高等数学必背公式大全一目了然版

合集下载

高中数学必备必考公式大全

高中数学必备必考公式大全

高考数学必备必考公式大全一、集合1.并集的运算A∪B={x|x∈A,或x∈B}2. 并集的运算性质(1) A∪A=A(2)A∪∅=A(3)A∪B=B∪A(4) A∪B=A⇔B⊆A3. 交集的运算A∩B={x|x∈A,且x∈B}4. 交集的运算性质(1)A∩A=A(2)A∩∅=∅(3)A∩B=B∩A(4)A∩B=A⇔A⊆B5. 补集的运算∁U A={x|x∈U,且x∉A}6. 补集的运算性质(1) ∁U (∁U A)=A(2) ∁U U=∅,∁U∅=U(3)A∪(∁U A)=U,A∩(∁U A)=∅(4) ∁U (A∩B)=( ∁U A)∪(∁U B), ∁U (A∪B)=( ∁U A)∩(∁U B)二、函数与导数公式1. 有理数指数幂的运算性质(1)a r a s=a r+s(a>0,r,s∈Q)(2)=a r-s(a>0,r,s∈Q)(3)(a r)s=a rs(a>0,r,s∈Q)(4)(ab)r=a r b r(a>0,b>0,r∈Q)2.对数运算公式(1)对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:log a(M·N)=log a M+log a N;log a=log a M-log a N;log a M n=n log a M(n∈R)(2)对数恒等式a log aN =N(a>0,且a≠1,N>0)(3)对数运算的换底公式log a b=(a>0,且a≠1;c>0,且c≠1;b>0)(4)换底公式的变形log a b·log b a=1,即log a b=lo b n=log a blog N M==(5)换底公式的推广log a b·log b c·log c d=log a d3.求导公式及运算法则(1)基本初等函数的导数公式a.若f(x)=c(c为常数),则f'(x)=0.b.若f(x)=x n(n∈Q*),则f'(x)=nx n-1.c.若f(x)=sin x,则f'(x)=cos x.d.若f(x)=cos x,则f'(x)=-sin x.e.若f(x)=a x,则f'(x)=a x ln a.f.若f(x)=e x,则f'(x)=e x.g.若f(x)=log a x,则f'(x)=.h.若f(x)=ln x,则f'(x)=.(2)导数运算法则a.[f(x)±g(x)]'=f'(x)±g'(x)b.[f(x)·g(x)]'=f'(x)g(x)+f(x)g'(x)c.[]'=(g(x)≠0)(3)复合函数的导数(理)设y=f(u),u=φ(x),则y'x=y'u u'x或记作f '[φ(x)]=f '(u)φ'(x).特别地,[f (ax +b )] '=a f' (ax+b).4.定积分的运算性质(理)(1)b a ⎰kf (x )d x=k b a ⎰f (x )d x (k 为常数)(2) b a ⎰[f (x )±g (x )]d x=b a ⎰f (x )d x±b a ⎰g (x )d x (3)b a ⎰f (x )d x=-a b ⎰f (x )d x(4)c a ⎰f (x )d x=b a ⎰f (x )d x+cb ⎰f (x )d x (a<b<c )三、三角函数1. 同角关系:(1)平方关系:sin 2α+cos 2α=1.(2)商的关系:=tan α(α≠+k π,k ∈Z ). 2. 诱导公式:奇变偶不变,符号看象限。

大学高等数学公式大全

大学高等数学公式大全

大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。

2. 导数的运算法则:常数函数的导数为0。

幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。

指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。

对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。

三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。

3. 高阶导数:函数的导数可以继续求导,得到高阶导数。

例如,f''(x)表示二阶导数。

二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。

2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。

幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。

指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。

对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。

三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。

3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。

积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。

积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。

高中数学必备的289个公式

高中数学必备的289个公式
42.周期性标志:(1)f(x+a)=f(x+b)⇒T=|a-b|;
(2)f(x+a)=-f(x)⇒T=2a;
(3)f(x+a)=±f(x)⇒T=2a
43.对称轴标志:f(x+a)=-f(b-x)⇒对称中心为(a+b,0);
如常见的对称中心有:f(x+a)=-f(a-x)⇒对称中心为(a,0);f(x+1)=-f(1-x)⇒对称 中心为(1,0).
16.不等式相同性:任意x∈D,证明:
f(x)>g(x)⇔h(x)=f(x)-g(x)>0⇔h(x)min>0;
存在x∈D,证明:f(x)≤g(x)⇔h(x)=f(x)-g(x)≤0⇔h(x)min≤0.
17.不等式相异性:任意x1、x2∈D,证明:f(x1)<g(x2)⇔x∈D,f(x)max<g(x)min;存在x1、x2∈D,证明:f(x1)>g(x2)⇔x∈D,f(x)max>g(x)min.
第2章函数
31.几个近似值:2≈1.414,3≈1.732,5≈2.236,
π≈3.142,e≈2.718,e2≈7.389,
ln3≈1.0986,ln2≈0.693.32.指数公式:(1)am=man;(2)nan={|a|,n为偶数.
33.对数公式:
(1)ax=N⇔x=logaN;(2)alogaN=N;
x1+y1x2+y2≥x1x2+y1y2.
(1+x)n≥xn+nx;n≥1(1+x)n≤1+nx;0≤n≤1
86.洛必达法则:limf(x)=limf'(x)(当f(x)→0或∞时使用).
87.恒成立问题:(1)a≥f(x)⇔a≥f(x)max;(2)a<f(x)⇔a<f(x)min.

