数学练习题新课标高一数学必修2第三章直线与方程同步单元测试题
高中数学 第三章 直线与方程评估验收卷 新人教A版必修2-新人教A版高一必修2数学试题
【金版学案】2016-2017学年高中数学 第三章 直线与方程评估验收卷 新人教A 版必修2(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x -y =0的倾斜角为( )A .45°B .60°C .90°D .135°解析:因为直线的斜率为1,所以tan α=1,即倾斜角为45°.答案:A2.若三点A (0,8),B (-4,0),C (m ,-4)共线,则实数m 的值是( )A .6B .-2C .-6D .2解析:因为A 、B 、C 三点共线,所以k AB =k AC ,所以8-00-(-4)=8-(-4)-m,所以m =-6. 答案:C3.倾斜角为135°,在y 轴上的截距为-1的直线方程是( )A .x -y +1=0B .x -y -1=0C .x +y -1=0D .x +y +1=0解析:由斜截式可得直线方程为y =-x -1,化为一般式即为x +y +1=0.答案:D4.已知点A (0,4),B (4,0)在直线l 上,则直线l 的方程为( )A .x +y -4=0B .x -y -4=0C .x +y +4=0D .x -y +4=0解析:由截距式方程可得l 的方程为x 4+y 4=1,即x +y -4=0. 答案:A5.已知直线l 1:(a -1)x +(a +1)y -2=0和直线l 2:(a +1)x +2y +1=0互相垂直,则实数a 的值为( )A .-1B .0C .1D .2解析:因为l 1⊥l 2,所以(a -1)(a +1)+2a +2=0,所以a 2+2a +1=0,即a =-1.答案:A6.和直线5x -4y +1=0关于x 轴对称的直线方程为( )A .5x +4y +1=0B .5x +4y -1=0C .-5x +4y -1=0D .-5x +4y +1=0 解析:设所求直线上的任一点为(x ,y ),则此点关于x 轴对称的点的坐标为(x ,-y ),因为点(x ,-y )在直线5x -4y +1=0上,所以5x +4y +1=0,故所求直线方程为5x +4y +1=0.答案:A7.已知A (2,4)与B (3,3)关于直线l 对称,则直线l 的方程为( )A .x +y =0B .x -y =0C .x +y -6=0D .x -y +1=0解析:由已知得直线l 是线段AB 的垂直平分线,所以直线l 的斜率为1,且过线段AB中点⎝ ⎛⎭⎪⎫52,72,由点斜式得方程为y -72=x -52,化简得x -y +1=0. 答案:D8.直线l 过点A (3,4)且与点B (-3,2)的距离最远,那么l 的方程为( )A .3x -y -13=0B .3x -y +13=0C .3x +y -13=0D .3x +y +13=0解析:因为过点A 的直线l 与点B 的距离最远,所以直线AB 垂直于直线l ,直线l 的斜率为-3,由点斜式可得直线l 的方程为3x +y -13=0.答案:C9.过点(3,-6)且在两坐标轴上的截距相等的直线的方程是( )A .2x +y =0B .x +y +3=0C .x -y +3=0D .x +y +3=0或2x +y =0解析:当截距均为0时,设方程为y =kx ,将点(3,-6)代入得k =-2,此时直线方程为2x +y =0;当截距不为0时,设直线方程为x a +y a=1,将(3,-6)代入得a =-3,此时直线方程为x +y +3=0. 答案:D10.设点A (3,-5),B (-2,-2),直线l 过点P (1,1)且与线段AB 相交,则直线l 的斜率k 的取值X 围是( )A .k ≥1或k ≤-3B .-3≤k ≤1C .-1≤k ≤3D .以上都不对解析:如图所示,直线PB ,PA 的斜率分别为k PB =1,k PA =-3,结合图形可知k ≥1或k ≤-3.答案:A11.若a ,b 满足a +2b =1,则直线ax +3y +b =0必过定点( )A.⎝ ⎛⎭⎪⎫-12,-16B.⎝ ⎛⎭⎪⎫12,-16 C.⎝ ⎛⎭⎪⎫12,16 D.⎝ ⎛⎭⎪⎫-12,16 解析:采用赋值法,令a =-1,b =1或a =1,b =0,得直线方程分别为-x +3y +1=0,x +3y =0,其交点为⎝ ⎛⎭⎪⎫12,-16,此即为直线所过的定点. 答案:B12.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A .210B .6C .3 3D .2 5解析:易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A ′(-2,0),则光线所经过的路程即A 1(4,2)与A ′(-2,0)两点间的距离.于是|A 1A ′|=(4+2)2+(2-0)2=210.答案:A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角为45°,则m 的值为________.解析:直线的斜率k =2m 2-5m +2m 2-4=1, 解得m =2或m =3.但当m =2时,m 2-4=0,直线的斜率不存在,此时倾斜角为90°舍去.所以m =3.答案:314.已知斜率为2的直线经过点A (3,5),B (a ,7),C (-1,b )三点,则a ,b 的值分别为________.解析:由题意得⎩⎪⎨⎪⎧k AC =2,k AB =2,即⎩⎪⎨⎪⎧b -5-1-3=2,7-5a -3=2, 解得a =4,b =-3.答案:4,-315.已知直线l 在y 轴上的截距是-3,它被两坐标轴截得的线段的长为5,则此直线的方程为______________________________.解析:设所求的直线方程为x a +y -3=1,则此直线与x 轴交于点(a ,0),与y 轴交于点(0,-3),由两点间的距离公式解得a =±4,故所求的直线方程为x ±4+y -3=1,即3x +4y +12=0或3x -4y -12=0.答案:3x +4y +12=0或3x -4y -12=016.已知直线l 1:mx +4y -2=0与l 2:2x -5y +n =0相互垂直,且垂足为(1,p ),则m -n +p 的值为________.解析:因为l 1⊥l 2,所以2m +4×(-5)=0,解得m =10;又因为点(1,p )在l 1上,所以10+4p -2=0,即p =-2;又因为点(1,p )也在l 2上,所以2-5×(-2)+n =0,即n =-12.所以m -n +p =20.答案:20三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知直线l 1:ax +by +1=0(a ,b 不同时为0),l 2:(a -2)x +y +a =0,(1)若b =0,且l 1⊥l 2,某某数a 的值;(2)当b =3,且l 1∥l 2时,求直线l 1与l 2之间的距离.解:(1)当b =0时,直线l 1的方程为ax +1=0,由l 1⊥l 2,知a -2=0,解得a =2.(2)当b =3时,直线l 1的方程为ax +3y +1=0,当l 1∥l 2时,有⎩⎪⎨⎪⎧a -3(a -2)=0,3a -1≠0,解得a =3,此时,直线l 1的方程为3x +3y +1=0,直线l 2的方程为x +y +3=0,即3x +3y +9=0.故所求距离为d =|1-9|9+9=423. 18.(本小题满分12分)在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠A 的平分线所在的直线方程为y =0,若点B 的坐标为(1,2),求点A 和点C 的坐标.解:由方程组⎩⎪⎨⎪⎧x -2y +1=0,y =0解得点A 的坐标为(-1,0). 又直线AB 的斜率k AB =1,x 轴是∠A 的平分线,所以k AC =-1,则AC 边所在的直线方程为y =-(x +1).①又已知BC 边上的高所在直线的方程为x -2y +1=0,故直线BC 的斜率k BC =-2, 所以BC 边所在的直线方程为y -2=-2(x -1).②解①②组成的方程组得⎩⎪⎨⎪⎧x =5,y =-6,即顶点C 的坐标为(5,-6).19.(本小题满分12分)如图所示,已知点A (2,3),B (4,1),△ABC 是以AB 为底边的等腰三角形,点C 在直线l :x -2y +2=0上.(1)求AB 边上的高CE 所在直线的方程;(2)求△ABC 的面积.解:(1)由题意可知,E 为AB 的中点,所以E (3,2),且k CE =-1k AB =1,所以CE 所在直线方程为:y -2=x -3,即x -y -1=0.(2)由⎩⎪⎨⎪⎧x -2y +2=0,x -y -1=0得C (4,3),所以|AC |=|BC |=2, AC ⊥BC ,所以S △ABC =12|AC |·|BC |=2. 20.(本小题满分12分)已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线方程.(2)求过点P 且与原点的距离最大的直线方程,并求出最大值.(3)是否存在过点P 且与原点的距离为3的直线?若存在,求出该直线的方程;若不存在,请说明理由.解:(1)当斜率不存在时,方程x =2符合题意;当直线的斜率存在时,设为k ,则直线方程应为y +1=k (x -2),即kx -y -2k -1=0. 由题意,得|2k +1|k 2+1=2.解得k =34. 所以直线方程为3x -4y -10=0.所以适合题意的直线方程为x -2=0或3x -4y -10=0.(2)过点P ,且与原点的距离最大的直线应为过点P 且与OP 垂直的直线,易求其方程为2x -y -5=0,且最大距离d = 5.(3)由于原点到过点P (2,-1)的直线的最大距离为5,而3>5,故不存在这样的直线.21.(本小题满分12分)设直线l 的方程为(a +1)x +y +2-a =0(a ∈R).(1)若l 不经过第二象限,某某数a 的取值X 围;(2)证明:不论a 为何值,直线恒过某定点,并求出这个定点的坐标;(3)证明:不论a 为何值,直线恒过第四象限.(1)解:将l 的方程化为y =-(a +1)x +a -2,欲使l 不经过第二象限,当且仅当⎩⎪⎨⎪⎧-(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0,成立. 所以a ≤-1,故所求a 的取值X 围为a ≤-1.(2)证明:方程可整理成a (x -1)+x +y +2=0,当x =1,y =-3时方程a (x -1)+x +y +2=0对a ∈R 恒成立,因此,直线恒过点(1,-3).(3)证明:由(2)知,直线恒过第四象限内的点(1,-3),因此,不论a 为何值,直线恒过第四象限.22.(本小题满分12分)在直线l :3x -y -1=0上求一点P ,使得:(1)P 到A (4,1)和B (0,4)的距离之差最大;(2)P 到A (4,1)和C (3,4)的距离之和最小.解:如图①所示,设点B 关于l 的对称点为B ′,AB ′与l 的交点P 满足(1);如图②所示,设点C 关于l 的对称点为C ′,AC ′与l 的交点P 满足(2).图① 图②对于(1),若P ′是l 上异于P 的点,则|P ′A |-|P ′B |=|P ′A |-|P ′B ′|<|AB ′|=|PA |-|PB ′|=|PA |-|PB |;对于(2),若P ′是l 上异于P 的点,则|P ′A |+|P ′C |=|P ′A |+|P ′C |>|AC ′|=|PA |+|PC ′|=|PA |+|PC |.(1)设点B 关于l 的对称点B ′的坐标为(a ,b ),则k BB ′·k l =-1,即3×b -4a=-1,所以a +3b -12=0①. 又由于线段BB ′的中点坐标为⎝ ⎛⎭⎪⎫a 2,b +42,且中点在直线上, 所以3×a 2-b +42-1=0,即3a -b -6=0②.联立①②得,a =3,b =3,所以B ′(3,3).于是直线AB ′的方程为y -13-1=x -43-4,即2x +y -9=0. 解⎩⎪⎨⎪⎧3x -y -1=0,2x +y -9=0,得⎩⎪⎨⎪⎧x =2,y =5, 即此时所求点P 的坐标为(2,5).(2)设点C 关于l 的对称点为C ′,同理可求出C ′的坐标为⎝ ⎛⎭⎪⎫35,245. 所以直线AC ′的方程为19x +17y -93=0,解⎩⎪⎨⎪⎧3x -y -1=019x +17y -93=0,得⎩⎪⎨⎪⎧x =117,y =267,故此时所求点P 的坐标为⎝ ⎛⎭⎪⎫117,267.。
必修二《直线与方程》单元测试题(含详细答案)
第三章《直线与方程》单元检测试题 时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.已知点A (1,3),B (-1,33),则直线AB 的倾斜角是( ) A .60° B .30° C .120° D .150°[答案] C2.直线l 过点P (-1,2),倾斜角为45°,则直线l 的方程为( ) A .x -y +1=0 B .x -y -1=0 C .x -y -3=0 D .x -y +3=0[答案] D3.如果直线ax +2y +2=0与直线3x -y -2=0平行,则a 的值为( ) A .-3 B .-6 C .32 D .23[答案] B4.直线x a 2-y b2=1在y 轴上的截距为( ) A .|b | B .-b 2C .b 2D .±b[答案] B5.已知点A (3,2),B (-2,a ),C (8,12)在同一条直线上,则a 的值是( ) A .0 B .-4 C .-8 D .4[答案] C6.如果AB <0,BC <0,那么直线Ax +By +C =0不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 [答案] D7.已知点A (1,-2),B (m,2),且线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值是( )A .-2B .-7C .3D .1[答案] C8.经过直线l 1:x -3y +4=0和l 2:2x +y =5=0的交点,并且经过原点的直线方程是( )A .19x -9y =0B .9x +19y =0C .3x +19y =0D .19x -3y =0[答案] C9.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点( ) A .(0,0) B .(17,27)C .(27,17)D .(17,114)[答案] C10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0 D .x +2y -3=0 [答案] D11.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( )A .-4B .-2C .0D .2[答案] B12.等腰直角三角形ABC 中,∠C =90°,若点A ,C 的坐标分别为(0,4),(3,3),则点B 的坐标可能是( )A .(2,0)或(4,6)B .(2,0)或(6,4)C .(4,6)D .(0,2)[答案] A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.直线l 与直线y =1,x -y -7=0分别交于A ,B 两点,线段AB 的中点为M (1,-1),则直线l 的斜率为_________.[答案] -23[解析] 设A (x 1,y 1),B (x 2,y 2),则y 1+y 22=-1,又y 1=1,∴y 2=-3,代入方程x-y -7=0,得x 2=4,即B (4,-3),又x 1+x 22=1,∴x 1=-2,即A (-2,1),∴k AB =-3-14--2=-23.14.点A (3,-4)与点B (5,8)关于直线l 对称,则直线l 的方程为_________. [答案] x +6y -16=0[解析] 直线l 就是线段AB 的垂直平分线,AB 的中点为(4,2),k AB =6,所以k l =-16,所以直线l 的方程为y -2=-16(x -4),即x +6y -16=0.15.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为_________.