高数重要定理
高数介值定理的三个公式
![高数介值定理的三个公式](https://img.taocdn.com/s3/m/41849869abea998fcc22bcd126fff705cc175cf2.png)
高数介值定理的三个公式【提纲】一、高数介值定理简介高等数学中的介值定理是微积分学中的一个重要知识点,它揭示了函数在某一区间内的性质。
简单来说,高数介值定理是指如果一个函数在某个区间内满足某一条件,那么它在这个区间内就存在某一值,使得这个值满足我们所关注的性质。
这个定理在我们研究函数的性质和求解实际问题时具有重要意义。
二、高数介值定理三个公式详解1.布雷尔利(Bolzano)定理:若函数f(x)在区间[a, b]上连续,在(a, b)内可导,并且f(a)与f(b)异号,则在(a, b)内至少存在一点c,使得f"(c) = 0。
2.拉格朗日(Lagrange)中值定理:若函数f(x)在区间[a, b]上连续,在(a,b)内可导,则至少存在一点c∈(a, b),使得f"(c) = (f(b) - f(a)) / (b - a)。
3.罗尔(Rolle)定理:若函数f(x)在闭区间[a, b]上连续,在开区间(a, b)内可导,并且f(a) = f(b),则在(a, b)内至少存在一点c,使得f"(c) = 0。
三、公式的应用实例1.利用布雷尔利定理求解函数的零点:给定函数f(x) = x^3 - 6x + 2,在区间[-2, 2]上连续,在(-2, 2)内可导。
由于f(-2) = -2 < 0,f(2) = 10 > 0,且f(-2)与f(2)异号,根据布雷尔利定理,可知函数在(-2, 2)内存在一点c,使得f"(c) = 0。
求解得到c ≈ 1.38,即函数在x ≈ 1.38处取得极小值。
2.利用拉格朗日中值定理求解函数的平均速度:设质点沿直线运动,从点A到点B的距离为d,用时为t。
若在这段时间内,质点运动的平均速度v = d/ t。
根据拉格朗日中值定理,在A、B两点之间存在一点C,使得v = (vA - vB) / (A - B)。
3.利用罗尔定理求解方程:给定函数f(x) = x^2 - 4x + 4,在区间[1, 3]上连续,在(1, 3)内可导。
高数十大定理
![高数十大定理](https://img.taocdn.com/s3/m/70041f7130126edb6f1aff00bed5b9f3f90f721e.png)
高数十大定理高数的十大定理包括有界性、最值定理、零点定理、费马定理、罗尔定理、拉格朗日中值定理、柯西中值定理、泰勒定理(泰勒公式)、积分中值定理(平均值定理)、微分中值定理等。
具体来说:1. 有界性:是指给定一个数集和一个常数M,存在一个确定的点,使得数集中的所有数都可以在某个区间上被这个点所限制,即数集中的所有数都不会超过这个常数M。
2. 最值定理:是指在实数集中,每一个函数都有一个最大值和一个最小值,即函数在某个区间内的最大值和最小值。
3. 零点定理:是指如果函数在区间[a,b]的两端取值异号,即f(a)⋅f(b)<0,那么在区间(a,b)内至少存在一个使f(x)=0的点。
4. 费马定理:是指对于实数n,如果有n个正整数a1,a2,...,an满足a1⋅a2...an=p(p为质数),那么对于任何正整数n,a1,a2,...,an都是p的倍数。
5. 罗尔定理:是指如果函数f(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=f(b),那么在区间(a,b)内至少存在一个点ξ,使得f'(ξ)=0。
6. 拉格朗日中值定理:是指如果函数f(x)在区间[a,b]上连续,在区间(a,b)内可导,那么在区间(a,b)内至少存在一个点ξ,使得f'(ξ)=(f(b)-f(a))/(b-a)。
7. 柯西中值定理:是指如果函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且g'(x)≠0,那么在区间(a,b)内至少存在一个点ξ,使得f'(ξ)=(f(b)-f(a))/(g(b)-g(a))。
8. 泰勒定理(泰勒公式):是指如果函数f(x)在区间[a,b]上存在n阶导数,那么对于任何x∈[a,b],都存在一个以x为中心的极小值点ξ,使得f(x)=f(ξ)+f'(ξ)(x-ξ)+f''(ξ)(x-ξ)^2/2!+...+f^(n)(ξ)(x-ξ)^n/n!+...。
高等数学公式定理(全)
![高等数学公式定理(全)](https://img.taocdn.com/s3/m/f86b720c941ea76e59fa0483.png)
·平方关系:sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边, ·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sin β·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sin β·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tan α·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1 =1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sin α/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A +B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin〔2kπ+α〕=sinαcos〔2kπ+α〕=cosαtan〔2kπ+α〕=tanαcot〔2kπ+α〕=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin〔π+α〕=-sinαcos〔π+α〕=-cosαtan〔π+α〕=tanαcot〔π+α〕=cotα公式三:任意角α与-α的三角函数值之间的关系:sin〔-α〕=-sinαcos〔-α〕=cosαtan〔-α〕=-tanαcot〔-α〕=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin〔π-α〕=sinαcos〔π-α〕=-cosαtan〔π-α〕=-tanαcot〔π-α〕=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin〔2π-α〕=-sinαcos〔2π-α〕=cosαtan〔2π-α〕=-tanαcot〔2π-α〕=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin〔π/2+α〕=cosαcos〔π/2+α〕=-sinαtan〔π/2+α〕=-cotαcot〔π/2+α〕=-tanαsin〔π/2-α〕=cosαcos〔π/2-α〕=sinαtan〔π/2-α〕=cotαcot〔π/2-α〕=tanαsin〔3π/2+α〕=-cosαcos〔3π/2+α〕=sinαtan〔3π/2+α〕=-cotαcot〔3π/2+α〕=-tanαsin〔3π/2-α〕=-cosαcos〔3π/2-α〕=-sinαtan〔3π/2-α〕=cotαcot〔3π/2-α〕=tanα(以上k∈Z)部分高等内容[编辑本段]勒级数易得):·高等代数中三角函数的指数表示(由泰sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
考研高数定理总结
![考研高数定理总结](https://img.taocdn.com/s3/m/840795d376eeaeaad1f330ff.png)
2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。
第五章 定积分
1、定积分解决的典型问题(1)曲边梯形的面积(2)变速直线运动的路程
2、函数可积的充分条件定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。
定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
如果函数在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,那么只要用方程f'(x)=0的根及f’(x)不存在的点来划分函数f(x)的定义区间,就能保证f'(x)在各个部分区间内保持固定符号,因而函数f(x)在每个部分区间上单调。
6、函数的极值如果函数f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,如果存在着点x0的一个去心邻域,对于这去心邻域内的任何点x,f(x)f(x0)均成立,就称f(x0)是函数f(x)的一个极小值。
定理(有界性定理)在闭区间上连续的函数一定在该区间上有界,即m≤f(x)≤M.定理(零点定理)设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号(即f(a)×f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ<b)。
关于高等数学常见中值定理证明及应用
![关于高等数学常见中值定理证明及应用](https://img.taocdn.com/s3/m/41a46d72ed630b1c59eeb5aa.png)
关于高等数学常见中值定理证明及应用集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]中值定理首先我们来看看几大定理:1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ<b).Ps:c是介于A、B之间的,结论中的ξ取开区间。
介值定理的推论:设函数f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上有最大值M,最小值m,若m≤C≤M,则必存在ξ∈[a,b], 使得f(ξ)=C。
(闭区间上的连续函数必取得介于最大值M 与最小值m之间的任何值。
此条推论运用较多)Ps:当题目中提到某个函数f(x),或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值。
2、零点定理:设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号,即f(a).f(b)<0,那么在开区间内至少存在一点ξ使得f(ξ)=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.3、罗尔定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续;(2)、在开区间(a,b)内可导;(3)、在区间端点处函数值相等,即f(a)=f(b).那么在(a,b)内至少有一点ξ(<aξ<b),使得f`(x)=0;4、拉格朗日中值定理:如果函数f(x)满足:(1)、在闭区间[a,b]上连续;(2)、在开区间(a,b)内可导;那么在(a,b)内至少有一点ξ(<aξ<b),使得f(b)-f(a)=f`(ξ).(b-a).5、柯西中值定理:如果函数f(x)及g(x)满足(1)、在闭区间[a,b]上连续;(2)、在开区间(a,b)内可导;(3)、对任一x(a<x<b),g`(x)≠0,那么在(a,b)内至少存在一点ξ,使得Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值。
高数重要定理(高数上下)
![高数重要定理(高数上下)](https://img.taocdn.com/s3/m/74365a08cc175527072208d3.png)
1.找 n;
2.确定 x0,将函数 f (x)在点 x0处展开成泰勒公式.一般题设中会
提示一些特殊的点作为泰勒公式的展开点 x ,通常取 x 为函数值
0
0
为零的点、导数值为零的点、区间中点、函数的极值点或题设中
给出的其他特殊的点.
