、矩形的性质和菱形的性质.注意准确作出辅助线是解此题的关键.二、填空题13.168【分析】如果用6块来搭那么搭成的大长方体表面积最小是长3×2=6cm 宽4cm 高3×2=6cm 的长方体的表面积根据长方体的表面积公式即可求解【详解】解:长3×2=6cm 宽4cm 高3×2=6cm (解析:168【分析】如果用6块来搭,那么搭成的大长方体表面积最小是长3×2=6cm ,宽4cm ,高3×2=6cm 的长方体的表面积,根据长方体的表面积公式即可求解.【详解】解:长3×2=6cm,宽4cm,高3×2=6cm(4×6+4×6+6×6)×2=(24+24+36)×2=84×2=168(cm2).故答案为:168.【点睛】考查了几何体的表面积,关键是熟练掌握长方体的表面积公式,难点是得到搭成的大长方体的长宽高.14.bdca【解析】试题分析:根据观察的角度不同得到的视图不同可得答案①小狗先是站在地面上看②然后抬起了前腿看③唉还是站到凳子上看吧④最后它终于爬上了桌子…看到的由少到多最后全看到得bdca考点:简单几解析:bdca.【解析】试题分析:根据观察的角度不同,得到的视图不同,可得答案.①小狗先是站在地面上看,②然后抬起了前腿看,③唉,还是站到凳子上看吧,④最后,它终于爬上了桌子…看到的由少到多,最后全看到,得b,d,c,a.考点:简单几何体的三视图.15.圆锥【解析】试题分析:由主视图和左视图为三角形判断出是锥体由俯视图是圆形可判断出这个几何体应该是圆锥故答案为圆锥考点:由三视图判断几何体解析:圆锥【解析】试题分析:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥.故答案为圆锥.考点:由三视图判断几何体.16.37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B可以测得这个建筑物的A处的仰角为37°【详解】如图∵某建筑物的A处测得目标B的俯角为37°∴目标B可以测得这个建筑物的A处的仰角为37°故解析:37°【分析】由俯角和仰角的定义和平行线的性质即可得到目标B可以测得这个建筑物的A处的仰角为37°.【详解】如图,∵某建筑物的A处测得目标B的俯角为37°,∴目标B可以测得这个建筑物的A处的仰角为37°,故答案为:37°.【点睛】考查了解直角三角形,解题关键是理解向下看,视线与水平线的夹角叫俯角;向上看,视线与水平线的夹角叫仰角.17.【分析】先由勾股定理求得BC=10然后由翻折的性质可知CE=2设AD=x则DE=xCD=6-x在Rt△DCE中利用勾股定理可求得DE的长从而可求得tan∠DBE的值【详解】解:在Rt△ABC中由勾股解析:1 3【分析】先由勾股定理求得BC=10,然后由翻折的性质可知CE=2,设AD=x,则DE=x,CD=6-x,在Rt△DCE中,利用勾股定理可求得DE的长,从而可求得tan∠DBE的值.【详解】解:在Rt△ABC中,由勾股定理得:22226810AC AB+=+=.由翻折的性质可知:BE=AB= 8,AD=ED,∠DEB=∠DAB=90°,∴CE=2,∠DEC=90°.设DE=AD=x,则CD=6-x.在Rt△DCE中,由勾股定理得:CD2=DE2+CE2,即(6-x)2=x2+22,解得:x= 83.∴DE= 83.tan∠DBE=838DEEB==13.故答案是:13.【点睛】本题主要考查的是翻折的性质、勾股定理、锐角三角函数的定义,在Rt△DCE中,由勾股定理得到关于x的方程是解题的关键.18.4【分析】过A作AD⊥BC于点D则根据等腰三角形的性质和锐角三角函数的定义可以得到解答【详解】解:如图过A作AD⊥BC于点D则由已知可得△ABC为等腰三角形BD=DC=∴由cosB=得BC=2BD=解析:4【分析】过A作AD⊥BC于点D,则根据等腰三角形的性质和锐角三角函数的定义可以得到解答.【详解】解:如图,过A作AD⊥BC于点D,则由已知可得△ABC为等腰三角形,BD=DC=12 BC,∴由 cosB=13得111,62333BDBD ABAB===⨯=,BC=2BD=4,故答案为4 .【点睛】本题考查等腰三角形和锐角三角函数的综合应用,灵活运用等腰三角形的性质和锐角三角函数的定义是解题关键.19.【分析】根据矩形的性质得到AB∥CDAB=CDAD=BC∠BAD=90°根据线段中点的定义得到DE=CD=AB根据相似三角形的性质即可得到结论【详解】解:∵四边形ABCD是矩形∴AB∥CDAB=CD解析:4 3【分析】根据矩形的性质得到AB∥CD,AB=CD,AD=BC,∠BAD=90°,根据线段中点的定义得到DE=12CD=12AB,根据相似三角形的性质即可得到结论.【详解】解:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,AD=BC,∠BAD=90°,∵E为CD的中点,∴DE=12CD=12AB , ∴△ABP ∽△EDP ,∴AB PB DE PD =, ∴21PB PD = , ∴23PB BD = , ∵PQ ⊥BC ,∴PQ ∥CD ,∴△BPQ ∽△DBC ,∴23PQ BP CD BD ==, ∵CD=2, ∴PQ=43, 故答案为:43.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键. 20.3【分析】把点代入反比例函数解析式求解即可【详解】解:∵点在反比例函数的图象上∴解得故答案为:3【点睛】本题考查反比例函数上点的坐标特征掌握反比例函数上点的坐标特征是解题的关键解析:3【分析】把点(,7)M a 代入反比例函数解析式,求解即可.【详解】解:∵点(,7)M a 在反比例函数21y x=的图象上, ∴217a=,解得3a =, 故答案为:3.本题考查反比例函数上点的坐标特征,掌握反比例函数上点的坐标特征是解题的关键.三、解答题21.(1)三棱柱;(2)见解析;(3)36cm2.【分析】(1)根据三视图的特点,即可解决问题;(2)画出正三棱柱的侧面展开图即可;(3)侧面展开图是矩形,求出矩形的面积即可;【详解】解:(1)几何体的名称是三棱柱;(2)表面展开图为:(3)3×4×3=36cm2,∴这个几何体的侧面积为36 cm2【点睛】本题考查三视图、几何体的侧面展开图等知识,解题的关键是理解三视图、看懂三视图,属于中考常考题型.22.见详解【分析】几何体的主视图有3列,每列小正方形数目分别为3,2,1;左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每行小正方形数目分别为3,2,1.即可画出三视图.【详解】解:如图所示:【点睛】此题考查了三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.23.3 1.5利用60°的正切值可表示出FG 长,进而利用∠ACG 的正切函数求AG 长,加上1.5即为这幢教学楼的高度AB .【详解】解:在Rt △AFG 中,tan ∠AFG =AG FG ,∴FG =tan AG AFG ∠3AG . 