高等数学常用公式大全

高等数学常用公式大全

高等数学常用公式大全1.微分学公式:- 导数的定义:若函数y=f(x)在点x0处可导,则其导数为f'(x0)=lim(x→x0)⁡(f(x)-f(x0))/(x-x0)-基本导数公式:- (1) 常数函数的导数:d(C)/dx = 0,其中C为常数- (2) 幂函数的导数:d(x^n)/dx = n*x^(n-1),其中n为实数- (3) 指数函数的导数:d(e^x)/dx = e^x- (4) 对数函数的导数:d(ln(x))/dx = 1/x- (5) 三角函数的导数:d(sin(x))/dx = cos(x),d(cos(x))/dx = -sin(x),d(tan(x))/dx = sec^2(x),d(cot(x))/dx = -csc^2(x),d(sec(x))/dx = sec(x)*tan(x),d(csc(x))/dx = -csc(x)* cot(x)2.积分学公式:- 不定积分的性质:∫(f(x)+g(x))dx = ∫f(x)dx + ∫g(x)dx,∫k*f(x)dx = k*∫f(x)dx,其中f(x)和g(x)是可积函数,k是常数-基本积分公式:- (1) 幂函数的不定积分:∫x^n dx = (1/(n+1))*x^(n+1) + C,其中n不等于-1- (2) 指数函数的不定积分:∫e^x dx = e^x + C,其中C为常数- (3) 对数函数的不定积分:∫1/x dx = ln,x, + C- (4) 三角函数的不定积分:∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C,∫tan(x) dx = -ln,cos(x), + C,∫cot(x) dx = ln,sin(x), + C,∫sec(x) dx = ln,sec(x)+tan(x), + C,∫csc(x) dx = ln,csc(x)-cot(x), + C3.微分方程公式:- 一阶线性微分方程:dy/dx + p(x)y = q(x),其中p(x)和q(x)是已知函数,分别称为系数函数和非齐次项函数。

关于高等数学公式大全几乎包含了所有

关于高等数学公式大全几乎包含了所有

关于高等数学公式大全几乎包含了所有一、微分学公式1. 线性函数的导数:(kx)' = k2. 幂函数的导数:(x^n)' = nx^(n-1)3.e^x的导数:(e^x)'=e^x4. sinx 的导数:(sinx)' = cosx5. cosx 的导数:(cosx)' = -sinx6. tanx 的导数:(tanx)' = sec^2x7. cotx 的导数:(cotx)' = -csc^2x8. ln(x) 的导数:(ln(x))' = 1/x9. a^x 的导数:(a^x)' = ln(a) * a^x二、积分学公式1. 线性函数的积分:∫(kx)dx = (k/2)x^2 + C2. 幂函数的积分:∫(x^n)dx = (1/(n+1))x^(n+1) + C, (n≠-1)3. e^x 的积分:∫e^xdx = e^x + C4. sinx 的积分:∫sinxdx = -cosx + C5. cosx 的积分:∫cosxdx = sinx + C6. tanx 的积分:∫tanxdx = -ln,cosx, + C7. cotx 的积分:∫cotxdx = l n,sinx, + C8. 1/(x+a) 的积分:∫(1/(x+a))dx = ln,x+a, + C9. 1/(x^2+a^2) 的积分:∫(1/(x^2+a^2))dx = (1/a)arctan(x/a) + C三、级数和序列的公式1.等差数列的前n项和:Sn = n(a1+an)/22.等比数列的前n项和:Sn=a1(1-q^n)/(1-q)3.等差级数的和:S = (n/2)(a1+an)4.等比级数的和:S=a1/(1-q),,q,<15.幂级数的和:S=a/(1-r),,r,<16.泰勒级数:f(x)=f(a)+(x-a)f'(a)/1!+(x-a)^2f''(a)/2!+...四、微分方程的公式1. 一阶常微分方程:dy/dx + P(x)y = Q(x), y = C∫(e^(-∫P(x)dx))Q(x)dx2. 二阶常系数非齐次线性微分方程:ay''+by'+cy=g(x),其中非齐次解为 y = yc + yp3. 欧拉方程:x^n*d^n(y)/dx^n + a_(n-1)*x^(n-1)*d^(n-1)(y)/dx^(n-1) +...+ a_1*x*d(y)/dx + a_0*y = 0以上只是高等数学公式的一部分,包括微分学、积分学、级数和序列以及微分方程等方面的公式。