3.将区间端点a和b分别代入泰勒展开式,把得到的两个展开式相
加或相减.
若C = 1,称α ( x), β ( x)是等价无穷小,记为α ( x) ∼ β ( x);
(4)无穷小量的阶:
若lim
α(x) [β ( x)]k
=C
≠ 0,称α ( x)是β ( x)
的k 阶无穷小量.
宝典公式: (1) limg(x)=0, lim gf ((xx))= A,则lim f (x)=0; (2) lim f (x)=0, lim f (x)= A≠0,则limg(x)=0;
求导法则: 1.四则运算法则; 2.复合函数求导法; 3.隐函数求导法; 4.反函数求导数; 5.参数方程求导法; 6.对数求导法; 7.高阶导数.
高阶导数
1.归纳法
求一阶 y′、二阶 y′′,归纳n阶导数 y(n). 2.公式法(莱布尼兹公式):(uv)(n) = ∑n Cnk u(k) v(n−k).
g(x) (3) 已知lim f (x)g(x)= A,lim f (x)=∞,
则limg(x)=0.
1.连续函数的和,差,积,商(分母不为零)及复合仍连续. 2.初等函数在其定义区间内处处连续. 3.闭区间上连续函数的性质
(1)最值性:若 f (x)在[a,b]上连续, 则 f (x)在[a,b]上必有最大值
x→a F ′( x)
( x→∞)
高数十大定理
![高数十大定理](https://img.taocdn.com/s3/m/789054a9112de2bd960590c69ec3d5bbfd0adabb.png)
高数十大定理
1. 极限存在定理:若函数在某一点的左、右极限存在且相等,则该点的极限存在。
2. 泰勒展开定理:任意可导函数在某一点附近可以用其在该点的导数值来逼近。
3. 中值定理:如果函数在闭区间[a, b]上连续,在开区间(a, b)上可导且导数不为零,则在(a, b)内至少存在一个点c,使得函数在a 和b处的导数等于函数在c处的导数。
4. 柯西收敛准则:数列收敛的充要条件是,对于任意给定的正数ε,存在一个正整数N,使得当n>N时,数列的任意两项的差的绝对值小于ε。
5. 泰勒中值定理:如果函数在闭区间[a, b]上n+1次可导,则对于[a, b]内的任意一点c,存在一个介于a和c之间的点ξ,使得函数在c处的值等于其在a处展开的n次泰勒多项式加上余项。
6. 一致收敛定理:如果函数列在某个区间上点点收敛于另一个函数,且收敛过程中的极限函数仍然在该区间上连续,则称该函数列在该区间上一致收敛于极限函数。
7. 傅里叶级数定理:任意周期函数都可以用一系列正弦和余弦函数的线性组合来表示。
8. 法拉第电磁感应定律:当磁场的变化导致一个闭合回路中的磁通量发生变化时,该回路中将会产生感应电动势。
9. 可积性定理:如果函数在闭区间[a, b]上连续,则该函数在该区间上可积。
10. 柯西-施瓦茨不等式:对于复数域上的两个函数f(z)和g(z),如果它们在闭区域D上连续,且在该区域上可导,则有|∫_(z∈D) (f(z)g'(z))dz| ≤ ∫_(z∈D) |f(z)g'(z)|dz。
高数必背定理函数与极限
![高数必背定理函数与极限](https://img.taocdn.com/s3/m/a34bf9a8551810a6f524868d.png)
高数必背定理:函数与极限函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
3、函数的极限函数极限的定义中0定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A0(或f(x)>0),反之也成立。
函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。
一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。
如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。
4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.5、极限存在准则两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。
高数定理大解析必背
![高数定理大解析必背](https://img.taocdn.com/s3/m/77cddf036bd97f192279e9d8.png)
高等数学定理大解析-考研必捋版(考研大纲要求范围+高数重点知识)第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、函数的单调性、奇偶性、周期性(指最小正周期)3、数列的极限定理(极限的唯一性) 数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n +1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a。
●如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