在Rt △ACG 中,tan ∠ACG =AG CG , ∴CG =tan AG ACG∠AG . 又CG−FG =40,AG =40, ∴AG=∴AB=+1.5.答:这幢教学楼的高度AB 为( 1.5)米.【点睛】本题考查了解直角三角形,利用两个直角三角形的公共边求解是常用的解直角三角形的方法.24.【分析】根据负整数指数幂、二次根式、零次幂、特殊角的三角函数值的意义进行计算即可求出代数式的值.【详解】解:101()|12sin 60tan 602--︒︒212=+-213=+-=【点睛】本题考查负整数指数幂;二次根式;零次幂;特殊角的三角函数值.25.(1)32y x -=;(2)48⎛ ⎝⎭或8⎛ ⎝⎭或1224,55⎛⎫-- ⎪⎝⎭;(3)329,9⎛⎫- ⎪⎝⎭或()1,32-【分析】(1)求出点C 的坐标,代入k y x=即可求解; (2)分两种情况讨论①8AB AD ==,②8AB BD ==求解即可; (3)设设点E 的坐标为32,b b ⎛⎫- ⎪⎝⎭,利用含b 的式子表示出三角形ABE 的面积求解即可. 【详解】解:(1)由题意知:点A 横坐标为4,将4x =代入2y x =得,8y =,A ∴点坐标为(4,8),点A 、C 关于x 轴对称,∴点C 坐标为(4,-8). 设双曲线解析式为k y x =,将(4,-8)代入k y x=得,32k =- 32y x -∴=(3)DAB ∆是等腰三角形,且AB 为腰,设点D 坐标为(),2a a①8AB AD ==8AD ==,解得:4a =±点D 坐标为48⎛ ⎝⎭或8⎛ ⎝⎭②8AB BD ==8BD ==解得:14a =,2125a =- 点D 不能与点A 重合,14a =舍去点D 坐标为1224,55⎛⎫-- ⎪⎝⎭ (3)设点E 的坐标为32,b b ⎛⎫- ⎪⎝⎭ 由题意可知,14202S ABE AB b ∆=⨯⨯-= 解得:19b =,21b =-E 点坐标为329,9⎛⎫- ⎪⎝⎭或()1,32- 【点睛】 本题考查了反比例函数和一次函数的性质及等腰三角形的性质,注意分类讨论思想的运用.26.(1)见解析;(2)①见解析;②见解析.【分析】(1)延长DE交CF于点G,根据直角三角形的性质解答即可;(2)①根据题意可先证明△EMC∽△FMB,利用其结论DE AEEG CE=结合∠EMF=∠BMC,即可证得结论;②由①可得结论∠EFC=∠EBC,且由题意可推出∠EFD=∠EDF,∠ECB=∠EAB,从而证明结论即可.【详解】(1)延长DE交CF于G点,如图①:∵AD∥CF,且点E为AC中点,∴DE AEEG CE=,∴DE=EG,∵AD⊥BD,∴CF⊥BD,∴∠CFD=90°,∴EF=12DG=DE;(2)①如图②,∵AB=BC,E为AC中点,∴∠BEC=90°,∴∠CEM=∠BFM,∵∠EMC=∠FMB,∴△EMC∽△FMB,∴EM CM,FM BM∵∠EMF=∠BMC,∴△EFM∽△CBM,②∵△EFM∽△CBM,∴∠EFC=∠EBC,∵∠ECB+∠EBC=∠EFC+∠DFE=90°,∴∠EFD=∠ECB,由(1)可知ED=EF,∴∠EFD=∠EDF,∵BA=BC,∴∠ECB=∠EAB,∴△DEF∽△ABC.【点睛】本题考查相似三角形的综合问题,熟练掌握相似三角形的判定并性质以及直角三角形的性质是解题关键.。
【人教版】九年级数学下期末试卷(及答案)
一、选择题1.“圆柱与球的组合体”如下图所示,则它的三视图是()A.B.C.D.2.圆桌面(桌面中间有一个直径为1m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为2m,桌面离地面1m,若灯泡离地面2m,则地面圆环形阴影的面积是()A.2πm2B.3πm2C.6πm2D.12πm23.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A.B .C .D .4.图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=( )A .232x x ++B .22x +C .221x x ++D .223x x +5.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体( ).A .6个B .5个C .4个D .3个6.如图,在矩形ABCD 中,G 是AB 边上一点,连结GC ,取线段CG 上点E ,使ED DC =且90AED ∠=︒,AF CG ⊥于F ,2AF =,1FG =,则EC 的长( )A .4B .5C .163D .837.如图,半径为5的O 中, OA BC ⊥,30ADC ∠=︒,则BC 的长为( )A .52B .53C .522D .532 8.如图,ABC 中,6AB AC AE AC DE ==⊥,,垂直平分AB 于点D ,则EC 的长为( )A .23B .43C .22D .429.如图,在Rt ABC ∆中,90ACB ∠=︒,22AC BC ==,CD AB ⊥于点D .点P 从点A 出发,沿A D C →→的路径运动,运动到点C 停止,过点P 作PE AC ⊥于点E ,作PF BC ⊥于点F .设点P 运动的路程为x ,四边形CEPF 的面积为y ,则能反映y 与x 之间函数关系的图象是( )A .B .C .D .10.如图,在Rt ABC ∆中,BC=4,AC=3,90C ∠=︒,则sinB 的值为( )A .45B .34C .35D .4311.如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =则EF ED ⋅的值为( )A .4B .6C .8D .1612.已知电压U 、电流I 、电阻R 三者之间的关系式为:U IR =(或者UI R=),实际生活中,由于给定已知量不同,因此会有不同的可能图象,图象不可能是( )A .B .C .D .二、填空题13.如图所示,是由一些相同的小立方体搭成的几何体分别从正面、左面、上面看到的该几何体的形状图,那么构成这个立体图形的小正方形有________个.14.棱长是1cm 的小立方体组成如图所示的几何体,那么这个几何体的表面积是____________.15.身高相同的小明和小华站在灯光下的不同位置,如果小明离灯较远,那么小明的投影比小华的投影_________.(填长或短)16.如图,在边长为10的菱形ABCD 中,AC 为对角线,∠ABC =60°,M 、N 分别是边BC ,CD 上的点,BM =CN ,连接MN 交AC 于P 点,当MN 最短时,PC 长度为_____.17.计算:22303060sin cos tan ︒︒︒+-=__________.18.如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,F 为DA 上一点,连接BF ,E 为BF 中点,CD=6,sin ∠ADB=1010,若△AEF 的周长为18,则S △BOE =_____.19.