[答案] 3 2[解析] 依题意,知l 1∥l 2,故点M 所在直线平行于l 1和l 2,可设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式,得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=3 2.16.若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是①15° ②30° ③45° ④60° ⑤75°,其中正确答案的序号是_________.(写出所有正确答案的序号)[答案] ①⑤[解析] 两平行线间的距离为d =|3-1|1+1=2, 由图知直线m 与l 1的夹角为30°,l 1的倾斜角为45°,所以直线m 的倾斜角等于30°+45°=75°或45°-30°=15°.[点评] 本题考查直线的斜率、直线的倾斜角、两条平行线间的距离,考查数形结合的思想.是高考在直线知识命题中不多见的较为复杂的题目,但是只要基础扎实、方法灵活、思想深刻,这一问题还是不难解决的.所以在学习中知识是基础、方法是骨架、思想是灵魂,只有以思想方法统领知识才能在考试中以不变应万变.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)(2015·河南省郑州市高一上学期期末试题)已知直线l 经过点P (-2,5)且斜率为-34,(1)求直线l 的方程;(2)若直线m 平行于直线l ,且点P 到直线m 的距离为3,求直线m 的方程. [解析] (1)直线l 的方程为:y -5=-34(x +2)整理得3x +4y -14=0.(2)设直线m 的方程为3x +4y +n =0,d =|3×-2+4×5+n |32+42=3, 解得n =1或-29.∴直线m 的方程为3x +4y +1=0或3x +4y -29=0.18.(本小题满分12分)求经过两直线3x -2y +1=0和x +3y +4=0的交点,且垂直于直线x +3y +4=0的直线方程.[解析] 解法一:设所求直线方程为3x -2y +1+λ(x +3y +4)=0,即(3+λ)x +(3λ-2)y +(1+4λ)=0.由所求直线垂直于直线x +3y +4=0,得 -13·(-3+λ3λ-2)=-1. 解得λ=310.故所求直线方程是3x -y +2=0. 解法二:设所求直线方程为3x -y +m =0.由⎩⎪⎨⎪⎧3x -2y +1=0,x +3y +4=0,解得⎩⎪⎨⎪⎧x =-1,y =-1,即两已知直线的交点为(-1,-1). 又3x -y +m =0过点(-1,-1), 故-3+1+m =0,m =2. 故所求直线方程为3x -y +2=0.19.(本小题满分12分)已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,求一点P ,使|PA |=|PB |,且点P 到直线l 的距离等于2.[分析] 解决此题可有两种思路,一是代数法,由“|PA |=|PB |”和“到直线的距离为2”列方程求解;二是几何法,利用点P 在AB 的垂直平分线上及距离为2求解.[解析] 解法1:设点P (x ,y ).因为|PA |=|PB |, 所以x -42+y +32=x -22+y +12. ①又点P 到直线l 的距离等于2, 所以|4x +3y -2|5=2.②由①②联立方程组,解得P (1,-4)或P (277,-87).解法2:设点P (x ,y ).因为|PA |=|PB |, 所以点P 在线段AB 的垂直平分线上.由题意知k AB =-1,线段AB 的中点为(3,-2),所以线段AB 的垂直平分线的方程是y =x -5.所以设点P (x ,x -5).因为点P 到直线l 的距离等于2,所以|4x +3x -5-2|5=2.解得x =1或x =277.所以P (1,-4)或P (277,-87).[点评] 解决解析几何问题的主要方法就是利用点的坐标反映图形的位置,所以只要将题目中的几何条件用坐标表示出来,即可转化为方程的问题.其中解法2是利用了点P 的几何特征产生的结果,所以解题时注意多发现,多思考.20.(本小题满分12分)△ABC 中,A (0,1),AB 边上的高CD 所在直线的方程为x +2y -4=0,AC 边上的中线BE 所在直线的方程为2x +y -3=0.(1)求直线AB 的方程; (2)求直线BC 的方程; (3)求△BDE 的面积.[解析] (1)由已知得直线AB 的斜率为2, ∴AB 边所在的直线方程为y -1=2(x -0), 即2x -y +1=0.(2)由⎩⎪⎨⎪⎧2x -y +1=0,2x +y -3=0得⎩⎪⎨⎪⎧x =12,y =2.即直线AB 与直线BE 的交点为B (12,2).设C (m ,n ),则由已知条件得⎩⎪⎨⎪⎧m +2n -4=0,2·m 2+n +12-3=0,解得⎩⎪⎨⎪⎧m =2,n =1,∴C (2,1).∴BC 边所在直线的方程为y -12-1=x -212-2,即2x +3y -7=0.(3)∵E 是线段AC 的中点,∴E (1,1). ∴|BE |=12-12+2-12=52, 由⎩⎪⎨⎪⎧2x -y +1=0,x +2y -4=0得⎩⎪⎨⎪⎧x =25,y =95,∴D (25,95),∴D 到BE 的距离为d =|2×25+95-3|22+12=255, ∴S △BDE =12·d ·|BE |=110.21.(本小题满分12分)直线过点P (43,2)且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线同时满足下列条件:(1)△AOB 的周长为12; (2)△AOB 的面积为6.若存在,求直线的方程;若不存在,请说明理由. [解析] 设直线方程为x a +yb=1(a >0,b >0), 若满足条件(1),则a +b +a 2+b 2=12,① 又∵直线过点P (43,2),∵43a +2b =1.②由①②可得5a 2-32a +48=0,解得⎩⎪⎨⎪⎧a =4,b =3,或⎩⎪⎨⎪⎧a =125,b =92,∴所求直线的方程为x 4+y 3=1或5x 12+2y9=1,即3x +4y -12=0或15x +8y -36=0. 若满足条件(2),则ab =12,③由题意得,43a +2b =1,④由③④整理得a 2-6a +8=0,解得⎩⎪⎨⎪⎧a =4,b =3或⎩⎪⎨⎪⎧a =2,b =6,∴所求直线的方程为x 4+y 3=1或x 2+y6=1, 即3x +4y -12=0或3x +y -6=0.综上所述:存在同时满足(1)(2)两个条件的直线方程,为3x +4y -12=0.22.(本小题满分12分)在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB ,AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合,如图,将矩形折叠,使A 点落在线段DC 上.(1)若折痕所在直线的斜率为k ,试求折痕所在直线的方程; (2)当-2+3≤k ≤0时,求折痕长的最大值.[解析] (1)①当k =0时,A 点与D 点重合,折痕所在的直线方程为y =12.②当k ≠0时,将矩形折叠后A 点落在线段DC 上的点记为G (a,1), ∴A 与G 关于折痕所在的直线对称, 有k OG ·k =-1⇒1a·k =-1⇒a =-k .故G 点坐标为(-k,1),从而折痕所在直线与OG 的交点坐标(即线段OG 的中点)为M (-k 2,12).故折痕所在的直线方程为y -12=k (x +k 2),即y =kx +k 22+12.由①②得折痕所在的直线方程为y =kx +k 22+12.(2)当k =0时,折痕的长为2.当-2+3≤k <0时,折痕所在直线交直线BC 于点E (2,2k +k 22+12),交y 轴于点N (0,k 2+12).则|NE |2=22+[k 2+12-(2k +k 22+12)]2=4+4k 2≤4+4(7-43)=32-16 3. 此时,折痕长度的最大值为32-163=2(6-2). 而2(6-2)>2,故折痕长度的最大值为2(6-2).。
必修2第三章 直线与方程单元测试卷
必修2第三章 《直线与方程》过关检测时间:100分钟 满分:100分制卷:王小凤 学生姓名一.选择题(本题共10个小题,每小题5分,共50分) 1.直线()为常数a a y x 03=+-的倾斜角为( ) A .3π B .6π C .32π D .65π2.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A . 0≠m B . 23-≠mC . 1≠mD . 1≠m ,23-≠m ,0≠m3.若两条直线x +(1 + m )y + m -2 = 0与mx + 2y + 8 = 0平行,则( ) A .m = 1或-2 B .m = 1 C .m =-2 D .32=m 4.以()1,3A ,()5,1B -为端点的线段的垂直平分线方程是( ) A .380x y --= B .340x y ++= C .360x y -+= D .320x y ++=5.若点()1,1+-m m A ,()m m B ,关于直线l 对称,则直线l 的方程是( ) A .01=-+y x B .01=+-y x C .01=++y x D .01=--y x6.在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )x y O x y O x y O xyO7.若直线0=++c by ax 在第一、二、三象限,则( )A .0,0>>bc abB .0,0<>bc abC .0,0><bc abD .0,0<<bc ab8.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( ) A . 4B .C .D .9.设A ,B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( ).A .x +y -5=0B .2x -y -1=0C .2y -x -4=0D .2x +y -7=010.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是( )A . 34k ≥ B . 324k ≤≤C . 324k k ≥≤或 D . 2k ≤ 二、填空题:(本题共4小题,每小题5分,共20分)11.若三点A (-2,3),B (3,-2),C (21,m )共线,则m 的值为 .12.两直线230x y k +-=和120x ky -+=的交点在y 轴上,则k 的值是 .13.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是_______________.14.已知直线l 与直线3470x y +-=平行,并且与两坐标轴围成的三角形的面积为24,则直线l 的方程为________________ (用一般式表示)三、解答题:(本题共3小题,每小题10分,共30分)15.设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6(m∈R,m≠-1),根据下列条件分别求m的值:①l在x轴上的截距是-3;②斜率为1.16.求经过点(1,2)P,且使点(2,3)A,(0,5)B-到它的距离相等的直线方程。
2020年高一下学期人教版必修二第三章 直线与方程(单元检测)含答案
第三章 直线与方程单元测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l 的方程为y =-x +1,则直线l 的倾斜角为( ) A .30° B .45° C .60° D .135°2.若A (-2,3),B (3,-2),C ⎝⎛⎭⎫12,m 三点共线,则m 的值为( ) A .12 B .-12C .-2D .23.如果直线ax +2y +2=0与直线3x -y -2=0平行,则系数a 为( ) A .-3 B .-6 C .-32D .234.过点P (4,-1),且与直线3x -4y +6=0垂直的直线方程是( ) A .4x +3y -19=0 B .4x +3y -13=0 C .3x +4y -16=0D .3x +4y -8=05.已知直线2x -my +1-3m =0,当m 变动时,所有直线都通过定点( ) A .⎝⎛⎭⎫-12,3 B .⎝⎛⎭⎫12,3 C .⎝⎛⎭⎫12,-3D .⎝⎛⎭⎫-12,-3 6.已知A (2,4)与B (3,3)关于直线l 对称,则直线l 的方程为( ) A .x +y =0 B .x -y =0 C .x +y -6=0D .x -y +1=07.两平行直线5x +12y +3=0与10x +24y +5=0之间的距离是( ) A .213B .113C .126D .5268.与直线l :3x -5y +4=0关于x 轴对称的直线的方程为( ) A .3x +5y +4=0 B .3x -5y -4=0 C .5x -3y +4=0D .5x +3y +4=09.若点A (-2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( ) A .k ≤34或k ≥43B .k ≤-43或k ≥-34C .34≤k ≤43D .-43≤k ≤-3410.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( )A.-4 B.-2 C.0 D.211.如图1,已知点A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到点P,则光线所经过的路程为()图1A.210 B.10C.2 3 D.3 312.直线l过点P(1,3),且与x,y轴正半轴围成的三角形的面积等于6的直线方程是()A.3x+y-6=0 B.x+3y-10=0C.3x-y=0 D.x-3y+8=0二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知点A(2,1),B(-2,3),C(0,1),则△ABC中,BC边上的中线长为________.14.直线l与直线y=1,x-y-7=0分别交于A,B两点,线段AB的中点为M(1,-1),则直线l的斜率为________.15.经过两条直线2x+y+2=0和3x+4y-2=0的交点,且垂直于直线3x-2y+4=0的直线方程为________.16.在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知直线l的倾斜角为135°,且经过点P(1,1).(1)求直线l的方程;(2)求点A(3,4)关于直线l的对称点A′的坐标.18.((本小题满分12分)已知两条直线l1:x+m2y+6=0,l2:(m-2)x+3my+2m=0,当m为何值时,l1与l2:(1)相交;(2)平行;(3)重合.19. (本小题满分12分)在x 轴的正半轴上求一点P ,使以A (1,2),B (3,3)及点P 为顶点的△ABP 的面积为5.20. (本小题满分12分)如图2所示,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.图221. (本小题满分12分)如图3,已知点A (2,3),B (4,1),△ABC 是以AB 为底边的等腰三角形,点C 在直线l :x -2y +2=0上.图3(1)求AB 边上的高CE 所在直线的方程; (2)求△ABC 的面积.22. (本小题满分12分)已知点M (3,5),在直线l :x -2y +2=0和y 轴上各找一点P 和Q ,当△MPQ 的周长最小时,求点P ,Q 的坐标.第三章 直线与方程单元测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l 的方程为y =-x +1,则直线l 的倾斜角为( ) A .30° B .45° C .60° D .135°【答案】D [由题意可知,直线l 的斜率为-1,故由tan 135°=-1,可知直线l 的倾斜角为135°.] 2.若A (-2,3),B (3,-2),C ⎝⎛⎭⎫12,m 三点共线,则m 的值为( ) A .12 B .-12C .-2D .2【答案】A [由-2-33-(-2)=m +212-3,得m =12.