高等数学公式(word版,全面)

高等数学公式(word版,全面)

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

高等数学公式所有大全

高等数学公式所有大全
1、导数公式:
高等数学公式大全
(tgx)′ = sec2 x
(ctgx)′ = −csc2 x
(sec x)′ = sec x ⋅tgx
(csc x)′ = −csc x ⋅ ctgx
(a x )′ = a x ln a
(log x)′ = 1
a
x ln a
(arcsin x)′ = 1 1− x2
tg

±
β
)
=
tgα ± 1µ tgα
tgβ ⋅ tgβ
ctg

±
β
)
=
ctgα ⋅ ctgβ
ctgβ µ1 ± ctgα
·和差化积公式:
sinα + sin β = 2sin α + β cos α − β
2
2
sinα − sin β = 2cos α + β sin α − β
2
2
cosα + cos β = 2cos α + β cos α − β
=
−ctgx
+
C
∫sec x ⋅tgxdx = sec x + C
∫ csc x ⋅ctgxdx = −csc x + C
∫ a xdx = a x + C ln a
∫ shxdx = chx + C
∫ chxdx = shx + C
∫ dx = ln(x + x2 ± a2 ) + C x2 ± a2
引力:F
=
k
m1m2 r2
, k为引力系数
函数的平均值:y =
1
b
∫ f (x)dx

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)

高中数学公式大全(最整理新版)一、代数1. 一元一次方程:ax + b = 0,其中a ≠ 0。

解为 x = b/a。

2. 一元二次方程:ax^2 + bx + c = 0,其中a ≠ 0。

解为 x =[b ± sqrt(b^2 4ac)] / 2a。

3. 一元三次方程:ax^3 + bx^2 + cx + d = 0,其中a ≠ 0。

解为x = [b ± sqrt(b^2 3ac)] / 3a。

4. 一元四次方程:ax^4 + bx^3 + cx^2 + dx + e = 0,其中 a≠ 0。

解为x = [b ± sqrt(b^2 4ac)] / 2a。

5. 分式方程:分子和分母均为多项式。

解法为将方程两边乘以分母的乘积,得到一个等价的整式方程,然后求解。

6. 二元一次方程组:由两个一元一次方程组成的方程组。

解法为消元法或代入法。

7. 二元二次方程组:由两个一元二次方程组成的方程组。

解法为消元法或代入法。

8. 三元一次方程组:由三个一元一次方程组成的方程组。

解法为消元法或代入法。

9. 等差数列:首项为 a1,公差为 d。

第 n 项为 an = a1 + (n 1)d。

前 n 项和为 Sn = n/2(a1 + an)。

10. 等比数列:首项为 a1,公比为 q。

第 n 项为 an = a1q^(n 1)。

前 n 项和为 Sn = a1 (1 q^n) / (1 q),其中q ≠ 1。

二、几何1. 平面几何(1)直线:两点确定一条直线,直线方程为 y = mx + b,其中m 是斜率,b 是截距。

(2)圆:圆心为 (a, b),半径为 r。

圆的方程为 (x a)^2 +(y b)^2 = r^2。

(3)椭圆:中心为 (a, b),长轴为 2a,短轴为 2b。

椭圆的方程为 (x a)^2 / a^2 + (y b)^2 / b^2 = 1。

(4)双曲线:中心为 (a, b),实轴为 2a,虚轴为 2b。

最完整高数公式大全赶紧了以后用

最完整高数公式大全赶紧了以后用

最完整高数公式大全赶紧了以后用1.极限相关公式:- 极限定义:如果对于任意一个给定的正数ε,存在正数δ,使得只要x与a的距离小于δ,则必有f(x)与L的距离小于ε,即lim(x→a)f(x)=L。

2.一元函数相关公式:- 基本求导法则:(C)'=0,(xⁿ)'=nxⁿ⁻¹,(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec²x,(cotx)'=-csc²x,(secx)'=secxtanx,(cscx)'=-cscxcotx。

- 链式法则:设y=f(u),u=g(x),则y=f(g(x)),则y'=(dy)/(dx)=(dy)/(du)*(du)/(dx)=f'(u)*g'(x)。

-高阶导数:(fⁿ(x))'=fⁿ⁻¹(x)·f'(x),其中n为正整数。

-函数泰勒级数展开式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)²/2!+…+fⁿ(a)(x-a)ⁿ/n!+Rⁿ(x),其中Rⁿ(x)为剩余项。

- 微分方程:设y=f(x),则dy/dx=f'(x),d²y/dx²=f''(x),…3.多元函数相关公式:-偏导数:设z=f(x,y),则∂z/∂x表示在y固定的条件下对x的变化率,∂z/∂y表示在x固定的条件下对y的变化率。

-链式法则:设z=f(x,y),x=g(u,v),y=h(u,v),则∂z/∂u=∂z/∂x*∂x/∂u+∂z/∂y*∂y/∂u,…- 梯度:设z=f(x₁,x₂,…,xₙ),则gradz=(∂z/∂x₁,∂z/∂x₂,…,∂z/∂xₙ)。