如图,把正ABC ∆沿AB 边平移到''A B C '的位置,它们的重叠部分(即图中阴影部分)的面积是ABC ∆的面积的一半,若23AB ='CC 的长度是_________.20.如图,四边形OABC和ADEF均为正方形,反比例函数8yx的图象分别经过AB的中点M及DE的中点N,则正方形ADEF的边长为___三、解答题21.如图,画出该物体的三视图22.数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.23.如图,AB是圆O的一条弦,OD⊥AB,垂足为C,交圆O于点D,点E在圆O上.(1)若∠AOD=50°,求∠DEB的度数;(2)若OC=3,∠A=30°,求AB的长.24.在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,2A -,()2,1B -,()4,3C -.(1)画出ABC 关于x 轴对称的111A B C △;(2)以点O 为位似中心,在网格中画出111A B C △的位似图形222A B C △,使222A B C △与111A B C △的相似比为2:1;(3)设点(),P a b 为ABC 内一点,则依上述两次变换后点P 在222A B C △内的对应点2P 的坐标是______.25.已知A (n ,-2),B (1,4)是一次函数y =kx +b 的图象和反比例函数y=mx的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx +b <mx的解集(直接写出答案).26.第十一届全国少数民族传统体育运动会于2019年9月8日至16日在郑州举行,据了解,该赛事每四年举办一届,是我国规格最高、规模最大的综合性民族体育盛会,其中,花炮、押加、民族式摔跤三个项目的比赛在郑州大学主校区进行.如图,钟楼是郑州大学主校区标志性建筑物之一,是郑大的“第一高度”,寓意来自五湖四海的郑大人的团结和凝聚.小刚站在钟楼前C处测得钟楼顶A的仰角为53°,小强站在对面的教学楼三楼上的D 处测得钟楼顶A的仰角为45°,此时,两人的水平距离EC为4m,已知教学楼三楼所在的高度为10m,根据测得的数据,计算钟楼AB的高度.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据几何体三视图的定义即可得. 【详解】从正面看和从左面看得到的平面图形都是一个圆和一个矩形的组合图形, 从上面看得到的平面图形是一个圆环, 观察四个选项可知,只有选项A 符合, 故选:A . 【点睛】本题考查了几何体的三视图,熟练掌握定义是解题关键.2.B解析:B 【解析】 【分析】先根据AC ⊥OB ,BD ⊥OB 可得出△AOC ∽△BOD ,由相似三角形的对应边成比例可求出BD 的长,进而得出BD ′=1m ,再由圆环的面积公式即可得出结论. 【详解】 解:如图所示:∵AC ⊥OB ,BD ⊥OB , ∴△AOC ∽△BOD ,∴OA ACOB BD =,即112BD =, 解得:BD =2m ,同理可得:AC ′=0.5m ,则BD ′=1m , ∴S 圆环形阴影=22π﹣12π=3π(m 2). 故选B . 【点睛】考查的是相似三角形的应用以及中心投影,利用相似三角形的对应边成比例得出阴影部分的半径是解题关键.3.C解析:C 【解析】分析:俯视图就是要从问题的正上方往下看,相当于把物体投影到平面.详解:圆柱体和球体投影到平面以后都是圆形,故排除A,因为圆形的轮廓线都是可以看到的,所以选C.点睛:三视图中,可以看到的轮廓线,要化成实线,看不到的轮廓线,要化成虚线.4.A解析:A 【分析】由主视图和左视图的宽为x ,结合两者的面积得出俯视图的长和宽,从而得出答案. 【详解】∵S 主=x 2+2x =x (x +2),S 左=x 2+x =x (x +1),∴俯视图的长为x +2,宽为x +1,则俯视图的面积S 俯=(x +2)(x +1)=x 2+3x +2. 故选A . 【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.5.C解析:C 【分析】这些正方体分前、后两排,左、右两行.后排左边是一列2个正方体,右边一个正方体;前排1个正方体,与后排右列对齐. 【详解】 如图搭成此展台共需这样的正方体(如下图)共需4个这样的正方体.故选C. 【点睛】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.6.C解析:C 【分析】如图,过D 作DP CE ⊥于,P 证明:,EP CP EDP CDP =∠=∠,,DEC DCE ∠=∠再证明,AEF BCG EDP ∠=∠=∠ 结合矩形的性质证明:,AFG EFA ∽利用相似三角形的性质可得4EF =,再求解,AG AE ,设,BG x = 可得2,DE x AD x =+= 利用勾股定理求解,x 再由,BCG EDP ∠=∠可得:1,2EP DP =设,EP m = 则2,DP m = 由勾股定理求解m , 从而可得答案.【详解】解:如图,过D 作DP CE ⊥于,P,DE DC =,EP CP EDP CDP ∴=∠=∠, ,DEC DCE ∠=∠90,AED DCB ∠=︒=∠90,AEF DEC DCE BCG DEC EDP ∴∠+∠=︒=∠+∠=∠+∠,AEF BCG EDP ∴∠=∠=∠,,90AGF CGB AF CG B ∠=∠⊥∠=︒,,FAG BCG ∴∠=∠,FAG AEF ∴∠=∠90AFG EFA ∠=∠=︒,,AFG EFA ∴∽,AF FG EF FA∴= 21AF FG ==,,21,2EF ∴= 4EF ∴=,AE ∴== AG == 设BG x =,则,AB CD x DE ==+=AEF BCG ∠=∠,1tan tan ,2AF AEF BCG EF ∴∠=∠== 1,2BG BC ∴= 2,BC x AD ∴== ()((2222,x x ∴=+235250,x x ∴--=55x ∴=5x = 55855DE ∴== ,EDP BCG ∠=∠1,2EP DP ∴= 设,EP m = 则2,DP m =()22285+2,m m ∴=⎝⎭ 83m ∴=(负根舍去) 162.3EC EP ∴==故选:.C【点睛】 本题考查的是矩形的性质,勾股定理的应用,等腰三角形的性质,三角形相似的判定与性质,锐角三角函数的应用,掌握以上知识是解题的关键.7.B解析:B【分析】连接OC ,设BC 与OA 交于点E ,根据圆周角定理即可求出∠AOC ,然后根据垂径定理可得BC=2CE ,利用锐角三角函数求出CE ,即可求出结论.【详解】解:连接OC ,设BC 与OA 交于点E∵30ADC∠=︒∴∠AOC=2∠ADC=60°∵OA BC⊥∴BC=2CE,在Rt△OCE中,CE=OC·sin∠53 2∴BC=53故选B.