4、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。
定理(极限的局部保号性)如果lim (x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x) >0(或f(x) >0),反之也成立。
●函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)= f(x0+0),若不相等则lim f(x)不存在。
●一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y = f(x)的图形水平渐近线。
如果lim(x→x0)f(x)=∞,则直线x=x0是函数y= f(x)图形的铅直渐近线。
高数定理定义总结
![高数定理定义总结](https://img.taocdn.com/s3/m/23ad8fa510661ed9ac51f312.png)
高数定理定义总结第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。
定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。
函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。
一般的说,如果l im(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。
如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。
4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.5、极限存在准则两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。
高数介值定理
![高数介值定理](https://img.taocdn.com/s3/m/49e5241659fb770bf78a6529647d27284b73378f.png)
高数介值定理高数介值定理是高等数学中的一个重要定理,它描述了一个连续函数在两个端点之间取遍所有可能的值的情况。
具体来说,如果一个函数f(x)在区间[a,b]上连续,那么它在[a,b]上的任意一个值都可以被取到。
这个定理在实际问题中有着广泛的应用,例如在物理学、经济学、工程学等领域中都有着重要的作用。
高数介值定理的证明可以通过反证法来进行。
假设存在一个值y,它在函数f(x)在区间[a,b]上无法取到。
那么可以构造一个新的函数g(x) = 1 / (f(x) - y),它在区间[a,b]上也是连续的。
由于y不在f(x)的取值范围内,所以g(x)在区间[a,b]上不会出现无穷大的情况。
因此,g(x)在区间[a,b]上也是有界的。
根据闭区间套定理,可以得到g(x)在[a,b]上存在一个最大值M和最小值m。
由于g(x)是连续的,所以在[a,b]上必然存在一个点c,使得g(c) = M或g(c) = m。
如果g(c) = M,那么f(c) = y + 1 / M,如果g(c) = m,那么f(c) = y + 1 / m。
因此,f(x)在区间[a,b]上可以取到所有的值,与假设矛盾,证毕。
高数介值定理的应用非常广泛。
例如,在物理学中,它可以用来证明连续介质中存在一个折射角,使得光线从一个介质中射入另一个介质时发生折射。
在经济学中,它可以用来证明存在一个价格,使得市场上所有的商品都可以以这个价格出售。
在工程学中,它可以用来证明存在一个温度,使得材料在这个温度下具有最大的强度。
总之,高数介值定理是高等数学中的一个重要定理,它描述了一个连续函数在两个端点之间取遍所有可能的值的情况。
它在实际问题中有着广泛的应用,例如在物理学、经济学、工程学等领域中都有着重要的作用。
高数的经典定理
![高数的经典定理](https://img.taocdn.com/s3/m/aab0fb6259fb770bf78a6529647d27284a733715.png)
高数的经典定理一、引言高等数学,作为数学的一个重要分支,主要研究变量、函数、极限、连续性、可微性和积分等概念。
其中,一些经典定理在学科中占据着核心地位,它们不仅展示了数学的严谨性,而且在实际应用中发挥了巨大作用。
本文将介绍几个高数的经典定理,探讨其证明和应用。
二、高数的经典定理1.极限定理:极限定理描述了函数在某点或无穷远点的行为。
特别是,如果一个函数在某点的极限存在,那么在该点附近的行为可以由该极限值来描述。
这个定理在高数的许多其他概念中都有应用,如连续性、可微性和积分。
2.微积分基本定理:微积分基本定理将函数的积分与它的原函数联系起来,为计算定积分提供了有效的方法。
这个定理是微积分学的基石,是解决各种实际问题的有力工具。
3.泰勒展开式:泰勒展开式是一个函数的无穷级数展开,它为研究函数的性质提供了深入的视角。
这个定理在高数和复变函数中都有广泛应用。
三、定理的应用让我们通过一个实际例子来理解这些定理的应用。