选A.]3.如果直线ax +2y +2=0与直线3x -y -2=0平行,则系数a 为( ) A .-3 B .-6 C .-32D .23【答案】B [两直线平行,斜率相等,所以-a2=3,所以a =-6.选B.]4.过点P (4,-1),且与直线3x -4y +6=0垂直的直线方程是( ) A .4x +3y -19=0 B .4x +3y -13=0 C .3x +4y -16=0D .3x +4y -8=0【答案】B [因为3x -4y +6=0的斜率为34,所以与其垂直的直线的斜率为-43.故所求方程为y +1=-43(x -4),即4x +3y -13=0.]5.已知直线2x -my +1-3m =0,当m 变动时,所有直线都通过定点( ) A .⎝⎛⎭⎫-12,3 B .⎝⎛⎭⎫12,3 C .⎝⎛⎭⎫12,-3 D .⎝⎛⎭⎫-12,-3 【答案】D [直线2x -my +1-3m =0可化为2x +1-m (y +3)=0,令⎩⎪⎨⎪⎧2x +1=0y +3=0,得⎩⎪⎨⎪⎧x =-12,y =-3.即当m 变动时,所有直线都通过定点⎝⎛⎭⎫-12,-3. 选D.]6.已知A (2,4)与B (3,3)关于直线l 对称,则直线l 的方程为( ) A .x +y =0 B .x -y =0 C .x +y -6=0D .x -y +1=0【答案】D [k AB =4-32-3=-1,故直线l 的斜率为1,AB 的中点为⎝⎛⎭⎫52,72, 故l 的方程为y -72=x -52,即x -y +1=0.]7.两平行直线5x +12y +3=0与10x +24y +5=0之间的距离是( ) A .213B .113C .126D .526【答案】C [5x +12y +3=0可化为10x +24y +6=0.由平行线间的距离公式可得d =|6-5|102+242=126.]8.与直线l :3x -5y +4=0关于x 轴对称的直线的方程为( ) A .3x +5y +4=0 B .3x -5y -4=0 C .5x -3y +4=0D .5x +3y +4=0【答案】A [因为点(x ,y )关于x 轴对称的点的坐标为(x ,-y ),所以只需将已知直线中的变量y 变为-y 即可,即为3x +5y +4=0.]9.若点A (-2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( ) A .k ≤34或k ≥43B .k ≤-43或k ≥-34C .34≤k ≤43D .-43≤k ≤-34【答案】C [如图.计算得:k P A =43,k PB =34,由题意得34≤k ≤43.]10.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( )A .-4B .-2C .0D .2【答案】B [因为l 的斜率为tan 135°=-1,所以l 1的斜率为1,所以k AB =2-(-1)3-a =1,解得a =0.又l 1∥l 2,所以-2b=1,解得b =-2,所以a +b =-2.]11.如图1,已知点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到点P ,则光线所经过的路程为( )图1A .210B .10C .2 3D .3 3【答案】A [设点P 关于直线AB 的对称点为P 1,点P 关于y 轴的对称点为P 2,则|P 1P 2|即为所求路程.又直线AB 的方程为x +y -4=0,所以P 1(4,2),P 2(-2,0),故|P 1P 2|=210.]12.直线l 过点P (1,3),且与x ,y 轴正半轴围成的三角形的面积等于6的直线方程是( )A .3x +y -6=0B .x +3y -10=0C .3x -y =0D .x -3y +8=0【答案】A [设直线方程为x a +yb =1(a >0,b >0),由题意有⎩⎪⎨⎪⎧ab =12,1a +3b=1,∴⎩⎪⎨⎪⎧a =2,b =6.∴x 2+y6=1.化为一般式为3x +y -6=0.] 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知点A (2,1),B (-2,3),C (0,1),则△ABC 中,BC 边上的中线长为________. 【答案】10 [BC 中点为(-1,2),所以BC 边上中线长为(2+1)2+(1-2)2=10.]14.直线l 与直线y =1,x -y -7=0分别交于A ,B 两点,线段AB 的中点为M (1,-1),则直线l 的斜率为________. 【答案】-23 [设A (x 1,y 1),B (x 2,y 2),则y 1+y 22=-1,又y 1=1,∴y 2=-3,代入方程x -y -7=0,得x 2=4,即B (4,-3),又x 1+x 22=1,∴x 1=-2,即A (-2,1), ∴k AB =-3-14-(-2)=-23.]15.经过两条直线2x +y +2=0和3x +4y -2=0的交点,且垂直于直线3x -2y +4=0的直线方程为________.【答案】2x +3y -2=0 [由方程组⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0,得交点A (-2,2),因为所求直线垂直于直线3x -2y +4=0,故所求直线的斜率k =-23,由点斜式得所求直线方程为y -2=-23(x +2),即2x +3y -2=0.]16.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________. 【答案】(2,4) [设平面上任一点M ,因为|MA |+|MC |≥|AC |,当且仅当A ,M ,C 共线时取等号,同理|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA |+|MC |+|MB |+|MD |最小,则点M 即为所求.又k AC =6-23-1=2,∴直线AC 的方程为y -2=2(x -1),即2x -y =0.①又k BD =5-(-1)1-7=-1,∴直线BD 的方程为y -5=-(x -1),即x +y -6=0.②由①②得⎩⎪⎨⎪⎧ 2x -y =0,x +y -6=0,∴⎩⎪⎨⎪⎧x =2,y =4,∴M (2,4).]三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17. (本小题满分10分)已知直线l 的倾斜角为135°,且经过点P (1,1).(1)求直线l 的方程;(2)求点A (3,4)关于直线l 的对称点A ′的坐标. 【答案】(1)∵k =tan 135°=-1, ∴l :y -1=-(x -1),即x +y -2=0. (2)设A ′(a ,b ),则⎩⎪⎨⎪⎧b -4a -3×(-1)=-1,a +32+b +42-2=0,解得a =-2,b =-1,∴A ′的坐标为(-2,-1).18. (本小题满分12分)已知两条直线l 1:x +m 2y +6=0,l 2:(m -2)x +3my +2m =0,当m 为何值时,l 1与l 2: (1)相交;(2)平行;(3)重合.【答案】当m =0时,l 1:x +6=0,l 2:x =0,∴l 1∥l 2. 当m =2时,l 1:x +4y +6=0,l 2:3y +2=0, ∴l 1与l 2相交.当m ≠0且m ≠2时,由1m -2=m 23m ,得m =-1或m =3,由1m -2=62m ,得m =3.故(1)当m ≠-1且m ≠3且m ≠0时,l 1与l 2相交. (2)当m =-1或m =0时,l 1∥l 2. (3)当m =3时,l 1与l 2重合.19. (本小题满分12分)在x 轴的正半轴上求一点P ,使以A (1,2),B (3,3)及点P 为顶点的△ABP 的面积为5. 【答案】设点P 的坐标为(a,0)(a >0),点P 到直线AB 的距离为d . 由已知,得S △ABP =12|AB |·d =12(3-1)2+(3-2)2·d =5,解得d =2 5.由已知易得,直线AB 的方程为x -2y +3=0, 所以d =|a +3|1+(-2)2=25, 解得a =7或a =-13(舍去), 所以点P 的坐标为(7,0).20. (本小题满分12分)如图2所示,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.图2【答案】由题意可得k OA =tan 45°=1, k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在y =12x 上,且A 、P 、B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3, 所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.21. (本小题满分12分)如图3,已知点A (2,3),B (4,1),△ABC 是以AB 为底边的等腰三角形,点C 在直线l :x -2y +2=0上.图3(1)求AB 边上的高CE 所在直线的方程; (2)求△ABC 的面积.【答案】(1)由题意可知,E 为AB 的中点, ∴E (3,2),且k CE =-1k AB=1,∴CE 所在直线方程为y -2=x -3, 即x -y -1=0.(2)由⎩⎪⎨⎪⎧x -2y +2=0,x -y -1=0,得C (4,3),∴|AC |=|BC |=2,AC ⊥BC ,∴S △ABC =12|AC |·|BC |=2.22. (本小题满分12分)已知点M (3,5),在直线l :x -2y +2=0和y 轴上各找一点P 和Q ,当△MPQ 的周长最小时,求点P ,Q 的坐标.【答案】如图,作点M 关于直线l 的对称点M 1,再作点M 关于y 轴的对称点M 2,连接M 1M 2,M 1M 2与直线l 及y 轴分别交于P ,Q 两点,由轴对称及平面几何的知识,知这样得到的△MPQ 的周长最小. 由点M (3,5)及直线l ,可求得点M 1的坐标为(5,1), 点M 关于y 轴的对称点M 2的坐标为(-3,5), 可得直线M 1M 2的方程为x +2y -7=0. 令x =0,得M 1M 2与y 轴的交点Q ⎝⎛⎭⎫0,72. 解方程组⎩⎪⎨⎪⎧x +2y -7=0,x -2y +2=0,得交点P ⎝⎛⎭⎫52,94. 综上,点P ⎝⎛⎭⎫52,94,Q ⎝⎛⎭⎫0,72即为所求.。
高中数学必修2第三章知识点+习题+答案
高中数学必修2第三章知识点+习题+答案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第三章直线与方程直线的倾斜角和斜率倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.2、倾斜角α的取值范围: 0°≤α<180°.当直线l与x轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式:两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即直线的点斜式方程1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=-2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(bb kx y +=直线的两点式方程1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠ ),(1212112121y y x x x x x x y y y y ≠≠--=--2、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a 直线的一般式方程1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)2、各种直线方程之间的互化。
新课标高一数学必修2第三章直线与方程同步单元测试题_(1)
新课标数学必修2第三章直线与方程测试题一、选择题(每题5分,共50分)1.直线x+6y+2=0在x 轴和y 轴上的截距分别是( ) A.213, B.--213, C.--123, D.-2,-3 2.直线3x+y+1=0和直线6x+2y+1=0的位置关系是( )A.重合B.平行C.垂直D.相交但不垂直3.直线过点 (-3,-2)且在两坐标轴上的截距相等,则这直线方程为( )(A )2x -3y =0; (B )x +y +5=0;(C )2x -3y =0或x +y +5=0 (D )x +y +5或x -y +5=04.直线x=3的倾斜角是( ) A.0 B.2π C.π D.不存在 5.点(-1,2)关于直线y = x -1的对称点的坐标是 (A )(3,2) (B )(-3,-2) (C )(-3,2)(D )(3,-2) 6.点(2,1)到直线3x -4y + 2 = 0的距离是(A )54 (B )45 (C )254 (D )425 7.直线x - y + 3 = 0的倾斜角是( )(A )30° (B )45° (C )60° (D )90°8.与直线l :3x -4y +5=0关于x 轴对称的直线的方程为(A )3x +4y -5=0 (B )3x +4y +5=0(C )-3x +4y -5=0 D )-3x +4y +5=09.设a 、b 、c 分别为 ABC 中∠A 、∠B 、∠C 对边的边长,则直线x sin A +ay +c =0与直线bx -y sin B +sin C =0的位置关系( )(A )平行; (B )重合; (C )垂直;(D )相交但不垂直10.直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平1个单位后,又回到原来位置,那么l 的斜率为( )(A )-;31B )-3; (C );31 (D )3 一、填空题(每题4分,共16分)11.直线,31k y kx =+-当k 变动时,所有直线都通过定点12.直线过原点且倾角的正弦值是54,则直线方程为 13.直线mx +ny =1(mn ≠0)与两坐标轴围成的三角形面积为14.如果三条直线mx +y +3=0,x -y -2=0,2x -y +2=0不能成为一个三角形三边所在的直线,那么m 的值是15.已知两条直线l 1:y =x ;l 2:ax -y =0(a ∈R ), 当l 2是l 1绕l 1与l 2交点旋转θ得到的直线,⎪⎭⎫⎝⎛∈120πθ,时,则a 的取值范围为三、解答题16.若N a ∈,又三点A(a ,0),B (0,4+a ),C (1,3)共线,求a 的值C ABP17. 菱形的两条对角线长分别等于8和6,并且分别位于轴和轴上,求菱形各边所在的直线的方程。
人教版数学高一第三章直线与方程单元测试精选(含答案)3
d
Ax0 By0 C A2 B2
.已知点 P1, P2
到直线 l
的有向距离分别是 d1, d2 ,给出以下命题:
试卷第 6页,总 10页
①若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ②若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ③若 d1 d2 0 ,则直线 P1P2 与直线 l 垂直;④若 d1d2 0 ,则直线 P1P2 与直线 l 相交;
25.直线 l1:x+my+6=0 与 l2:(m-2)x+3y+2m=0,若 l1//l2 则 m =__________;
【来源】[中学联盟]山东省栖霞市第一中学 2017-2018 学年高一上学期期末测试数学试 题
【答案】 1 1
26.直线 y= x 关于直线 x=1 对称的直线方程是________;
则 m 的倾斜角可以是:①15°;② 30°;③ 45°;④ 60°;⑤ 75°. 其中正确答案的序号是______.(写出所有正确答案的序号) 【来源】2011 届陕西省师大附中、西工大附中高三第七次联考文数
【答案】①或⑤
30.定义点 P(x0 , y0 ) 到直线 l : Ax By C 0( A2 B 2 0) 的有向距离为
评卷人 得分
二、填空题
22.在四边形 ABCD 中,AB = DC = (1,1),且 BA + BC =
|BA| |BC|
|B3BDD| ,则四边形 ABCD 的面积
为
.