【点睛】此题考查的是圆周角定理、垂径定理和锐角三角函数,掌握圆周角定理、垂径定理和锐角三角函数是解题关键.8.B解析:B【分析】根据线段垂直平分线的性质得到AE=BE,由等腰三角形的性质得到∠B=∠BAE,根据三角形的外角的性质得到∠AEC=∠B+∠BAE=2∠B,求得∠C=30°,根据三角函数的定义即可得到结论.【详解】∵DE垂直平分AB于点D,∴AE=BE,∴∠B=∠BAE,∴∠AEC=∠B+∠BAE=2∠B,∵AB=AC,∴∠AEC=2∠C,∵AE⊥AC,∴∠EAC=90°,∴∠C=30°,∴CE=43cos303AC ==︒, 故选:B .【点睛】本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形外角的性质以及特殊角的三角函数值.注意掌握数形结合思想的应用.9.A 解析:A【分析】分两段来分析:①点P 从点A 出发运动到点D 时,写出此段的函数解析式,则可排除C 和D ;②P 点过了D 点向C 点运动,作出图形,写出此阶段的函数解析式,根据图象的开口方向可得答案.【详解】解:∵90ACB ∠=︒,22AC BC ==,∴45A ∠=︒,4AB =,又∵CD AB ⊥,∴2AD BD CD ===,45ACD BCD ∠=∠=︒,∵PE AC ⊥,PF BC ⊥,∴四边形CEPF 是矩形,I .当P 在线段AD 上时,即02x <≤时,如解图1∴2sin 2AE PE AP A x ===, ∴22CE x =, ∴四边形CEPF 的面积为2221222222y x x x x ⎛⎫==-+ ⎪ ⎪⎝⎭,此阶段函数图象是抛物线,开口方向向下,故选项CD 错误;II .当P 在线段CD 上时,即24x <≤时,如解图2:依题意得:4CP x =-,∵45ACD BCD ∠=∠=︒,PE AC ⊥,∴sin CE PE CP ECP ==⨯∠,∴())24sin 4542CE PE x x ==-︒=-, ∴四边形CEPF 的面积为)22214482x x x y ⎤-=-+⎥⎣⎦=,此阶段函数图象是抛物线,开口方向向上,故选项B 错误;故选:A .【点睛】本题考查了动点问题的函数图象,分段写出函数的解析式并数形结合进行分析是解题的关键.10.C解析:C【分析】由勾股定理求出AB 的长度,即可求出sinB 的值.【详解】解:在Rt ABC ∆中,BC=4,AC=3,90C ∠=︒, ∴22345AB +=, ∴35AC sinB AB ==, 故选:C .【点睛】 本题考查了求角的正弦值,以及勾股定理,解题的关键是正确求出AB 的值. 11.D解析:D【分析】根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论.【详解】解:∵四边形ABCD 是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴AE EFDE AE=,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故选:D.【点睛】本题考查了旋转的性质,正方形的性质,相似三角形的判定和性质,找出相关的相似三角形是解题的关键.12.A解析:A【分析】在实际生活中,电压U、电流I、电阻R三者之中任何一个不能为负,依此可得结果.【详解】A图象反映的是UIR=,但自变量R的取值为负值,故选项A错误;B、C、D选项正确,不符合题意.故选:A.【点睛】此题主要考查了现实生活中函数图象的确立,注意自变量取值不能为负是解答此题的关键.二、填空题13.5【分析】易得这个几何体共有2层由俯视图可得第一层正方体的个数由主视图和左视图可得第二层正方体的个数相加即可【详解】解:由从上面看到的图形易得最底层有4个正方体第二层有1个正方体那么共有4+1=5(解析:5【分析】易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.【详解】解:由从上面看到的图形易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5(个)正方体组成.故答案为5.本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案. 14.36cm2【分析】从上面看到6个正方形从正面和右面可看到6个正方形从两个侧后面可看到6个正方形从底面可到到6个正方形面积相加即为所求【详解】从上面看到的面积为6从正面和右面看到的面积为从两个侧后面看 解析:36cm 2【分析】从上面看到6个正方形,从正面和右面可看到62⨯个正方形,从两个侧后面可看到62⨯个正方形,从底面可到到6个正方形,面积相加即为所求.【详解】从上面看到的面积为62116cm ⨯⨯=,从正面和右面看到的面积为2621112cm ⨯⨯⨯=,从两个侧后面看到的面积为2621112cm ⨯⨯⨯=,从底面看到的面积为62116cm ⨯⨯=, 那么这个几何体的表面积为6+12+12+6=362cm .【点睛】本题考查了几何体的表面积,解决问题的关键是分别从各个视角求出面积,然后相加即可. 15.长【解析】中心投影的特点是:等高的物体垂直地面放置时在灯光下离点光源近的物体它的影子短离点光源远的物体它的影子长据此判断即可解:中心投影的特点是:等高的物体垂直地面放置时在灯光下离点光源近的物体它的 解析:长【解析】中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.据此判断即可.解:中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,所以小明的投影比小华的投影长.综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短16.【分析】连接AMAN 证明△AMB ≌△ANC 推出△AMN 为等边三角形当AM ⊥BC 时AM 最短即MN 最短在Rt △ABM 中求出AM 的长在Rt △AMP 中求出AP 的长即可解决问题【详解】解:连接AMAN ∵ABC 解析:52【分析】连接AM ,AN ,证明△AMB ≌△ANC ,推出△AMN 为等边三角形,当AM ⊥BC 时,AM 最短,即MN 最短,在Rt △ABM 中求出AM 的长,在Rt △AMP 中求出AP 的长,即可解决问题.解:连接AM ,AN ,∵ABCD 是菱形,∠ABC=60°,∴△ABC 为等边三角形,∴∠BAC=60°,AB=AC=10,同理可证∠ACN=60°,在△AMB 和△ANC 中,AB AC B ACN BM NC =⎧⎪∠=∠⎨⎪=⎩,∴△AMB ≌△ANC ,∴AM=AN ,∠BAM+∠MAC=∠MAC+∠NAC=60°,∴∠MAN=60°,∴△AMN 为等边三角形,∴MN=AM ,∠MAN=60°,当AM ⊥BC 时,AM 最短,即MN 最短,∵sinB=AM AB , ∴AM=sin60°×10=53.∵∠ABC=60°,∴∠BAM=30°,∴∠MAC=30°,∴∠NAC=30°,∴AP ⊥MN .∵sin ∠AMN=AP AM, ∴AP=sin60°×53=152, ∴CP=10-152=52. 