- 散度:设F=(P,Q,R)为一个三维向量场,则divF=∂P/∂x+∂Q/∂y+∂R/∂z。

高数公式总结

高数公式总结

高等数学公式汇总第一章一元函数的极限与连续1、常用初等函数公式:和差角公式:sin(α±β)=sinαcosβ±cosαsinβcos(α±β)=cosαcosβm sinαsinβtanα±tanβ1m tanα⋅tanβcotα⋅cotβm1cot(α±β)=cotβ±cotαsh(α±β)=shαchβ±chαshβtan(α±β)=ch(α±β)=chαchβ±shαshβ和差化积公式:22α+βα−βsinα−sinβ=2cos sin22α+βα−βcosα+cosβ=2cos cos22α+βα−βcosα−cosβ=2sin sin22 sinα+sinβ=2sinα+βcosα−β积化和差公式:1sinαcosβ=[sin(α+β)+sin(α−β)]21cosαsinβ=[sin(α+β)−sin(α−β)]21cosαcosβ=[cos(α+β)+cos(α−β)]21sinαsinβ=[cos(α+β)−cos(α−β)]2倍角公式:sin2α=2sinαcosαcos2α=2cos2α−1=1−2sin2α=cos2α−sin2α2tanα1−tan2αcot2α−1cot2α=2cotαsh2α=2shαchαtan2α=ch2α=1+2sh2α==2ch2α−1=ch2α+sh2αsin 2α+cos 2α=1;tan 2x +1=sec 2x ;cot 2x +1=csc 2x ;ch 2x −sh 2x =1半角公式:sin cos tan cot α2=±=±=±=±1−cos α21+cos α21−cos α1−cos αsin α== 1+cos αsin α1+cos α1+cos α1+cos αsin α==1−cos αsin α1−cos αα2α2α2e x −e −x 双曲正弦:shx =;反双曲正弦:arshx =ln(x +x 2+1)2e x +e −x双曲余弦:chx =;反双曲余弦:archx =±ln(x +x 2−1)2shx e x −e −x 11+x双曲正切:thx ==x −x ;反双曲正切:arthx =lnchx e +e 21−x(a 3±b 3)=(a ±b )(a 2m ab +b 2),12+22+L +n 2=n (n +1)(2n +1)6n 2(n +1)21+2+L +n =43332、极限➢常用极限:q <1,lim q n =0;a >1,lim n a =1;lim n n =1n →∞n →∞n →∞➢若f (x )→0,g (x )→∞,则lim[1±f (x )]➢两个重要极限g (x )=elimln(1+f (x ))1/g (x )ln(1+f (x ))~f (x )⎯⎯⎯⎯⎯⎯→e ±lim[f (x )g (x )]1sin x sin x 1x lim =1,lim =0;lim(1+)=e =lim(1+x )xx →0x →∞x →∞x →0x x x ➢常用等价无穷小:1−cos x ~121x ;x ~sin x ~arcsin x ~arctan x ;n 1+x −1~x ;2na x −1~x ln a ;e x ~x +1;(1+x )a ~1+ax ;ln(1+x )~x3、连续:定义:lim ∆y =0;lim f (x )=f (x 0)∆x →0x →x 0−+极限存在⇔lim f (x )=lim f (x )或f (x )=f (x )00−+x →x 0x →x 0第二章导数与微分基本导数公式:f (x 0+∆x )−f (x 0)f (x )−f (x 0)∆y=lim=lim =tan α∆x →0∆x ∆x →0x →x 0∆x x −x 0f '(x 0)=lim −+导数存在⇔f _'(x 0)=f +'(x 0)C '=0; (x a )'=ax a −1; (sin x )'=cos x ; (cos x )'=sin x ; (tan x )'=sec 2x ; (cot x )'=−csc 2x ;(sec x )'=sec x ⋅tan x ; (csc x )'=−csc x ⋅ctgx ; (a x )'=a x ln a ;(e x )'=e x ;1111; (ln x )'=; (arcsin x )'=; (arccos x )'=−;22x ln a x 1−x 1−x 11'(arctan x )'=; (arc cot x )=−; (shx )'=hx ;(chx )'=shx ;221+x 1+x 1111(thx )'=2; (arshx )'=; (archx )'=;(arthx )'=2ch x x −11+x 2x 2−1(log a x )'=2、高阶导数:(x n )(k )=n !x n −k ⇒(x n )(n )=n !; (a x )(n )=a x ln n a ⇒(e x )(n )=e x (n −k )!1(n )(−1)n n !1(n )(−1)n n !1(n )n !()=; ()=; ()=x x n +1x +a (x +a )n +1a −x (a −x )n +1ππ(sin kx )(n )=k n ⋅sin(kx +n ⋅); (cos kx )(n )=k n ⋅cos(kx +n ⋅);22[ln(a +x )](n )=(−1)n −1(n −1)!1(n −1)(n )n −1(n −1)!⇒[ln(x )]=()=(−1)n n(a +x )x x 牛顿-莱布尼兹公式:(uv )(n )k (n −k )(k )=∑C nu v k =0n=u (n )v +nu (n −1)v '+n (n −1)(n −2)n (n −1)L (n −k +1)(n −k )(k )u v ''+L +u v +L +uv (n )2!k !3、微分:∆y =f (x +∆x )−f (x )=dy +o (∆x );dy =f '(x 0)∆x =f '(x )dx ;连续⇒极限存在⇔收敛⇒有界;不连续⇒不可导可微⇔可导⇔左导=右导⇒连续;第三章基本定理微分中值定理与微分的应用拉格朗日中值定理:f (b )−f (a )=f '(ξ)(b −a ),ξ∈(a ,b )f (b )−f (a )f '(ξ)柯西中值定理:=,ξ∈(a ,b )F (b )−F (a )F '(ξ)当F(x )=x 时,柯西中值定理就是拉格朗日中值定理。