【来源】2015 高考数学(理)一轮配套特训:4-3 平面向量的数量积及应用(带解析)
【答案】 3
23.直线 ax+2y-4=0 与直线 x+y-2=0 互相垂直,那么 a=______________ ;
《必修2》第三章“直线与方程”测试题(含答案)
《必修2》第三章“直线与方程”测试题(含答案)《必修2》第三章“直线与方程”测试题一.选择题:1. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )x y O x y O x y O xyOA B C D2.若直线20x ay ++=和2310x y ++=互相垂直,则a =( )A .32-B .32C .23- D .23 3.过11(,)x y 和22(,)x y 两点的直线的方程是( )111121212112211211211211...()()()()0.()()()()0y y x x y y x x A B y y x x y y x x C y y x x x x y y D x x x x y y y y ----==---------=-----=4.直线2350x y +-=关于直线y x =对称的直线方程为( ) A 、3x+2y-5=0 B 、2x-3y-5=0C 、3x+2y+5=0D 、3x-2y-5=05 如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )23-二.填空题:11. 过点(1,2)且在两坐标轴上的截距相等的直线的方程方程1=+y x 表示的图形所围成的封闭区域的面积为_________13 点(,)P x y 在直线40x y +-=上,则22xy +的最小值是________14 直线10x y -+=上一点P 的横坐标是3,若该直线绕点P 逆时针旋转090得直线l ,则直线l 的方程是15 已知直线,32:1+=x y l若2l 与1l 关于y 轴对称,则2l 的方程为__________;23y x =-+三、解答题16.求过点(5,4)A --的直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为517. 一直线被两直线0653:,064:21=--=++y x l y x l 截得线段的中点是P 点,当P 点为(0,0)时,求此直线方程18.直线313y x =-+和x 轴,y 轴分别交于点,A B ,在线段AB为边在第一象限内作等边△ABC ,如果在第一象限内有一点1(,)2P m 使得△ABP 和△ABC 的面积相等, 求m 的值19.已知三角形ABC的顶点坐标为A(-1,5)、B (-2,-1)、C(4,3),M是BC边上的中点。
完整版)高一数学必修2第三章测试题及答案解析
完整版)高一数学必修2第三章测试题及答案解析数学必修二第三章综合检测题一、选择题1.若直线过点 (1,2),(4,2+3),则此直线的倾斜角是()A。
30° B。
45° C。
60° D。
90°2.若三点 A(3,1),B(-2,b),C(8,11)在同一直线上,则实数b 等于()A。
2 B。
3 C。
9 D。
-93.过点 (1,2),且倾斜角为 30°的直线方程是()A。
y+2=(3/2)(x+1) B。
y-2=3(x-1)C。
3x-3y+6-3=0 D。
3x-y+2-3=04.直线 3x-2y+5=0 与直线 x+3y+10=0 的位置关系是()A。
相交 B。
平行 C。
重合 D。
异面5.直线 mx-y+2m+1=0 经过一定点,则该定点的坐标为()A。
(-2,1) B。
(2,1) C。
(1,-2) D。
(1,2)6.已知 ab<0,bc<0,则直线 ax+by+c=0 通过()A。
第一、二、三象限 B。
第一、二、四象限C。
第一、三、四象限 D。
第二、三、四象限7.点 P(2,5) 到直线 y=-3x 的距离 d 等于()A。
(23+5)/2 B。
(-23+5)/2 C。
(-23-5)/2 D。
(22)/38.与直线 y=-2x+3 平行,且与直线 y=3x+4 交于 x 轴上的同一点的直线方程是()A。
y=-2x+4 B。
y=(1/2)x+4C。
y=-2x-(3/2) D。
y=(2/3)x-(3/2)9.两条直线 y=ax-2 与 y=(a+2)x+1 互相垂直,则 a 等于()A。
2 B。
1 C。
-1 D。
-210.已知等腰直角三角形 ABC 的斜边所在的直线是 3x-y+2=0,直角顶点是 C(3,-2),则两条直角边 AC,BC 的方程是()A。
3x-y+5=0.x+2y-7=0 B。
2x+y-4=0.x-2y-7=0C。
2x-y+4=0.2x+y-7=0 D。
【人教A版】数学必修二:第三章《直线与方程》单元试卷(1)(Word版,含解析)
第三章过关检测(时间90分钟,满分100分)知识点分布表知识点 题号 分值 倾斜角与斜率 7,15 9 平行与垂直 4,5,9,11,12,13,18 22 直线的方程 2,3,4,5,6,8,11,12,15,18 36 交点坐标与距离公式1,10,12,14,16,1733一、选择题(本大题共10小题,每小题4分,共40分)1.动点P 到点A(3,3)的距离等于它到点B(1,-3)的距离,则动点P 的轨迹方程是( ) A.x +3y -2=0B.x +3y +2=0 C.3x +y +2=0D.3x +y -2=02.直线Ax +By +C =0与两坐标轴都相交的条件是( ) A.A 2+B 2≠0 B.C ≠0 C.AB ≠0 D.AB ≠0,C ≠03.直线3x -2y =4的截距式方程是( )A.1243=-y x B.42131=-yxC.1243=-+y x D.1234=-+y x4.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A.x -y +1=0B.x -y =0 C.x +y +1=0D.x +y =05.过点P (-1,3)且垂直于直线x -2y +3=0的直线方程为( )A.2x +y -1=0B.2x +y -5=0C.x +2y -5=0D.x -2y +7=06.已知直线Ax +By +C =0在横轴上的截距大于在纵轴上的截距,则A 、B 、C 应满足的条件是( ) A.A >B B.A <B C.0>+B C A C D.0<-BCA C 7.已知点P (x ,-4)在点A(0,8)和B(-4,0)的连线上,则x 的值为( ) A.-2B.2C.-8D.-68.直线(m +2)x +(m 2-2m -3)y =2m 在x 轴上的截距为3,则实数m 的值为( ) A.56B.-6C.56- D.6 9.P 1(x 1,y 1)是直线l :f (x ,y )=0上一点,P 2(x 2,y 2)是直线l 外一点,则方程f (x ,y )+f (x 1,y 1)+f (x 2,y 2)=0所表示的直线与l 的位置关系是( ) A.重合B.平行C.垂直D.相交10.若点P (4,a )到直线4x -3y =1的距离不大于3,则a 的取值范围是( ) A.[0,10] B.(0,10) C.]133,131[D.(-∞,0]∪[10,+∞)二、填空题(本大题共4小题,每小题4分,共16分)11.P (-1,3)在直线l 上的射影为Q (1,-1),则直线l 的方程是_________.12.已知直线l :x -3y +2=0,则平行于l 且与l 的距离为10的直线方程是_________. 13.若三条直线2x -y +4=0,x -y +5=0,2mx -3y +12=0围成直角三角形,则m =__________.14.不论M 为何实数,直线l :(m -1)x + (2m -1) y =m -5恒过一个定点,则此定点坐标为_______.三、解答题(本大题共4小题,共44分)15.(10分)求倾斜角为直线y =-x +1的倾斜角的31,且分别满足下列条件的直线方程: (1)经过点(-4,1); (2)在y 轴上的截距为-10.16.(10分)某供电局计划年底解决本地区最后一个村庄的用电问题,经过测量,若按部门内部设计好的坐标图(即以供电局为原点,正东方向为x 轴的正半轴,正北方向为y 轴的正半轴,长度单位千米),得到这个村庄的坐标是(15,20),离它最近的一条线路所在直线的方程为3x -4y -10=0.问要完成任务,至少需要多长的电线?17.(10分)在△ABC 中,A (m ,2),B (-3,-1),C (5,1).若BC 的中点M 到AB 的距离大于M 到AC 的距离,试求实数M 的取值范围.18.(14分)一条光线经过P (2,3)点,射在直线l :x +y +1=0上,反射后穿过点Q (1,1). (1)求入射光线的方程;(2)求这条光线从P 到Q 的长度.参考答案1解析:线段AB 的中点坐标是(2,0),AB 的斜率31333=-+=AB k , 又∵P 点的轨迹为过AB 的中点且与AB 垂直的直线, ∴)2(31--=x y ,即x +3y -2=0. 答案:A2解析:直线与两坐标轴都相交,即直线不平行于坐标轴, 则A≠0,B≠0,即AB ≠0. 答案:C3解析:直线方程的截距式为1=+b y a x .由此可将方程化为1234=-+y x .答案:D4解析:由条件知,l 为PQ 的中垂线. ∵13124-=--=PQ k , ∴k l =1.又PQ 的中点为(2,3),∴由点斜式方程知,l 的方程为y -3=x -2.∴x -y +1=0. 答案:A5解析:设2x +y +c =0,又过点P (-1,3),则-2+3+c =0,c =-1,即2x +y -1=0. 答案:A6解析:由条件,知A·B·C≠0.在方程Ax +By +C =0中,令x =0,得B C y -=;令y =0,得ACx -=. 由B C A C ->-,得0<-BCA C . 答案:D7解析:由条件知A 、B 、P 三点共线,由k AB =k AP 得x8448--=,∴x =-6. 答案:D8解析:由条件知直线在x 轴上截距为3,即直线过点(3,0),代入得3(m +2)=2m . ∴m =-6. 答案:B9解析:f (x 1,y 1)=0,f (x 2,y 2)=常数,f (x ,y )+f (x 1,y 1)+f (x 2,y 2)=0的斜率和f (x ,y )=0的斜率相等,而与y 轴的交点不同,故两直线平行. 答案:B10解析:由点到直线的距离公式得3)3(4|136|22≤-+--a ,即15|153|≤-a ,∴|a -5|≤5.∴-5≤a -5≤5,即0≤a ≤10. 答案:A11解析:由已知l ⊥PQ ,21113-=--+=PQ k ,∴211=k . ∴l 的方程为)1(211-=+x y .∴x -2y -3=0. 答案:x -2y -3=012解析:设所求直线为x -3y +C =0,由两平行线间的距离,得1031|2|22=+-C ,解得C =12或C =-8.故所求直线方程为x -3y +12=0或x -3y -8=0. 答案:x -3y +12=0或x -3y -8=013解析:设l 1:2x -y +4=0,l 2:x -y +5=0,l 3:2mx -3y +12=0,l 1不垂直l 2,要使围成的三角形为直角三角形,则l 3⊥l 1或l 3⊥l 2. 答案:43-或23- 14解法一:只要取两条直线求其交点即可,令M =1,则l 化为y =-4;令21=m 得l 方程为2921-=-x ,即x =9. 由⎩⎨⎧-==,4,9y x 得定点(9,-4).解法二:l 方程可化为M (x +2y -1)-x -y +5=0, 由⎩⎨⎧-==⎩⎨⎧=+--=-+.4,9,05,012y x y x y x 得∴定点为(9,-4). 答案:(9,-4)15解:由于直线y =-x +1的斜率为-1,所以其倾斜角为135°,由题意知所求直线的倾斜角为45°,所求直线的斜率k =1.(1)由于直线过点(-4,1),由直线的点斜式方程得y -1=x +4,即x -y +5=0;(2)由于直线在y 轴上的截距为-10,由直线的斜截式方程得y =x -10,即x -y -10=0. 16解:根据题意可知点(15,20)到直线3x -4y -10=0的距离即为所求. ∴9545169|10204315|==+-⨯-⨯=d (千米). ∴至少需9千米长的电线. 17解:BC 的中点M 的坐标为(1,0), 设M 到AB ,AC 的距离分别为d 1,d 2, 当m ≠-3且m ≠5时,直线AB 的方程:32121++=++m x y ,即3x -(m +3)y +6-m =0. 直线AC 的方程:55121--=--m x y , 即x -(m -5)y +m -10=0.所以由点到直线的距离公式得186|9|21++-=m m m d ,2610|9|22+--=m m m d .由题意得d 1>d 2, 即2610|9|186|9|22+-->++-m m m m m m ,解得21<m . 当m =-3时,d 1=4,65122=d 满足d 1>d 2. 当m =5时,7341=d ,d 2=4,不满足d 1>d 2. 综上所述, 21<m 时满足题意. 18解:如下图.(1)设点Q ′(x ′,y ′)为Q 关于直线l 的对称点且QQ ′交l 于M 点. ∵1-=l k ,∴k QQ ′=1.∴QQ ′所在直线方程为y -1=1·(x -1), 即x -y =0. 由⎩⎨⎧=-=++,0,01y x y x解得l 与QQ ′的交点M 的坐标为)21,21(--. 又∵M 为QQ ′的中点,由此得⎩⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧-=+=+.2',2',212'1,212'1y x ,y x 得解之∴Q ′(-2,-2).设入射光线与l 交点为N ,则P 、N 、Q ′共线. 又P (2,3),Q ′(-2,-2),得入射光线的方程为222232++=++x y , 即5x -4y +2=0.(2)∵l 是QQ ′的垂直平分线,从而|NQ |=|NQ ′|,∴|PN |+|NQ |=|PN |+|NQ ′|=|PQ ′|=41)22()23(22=+++,即这条光线从P 到Q 的长度是41.。
高中数学必修二第三章《直线与方程》单元测试卷及答案