故答案为:52.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,以及锐角三角函数的知识,熟练掌握各知识点是解答本题的关键.17.【分析】先根据特殊角的三角函数值化简然后再计算即可【详解】解:===故答案为【点睛】本题考查了特殊角的三角函数值和实数的运算牢记特殊角的三角函数值是解答本题的关键解析:1【分析】先根据特殊角的三角函数值化简,然后再计算即可.【详解】解:22303060sin cos tan ︒︒︒+-=2212⎛⎫+-⎪⎝⎭⎝⎭=1344+-=1故答案为1【点睛】本题考查了特殊角的三角函数值和实数的运算,牢记特殊角的三角函数值是解答本题的关键.18.【分析】根据题意求出AD=18设AF=则BF=在Rt △ABF 中利用勾股定理可求得求出DF=10可求出S △BDF 由三角形中位线定理可求出答案【详解】∵四边形ABCD 是矩形∴AB=CD=6∠BAD=90 解析:152【分析】根据题意求出AD=18,设AF=a ,则BF=18a -,在Rt △ABF 中,利用勾股定理可求得8a =,求出DF=10,可求出S △BDF ,由三角形中位线定理可求出答案.【详解】∵四边形ABCD 是矩形,∴AB=CD=6,∠BAD=90°,OB=OD ,∵sin ∠ADB=10,∴6AB BD BD ==, ∴BD =∴18DA ===,∵E 为BF 中点,∴AE=BE=EF ,∵△AEF 的周长为18,∴AE+EF+AF=BE+EF+AF=BF+AF=18,设AF=a ,则BF=18a -,在Rt △ABF 中,AB 2+AF 2=BF 2,∴62+a 2=(18a -)2,解得:8a =,∴DF=18-8=10.∵E 为BF 中点,O 为BD 的中点, ∴OE ∥DF ,OE=12DF , ∴△BOE ∽△BDF , ∴BOE BDF 14S S =, ∵BDF 12S =DF•AB=12×6×10=30, ∴S △BOE =BDF 111530442S =⨯=. 故答案为:152. 【点睛】 本题考查了矩形的性质,勾股定理,锐角三角函数,相似三角形的判定与性质,中位线定理,三角形的面积等知识,熟练掌握几何基本图形的性质是解题的关键.19.【分析】根据题意可知△ABC 与阴影部分为相似三角形且面积比为2:1所以AB :A′B=:1推出A′B=从而得到AA′的长【详解】解:∵△ABC 沿AB 边平移到△A′B′C′的位置∴AC ∥A′C′∴△AB解析:【分析】根据题意可知△ABC 与阴影部分为相似三角形,且面积比为2:1,所以AB ::1,推出,从而得到AA′的长.【详解】解:∵△ABC 沿AB 边平移到△A′B′C′的位置,∴AC ∥A′C′,∴△ABC ∽△A′BD ,∴21()2A BDABC S A B S AB ''∆∆==, ∴AB :A′:1,∵AB=∴,∴AA′=.由平移可得' 'CC AA =∴'6CC =故答案为:.【点睛】本题主要考查相似三角形的判定和性质、平移的性质,关键在于求证△ABC 与阴影部分为相似三角形.20.【分析】设正方形的边长为正方形的边长为再由是的中点是的中点可知再代入反比例函数求出的值即可【详解】解:设正方形的边长为正方形的边长为是的中点是的中点反比例函数的图象分别经过的中点及的中点解得故答案为解析:2-+【分析】设正方形OABC 的边长为a ,正方形ADEF 的边长为b ,再由M 是AB 的中点,N 是DE 的中点可知(,)2a M a ,(,)2b N a b ,再代入反比例函数8y x=求出b 的值即可. 【详解】 解:设正方形OABC 的边长为a ,正方形ADEF 的边长为b ,M 是AB 的中点,N 是DE 的中点, (,)2a M a ,(,)2b N a b . 反比例函数8y x=的图象分别经过AB 的中点M 及DE 的中点N , ∴82aa ,82b a b ,解得4a =,225b .故答案为:2-+【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题21.见详解【分析】根据三视图的画法要求结合所给的几何体画出对应的视图即可.【详解】解:三视图如下:【点睛】本题主要考查了三视图的画法,要注意主视图与左视图的高平齐,左视图与俯视图的宽相等,三视图位置规定:主视图在左上方,它的下方是俯视图,左视图坐落在右边. 22.3.45米【分析】 根据平行投影性质可得:1.50.92MN =;1.52 4.6AB =. 【详解】 解:延长DH 交BC 于点M ,延长AD 交BC 于N .可求 3.4BM =,0.9DM =.由1.50.92MN=,可得 1.2MN =. ∴ 3.4 1.2 4.6BN =+=.由1.52 4.6AB =,可得 3.45AB =. 所以,大树的高度为3.45米.【点睛】考核知识点:平行投影.弄清平行投影的特点是关键.23.(1)25°;(2)【分析】(1)由垂径定理可证AD =BD ,再利用圆周角与圆心角的关系求解.(2)由垂径定理可证AC=BC ,△AOC 为直角三角形,由30°的角可求得直角边AC 的长度,从而求得AB 的长度.【详解】(1)∵OD ⊥AB ,∴AD =BD ,∵∠AOD =50°,∴∠DEB=12∠AOD =25°; (2)∵OD ⊥AB , ∴AC=BC ,△AOC 为直角三角形,∵OC=3,∠A=30°,∴tan 30OC AC ︒=,即OC AC = ∴AC=,∴AB=2AC=【点睛】本题考查了圆周角定理,垂径定理,锐角三角函数.注意:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.24.(1)见解析;(2)见解析;(3)()2,2a b -.【分析】(1)先根据关于x 轴对称的点的坐标特征描出A 1、B 1、C 1,然后再顺次连接即可; (2)先根据关于原点为位似中心的对应点的坐标之间的关系,把点A 1、B 1、C 1的横纵坐标都扩大2倍得到A 2、B 2、C 2的坐标,然后描点,最后顺次连接即可;(3)利用(1)、(2)中的坐标变换规律求解即可.【详解】解:(1)如图,△A 1B 1C 1即为所求图形;(2)如图,△A 2B 2C 2即为所求图形;(3)根据(1)(2)的变换规律可得:2P (2a ,-2b ).【点睛】本题主要考查了轴对称变换和位似变换,掌握作轴对称图形和位似图形的的步骤成为解答本题的关键.25.(1)反比例函数关系式:4y=x;一次函数关系式:y=2x+2;(2)2;(3)x<-2或0<x<1.【分析】(1)由B点在反比例函数y=mx图象上,可求出m,再由A,B点在一次函数图象上,由待定系数法求出函数解析式;(2)由(1)可得A,C两点的坐标,从而求出△AOC的面积;(3)由图象观察函数y=mx的图象在一次函数y=kx+b图象的上方,即可求出对应的x的范围.