最完整高数公式大全,赶紧收藏了,以后用

最完整高数公式大全,赶紧收藏了,以后用

高等数学公式·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/ sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+s inα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-si nαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

关于高等数学公式总结归纳绝对完整版

关于高等数学公式总结归纳绝对完整版

关于高等数学公式总结归纳绝对完整版高等数学是一门重要且广泛应用的学科,其中包含了许多公式和定理。

下面是一份高等数学公式的总结归纳,涵盖了微积分、线性代数、常微分方程等内容。

微积分公式:1. 导数的定义:对于函数 f(x),在 x 处的导数定义为 f'(x) =lim(h→0) [f(x+h) - f(x)]/h。

2.常见函数的导数公式:-常数函数的导数为0。

- 幂函数 f(x) = x^n 的导数为 f'(x) = nx^(n-1)。

- 指数函数 f(x) = a^x (a>0)的导数为 f'(x) = (ln a) * a^x。

- 对数函数 f(x) = log_a x (a>0 且a≠1)的导数为 f'(x) =1/(x * ln a)。

- 三角函数 f(x) = sin x, cos x, tan x, cot x 的导数为 f'(x)= cos x, -sin x, sec^2x, -csc^2x。

3.高阶导数:若函数f(x)的导数存在,则f'(x)的导数称为f(x)的二阶导数,记作f''(x)。

4.泰勒展开公式:对于函数f(x),在x=a处的泰勒展开公式为f(x)=f(a)+f'(a)(x-a)+(1/2!)f''(a)(x-a)^2+...+(1/n!)f^n(a)(x-a)^n。

线性代数公式:1.矩阵运算:-矩阵求逆:若A是一个非奇异矩阵,则存在一个矩阵B,使得AB=BA=I,其中I是单位矩阵。

-矩阵的转置:将矩阵的行与列对换得到的新矩阵称为原矩阵的转置矩阵。

- 矩阵的乘法:设 A 为m×n 的矩阵,B 为n×p 的矩阵,则它们的乘积 C = AB 是一个m×p 的矩阵,其中 C 的元素c_ij = ∑(k=1到n) a_ik * b_kj。

2.行列式:- 二阶行列式:对于二阶方阵 A = [a b; c d],它的行列式为det(A) = ad - bc。

200条高中数学公式总结大全(非常详细)

200条高中数学公式总结大全(非常详细)

200条⾼中数学公式总结⼤全(⾮常详细)数学公式,是表征⾃然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从⼀种事物到达另⼀种事物的依据,使我们更好的理解事物的本质和内涵。

如⼀些基本公式抛物线:y = ax *+ bx + c就是y等于ax 的平⽅加上 bx再加上 ca > 0时开⼝向上a < 0时开⼝向下="">c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平⽅+k-h是顶点坐标的xk是顶点坐标的y⼀般⽤于求最⼤值与最⼩值抛物线标准⽅程:y^2=2px它表⽰抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线⽅程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准⽅程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)⾯积=(pi)(r^2)周长=2(pi)r圆的标准⽅程 (x-a)2+(y-b)2=r2 注:(a,b)是圆⼼坐标圆的⼀般⽅程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0⾼中学习帮的⼩程序开通啦(⼀)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

(⼆)椭圆⾯积计算公式椭圆⾯积公式: S=πab椭圆⾯积定理:椭圆的⾯积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、⾯积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变⽽来。