高中数学必修二第三章《直线与方程》单元测试卷及答案((2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,直线l1、l2、l3的斜率分别为k1、k2、k3,则必有()A.k1<k3<k2 B.k3<k1<k2 C.k1<k2<k3 D.k3<k2<k12.直线x+2y-5=0与2x+4y+a=0之间的距离为5,则a等于()A.0 B.-20 C.0或-20 D.0或-103.若直线l1:ax+3y+1=0与l2:2x+(a+1)y+1=0互相平行,则a的值是()A.-3 B.2 C.-3或2 D.3或-24.下列说法正确的是()A.经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示B.经过定点A(0,b)的直线都可以用方程y=kx+b表示C.不经过原点的直线都可以用方程xa+yb=1表示D.经过任意两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示5.点M(4,m)关于点N(n,-3)的对称点为P(6,-9),则()A.m=-3,n=10 B.m=3,n=10C.m=-3,n=5 D.m=3,n=56.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是()A.3x-y-8=0 B.3x+y+4=0C.3x-y+6=0 D.3x+y+2=07.过点M(2,1)的直线与x轴,y轴分别交于P,Q两点,且|MP|=|MQ|,则l的方程是()A.x-2y+3=0 B.2x-y-3=0C .2x +y -5=0D .x +2y -4=08.直线mx -y +2m +1=0经过一定点,则该点的坐标是( ) A .(-2,1)B .(2,1)C .(1,-2)D .(1,2)9.如果AC <0且BC <0,那么直线Ax +By +C =0不通过( ) A .第一象限B .第二象限C .第三象限D .第四象限10.直线2x +3y -6=0关于点(1,-1)对称的直线方程是( ) A .3x -2y +2=0 B .2x +3y +7=0 C .3x -2y -12=0D .2x +3y +8=011.已知点P (a ,b )和Q (b -1,a +1)是关于直线l 对称的两点,则直线l 的方程是( ) A .x +y =0 B .x -y =0C .x +y -1=0D .x -y +1=012.设x +2y =1,x ≥0,y ≥0,则x 2+y 2的最小值和最大值分别为( ) A .15,1B .0,1C .0,15D .15,2二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.不论a 为何实数,直线(a +3)x +(2a -1)y +7=0恒过第________象限. 14.原点O 在直线l 上的射影为点H (-2,1),则直线l 的方程为______________. 15.经过点(-5,2)且横、纵截距相等的直线方程是____________________. 16.与直线3x +4y +1=0平行且在两坐标轴上截距之和为73的直线l 的方程为______________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知直线2x +(t -2)y +3-2t =0,分别根据下列条件,求t 的值: (1)过点(1,1);(2)直线在y 轴上的截距为-3.18.(12分)直线l 过点(1,4),且在两坐标轴上的截距的积是18,求此直线的方程.19.(12分)光线从A(-3,4)点出发,到x轴上的点B后,被x轴反射到y轴上的C点,又被y轴反射,这时反射光线恰好过D(-1,6)点,求直线BC的方程.20.(12分)如图所示,某县相邻两镇在一平面直角坐标系下的坐标为A(1,2),B(4,0),一条河所在的直线方程为l:x+2y-10=0,若在河边l上建一座供水站P,使之到A,B两镇的管道最省,那么供水站P应建在什么地方?21.(12分)已知△ABC的顶点A为(3,-1),AB边上的中线所在直线方程为6x+10y-59=0,∠B的平分线所在直线方程为x-4y+10=0,求BC边所在直线的方程.22.(12分)已知直线l过点P(3,1),且被两平行直线l1:x+y+1=0和l2:x+y+6=0截得的线段长度为5,求直线l的方程.答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】A【解析】由于直线1l 向左倾斜,故10k <,直线2l 与直线3l 均向右倾斜,且2l 更接近y 轴,所以:1320k k k <<<,故选A . 2.【答案】C 3.【答案】A 4.【答案】D【解析】斜率有可能不存在,截距也有可能不存在.故选D . 5.【答案】D【解析】由对称关系462n =+,239m -=-,可得m =3,n =5.故选D . 6.【答案】B【解析】所求直线过线段AB 的中点(-2,2),且斜率k =-3, 可得直线方程为3x +y +4=0.故选B . 7.【答案】D【解析】由题意可知M 为线段PQ 的中点,Q (0,2),P (4,0), 可求得直线l 的方程x +2y -4=0.故选D . 8.【答案】A【解析】将原直线化为点斜式方程为y -1=m (x +2), 可知不论m 取何值直线必过定点(-2,1).故选A . 9.【答案】C【解析】将原直线方程化为斜截式为A Cy x B B=--,由AC <0且BC <0,可知AB >0,直线斜率为负,截距为正,故不过第三象限.故选C . 10.【答案】D【解析】所求直线与已知直线平行,且和点(1,-1)等距, 不难求得直线为2x +3y +8=0.故选D . 11.【答案】D 【解析】∵k PQ =11a bb a+---=-1,∴k l =1.显然x -y =0错误,故选D .12.【答案】A【解析】x 2+y 2为线段AB 上的点与原点的距离的平方,由数形结合知, O 到线段AB 的距离的平方为最小值,即d 2=15,|OB |2=1为最大值.故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】二【解析】直线方程可变形为:(3x -y +7)+a (x +2y )=0.由⎩⎪⎨⎪⎧ 3x -y +7=0x +2y =0得,⎩⎪⎨⎪⎧x =-2y =1. ∴直线过定点(-2,1).因此直线必定过第二象限. 14.【答案】2x -y +5=0【解析】所求直线应过点(-2,1)且斜率为2,故可求直线为2x -y +5=0. 15.【答案】y =-25x 或x +y +3=0【解析】不能忽略直线过原点的情况. 16.【答案】3x +4y -4=0【解析】所求直线可设为3x +4y +m =0,再由-3m -4m =73,可得m =-4.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)3;(2)95.【解析】(1)代入点(1,1),得2+(t -2)+3-2t =0,则t =3.(2)令x =0,得y =232t t --=-3,解得t =95.18.【答案】2x +y -6=0或8x +y -12=0. 【解析】设直线l 的方程为x a +yb =1,则18141ab a b=⎧⎪⎨+=⎪⎩,解得36a b =⎧⎨=⎩或3212a b ⎧=⎪⎨⎪=⎩ 则直线l 的方程2x +y -6=0或8x +y -12=0. 19.【答案】5x -2y +7=0. 【解析】如图所示,由题设,点B 在原点O 的左侧,根据物理学知识,直线BC 一定过(-1,6)关于y 轴的对称点(1,6),直线AB 一定过(1,6)关于x 轴的对称点(1,-6)且k AB =k CD , ∴k AB =k CD =4631+--=-52.∴AB 方程为y -4=-52(x +3). 令y =0,得x =-75,∴B 7,05⎛⎫- ⎪⎝⎭.CD 方程为y -6=-52(x +1). 令x =0,得y =72,∴C 70,2⎛⎫ ⎪⎝⎭. ∴BC 的方程为75x -+72y=1,即5x -2y +7=0.20.【答案】见解析. 【解析】如图所示,过A 作直线l 的对称点A ′,连接A ′B 交l 于P , 若P ′(异于P )在直线上,则|AP ′|+|BP ′|=|A ′P ′|+|BP ′|>|A ′B |. 因此,供水站只有在P 点处,才能取得最小值,设A ′(a ,b ), 则AA ′的中点在l 上,且AA ′⊥l ,即1221002221112a b a a ++⎧+⨯-=⎪⎪⎨-⎛⎫⎪⋅-=- ⎪⎪-⎝⎭⎩解得36a b =⎧⎨=⎩即A ′(3,6).所以直线A ′B 的方程为6x +y -24=0,解方程组⎩⎪⎨⎪⎧6x +y -24=0,x +2y -10=0,得38113611x y ⎧=⎪⎪⎨⎪=⎪⎩所以P 点的坐标为⎝⎛⎭⎫3811,3611.故供水站应建在点P ⎝⎛⎭⎫3811,3611处. 21.【答案】2x +9y -65=0. 【解析】设B (4y 1-10,y 1),由AB 中点在6x +10y -59=0上,可得:114716+1059=22y y --⋅⋅-0,y 1=5, 所以B (10,5).设A 点关于x -4y +10=0的对称点为A ′(x ′,y ′),则有3141002211134x y y x ''''⎧+--⋅+=⎪⎪⎨+⎪⋅=-⎪-⎩⇒A ′(1,7),∵点A ′(1,7),B (10,5)在直线BC 上,∴51075110y x --=--,故BC :2x +9y -65=0. 22.【答案】x =3或y =1.【解析】若直线l 的斜率不存在,则直线l 的方程为x =3,此时与直线l 1,l 2的交点分别为A (3,-4),B (3,-9).截得的线段AB 的长为|AB |=|-4+9|=5,符合题意. 若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1.解方程组()311y k x x y ⎧=-+⎪⎨++=0⎪⎩得321411k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩所以点A 的坐标为3241,11k k k k --⎛⎫- ⎪++⎝⎭.解方程组()316y k x x y ⎧=-+⎪⎨++=0⎪⎩得371911k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩,所以点B 的坐标为3791,11k k k k --⎛⎫- ⎪++⎝⎭.因为|AB |=5,所以2232374191=251111k k k k k k k k --⎡--⎤⎛⎫⎛⎫⎛⎫-+--- ⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎣⎦. 解得k =0,即所求直线为y =1.综上所述,所求直线方程为x =3或y =1.单元测试二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l 经过两点()()1,2,2,1P Q -,那么直线l 的斜率为( )A .3-B .13-C .13D .32.直线l 过点P (-1,2),倾斜角为45°,则直线l 的方程为( ) A .x -y +1=0 B .x -y -1=0 C .x -y -3=0D .x -y +3=03.如果直线ax +2y +2=0与直线3x -y -2=0平行,则a 的值为( ) A .-3 B .-6C .32D .234.直线2x a -2y b =1在y 轴上的截距为( ) A .|b |B .-b 2C .b 2D .±b5.已知点A (3,2),B (-2,a ),C (8,12)在同一条直线上,则a 的值是( ) A .0B .-4C .-8D .46.如果AB <0,BC <0,那么直线Ax +By +C =0不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限7.已知点A (1,-2),B (m,2),且线段AB 的垂直平分线的方程是x +2y -2=0, 则实数m 的值是( )A .-2B .-7C .3D .18.经过直线l 1:x -3y +4=0和l 2:2x +y =5=0的交点,并且经过原点的直线方程是( ) A .19x -9y =0 B .9x +19y =0 C .3x +19y =0D .19x -3y =09.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点( ) A .(0,0)B .(17,27) C .(27,17) D .(17,114) 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0D .x +2y -3=011.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( ) A .-4B .-2C .0D .212.等腰直角三角形ABC 中,∠C =90°,若点A ,C 的坐标分别为(0,4),(3,3), 则点B 的坐标可能是( ) A .(2,0)或(4,6)B .(2,0)或(6,4)C .(4,6)D .(0,2)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.直线l 与直线y =1,x -y -7=0分别交于A ,B 两点,线段AB 的中点为 M (1,-1),则直线l 的斜率为_________.14.点A (3,-4)与点B (5,8)关于直线l 对称,则直线l 的方程为_________.15.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为_________.16.若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是①15°;②30°;③45°;④60°;⑤75°,其中正确答案的序号是_________.(写出所有正确答案的序号)三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知直线l 经过点P (-2,5)且斜率为-34,(1)求直线l 的方程;(2)若直线m 平行于直线l ,且点P 到直线m 的距离为3,求直线m 的方程.18.(12分)求经过两直线3x -2y +1=0和x +3y +4=0的交点,且垂直于直线 x +3y +4=0的直线方程.19.(12分)已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,求一点P , 使|P A |=|PB |,且点P 到直线l 的距离等于2.20.(12分)△ABC 中,A (0,1),AB 边上的高CD 所在直线的方程为x +2y -4=0,AC 边上的中线BE 所在直线的方程为2x +y -3=0. (1)求直线AB 的方程; (2)求直线BC 的方程; (3)求△BDE 的面积.21.(12分)直线过点P (43,2)且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线同时满足下列条件: (1)△AOB 的周长为12; (2)△AOB 的面积为6.若存在,求直线的方程;若不存在,请说明理由.22.(12分)在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB ,AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合,如图,将矩形折叠,使A 点落在线段DC 上.(1)若折痕所在直线的斜率为k,试求折痕所在直线的方程;(2)当-2+3≤k≤0时,求折痕长的最大值.答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】C【解析】根据斜率公式可得,直线l的斜率121213k-==--,故选C.2.【答案】D【解析】由题意k=tan45°=1,∴直线l的方程为y-2=1·(x+1),即x-y+3=0,故选D.3.【答案】B【解析】由题意得a·(-1)-2×3=0,∴a=-6,故选B.4.