考虑如何计算一个复杂函数的定积分。
我们可以使用微积分基本定理将问题转化为求原函数的问题,然后利用泰勒展开式得到一个级数近似,最终找到我们所需的积分值。
这种方法在实际中具有广泛的用途,特别是在处理复杂物理模型时。
四、高数经典定理的价值和重要性高数的经典定理不仅在数学领域内具有重要价值,而且在解决实际问题时也表现出其独特的优势。
这些定理为复杂问题的解决提供了有效的策略和工具,大大提高了问题解决的效率和准确性。
同时,这些定理也展示了数学的严谨性和美感,激发了人们对数学的兴趣和热爱。
五、与其他领域的比较在数学的其他分支和许多专业领域中,也有许多重要的定理和概念。
例如,线性代数中的特征值和特征向量、概率论中的大数定律等。
这些定理都具有深远的影响和应用。
然而,与高数的经典定理相比,它们更侧重于特定领域或问题的解决,而高数的经典定理则具有更广泛的适用性和更强的构造性。
六、结论高数的经典定理是高等数学的核心内容,它们不仅在高数领域中发挥着关键作用,而且在实际应用中也表现出其强大的威力。
高数格林公式
![高数格林公式](https://img.taocdn.com/s3/m/c62e8531591b6bd97f192279168884868762b8ac.png)
高数格林公式高数中的格林公式是一种常用的计算曲线积分的方法,它是由德国数学家格林于19世纪提出的。
格林公式是微积分中的重要定理之一,它建立了曲线积分与面积分之间的联系,为解决曲线积分问题提供了有效的方法。
格林公式的核心思想是将曲线积分转化为面积分,从而简化计算过程。
假设曲线C是一个简单闭合曲线,将曲线C所围成的区域记为D。
格林公式的一般形式可以表示为:∮C (Pdx + Qdy) = ∬D (Qx - Py)dA其中,P和Q是平面区域D内的连续偏导数,dx和dy分别表示曲线C的弧长和法向量。
等式右边的∬D (Qx - Py)dA表示对于区域D的面积分,Qx和Py分别是Q和P对x和y的偏导数。
格林公式实际上是将曲线C所围成的区域D划分为许多微小的面元,然后对每个微小面元进行积分计算,最后将结果相加得到整个曲线积分的结果。
这种方法使得曲线积分的计算变得简单明了。
格林公式的应用非常广泛。
在物理学中,格林公式被用于计算电场和磁场的曲线积分,从而求解电荷和电流的分布情况。
在工程学中,格林公式被用于计算流体的流量和压力分布,以及各种力学问题的求解。
在几何学中,格林公式被用于计算曲线的长度、曲率和曲面的面积。
为了更好地理解格林公式,我们来看一个简单的例子。
假设有一个曲线C,它是一个圆形,半径为R。
我们要计算曲线C上一个向量场F的环绕曲线积分∮C F·dr。
根据格林公式,我们可以将曲线积分转化为面积分∬D (Qx - Py)dA,其中D为曲线C所围成的区域。
我们需要计算向量场F的横纵坐标分量P和Q的偏导数。
假设F = (P, Q),则根据题目给出的条件,可以得到P和Q的偏导数分别为∂P/∂x和∂Q/∂y。
然后,我们需要计算∬D (Qx - Py)dA,即将区域D划分为许多微小的面元,对每个面元进行积分计算。
在本例中,区域D是一个圆盘,半径为R。
我们可以将圆盘分为许多微小的扇形面元,每个面元的面积可以近似表示为dA = r dθ,其中r为距离圆心的半径,θ为面元所对应的角度。
费马定理高数
![费马定理高数](https://img.taocdn.com/s3/m/7c70d35e1fd9ad51f01dc281e53a580216fc502f.png)
费马定理高数费马定理,又称为费马小定理,是数论中的一条重要定理,由法国数学家费马在17世纪提出并证明。
这个定理在数论和密码学等领域有着广泛的应用,是一种非常强大的工具。
费马定理的表述非常简洁明了:如果p是一个素数,a是任意一个整数,那么a的p次方减去a一定能被p整除。
换句话说,对于任意一个整数a,当p是一个素数时,a的p次方与a模p同余。
这个定理的证明并不难,可以通过数学归纳法来进行。
首先,当a=1时,定理显然成立。
然后,我们假设当a=k时,定理成立,即k的p次方与k模p同余。
那么我们来看a=k+1的情况,根据二项式定理,(k+1)^p的展开式中,除了首尾两项外,其他所有的项都能被p整除。
而根据归纳假设,k的p次方与k模p同余,所以k^p与k模p同余。
因此,(k+1)^p ≡ k^p + 1 ≡ k + 1 (mod p),即(k+1)^p与k+1模p同余。
由此可见,当a=k+1时,定理也成立。
综上所述,根据数学归纳法,费马定理得证。
费马定理虽然简单,但却有着广泛的应用。
其中一个重要的应用是在密码学中的素数测试。
素数的选取在密码学中至关重要,而费马定理提供了一种快速判断一个数是否为素数的方法。
通过随机选取一些整数a,然后利用费马定理进行检验,如果a的p次方减去a 不能被p整除,那么p一定不是素数。
这种方法称为费马检验,被广泛应用于素数的筛选和生成。
费马定理还有其他的一些应用。
例如,在计算机科学中,费马定理可以用来加速大数取模运算,从而提高计算效率。
在代数数论中,费马定理可以用于研究数的整除性质。
在密码学中,费马定理也被用于构建一些重要的加密算法,如RSA算法。