【详解】(1)∵B(1,4)在反比例函数y=mx的图象上,∴m=4,又∵A(n,−2)在反比例函数y=mx的图象上,∴n=−2,又∵A(−2,−2),B(1,4)是一次函数y=kx+b图象上的点,∴可得224k bk b-+=-⎧⎨+=⎩,解得k=2,b=2,∴反比例函数关系式为4yx=;一次函数关系式:y=2x+2;(2)如图,过点A作AE⊥CE,由(1)可得A(−2,−2),C(0,2),∴AE=2,CO=2, ∴1122222AOC S CO AE =⨯=⨯⨯=. (3)由图象知:当0<x<1和x<−2时函数 y=m x 的图象在一次函数y=kx+b 图象的上方, ∴不等式kx+b<m x的解集为:0<x<1或x<−2. 【点睛】 本题考查一次函数与反比例函数的综合运用,灵活运用一次函数和反比例函数的图象、性质及解析式是解题关键.26.钟楼AB 的高度约为56m【分析】作DF ⊥AB 于F ,根据矩形的性质得到FB =DE =10,DF =BE ,根据等腰直角三角形的性质、正切的定义计算,得到答案.【详解】解:作DF ⊥AB 于F ,设AB =xm ,∵FB ⊥EB ,DE ⊥EB ,DF ⊥AB ,∴四边形FBED 为矩形,∴FB =DE =10,DF =BE ,∴AF =10﹣x ,在Rt △AFD 中,∠ADF =45°,∴DF =AF =x ﹣10,在Rt △ABC 中,∠ACB =53°,tan ∠ACB =AB BC , ∴BC =3tan 4AB x ACB ≈∠,由题意得,BE﹣BC=CE,即x﹣10﹣34x=4,解得,x=56,答:钟楼AB的高度约为56m.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.。
新人教版九年级数学下册期末考试及答案【全面】
新人教版九年级数学下册期末考试及答案【全面】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1的算术平方根为( )A .BC .2±D .22.如果y,那么y x 的算术平方根是( )A .2B .3C .9D .±33.若式子2(m 1)-有意义,则实数m 的取值范围是( ) A .m 2>- B .m 2>-且m 1≠C .m 2≥-D .m 2≥-且m 1≠4.若实数a 、b 满足a 2﹣8a+5=0,b 2﹣8b+5=0,则1111b a a b --+--的值是( ) A .﹣20 B .2 C .2或﹣20 D .125.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形6.对于①3(13)x xy x y -=-,②2(3)(1)23x x x x +-=+-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解7.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF ∥AC 交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE=2BF,给出下列四个结论:①DE=DF ;②DB=DC ;③AD ⊥BC ;④AC=3BF ,其中正确的结论共有( )A .4个B .3个C .2个D .1个8.如图所示,四边形ABCD 为⊙O 的内接四边形,∠BCD=120°,则∠BOD 的大小是( )A .80°B .120°C .100°D .90°9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)164____________.2.因式分解:x 3﹣4x=_______.3.已知a 、b 为两个连续的整数,且11a b <<,则a b +=__________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,在矩形纸片ABCD 中,AD =10,AB =8,将AB 沿AE 翻折,使点B 落在B '处,AE 为折痕;再将EC 沿EF 翻折,使点C 恰好落在线段EB '上的点C '处,EF 为折痕,连接AC '.若CF =3,则tan B AC ''∠=__________.6.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22k y x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.3.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连结DE交BC于点F,连接BE.()求证:ACD≌BCE;1()当AD BF2∠的度数.=时,求BEF4.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图0次1次2次3次4次及书的次数以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、B6、C7、A8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、x(x+2)(x﹣2)3、74、10.5、1 46、8.三、解答题(本大题共6小题,共72分)1、x=12、(1)证明见解析(2)1或23、()1略;()2BEF67.5∠=.4、(1)y关于x的函数解析式为210(05)20(510)200(1024)x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.5、()117、20;()22次、2次;()372;()4120人.6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学下册各单元及期末试题(答案)第二十六章 二次函数单元练习说明:本试题可能用到的性质:抛物线y=ax 2+bx +c (a≠0)的顶点坐标为(ab ac a b 44,22--) 一、选择题(8小题,每小题4分,共32分)1.抛物线y=41x 2,y=4x 2,y=-2x 2的图像中,开口最大的是( )A 、y=41x 2B 、y=4x 2C 、y=-2x 2D 、无法确定2.对于抛物线y=31x 2和y=-31x 2在同一坐标系里的位置,下列说法错误的是( ) A 、两条抛物线关于x 轴对称B 、两条抛物线关于原点对称C 、两条抛物线关于y 轴对称D 、两条抛物线的交点为原点3.二次函数y=(x -1)2-2的顶点坐标是( ) A 、(-1,-2) B 、(-1,2)C 、(1,-2)D 、(1,2)4. 根据抛物线y=x 2+3x -1与x 轴的交点的坐标,可以求出下列方程中哪个方程的近似解。