【答案】B【解析】令x=0,则y=-b2,故选B.5.【答案】C【解析】根据题意可知k AC=k AB,即12283--=223a---,解得a=-8,故选C.6.【答案】D【解析】Ax+By+C=0可化为y=-ABx-CB,由AB<0,BC<0,得-AB>0,-CB>0,故直线Ax+By+C=0经过第一、二、三象限,不经过第四象限.故选D.7.【答案】C【解析】由已知条件可知线段AB 的中点(12m+,0)在直线x +2y -2=0上, 把中点坐标代入直线方程,解得m =3,故选C . 8.【答案】C【解析】解340250x y x y -+=⎧⎨-+=⎩得19737x y ⎧=-⎪⎪⎨⎪=⎪⎩,即直线l 1,l 2的交点是(-197,37),由两点式可得所求直线的方程是3x +19y =0,故选C . 9.【答案】C【解析】直线方程变形为k (3x +y -1)+(2y -x )=0,则直线通过定点(27,17). 故选C . 10.【答案】D【解析】将“关于直线对称的两条直线”转化为“关于直线对称的两点”:在直线x -2y +1=0上取一点P (3,2),点P 关于直线x =1的对称点P ′(-1,2)必在所求直线上,故选D . 11.【答案】B【解析】因为l 的斜率为tan135°=-1,所以l 1的斜率为1,所以k AB =()213a---=1,解得a=0.又l 1∥l 2,所以-2b=1,解得b =-2,所以a +b =-2,故选B . 12.【答案】A【解析】设B (x ,y ),根据题意可得1AC BC k k BC AC ⋅=-⎧⎪⎨=⎪⎩,即3431303y x --⎧⋅=-⎪--=⎩⎪⎨⎪⎧ x =2y =0或⎩⎪⎨⎪⎧x =4y =6, 所以B (2,0)或B (4,6).故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】-23【解析】设A (x 1,y 1),B (x 2,y 2),则y 1+y 22=-1,又y 1=1,∴y 2=-3,代入方程x -y -7=0,得x 2=4,即B (4,-3),又x 1+x 22=1,∴x 1=-2,即A (-2,1),∴k AB =()3142----=-23.14.【答案】x +6y -16=0【解析】直线l 就是线段AB 的垂直平分线,AB 的中点为(4,2),k AB =6, 所以k l =-16,所以直线l 的方程为y -2=-16(x -4),即x +6y -16=0.15.【答案】3 2【解析】依题意,知l 1∥l 2,故点M 所在直线平行于l 1和l 2,可设点M 所在直线的方程为l :x +y +m =0,根据平行线间的距离公式,得|m +7|2=|m +5|2⇒|m +7|=|m +5|⇒m =-6,即l :x +y -6=0,根据点到直线的距离公式,得M 到原点的距离的最小值为|-6|2=32.16.【答案】①⑤【解析】两平行线间的距离为d =|3-1|1+1=2,由图知直线m 与l 1的夹角为30°,l 1的倾斜角为45°, 所以直线m 的倾斜角等于30°+45°=75°或45°-30°=15°.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)3x +4y -14=0;(2)3x +4y +1=0或3x +4y -29=0. 【解析】(1)直线l 的方程为:y -5=-34(x +2)整理得3x +4y -14=0.(2)设直线m 的方程为3x +4y +n =0, d|3245|n ⨯-+⨯+=3,解得n =1或-29.∴直线m 的方程为3x +4y +1=0或3x +4y -29=0. 18.【答案】3x -y +2=0.【解析】解法一:设所求直线方程为3x -2y +1+λ(x +3y +4)=0, 即(3+λ)x +(3λ-2)y +(1+4λ)=0,由所求直线垂直于直线x +3y +4=0, 得-13·(-3+λ3λ-2)=-1,解得λ=310,故所求直线方程是3x -y +2=0.解法二:设所求直线方程为3x -y +m =0.由⎩⎪⎨⎪⎧ 3x -2y +1=0,x +3y +4=0,解得⎩⎪⎨⎪⎧x =-1,y =-1,即两已知直线的交点为(-1,-1). 又3x -y +m =0过点(-1,-1),故-3+1+m =0,m =2. 故所求直线方程为3x -y +2=0.19.【答案】P (1,-4)或P (277,-87).【解析】解法1:设点P (x ,y ).因为|P A |=|PB |,① 又点P 到直线l 的距离等于2,所以|4x +3y -2|5=2.②由①②联立方程组,解得P (1,-4)或P (277,-87).解法2:设点P (x ,y ).因为|P A |=|PB |,所以点P 在线段AB 的垂直平分线上.由题意知k AB =-1,线段AB 的中点为(3,-2),所以线段AB 的垂直平分线的方程是y =x -5,所以设点P (x ,x -5). 因为点P 到直线l 的距离等于2,所以()|4352|5x x +--=2,解得x =1或x =277,所以P (1,-4)或P (277,-87).20.【答案】(1)2x -y +1=0;(2)2x -y +1=0;(3)110.【解析】(1)由已知得直线AB 的斜率为2,∴AB 边所在的直线方程为y -1=2(x -0),即2x -y +1=0.(2)由⎩⎪⎨⎪⎧2x -y +1=0,2x +y -3=0得⎩⎪⎨⎪⎧x =12,y =2.即直线AB 与直线BE 的交点为B (12,2).设C (m ,n ),则由已知条件得⎩⎪⎨⎪⎧m +2n -4=0,2·m 2+n +12-3=0,解得⎩⎪⎨⎪⎧m =2,n =1,∴C (2,1).∴BC 边所在直线的方程为y -12-1=x -212-2,即2x +3y -7=0.(3)∵E 是线段AC 的中点,∴E (1,1).∴|BE |=52,由⎩⎪⎨⎪⎧2x -y +1=0,x +2y -4=0得⎩⎨⎧x =25,y =95,∴D (25,95),∴D 到BE 的距离为d =|2×25+95-3|22+12=255,∴S △BDE =12·d ·|BE |=110. 21.【答案】)存在,3x +4y -12=0.【解析】设直线方程为x a +yb =1(a >0,b >0),若满足条件(1),则a +b +a 2+b 2=12 ① 又∵直线过点P (43,2),∵43a +2b=1.②由①②可得5a 2-32a +48=0,解得⎩⎪⎨⎪⎧a =4,b =3,或⎩⎨⎧a =125,b =92,∴所求直线的方程为x 4+y 3=1或5x 12+2y9=1,即3x +4y -12=0或15x +8y -36=0,若满足条件(2),则ab =12,③ 由题意得,43a +2b=1,④由③④整理得a 2-6a +8=0,解得⎩⎪⎨⎪⎧ a =4,b =3或⎩⎪⎨⎪⎧a =2,b =6,∴所求直线的方程为x 4+y 3=1或x 2+y6=1,即3x +4y -12=0或3x +y -6=0.综上所述:存在同时满足(1)(2)两个条件的直线方程,为3x +4y -12=0. 22.【答案】(1)y =kx +k 22+12;(2)2(6-2).【解析】(1)①当k =0时,A 点与D 点重合,折痕所在的直线方程为y =12.②当k ≠0时,将矩形折叠后A 点落在线段DC 上的点记为G (a,1), ∴A 与G 关于折痕所在的直线对称,有k OG ·k =-1⇒1a·k =-1⇒a =-k ,故G 点坐标为(-k,1),从而折痕所在直线与OG 的交点坐标(即线段OG 的中点)为M (-k 2,12).故折痕所在的直线方程为y -12=k (x +k 2),即y =kx +k 22+12.由①②得折痕所在的直线方程为y =kx +k 22+12.(2)当k =0时,折痕的长为2.当-2+3≤k <0时,折痕所在直线交直线BC 于点E (2,2k +k 22+12),交y 轴于点N (0,k 2+12).则|NE |2=22+[k 2+12-(2k +k 22+12)]2=4+4k 2≤4+4(7-43)=32-163.此时,折痕长度的最大值为32-163=2(6-2).而2(6-2)>2,故折痕长度的最大值为2(6-2).。
2019-2020学年高中数学必修二《第3章直线与方程》测试卷及答案解析
2019-2020学年高中数学必修二《第3章直线与方程》测试卷一.选择题(共30小题)
1.直线y﹣3=﹣(x+4)的斜率为k,在y轴上的截距为b,则有()A.k =﹣,b=3B.k =﹣,b=﹣2C.k =﹣,b=﹣3D.k =﹣,b=﹣3 2.若直线过点(1,2),(4,2+)则此直线的倾斜角是()
A .
B .
C .
D .
3.已知点A(1,3)、B(﹣2,﹣1),若过点P(2,1)的直线l与线段AB相交,则直线l的斜率k的取值范围是()
A.k ≥B.k≤﹣2C.k或k≤﹣2D.﹣2≤k ≤
4.若点A(﹣2,﹣3),B(﹣3,﹣2),直线L过点P(1,1)且与线段AB相交,则L的斜率k的取值范围是()
A.k ≤或k ≥B.k ≤﹣或k ≥﹣
C .≤k ≤
D .﹣≤k ≤﹣
5.与直线垂直,且过(2,0)点的直线方程是()
A.y=﹣2x+4B .C.y=﹣2x﹣4D .
6.已知O为△ABC 内一点,且,,若B,O,D三点共线,则t 的值为()
A .
B .
C .
D .
7.若直线l1:ax+2y+a+3=0与l2::x+(a+1)y+4=0平行,则实数a的值为()A.1B.﹣2C.1或﹣2D.﹣1或2
8.下列说法正确的是()
A.一条直线的斜率为k=tanα,则这条直线的倾斜角是α
B.过点A(x1,y1)和点B(x2,y2)的直线的方程为=
C.若两直线平行,则它们的斜率相等
D.若两直线斜率之积等于﹣1,则两直线垂直
第1 页共18 页。
第06讲:必修2第三章《直线与方程》单元检测题-高中数学单元检测题及详细解析.doc
必修2第三章《直线与方程》单元检测题本试卷分第I卷(选择题)和第II卷(非选择题)两部分.满分150分.考试时间120分钟.第I卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共6()分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线过点(1,2), (4,2+萌),则此直线的倾斜角是()A.30°B. 45。
C. 60°D. 90°2.如果直线处+2y+2=0与直线3匕一丿一2=0平行,则系数。
为()3 2A.—3B. —6C. —2D.亍3.下列叙述屮不正确的是()A.若直线的斜率存在,则必有倾斜角与之对应B.每一条直线都有唯一对应的倾斜角C.与坐标轴垂直的直线的倾斜角为0。
或90。
D.若直线的倾斜角为u,则直线的斜率为怡z4.在同一直角坐标系中,表示直线),=做与直线>,=兀+。
的图象(如图所示)正确的是()5.若三点A(3,l), B(—2, b), C(&11)在同一直线上,则实数b等于()A. 2B. 3C. 9D. -96.过点(3, —4)且在两坐标轴上的截距相等的直线的方程是()A.卄),+1=0B.4兀一3)=0C.4x+3y=0D.4兀+3y=0 或x+y+l=07.已知点4(兀,5)关于点(1, y)的对称点为(一2, 一3),则点P(x, y)到原点的距离是()A. 4 B・竝C・飒 D. 08.设点4(2, -3), 3( — 3, -2),直线过P(l,l)且与线段43相交,则/的斜率殳的取值范围是()3 3A. &玄或 4B. —3C. 一3才WRW4 D・以上都不对9.已知直线1\: ov+4y—2=0与直线2x—5y-\~b=0互相垂直,垂足为(1, c),则a + b+c的值为( )A. -4B. 20C. 0D. 2410.如果4(1,3)关于直线/的对称点为B(—5,1),则直线I的方程是()A. 3兀+y+4=0B. x—3y+8 = 0C. x+3y—4=QD. 3x~y+S=011.直线mx+ny+3=0在y轴上截距为一3,而且它的倾斜角是直线伍一y=3也倾斜角的2倍,则( )A. m = _甫,n= 1B. 〃?=—羽,n=~3C. » n =—3D. ~*^3, ~ 112.过点A(0,彳)与B(7,0)的直线厶与过点(2,1),⑶R+1)的直线人和两坐标轴围成的四边形内接于一个圆,则实数£等于()A. —3B. 3C. —6D. 6第II卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知厶:2x+my+1 = 0与人:y=3兀一1,若两直线平行,则加的值为____________ .14.若直线加被两平行线厶:x-y+\=0与念x-y+3=0所截得的线段的长为2迈,则加的倾斜角可以是________ •(写出所有正确答案的序号)① 15。
必修2第三章直线与方程测试题
第三章 直线与方程测试题(一)一 •选择题(每小题5分,共12小题,共60分)1 •若直线过点C.3,3)且倾斜角为300,则该直线的方程为()B.y=—^x 4 C.y=—^x —4 D. y333. 如果直线x by ^0经过直线5x -6y -17二0与直线4x • 3y • 2 = 0的交点,那么b 等于 (). A. 2B. 3C. 4D. 52 2 04. 直线(2m -5m - 2)x 「(m -4)y - 5m = 0的倾斜角是45,则m 的值为()。
A.2B. 3C. - 3D. - 225.两条直线3x 2y ^0和(m • 1)x-3y • 2 -3m = 0的位置关系是()A.平行B.相交C.重合D.与m 有关 7直线x -2y • b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是()A. [-2,2]E. (-::,一2] [2,::)C . [ -2,0) (0,2]D.(-::,::)A.2.如果 A(3,1)、 B (-2,k )、C (8,11),在同一直线上,那k 的值是(A. -6B. —7C. -8D. -9*6•到直线2x y ^0的距离为—的点的集合是(5A.直线 2x y -2 = 0B. 直线2x y = 0C.直线 2x ■ y = 0 或直线 2x ■ y - 2 = 0 D. 直线2x y = 0或直线2x y 2 = 0*8 •若直线I 与两直线y , x - y -7 =0分别交于M , N 两点,且MN 的中点是P (1,-1),则直线1的斜率是()22厂3 3A .B .—C .D.—3 32210•直线x -2y ・1 = 0关于直线x =1对称的直线方程是( )A . x 2y -1 = 0B . 2x y -1 = 0C . 2x y -3=0D . x 2y -3=0共有 ( )A . 1个B . 2个*12 .若y =a|x|的图象与直线y =x ,a (a 0),有两个不同交点,则 a 的取值范围是 ()A . 0 :: a :: 10B . a 1C . a 0 且 a =1D . a =1二.填空题(每小题5分,共4小题,共20分)13.经过点(-2, -3),在x 轴、y 轴上截距相等的直线方程是 _____________________ ; 或 ______________________ 。