常数为体,公式为⽤。

椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*⾼三⾓函数:两⾓和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍⾓公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍⾓公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍⾓公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍⾓公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍⾓公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)⼋倍⾓公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍⾓公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)⼗倍⾓公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4)) cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半⾓公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1) (2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表⽰三⾓形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:⾓B是边a和边c的夹⾓乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三⾓不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|⼀元⼆次⽅程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式 b2-4a=0 注:⽅程有相等的两实根b2-4ac>0 注:⽅程有两个不相等的个实根b2-4ac<0 注:⽅程有共轭复数根="">公式分类公式表达式圆的标准⽅程 (x-a)2+(y-b)2=r2 注:(a,b)是圆⼼坐标圆的⼀般⽅程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准⽅程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧⾯积 S=c*h 斜棱柱侧⾯积 S=c'*h正棱锥侧⾯积 S=1/2c*h' 正棱台侧⾯积 S=1/2(c+c')h'圆台侧⾯积 S=1/2(c+c')l=pi(R+r)l 球的表⾯积 S=4pi*r2圆柱侧⾯积 S=c*h=2pi*h 圆锥侧⾯积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆⼼⾓的弧度数r >0 扇形⾯积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截⾯⾯积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h图形周长⾯积体积公式长⽅形的周长=(长+宽)×2正⽅形的周长=边长×4长⽅形的⾯积=长×宽正⽅形的⾯积=边长×边长三⾓形的⾯积已知三⾓形底a,⾼h,则S=ah/2已知三⾓形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三⾓形两边a,b,这两边夹⾓C,则S=absinC/2设三⾓形三边分别为a、b、c,内切圆半径为r则三⾓形⾯积=(a+b+c)r/2设三⾓形三边分别为a、b、c,外接圆半径为r则三⾓形⾯积=abc/4r已知三⾓形三边a、b、c,则S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶) | a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶⾏列式,此三⾓形ABC在平⾯直⾓坐标系内A(a,b),B(c,d), C(e,f),这⾥ABC| e f 1 |选区取最好按逆时针顺序从右上⾓开始取,因为这样取得出的结果⼀般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三⾓形⾯积的⼤⼩!】秦九韶三⾓形中线⾯积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三⾓形的中线长.平⾏四边形的⾯积=底×⾼梯形的⾯积=(上底+下底)×⾼÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的⾯积=圆周率×半径×半径长⽅体的表⾯积=(长×宽+长×⾼+宽×⾼)×2长⽅体的体积 =长×宽×⾼正⽅体的表⾯积=棱长×棱长×6正⽅体的体积=棱长×棱长×棱长圆柱的侧⾯积=底⾯圆的周长×⾼圆柱的表⾯积=上下底⾯⾯积+侧⾯积圆柱的体积=底⾯积×⾼圆锥的体积=底⾯积×⾼÷3长⽅体(正⽅体、圆柱体)的体积=底⾯积×⾼平⾯图形名称符号周长C和⾯积S正⽅形 a—边长 C=4aS=a2长⽅形 a和b-边长 C=2(a+b)S=ab三⾓形 a,b,c-三边长h-a边上的⾼s-周长的⼀半A,B,C-内⾓其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有⼀条直线2 两点之间线段最短3 同⾓或等⾓的补⾓相等4 同⾓或等⾓的余⾓相等5 过⼀点有且只有⼀条直线和已知直线垂直6 直线外⼀点与直线上各点连接的所有线段中,垂线段最短7 平⾏公理经过直线外⼀点,有且只有⼀条直线与这条直线平⾏8 如果两条直线都和第三条直线平⾏,这两条直线也互相平⾏9 同位⾓相等,两直线平⾏10 内错⾓相等,两直线平⾏11 同旁内⾓互补,两直线平⾏12两直线平⾏,同位⾓相等13 两直线平⾏,内错⾓相等14 两直线平⾏,同旁内⾓互补15 定理三⾓形两边的和⼤于第三边16 推论三⾓形两边的差⼩于第三边17 三⾓形内⾓和定理三⾓形三个内⾓的和等于180°18 推论1 直⾓三⾓形的两个锐⾓互余19 推论2 三⾓形的⼀个外⾓等于和它不相邻的两个内⾓的和20 推论3 三⾓形的⼀个外⾓⼤于任何⼀个和它不相邻的内⾓21 