费马定理的发现和证明,不仅体现了费马的数学才华,也展示了数学的魅力和力量。
费马定理虽然简短,但它以其广泛的应用领域和重要的理论意义,成为了数学中的一颗明星。
通过深入研究和理解费马定理,我们可以更好地应用它解决实际问题,也能更好地欣赏数学的美妙之处。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、数列的极限定理(极限的唯一*)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界*)如果数列{xn}收敛,那么数列{xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。
定理(极限的局部保号*)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。
函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。
一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。
如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。
4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.5、极限存在准则两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。
单调有界数列必有极限。
6、函数的连续性设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x)当x→x0时的极限存在,且等于它在点x0处的函数值f(x0),即lim(x→x0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。
不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim(x→x0)f(x)不存在;3、虽在x=x0有定义且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)时则称函数在x0处不连续或间断。
如果x0是函数f(x)的间断点,但左极限及右极限都存在,则称x0为函数f(x)的第一类间断点(左右极限相等者称可去间断点,不相等者称为跳跃间断点)。
非第一类间断点的任何间断点都称为第二类间断点(无穷间断点和震荡间断点)。
定理有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的函数。
定理如果函数f(x)在区间Ix上单调增加或减少且连续,那么它的反函数x=f(y)在对应的区间Iy={y|y=f(x),x∈Ix}上单调增加或减少且连续。
反三角函数在他们的定义域内都是连续的。
定理(最大值最小值定理)在闭区间上连续的函数在该区间上一定有最大值和最小值。
如果函数在开区间内连续或函数在闭区间上有间断点,那么函数在该区间上就不一定有最大值和最小值。
定理(有界性定理)在闭区间上连续的函数一定在该区间上有界,即m≤f(x)≤M.定理(零点定理)设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号(即f(a)×f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ<b)。
推论在闭区间上连续的函数必取得介于最大值M与最小值m之间的任何值。
第二章导数与微分1、导数存在的充分必要条件函数f(x)在点x0处可导的充分必要条件是在点x0处的左极限lim(h→-0)[f(x0+h)-f(x0)]/h及右极限lim(h→+0)[f(x0+h)-f(x0)]/h都存在且相等,即左导数f-′(x0)右导数f+′(x0)存在相等。
2、函数f(x)在点x0处可导=>函数在该点处连续;函数f(x)在点x0处连续≠>在该点可导。
即函数在某点连续是函数在该点可导的必要条件而不是充分条件。
3、原函数可导则反函数也可导,且反函数的导数是原函数导数的倒数。
4、函数f(x)在点x0处可微=>函数在该点处可导;函数f(x)在点x0处可微的充分必要条件是函数在该点处可导。
第三章中值定理与导数的应用1、定理(罗尔定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且在区间端点的函数值相等,即f(a)=f(b),那么在开区间(a,b)内至少有一点ξ(a<ξ<b),使的函数f(x)在该点的导数等于零:f’(ξ)= 0.2、定理(拉格朗日中值定理)如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么在开区间(a,b)内至少有一点ξ(a<ξ<b),使的等式f(b)-f(a)= f’(ξ)(b-a)成立即f’(ξ)= [f(b)-f(a)]/(b-a)。