新人教高一数学必修2同步练习与单元测试第三章3.2.2
3.2.2 直线的两点式方程一、基础过关1.过点A(3,2),B(4,3)的直线方程是() A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=02.一条直线不与坐标轴平行或重合,则它的方程() A.可以写成两点式或截距式B.可以写成两点式或斜截式或点斜式C.可以写成点斜式或截距式D.可以写成两点式或截距式或斜截式或点斜式3.直线xa2-yb2=1在y轴上的截距是() A.|b| B.-b2C.b2D.±b4.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是() A.3x-y-8=0 B.3x+y+4=0C.3x-y+6=0 D.3x+y+2=05.过点P(6,-2),且在x轴上的截距比在y轴上的截距大1的直线方程是________________.6.过点P(1,3)的直线l分别与两坐标轴交于A、B两点,若P为AB的中点,则直线l的截距式方程是______________.7.已知直线l的斜率为6,且被两坐标轴所截得的线段长为37,求直线l的方程.8.已知△ABC中,A(1,-4),B(6,6),C(-2,0).求:(1)△ABC中平行于BC边的中位线所在直线的方程并化为截距式方程;(2)BC边的中线所在直线的方程并化为截距式方程.二、能力提升9.直线xm-yn=1与xn-ym=1在同一坐标系中的图象可能是()10.过点(5,2),且在x轴上的截距(直线与x轴交点的横坐标)是在y轴上的截距的2倍的直线方程是()A.2x+y-12=0 B.2x+y-12=0或2x-5y=0C.x-2y-1=0 D.x+2y-9=0或2x-5y=011.已知点A(2,5)与点B(4,-7),点P在y轴上,若|P A|+|PB|的值最小,则点P的坐标是________.12.三角形ABC的三个顶点分别为A(0,4),B(-2,6),C(-8,0).(1)求边AC和AB所在直线的方程;(2)求AC边上的中线BD所在直线的方程;(3)求AC边上的中垂线所在直线的方程.三、探究与拓展13.已知直线l经过点(7,1)且在两坐标轴上的截距之和为零,求直线l的方程.答案1.D 2.B 3.B 4.B5.x3+y2=1或x2+y=16.x2+y6=17.解 设所求直线l 的方程为y =kx +b .∵k =6,∴方程为y =6x +b .令x =0,∴y =b ,与y 轴的交点为(0,b );令y =0,∴x =-b6,与x 轴的交点为⎝⎛⎭⎫-b 6,0. 根据勾股定理得⎝⎛⎭⎫-b62+b 2=37, ∴b =±6.因此直线l 的方程为y =6x ±6.8.解 (1)平行于BC 边的中位线就是AB 、AC 中点的连线.因为线段AB 、AC 中点坐标为⎝⎛⎭⎫72,1,⎝⎛⎭⎫-12,-2, 所以这条直线的方程为y +21+2=x +1272+12,整理得,6x -8y -13=0,化为截距式方程为x 136-y138=1.(2)因为BC 边上的中点为(2,3),所以BC 边上的中线所在直线的方程为y +43+4=x -12-1, 即7x -y -11=0,化为截距式方程为 x 117-y11=1. 9.B 10.D 11.(0,1)12.解 (1)由截距式得x -8+y4=1,∴AC 所在直线的方程为x -2y +8=0,由两点式得y -46-4=x-2,∴AB 所在直线的方程为x +y -4=0.(2)D 点坐标为(-4,2),由两点式得y -26-2=x -(-4)-2-(-4).∴BD 所在直线的方程为2x -y +10=0.(3)由k AC =12,∴AC 边上的中垂线的斜率为-2,又D (-4,2),由点斜式得y -2=-2(x +4),∴AC 边上的中垂线所在直线的方程为2x +y +6=0.13.解 当直线l 经过原点时,直线l 在两坐标轴上截距均等于0,故直线l 的斜率为17,∴所求直线方程为y =17x ,即x -7y =0.当直线l 不过原点时,设其方程为x a +yb=1,由题意可得a +b =0,①又l 经过点(7,1),有7a +1b=1,②由①②得a=6,b=-6,则l的方程为x6+y-6=1,即x-y-6=0.故所求直线l的方程为x-7y=0或x-y-6=0.。
高中数学 第三章 直线与方程单元质量测评(含解析)新人教A版必修2-新人教A版高一必修2数学试题
第三章 单元质量测评对应学生用书P77 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.斜率为2的直线的倾斜角α所在的X 围是( ) A .0°<α<45° B.45°<α<90° C .90°<α<135° D.135°<α<180° 答案 B解析 ∵k=2>1,即tanα>1,∴45°<α<90°. 2.在x 轴上的截距为2且倾斜角为135°的直线方程为( ) A .y =-x +2 B .y =-x -2 C .y =x +2 D .y =x -2 答案 A解析 由题可知直线方程为y =tan135°·(x-2),即y =-x +2. 3.若三点A(4,3),B(5,a),C(6,b)共线,则下列结论正确的是( ) A .2a -b =3 B .b -a =1 C .a =3,b =5 D .a -2b =3 答案 A解析 由k AB =k AC 可得2a -b =3,故选A .4.若实数m ,n 满足2m -n =1,则直线mx -3y +n =0必过定点( ) A .⎝ ⎛⎭⎪⎫2,13 B .⎝ ⎛⎭⎪⎫-2,13C .⎝ ⎛⎭⎪⎫2,-13D .⎝ ⎛⎭⎪⎫-2,-13答案 D解析 由已知得n =2m -1,代入直线mx -3y +n =0得mx -3y +2m -1=0,即(x +2)m+(-3y -1)=0,由⎩⎪⎨⎪⎧x +2=0,-3y -1=0,解得⎩⎪⎨⎪⎧x =-2,y =-13,所以此直线必过定点⎝⎛⎭⎪⎫-2,-13,故选D .5.设点A(-2,3),B(3,2),若直线ax +y +2=0与线段AB 没有交点,则a 的取值X 围是( )A .⎝ ⎛⎦⎥⎤-∞,52∪⎣⎢⎡⎭⎪⎫43,+∞ B .⎝ ⎛⎭⎪⎫-43,52C .⎣⎢⎡⎦⎥⎤-52,43 D .⎝ ⎛⎦⎥⎤-∞,-43∪⎣⎢⎡⎭⎪⎫52,+∞ 答案 B解析 直线ax +y +2=0过定点C(0,-2),k AC =-52,k BC =43.由图可知直线与线段没有交点时,斜率-a 的取值X 围为-52<-a <43,解得a∈⎝ ⎛⎭⎪⎫-43,52.6.和直线5x -4y +1=0关于x 轴对称的直线方程为( ) A .5x +4y +1=0 B .5x +4y -1=0 C .-5x +4y -1=0 D .-5x +4y +1=0 答案 A解析 设所求直线上的任一点为(x′,y′),则此点关于x 轴对称的点的坐标为(x′,-y′).因为点(x′,-y′)在直线5x -4y +1=0上,所以5x′+4y′+1=0,即所求直线方程为5x +4y +1=0.7.已知直线x =2及x =4与函数y =log 2x 图象的交点分别为A ,B ,与函数y =lg x 图象的交点分别为C ,D ,则直线AB 与CD( )A .平行B .垂直C .不确定D .相交 答案 D解析 易知A(2,1),B(4,2),原点O(0,0),∴k OA =k OB =12,∴直线AB 过原点,同理,C(2,lg 2),D(4,2lg 2),k OC =k OD =lg 22≠12,∴直线CD 过原点,且与AB 相交.8.过点M(1,-2)的直线与x 轴、y 轴分别交于P ,Q 两点,若M 恰为线段PQ 的中点,则直线PQ 的方程为 ( )A .2x +y =0B .2x -y -4=0C .x +2y +3=0D .x -2y -5=0 答案 B解析 设P(x 0,0),Q(0,y 0).∵M(1,-2)为线段PQ 的中点,∴x 0=2,y 0=-4,∴直线PQ 的方程为x 2+y-4=1,即2x -y -4=0.故选B .9.若三条直线y =2x ,x +y =3,mx +ny +5=0相交于同一点,则点(m ,n)到原点的距离的最小值为( )A . 5B . 6C .2 3D .2 5 答案 A解析 由⎩⎪⎨⎪⎧y =2x ,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2.把(1,2)代入mx +ny +5=0可得m +2n +5=0, ∴m=-5-2n ,∴点(m ,n)到原点的距离d = m 2+n 2=5+2n 2+n 2=5n +22+5≥5,当n =-2时等号成立,此时m =-1.∴点(m ,n)到原点的距离的最小值为5.故选A .10.点F(3m +3,0)到直线3x -3my =0的距离为( ) A . 3 B .3m C .3 D .3m 答案 A解析 由点到直线的距离公式得点F(3m +3,0)到直线3x -3my =0的距离为3·3m +33m +3=3.11.若直线l 经过点A(1,2),且在x 轴上的截距的取值X 围是(-3,3),则其斜率的取值X 围是( )A .⎝⎛⎭⎪⎫-1,15 B .⎝⎛⎭⎪⎫-∞,12∪(1,+∞) C .(-∞,-1)∪⎝ ⎛⎭⎪⎫15,+∞D .(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞ 答案 D解析 在平面直角坐标系中作出点A(1,2),B(-3,0),C(3,0),过点A ,B 作直线AB ,过点A ,C 作直线AC ,如图所示,则直线AB 在x 轴上的截距为-3,直线AC 在x 轴上的截距为3.因为k AB =2-01--3=12,k AC =2-01-3=-1,所以直线l 的斜率的取值X 围为(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞.12.已知△ABC 的边AB 所在的直线方程是x +y -3=0,边AC 所在的直线方程是x -2y +3=0,边BC 所在的直线方程是2x -y -3=0.若△ABC 夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A .355B . 2C .322D . 5答案 B解析 联立直线方程,易得A(1,2),B(2,1).如图所示,当两条平行直线间的距离最小时,两平行直线分别过点A ,B ,又两平行直线的斜率为1,直线AB 的斜率为-1,所以线段AB 的长度就是过A ,B 两点的平行直线间的距离,易得|AB|=2,即两条平行直线间的距离的最小值是2.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知直线l 的倾斜角是直线y =x +1的倾斜角的2倍,且过定点P(3,3),则直线l 的方程为________.答案 x =3解析 直线y =x +1的斜率为1,倾斜角为45°.直线l 的倾斜角是已知直线y =x +1的倾斜角的2倍,所以直线l 的倾斜角为90°,直线l 的斜率不存在,所以直线l 的方程为x =3.14.直线x 3+y4=t 被两坐标轴截得的线段长度为1,则t =________.答案 ±15解析 直线与x ,y 轴的交点分别为(3t ,0)和(0,4t),所以线段长为3t2+4t2=1,解得t =±15.15.已知点A(2,4),B(6,-4),点P 在直线3x -4y +3=0上,若满足|PA|2+|PB|2=λ的点P 有且仅有1个,则实数λ的值为________.答案 58解析 设点P 的坐标为(a ,b).∵A(2,4),B(6,-4),∴|PA|2+|PB|2=[(a -2)2+(b -4)2]+[(a -6)2+(b +4)2]=λ,即2a 2+2b 2-16a +72=λ.又∵点P 在直线3x -4y +3=0上,∴3a-4b +3=0,∴509b 2-803b +90=λ.又∵满足|PA|2+|PB|2=λ的点P 有且仅有1个,∴Δ=⎝ ⎛⎭⎪⎫-8032-4×509×(90-λ)=0,解得λ=58.16.在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a|-1的图象只有一个交点,则a 的值为________.答案 -12解析 因为y =|x -a|-1=⎩⎪⎨⎪⎧x -a -1,x≥a,-x +a -1,x<a ,所以该函数的大致图象如图所示.又直线y =2a 与函数y =|x -a|-1的图象只有一个交点,则2a =-1,即a =-12.三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知Rt△ABC 的顶点坐标A(-3,0),直角顶点B(-1,-22),顶点C 在x 轴上.(1)求点C 的坐标; (2)求斜边所在直线的方程.解 (1)解法一:依题意,Rt△ABC 的直角顶点坐标为B(-1,-22), ∴AB⊥BC,∴k AB ·k BC =-1.又∵A(-3,0),∴k AB =0+22-3--1=-2,∴k BC =-1k AB =22,∴边BC 所在的直线的方程为y +22=22(x +1),即x -2y -3=0. ∵直线BC 的方程为x -2y -3=0,点C 在x 轴上,由y =0,得x =3,即C(3,0). 解法二:设点C(c ,0),由已知可得k AB ·k BC =-1,即0+22-3--1·0+22c +1=-1,解得c =3,所以点C 的坐标为(3,0). (2)由B 为直角顶点,知AC 为直角三角形ABC 的斜边. ∵A(-3,0),C(3,0),∴斜边所在直线的方程为y =0.18.(本小题满分12分)点M(x 1,y 1)在函数y =-2x +8的图象上,当x 1∈[2,5]时,求y 1+1x 1+1的取值X 围. 解y 1+1x 1+1=y 1--1x 1--1的几何意义是过M(x 1,y 1),N(-1,-1)两点的直线的斜率.点M 在直线y =-2x +8的线段AB 上运动,其中A(2,4),B(5,-2).∵k NA =53,k NB =-16,∴-16≤y 1+1x 1+1≤53,∴y 1+1x 1+1的取值X 围为⎣⎢⎡⎦⎥⎤-16,53. 19.(本小题满分12分)已知直线l 经过直线3x +4y -2=0与直线2x +y +2=0的交点P ,且垂直于直线x -2y -1=0.(1)求直线l 的方程;(2)求直线l 与两坐标轴围成的三角形的面积S .解 (1)联立两直线方程⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0,解得⎩⎪⎨⎪⎧x =-2,y =2,则两直线的交点为P(-2,2).∵直线x -2y -1=0的斜率为k 1=12,所求直线垂直于直线x -2y -1=0,那么所求直线的斜率k =-112=-2,∴所求直线方程为y -2=-2(x +2),即2x +y +2=0.(2)对于方程2x +y +2=0,令y =0则x =-1,则直线与x 轴交点坐标A(-1,0), 令x =0则y =-2,则直线与y 轴交点坐标B(0,-2), 直线l 与坐标轴围成的三角形为直角三角形AOB , ∴S=12|OA||OB|=12×1×2=1.20.(本小题满分12分)一条光线经过点P(2,3)射在直线l :x +y +1=0上,反射后经过点Q(1,1),求:(1)入射光线所在直线的方程; (2)这条光线从P 到Q 所经路线的长度.