全等三⾓形的对应边、对应⾓相等22边⾓边公理(sas) 有两边和它们的夹⾓对应相等的两个三⾓形全等23 ⾓边⾓公理( asa)有两⾓和它们的夹边对应相等的两个三⾓形全等24 推论(aas) 有两⾓和其中⼀⾓的对边对应相等的两个三⾓形全等25 边边边公理(sss) 有三边对应相等的两个三⾓形全等26 斜边、直⾓边公理(hl) 有斜边和⼀条直⾓边对应相等的两个直⾓三⾓形全等27 定理1 在⾓的平分线上的点到这个⾓的两边的距离相等28 定理2 到⼀个⾓的两边的距离相同的点,在这个⾓的平分线上29 ⾓的平分线是到⾓的两边距离相等的所有点的集合30 等腰三⾓形的性质定理等腰三⾓形的两个底⾓相等 (即等边对等⾓)31 推论1 等腰三⾓形顶⾓的平分线平分底边并且垂直于底边32 等腰三⾓形的顶⾓平分线、底边上的中线和底边上的⾼互相重合33 推论3 等边三⾓形的各⾓都相等,并且每⼀个⾓都等于60°34 等腰三⾓形的判定定理如果⼀个三⾓形有两个⾓相等,那么这两个⾓所对的边也相等(等⾓对等边)35 推论1 三个⾓都相等的三⾓形是等边三⾓形36 推论 2 有⼀个⾓等于60°的等腰三⾓形是等边三⾓形37 在直⾓三⾓形中,如果⼀个锐⾓等于30°那么它所对的直⾓边等于斜边的⼀半38 直⾓三⾓形斜边上的中线等于斜边上的⼀半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和⼀条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同⼀条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直⾓三⾓形两直⾓边a、b的平⽅和、等于斜边c的平⽅,即a^2+b^2=c^247勾股定理的逆定理如果三⾓形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三⾓形是直⾓三⾓形48定理四边形的内⾓和等于360°49四边形的外⾓和等于360°50多边形内⾓和定理 n边形的内⾓的和等于(n-2)×180°51推论任意多边的外⾓和等于360°52平⾏四边形性质定理1 平⾏四边形的对⾓相等53平⾏四边形性质定理2 平⾏四边形的对边相等54推论夹在两条平⾏线间的平⾏线段相等55平⾏四边形性质定理3 平⾏四边形的对⾓线互相平分56平⾏四边形判定定理1 两组对⾓分别相等的四边形是平⾏四边形57平⾏四边形判定定理2 两组对边分别相等的四边形是平⾏四边形58平⾏四边形判定定理3 对⾓线互相平分的四边形是平⾏四边形59平⾏四边形判定定理4 ⼀组对边平⾏相等的四边形是平⾏四边形60矩形性质定理1 矩形的四个⾓都是直⾓61矩形性质定理2 矩形的对⾓线相等62矩形判定定理1 有三个⾓是直⾓的四边形是矩形63矩形判定定理2 对⾓线相等的平⾏四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对⾓线互相垂直,并且每⼀条对⾓线平分⼀组对⾓66菱形⾯积=对⾓线乘积的⼀半,即s=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对⾓线互相垂直的平⾏四边形是菱形69正⽅形性质定理1 正⽅形的四个⾓都是直⾓,四条边都相等70正⽅形性质定理2正⽅形的两条对⾓线相等,并且互相垂直平分,每条对⾓线平分⼀组对⾓71定理1 关于中⼼对称的两个图形是全等的72定理2 关于中⼼对称的两个图形,对称点连线都经过对称中⼼,并且被对称中⼼平分73逆定理如果两个图形的对应点连线都经过某⼀点,并且被这⼀点平分,那么这两个图形关于这⼀点对称74等腰梯形性质定理等腰梯形在同⼀底上的两个⾓相等75等腰梯形的两条对⾓线相等76等腰梯形判定定理在同⼀底上的两个⾓相等的梯形是等腰梯形77对⾓线相等的梯形是等腰梯形78平⾏线等分线段定理如果⼀组平⾏线在⼀条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形⼀腰的中点与底平⾏的直线,必平分另⼀腰80 推论2 经过三⾓形⼀边的中点与另⼀边平⾏的直线,必平分第三边81 三⾓形中位线定理三⾓形的中位线平⾏于第三边,并且等于它的⼀半82 梯形中位线定理梯形的中位线平⾏于两底,并且等于两底和的⼀半 l=(a+b)÷2 s=l×h83 (1)⽐例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合⽐性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等⽐性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b86 平⾏线分线段成⽐例定理三条平⾏线截两条直线,所得的对应线段成⽐例87 推论平⾏于三⾓形⼀边的直线截其他两边(或两边的延长线),所得的对应线段成⽐例88 定理如果⼀条直线截三⾓形的两边(或两边的延长线)所得的对应线段成⽐例,那么这条直线平⾏于三⾓形的第三边89 平⾏于三⾓形的⼀边,并且和其他两边相交的直线,所截得的三⾓形的三边与原三⾓形三边对应成⽐例90 定理平⾏于三⾓形⼀边的直线和其他两边(或两边的延长线)相交,所构成的三⾓形与原三⾓形相似91 相似三⾓形判定定理1 两⾓对应相等,两三⾓形相似(asa)92 直⾓三⾓形被斜边上的⾼分成的两个直⾓三⾓形和原三⾓形相似93 判定定理2 两边对应成⽐例且夹⾓相等,两三⾓形相似(sas)94 判定定理3 三边对应成⽐例,两三⾓形相似(sss)95 定理如果⼀个直⾓三⾓形的斜边和⼀条直⾓边与另⼀个直⾓三⾓形的斜边和⼀条直⾓边对应成⽐例,那么这两个直⾓三⾓形相似96 性质定理1 相似三⾓形对应⾼的⽐,对应中线的⽐与对应⾓平分线的⽐都等于相似⽐97 性质定理2 相似三⾓形周长的⽐等于相似⽐98 性质定理3 相似三⾓形⾯积的⽐等于相似⽐的平⽅99 任意锐⾓的正弦值等于它的余⾓的余弦值,任意锐⾓的余弦值等于它的余⾓的正弦值100任意锐⾓的正切值等于它的余⾓的余切值,任意锐⾓的余切值等于它的余⾓的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆⼼的距离⼩于半径的点的集合103圆的外部可以看作是圆⼼的距离⼤于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆⼼,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知⾓的两边距离相等的点的轨迹,是这个⾓的平分线108到两条平⾏线距离相等的点的轨迹,是和这两条平⾏线平⾏且距离相等的⼀条直线109定理不在同⼀直线上的三点确定⼀个圆。