( )A 、x 2-1=-3xB 、x 2+3x+1=0C 、3x 2+x -1=0D 、x 2-3x+1=05.二次函数y=(x -3)(x+2)的图象的对称轴是 ( ) A 、x=3B 、x=—2C 、x=—12D 、x=126. 抛物线y=2x 2-5x+3与坐标轴的交点共有( ) A 、1个B 、2个C 、3个D 、4个7.如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx +c 的大致图象为( )8. 如图,是铅球运动员掷铅球的高度ym 与水平距离xm 之间的函数关系的图象,其函数关系式为y=-121x 2+32x+35,则该运动员此次掷铅球的成绩是(A 、6mB 、12mC 、8mD 、10m二、填空题(8小题,每小题3分,共24分)9.若点A (3,m )是抛物线y=-x 2上一点,则m= . 10.当m 时,y=(m -2)x 22-m是二次函数。
11.函数y=2(x+1)2是由y=2x 2向 平移 单位得到的.12.抛物线y=3x 2与直线y=kx +3的交点为(2,b ),则k= ,b= .13.若将二次函数223y x x =--配方为()2y x h k =-+的形式,则y = .14.把40表示成两个正数的和,使这两个正数的乘积最大,则这两个数分别是_________。
15.如图所示的是桥梁的两条钢缆具有相同的抛物线形状。
按照图中建立的直角坐标系,左面的一条抛物线可以用y=0.0225x 2+0.9x +10表示,而且左右两条抛物线关于y 轴对称,请你写出右面的一条抛物线的表达式________________________。
16.有一个二次函数的图像,三位学生分别说出了它的一些特点: 甲:对称轴是直线x=4;乙:与x 轴两个交点的横坐标都是整数;丙:与y 请写出满足上述全部特点的一个二次函数表达式。
三、解答题(共44分)17、(8分)已知抛物线y=x 2-(a+2)x+12的顶点在直线x=-3上,求a 的值及顶点坐标。
18.(8分)如图,直线l 经过A (3,0),B (0,3)两点,且与二次函数y=x 2+1的图象,在第一象限内相交于点C .求:(1)△AOC 的面积;(2)二次函数图像的顶点与点A 、B 组成的三角形的面积.19.阅读材料,解答问题.(8分)当抛物线的表达式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标出将发生变化.例如y=x 2-2mx +m 2+2m -1①,可变形为y=(x -m )2+2m -1②,∴抛物线的顶点坐标为(m ,2m -1),即⎩⎨⎧-==. ④, ③12m y m x当m 的值变化时,x 、y 的值也随之变化,因而y 值也随x 值的变化而变化. 把③代入④,得y=2x -1.⑤可见,不论m 取任何实数,抛物线顶点的纵坐标y 和横坐标x 都满足表达式y=2x -1. 解答问题:(1)在上述过程中,由①到②所用的数学方法是 ,由③、④到⑤所用到的数学方法是 .(2)根据阅读材料提供的方法,确定抛物线y=x 2-2mx +2m 2-3m +1顶点的纵坐标y 与横坐标x 之间的表达式.20.(10分)工艺品商场按标价销售某种工艺品时,每件可获利45元;按标价八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等。
(1)该工艺品每件的进价、标价分别是多少?(2)若每件工艺品按(1)题中求得的进价进货、标价售出,工艺品商场每天可售出该工艺品100件,若每件工艺品降价1元,则每天可多售出工艺品4件,问每件工艺品降价多少元出售,才能使每天获得的利润最大?获得的最大利润是多少元?21.(10分)有一座抛物线型拱桥,桥下面在正常水位AB时宽20m.水位上升3m,就达到警戒线CD,这时,水面宽度为10m.(1)在如图所示的坐标系中求抛物线的表达式;(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?第二十七章 相似单元练习班级_______________________ 姓名___________一、选择题(8小题,每小题4分,共32分) 1.下列多边形一定相似的为( ) A .两个矩形B .两个菱形C .两个正方形D .两个平行四边形2.在△ABC 中,BC=15cm ,CA=45cm ,AB=63cm ,另一个和它相似的三角形的最短边是5cm ,则最长边是( )A .18cmB .21cmC .24cmD .19.5cm3.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )4.两相似三角形的最短边分别是5cm 和3cm ,它们的面积之差为322cm ,那么小三角形的面积为( ) A .102cmB .142cmC .162cmD .182cm5.如右上图,在△ABC 中,高BD 、CE 交于点O ,下列结论错误的是( )A .CO ²CE=CD ²CAB .OE ²OC=OD ²OBC .AD ²AC=AE ²ABD .CO ²DO=BO ²EO6.下列命题不正确的是( )A .两个位似图形一定相似B .位似图形的对应边若不在同一条直线上,那么一定平行。
C .两个位似图形的位似比就是相似比。
D .两个相似图形一定是位似图形。
7.如图:把△ ABC 沿AB 边平移到△A'B'C'的位置,它们的重叠部分(即图中阴影部分)的面积是空白部分面积的一半,若AB=1,则此三角形移动的距离AA'是( ) A1 BC.1 D .128.如图,P 是Rt △ABC 的斜边BC 上异于B , C 的一点,过P点作直线截△ABC ,使截得的三角形与△ABC 相似,满足这样条件的直线共有( ) A. l 条B. 2条C. 3 条D. 4条二、填空题(8小题,每小题3分,共24分)A E BD O第7题图9.如图,AD ∥EF ∥BC ,则图的相似三角形共有_____对.10.竿高3米,影长2米;同一时刻,某塔影长为20米,则塔的高度为_______ 11.如图,三个全等的正六边形,其中成位似图形关系的有____________对。
12.若△ABC ∽△A ′B ′C ′,且43=''B A AB ,△ABC 的周长为12cm ,则△A ′B ′C ′的周长为 ;13.如图,在△ABC 中, ∠B=∠AED ,AB=5,AD=3,CE=6,则AE= 14.如图,在△ABC 中,BC=12cm ,点D 、F 是AB 的三等分点,点E 、G 是AC 的三等分点,则DE+FG+BC= ;15.如图,正方形ABCD 内接于等腰ΔPQR,∠P=900,则PA ∶AQ=__________.16.如图,在矩形ABCD 中,A E ⊥BD 于点E ,ABE ABCD S cm ∆=,40S 2矩形:1=∆DBA S :5,则AE=____________。
三、解答题(共44分)。
17.(8分)已知:如图,ΔABC 中,AD=DB,∠1=∠2.求证:ΔABC ∽ΔEAD.18.(8分)如图,晚上,小亮在广场上乘凉.图中线段AB 表示站在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯. (1)请你在图中画出小亮在照明灯(P )照射下的影子. (2)如果灯杆高PO=12m ,小亮的身高AB=1.6m ,小 亮与灯杆的距离BO=13m , 请求出小亮影子的长度.14题图 AB C D F G E11题图 9题图A B CDE13题图 15题图B16题图 17题图19.(8分)在一矩形ABCD的花坛四周修筑小路,使得相对两条小路的宽均相等。