3、定理(柯西中值定理)如果函数f(x)及F(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且F’(x)在(a,b)内的每一点处均不为零,那么在开区间(a,b)内至少有一点ξ,使的等式[f(b)-f(a)]/[F(b)-F(a)]=f’(ξ)/F’(ξ)成立。
4、洛必达法则应用条件只能用与未定型诸如0/0、∞/∞、0×∞、∞-∞、00、1∞、∞ 0等形式。
5、函数单调性的判定法设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么:(1)如果在(a,b)内f’(x)>0,那么函数f(x)在[a,b]上单调增加;(2)如果在(a,b)内f’(x)<0,那么函数f(x)在[a,b]上单调减少。
如果函数在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,那么只要用方程f’(x)=0的根及f’(x)不存在的点来划分函数f(x)的定义区间,就能保证f’(x)在各个部分区间内保持固定符号,因而函数f(x)在每个部分区间上单调。
6、函数的极值如果函数f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,如果存在着点x0的一个去心邻域,对于这去心邻域内的任何点x,f(x)f(x0)均成立,就称f(x0)是函数f(x)的一个极小值。
在函数取得极值处,曲线上的切线是水平的,但曲线上有水平曲线的地方,函数不一定取得极值,即可导函数的极值点必定是它的驻点(导数为0的点),但函数的驻点却不一定是极值点。
定理(函数取得极值的必要条件)设函数f(x)在x0处可导,且在x0处取得极值,那么函数在x0的导数为零,即f’(x0)=0.定理(函数取得极值的第一种充分条件)设函数f(x)在x0一个邻域内可导,且f’(x0)=0,那么:(1)如果当x取x0左侧临近的值时,f’(x)恒为正;当x去x0右侧临近的值时,f’(x)恒为负,那么函数f(x)在x0处取得极大值;(2)如果当x取x0左侧临近的值时,f’(x)恒为负;当x去x0右侧临近的值时,f’(x)恒为正,那么函数f(x)在x0处取得极小值;(3)如果当x取x0左右两侧临近的值时,f’(x)恒为正或恒为负,那么函数f(x)在x0处没有极值。
定理(函数取得极值的第二种充分条件)设函数f(x)在x0处具有二阶导数且f’(x0)=0,f’’(x0)≠0那么:(1)当f’’(x0)<0时,函数f(x)在x0处取得极大值;(2)当f’’(x0)>0时,函数f(x)在x0处取得极小值;驻点有可能是极值点,不是驻点也有可能是极值点。
7、函数的凹凸性及其判定设f(x)在区间Ix上连续,如果对任意两点x1,x2恒有f[(x1+x2)/2]<[f(x1)+f(x1)]/2,那么称f(x)在区间Ix上图形是凹的;如果恒有f[(x1+x2)/2]>[f(x1)+f(x1)]/2,那么称f(x)在区间Ix上图形是凸的。
定理设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内具有一阶和二阶导数,那么(1)若在(a,b)内f’’(x)>0,则f(x)在闭区间[a,b]上的图形是凹的;(2)若在(a,b)内f’’(x)<0,则f(x)在闭区间[a,b]上的图形是凸的。
判断曲线拐点(凹凸分界点)的步骤(1)求出f’’(x);(2)令f’’(x)=0,解出这方程在区间(a,b)内的实根;(3)对于(2)中解出的每一个实根x0,检查f’’(x)在x0左右两侧邻近的符号,如果f’’(x)在x0左右两侧邻近分别保持一定的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。
在做函数图形的时候,如果函数有间断点或导数不存在的点,这些点也要作为分点。
第四章不定积分1、原函数存在定理定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。
分部积分发如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。
如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u.2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。
第五章定积分1、定积分解决的典型问题(1)曲边梯形的面积(2)变速直线运动的路程2、函数可积的充分条件定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。
定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。
3、定积分的若干重要性质性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0.推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx.推论|∫abf(x)dx|≤∫ab|f(x)|dx.性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。