解 (1)设点Q′(x′,y′)为点Q 关于直线l 的对称点,QQ′交l 于点M .∵k l =-1,∴k QQ′=1, ∴QQ′所在直线的方程为y -1=1·(x-1), 即x -y =0.由⎩⎪⎨⎪⎧x +y +1=0,x -y =0,解得⎩⎪⎨⎪⎧x =-12,y =-12,∴交点M ⎝ ⎛⎭⎪⎫-12,-12,∴⎩⎪⎨⎪⎧1+x′2=-12,1+y′2=-12.解得⎩⎪⎨⎪⎧x′=-2,y′=-2,∴Q′(-2,-2).设入射光线与l 交于点N ,则P ,N ,Q′三点共线, 又∵P(2,3),Q′(-2,-2),∴入射光线所在直线的方程为y --23--2=x --22--2,即5x -4y +2=0.(2)|PN|+|NQ|=|PN|+|NQ′|=|PQ′| =[2--2]2+[3--2]2=41,即这条光线从P 到Q 所经路线的长度为41.21.(本小题满分12分)设直线l 经过点(-1,1),此直线被两平行直线l 1:x +2y -1=0和l 2:x +2y -3=0所截得线段的中点在直线x -y -1=0上,求直线l 的方程.解 设直线x -y -1=0与l 1,l 2的交点分别为C(x C ,y C ),D(x D ,y D ),则⎩⎪⎨⎪⎧x C +2y C -1=0,x C -y C -1=0,解得⎩⎪⎨⎪⎧x C =1,y C =0,∴C(1,0)⎩⎪⎨⎪⎧x D +2y D -3=0,x D -y D -1=0,解得⎩⎪⎨⎪⎧x D =53,y D=23,∴D ⎝ ⎛⎭⎪⎫53,23. 则C ,D 的中点坐标为⎝ ⎛⎭⎪⎫43,13, 即直线l 经过点⎝ ⎛⎭⎪⎫43,13. 又直线l 经过点(-1,1),由两点式得直线l 的方程为 y -131-13=x -43-1-43,即2x +7y -5=0. 22.(本小题满分12分)已知三条直线l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5.若能,求点P 的坐标;若不能,说明理由.解 (1)直线l 2的方程等价于2x -y -12=0,所以两条平行线l 1与l 2间的距离d =⎪⎪⎪⎪⎪⎪a -⎝ ⎛⎭⎪⎫-1222+-12=7510,即⎪⎪⎪⎪⎪⎪a +12=72.又因为a >0,解得a =3.(2)假设存在点P ,设点P(x 0,y 0),若点P 满足条件②,则点P 在与l 1,l 2平行的直线l′:2x -y +c =0上,且|c -3|5=12·⎪⎪⎪⎪⎪⎪c +125,解得c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0.若P 点满足条件③,由点到直线的距离公式, 得|2x 0-y 0+3|5=25·|x 0+y 0-1|2, 即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0. 若点P 满足条件①,则3x 0+2=0不合适. 解方程组⎩⎪⎨⎪⎧ 2x 0-y 0+132=0,x 0-2y 0+4=0,得⎩⎪⎨⎪⎧x 0=-3,y 0=12.不符合点P 在第一象限,舍去.解方程组⎩⎪⎨⎪⎧2x 0-y 0+116=0,x 0-2y 0+4=0,得⎩⎪⎨⎪⎧x 0=19,y 0=3718.符合条件①.所以存在点P ⎝ ⎛⎭⎪⎫19,3718同时满足三个条件.。
高中数学新课标人教A版必修二第三章 直线与方程同步经典习题
高中数学新课标人教A版必修二第三章直线与方程同步经典习题==本文档为word格式,下载后可随意编辑修改!==3.1直线的倾斜角与斜率3.1.1倾斜角与斜率基础达标1.直线l过原点(0,0),且不过第三象限,那么l的倾斜角α的取值范围是().A.0°≤α≤90°B.90°≤α<180°C.90°≤α<180°或α=0°D.90°≤α≤135°2.(临沂一中期末)已知l1⊥l2,直线l1的倾斜角为60°,则直线l2的倾斜角为().A.60°B.120°C.30°D.150°3.斜率为2的直线经过点A(3,5)、B(a,7)、C(-1,b)三点,则a、b的值为().A.a=4,b=0 B.a=-4,b=-3C.a=4,b=-3 D.a=-4,b=34.如果过点(-2,m)和Q(m,4)的直线的斜率等于1,则m=________.5.(济南高一检测)若过P(1-a,1+a)和Q(3,2a)的直线的倾斜角为0°,则a=________.6.直线l过点A(1,2),且不过第四象限,则直线l的斜率的取值范围是________.7.(1)已知直线l1的倾斜角为α1=15°,直线l1与l2的交点为A,直线l1和l2向上的方向之间所成的角为120°,求直线l2的斜率k2.(2)已知某直线l的倾斜角α=45°,又P1(2,y1),P2(x2,5),P3(3,1)是此直线上的三点,求x2,y1的值.能力提升8.(温州高一检测)设直线l过原点,其倾斜角为α,将直线l绕坐标原点沿逆时针方向旋转45°,得到直线l1,则直线l1的倾斜角为().A.α+45°B.α-135°C.135°-αD.当0°≤α<135°时,为α+45°;当135°≤α<180°时,为α-135°9.已知三点A(1-a,-5),B(a,2a),C(0,-a)共线,则a=________.10.光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.7.已知直线l1经过A(3,m),B(m-1,2),直线l2经过点C(1,2),D(-2,m+2).(1)若l1∥l2,求m的值;(2)若l1⊥l2,求m的值.能力提升8.已知A(m,3),B(2m,m+4),C(m+1,2),D(1,0),且直线AB与直线CD平行,则m 的值为().A.1 B.0 C.0或2 D.0或19.已知直线l1经过点A(3,a),B(a-2,-3),直线l2经过点C(2,3)、D(-1,a-2),如果l1⊥l2,则a=________.10.如图所示,一个矩形花园里需要铺两条笔直的小路,已知矩形花园长AD=5 m,宽AB=3 m,其中一条小路定为AC,另一条小路过点D,问如何在BC上找到一点M,使得两条小路所在直线AC与DM相互垂直?a.在同一直角坐标系中,表示直线l1:y=k1x+b1与l2:y=k2x+b2(k1>k2,b1 ().).绕着其上一点P(3,4)逆时针旋转90°后得直线l,则直线l的点斜式方程为射到y轴上,反射后经过点B(4,-3),则反射光线所在直线的方程为且与x轴,y轴的正半轴分别交于A,B两点,O在这样的直线满足下列条件:;(2)△AOB的面积为6.3.2.3直线的一般式方程基础达标1.若ac<0,bc<0,则直线ax+by+c=0的图形只能是().2.过点(1,0)且与直线x-2y-2=0平行的直线方程是().A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=03.直线l1:ax-y+b=0,l2:bx+y-a=0(ab≠0)的图象只可能是().4.若直线x-2y+5=0与直线2x+my-6=0相互垂直,则实数m=________.5.已知A(0,1),点B在直线l1:x+y=0上运动,当线段AB最短时,直线AB的一般式方程为________.6.已知直线l与直线3x+4y-7=0平行,并且与两坐标轴围成的三角形的面积为24,则直线l的方程为________.7.设直线l 的方程为(m 2-2m -3)x +(2m 2+m -1)y =2m -6,根据下列条件分别求m 的值. (1)在x 轴上的截距为1; (2)斜率为1;(3)经过定点P (-1,-1).能力提升8.两直线mx +y -n =0与x +my +1=0互相平行的条件是 ( ). A .m =1 B .m =±1C.⎩⎨⎧m =1n ≠-1D.⎩⎨⎧m =1,n ≠-1或⎩⎨⎧m =-1,n ≠19.已知两条直线a 1x +b 1y +1=0和a 2x +b 2y +1=0都过点A (2,1),则过两点P 1(a 1,b 1),P 2(a 2,b 2)的直线方程是________.10.求证:不论m 取什么实数,直线(2m -1)x -(m +3)y -(m -11)=0恒过定点,并求此定点坐标.1)是此直线上的三点,5-y 1x 2-2=1-53-x 2=1,,无解. BC =2a -(-a ),,由题意得,A、Q、B′三点共线.AB′=-13.设Q(0,y),则k入=为坐标原点,BC、BA所在直线分别为D(5,3),A(0,3).设点M直线的方程直线的点斜式方程a根据点斜式方程,得其斜率与在y轴上的截距同号.答案 B.在同一直角坐标系中,表示直线l1:y=k1x+b1与l2:y=k2x+b2(k1>k2,b1 ().b1>b2,不合题意;在选项D中,k1<k2-1=23(x+5)平行的直线的点斜式方程是________代入直线y-1=23(x+5)成立,即点(-5,1)在直线,1)与直线y-1=23(x+5)平行的直线不存在.不过第三象限,则斜率k的取值范围是________y=2不过第三象限;当k>0时,直线过第三象限;时,直线不过第三象限.答案(-∞,0](1)当a>0时,直线y=ax的倾斜角为锐角,直线y=x+a在yC,D都不成立;时,直线y=ax的倾斜角为0°,所以A,B,C,D都不成立;两直线的方程分别化为斜截式:y=nm x-n,易知两直线的斜率的符号相同,四个选项中仅有B选项的两直线的斜率符号相射到y轴上,反射后经过点B(4,-3),则反射光线所在直线的方程为轴的对称点A′(-1,2),又A′在反射线上,由两点式方程得<0,bc<0,∴abc2>0,∴ab>0,∴斜率k=-ab<0,又纵截距-且与直线x-2y-2=0平行的直线方程是().,在y轴上截距b1=b,直线l2的斜率=-b<0,b>0,对C,k1=a<0,,均产生矛盾,故选B.答案 B2x+my-6=0相互垂直,则实数由题意知直线的斜率均存在,且12×⎝⎛⎭⎪⎫-2m=-1.∴m=1l1:x+y=0上运动,当线段AB最短时,直线又两直线垂直,得2a-4×5=0,③由①②③得,a=10,m=-2,b=-12.答案10-12-2,1)2=5,5.且平行于AB的直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标数学必修2第三章直线与方程测试题
一、选择题(每题3分,共36分)
1.直线x+6y+2=0在x 轴和y 轴上的截距分别是( ) A.21
3, B.--213, C.--12
3, D.-2,-3 2.直线3x+y+1=0和直线6x+2y+1=0的位置关系是( )
A.重合
B.平行
C.垂直
D.相交但不垂直
3.直线过点 (-3,-2)且在两坐标轴上的截距相等,则这直线方程为( )
(A )2x -3y =0; (B )x +y +5=0;
(C )2x -3y =0或x +y +5=0 (D )x +y +5或x -y +5=0
4.直线x=3的倾斜角是( ) A.0 B.2
π C.π D.不存在 5.圆x 2+y 2+4x=0的圆心坐标和半径分别是( )
A.(-2,0),2
B.(-2,0),4
C.(2,0),2
D.(2,0),4
6.点(-1,2)关于直线y = x -1的对称点的坐标是
(A )(3,2) (B )(-3,-2) (C )(-3,2)
(D )(3,-2) 7.点(2,1)到直线3x -4y + 2 = 0的距离是
(A )54 (B )45 (C )25
4 (D )4
25 8.直线x - y + 3 = 0的倾斜角是( ) (A )30° (B )45° (C )60° (D )90°
9.与直线l :3x -4y +5=0关于x 轴对称的直线的方程为
(A )3x +4y -5=0
(B )3x +4y +5=0 (C )-3x +4y -5=0
(D )-3x +4y +5=
0 10.与直线01:2=--y m mx l 垂直于点P (2,1)的直线方程是( )
A .012=-+y m mx
B .03=++y x
C .03=--y x
D .03=-+y x
11.直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平1个单位后,又回到原来位置,那么l 的斜率为( )
(A )-;31
(B )-3; (C );3
1 (D )3 12.直线,31k y kx =+-当k 变动时,所有直线都通过定点( )
(A )(0,0) (B )(0,1)
(C )(3,1) (D )(2,1)
一、填空题(每题4分,共16分)
13.直线过原点且倾角的正弦值是5
4,则直线方程为
14.直线5x+12y+3=0与直线10x+24y+5=0的距离是 .
15.如果三条直线mx +y +3=0,x -y -2=0,2x -y +2=0不能成为一个三角形三边所在的直线,那么m 的一个..
值是_______. 16.已知两条直线l 1:y =x ;l 2:ax -y =0(a ∈R ),当两直线夹角在(0,
12
π)变动时,则a 的取值范围为
三、解答题(共48分)
17. ABC ∆中,点A (),1,4-AB 的中点为M (),2,3重心为P (),2,4求边BC 的长(6分)
18.若N a ∈,又三点A(a ,0),B (0,4+a ),C (1,3)共线,求a 的值(6分)
19.已知直线3x+y —23=0和圆x 2+y 2=4,判断此直线与已知圆的位置关系(7分)
20.若直线062=++y ax 和直线0)1()1(2=-+++a y a a x 垂直,求a 的值(7分)
21. 求经过两条直线04:1=-+y x l 和02:2=+-y x l 的交点,且与直线012=--y x 平行的直线方程;
22.已知圆过点A(1,4),B(3,—2),且圆心到直线AB 的距离为10,求这个圆的方程(10分)
答案:一、1.B2.B3.C4.B5.A6.D7.A8.B9.B10.D11.A12.C
二、13.x y 34±= 14.261 15.−1 16.(3
3,1)⋃(1,3) 三、17.提示:由已知条件,求出B 、C 两点的坐标,再用两点距离公式
18.提示:三点共线说明AC AB k k =,即可求出a
19.提示:比较圆的半径和圆心到直线的距离d 的大小,从而可判断它们的位置关系
20.提示:斜率互为负倒数,或一直线斜率为0,另一直线斜率不存在
21. 解:由⎩⎨⎧=+-=-+0204y x y x ,得⎩
⎨⎧==31y x ; (3)
∴1l 与2l 的交点为(1,3)。
.............................................................4 设与直线012=--y x 平行的直线为02=+-c y x (6)
则032=+-c ,∴c =1。
………………………………………………….8 ∴所求直线方程为012=+-y x 。
…………………………………………10 方法2:∵所求直线的斜率2=k ,且经过点(1,3),……………… ∴求直线的方程为)1(23-=-x y ,…………………………………
即012=+-y x 。
………………………………………
22.提示:通过已知条件求出圆心坐标,再求出半径,即可,所求圆的方程为: (x+1)2+y 2=20或(x —5)2+(y —2)2=20。