花坛AB =20米,AD=30米,试问小路的宽x与y的比值为多少时,能使小路四周所围成的矩形A`B`C`D`能与矩形ABCD相似?请说明理由。
20.(10分)新域广场省政府办公楼前,五星红旗在空中飘扬,同学们为了测出旗杆的高度,设计了三种方案,方案一:在地上放一块平面镜,使人能在镜中刚好能看到旗杆顶。
如图(1),测得BO=60米;OD=3.4米,CD=1.7米;方案二:在晴天观测人和旗杆的影子,如图(2),测得CD=1米,FD=0.6米,EB=18米;方案三:伸直手臂,在手中竖直拿一刻度尺,眼睛通过刻度尺观测旗杆顶端和旗杆底端,如图(3)所示,并测得BD=90米,EG=0.2米,此人的臂长为0.6米。
请你任选其中的一种方案。
(1)说明其运用的物理知识。
(2)利用同学们实测的数据,计算出旗杆的高度。
21.(10分)如图,平面直角坐标系中,直线A隔壁x轴、y 轴分别交于A(3,0),B(0,3)两点。
(1)求直线AB的解析式;(2)在第一象限内是否存在点P,使得以P、O、B为顶点的三角形与△OBA相似?若存在,请画出所有符合条件的点P,并求其中一个点P的坐标;若不存在,请说明理由。
第28章锐角三角函数自主学习达标检测卷(时间90分钟满分100分)班级 _______ 学号姓名 ____ 得分_______ 一、填空题(共14小题,每题2分,共28分)1.sin30°=________.2.在△ABC中,若│sinAcosB)=0,则∠C=_______。
3.在Rt△ABC中,∠C=90°,当已知∠A和a时,求c,则∠A、a、c关系式是c= 。
4.若sin28°=cosα,则α=________。
5.在Rt△ABC中,∠ACB=900,sin B=27,则cos B= 。
6.如图,3×3•网格中一个四边形ABCD,若小方格正方形的1,•则四边形ABCD的周长___.7.某坡面的坡度为1_______度.8.若圆周角α所对弦长为sinα,则此圆的半径r为_______.9.锐角A满足2sin(A-15°)A=________.10.计算:3tan30°+tan45°-2tan45°-2cos60°=_________.11.已知A是锐角,且sin A=13,则cos(90°-A)=________.12.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A′P′B′,且BP=2,•那么PP′的长为________.(不取近似值,以下数据供解题使用:sin15°=44︒=)13.如图,沿倾斜角为33°的山坡植树,要求相邻两棵树的水平距离AC为2m,那么相邻两棵树的斜坡距离AB约为________m.(精确到0.01m)14.为了测量一个圆形铁环的半径(如图),某同学采用了如下办法:•将铁环平放在水平桌第12题第13题第14题第6题第18题面上,用一个锐角为30°的三角板和一个刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径,若测得PA =5cm ,则铁环的半径是______cm . 二、选择题(共4小题,每题3分,共12分)15.如图所示,△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,若BD :AD =1:4,则t a n ∠BCD 的值是( ) A .14 B .13 C .12D .216.如图所示,已知⊙O 的半径为5cm ,弦AB 的长为8cm ,P 是AB 延长线上一点,BP =2cm ,则t a n ∠OPA 等于( ) A .32 B .23 C .2 D .1217.如图,起重机的机身高AB 为20m ,吊杆AC 的长为36m ,•吊杆与水平线的倾角可以从30°转到80°,则这台起重机工作时吊杆端点C 离地面的最大高度和离机身的最远水平距离分别是( )A .(30+20)m 和36tan30°mB .(36sin30°+20)m 和36cos30°mC .36sin80°m 和36cos30°mD .(36sin80°+20)m 和36cos30°m18.如图,王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( ) A 350m B 100 m C 150mD 3100m三、解答题(共10题,共60分) 19.(4分)计算:(4分)(12sin60°); (2)计算:cos60°2-1.第15题 第16题 第17题20.(4分)计算:(1)sin30°+cos45°+t a n60°-cot30°;(2cot 303tan 30cos 27sin 30cos 45︒-︒︒+︒-︒.21.(4分)如图,在离地面高度5米处引拉线固定电线杆,拉线和地面成58°,•求拉线下端点A 与杆底D 的距离AD .(精确到0.01米)22.(6分)如图,河对岸有一铁塔AB .在C 处测得塔顶A 的仰角为30°,向塔前进16米到达D ,在D 处测得A 的仰角为45°,求铁塔AB 的高.第21题第22题23.如图,为迎接上海2010年世博会,需改变一些老街道的交通状况.在某大道拓宽工程中,要伐掉一棵树AB,在地面上事先划定以B为圆心,半径与AB等长的圆形区域为危险区,现在某工人站在离B点3米处的D处测得树的顶端A点的仰角为60°,树的底部B•点的俯角为30°,问距离B点81.73)24.(6分)如图,一艘轮船自西向东航行,在A处测得东偏北21.3°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C最近?(参考数据:sin21.3°≈925,t a n21.3°≈25,sin63.5°≈910,t a n63.5°≈2)第23题A BC北东第24题25.如图我边防战士在海拔高度(即CD 的长)为50米的小岛顶部D 处执行任务,上午8时发现在海面上的A 处有一艘船,此时测得该船的俯角为30°,该船沿着AC •方向航行一段时间后到达B 处,又测得该船的俯角为45°,求该船在这一段时间内的航程.(•计算结果保留根号)26.(8分)如图,在某建筑物AC 上,挂着“多彩云南”的宣传条幅BC ,小明站在点F 处,看条幅顶端B ,测的仰角为︒30,再往条幅方向前行20米到达点E 处,看到条幅顶端B ,测的仰角为︒60,求宣传条幅BC 的长,(小明的身高不计,结果精确到0.1米)第25题第26题27.(8分)某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为l.6米,现要做一个不锈钢的扶手AB 及两根与FG 垂直且长为l 米的不锈钢架杆AD 和BC (杆子的底端分别为D ,C ),且∠DAB =66. 5°. (1)求点D 与点C 的高度差D H ; (2)求所用不锈钢材料的总长度l 。