【{可以打印}】高数的全部公式大全

【{可以打印}】高数的全部公式大全

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

高中数学公式大全必背

高中数学公式大全必背

高中数学公式大全必背一、集合1. 集合的基本运算- 交集:A∩ B = {x|x∈ A且x∈ B}- 并集:A∪ B={x|x∈ A或x∈ B}- 补集:∁_U A={x|x∈ U且x∉ A}(U为全集)2. 集合元素个数关系(容斥原理)- n(A∪ B)=n(A)+n(B)-n(A∩ B)二、函数1. 函数的定义域- 分式函数y = (f(x))/(g(x)),g(x)≠0。

- 偶次根式函数y=sqrt[n]{f(x)}(n为偶数),f(x)≥slant0。

2. 函数的单调性- 设x_1,x_2∈[a,b],x_1≠ x_2- 对于函数y = f(x),若f(x_1)-f(x_2)<0(当x_1 < x_2时),则y = f(x)在[a,b]上单调递增。

- 若f(x_1)-f(x_2)>0(当x_1 < x_2时),则y = f(x)在[a,b]上单调递减。

3. 函数的奇偶性- 对于函数y = f(x)定义域内任意x- 若f(-x)=f(x),则y = f(x)是偶函数。

- 若f(-x)= - f(x),则y = f(x)是奇函数。

4. 一次函数- 表达式y = kx + b(k≠0),斜率k=(y_2 - y_1)/(x_2 - x_1)。

5. 二次函数- 表达式y=ax^2+bx + c(a≠0)- 对称轴x =-(b)/(2a)- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})6. 指数函数- 表达式y = a^x(a>0,a≠1)- 当a > 1时,函数在R上单调递增;当0 < a < 1时,函数在R上单调递减。

7. 对数函数- 表达式y=log_{a}x(a > 0,a≠1,x>0)- 当a > 1时,函数在(0,+∞)上单调递增;当0 < a < 1时,函数在(0,+∞)上单调递减。

高等数学公式大全(几乎包含了所有)

高等数学公式大全(几乎包含了所有)

高等数学公式大全(几乎包含了所有)高等数学公式大全(几乎包含了所有)在高等数学中,公式是解决问题的重要工具之一。

它们可以帮助我们理解和描述数学概念,推导出新的数学结论,并应用于各个领域,包括物理学、工程学、经济学等。

本文将呈现一个高等数学公式大全,几乎包含了所有相关的公式。

希望这个公式大全能对广大数学爱好者和学习者有所帮助。

一、微积分公式微积分是高等数学的基础,它主要研究函数的极限、导数和积分等概念。

以下是一些常用的微积分公式:1. 极限公式:(1)极限的四则运算法则:对于函数f(x)和g(x),若lim[x→a] f(x)存在且等于A,lim[x→a] g(x)存在且等于B,则有:lim[x→a] (f(x)±g(x)) = A±Blim[x→a] (f(x)·g(x)) = A·Blim[x→a] (f(x)/g(x)) = A/B (若B≠0)lim[x→a] (c·f(x)) = c·A (c为常数)(2)洛必达法则:若lim[x→a] f(x) = lim[x→a] g(x) = 0或±∞,则有:lim[x→a] (f(x)/g(x)) = lim[x→a] (f'(x)/g'(x)) (其中,f'(x)和g'(x)分别表示f(x)和g(x)的导数)2. 导数公式:(1)基本求导法则:对于常数c和可导函数u(x)、v(x),有以下导数法则:(常数法则) (c)' = 0(乘法法则) (u·v)' = u'·v + u·v'(除法法则) (u/v)' = (u'·v - u·v')/v^2(2)常见函数的导数公式:函数导数sin(x) cos(x)cos(x) -sin(x)e^x e^xln(x) 1/x3. 积分公式:(1)基本积分法则:对于连续函数f(x)和可导函数F(x),有以下积分法则:(常数法则)∫(c)dx = cx + C (C为常数)(幂函数积分法则)∫(x^n)dx = (x^(n+1))/(n+1) (n≠-1)(三角函数积分法则)∫sin(x)dx = -cos(x) + C∫cos(x)dx = sin(x) + C(2)常见函数的积分公式:函数积分e^x e^x + C (C为常数)1/x ln|x| + C二、线性代数公式线性代数是研究向量空间和线性映射的数学分支。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一阶初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。

时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。

:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααααααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110ΛΛΛΛ抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dx x f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。

代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。

是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u ϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖ⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-==(马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A ϖϖ多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuFv u G F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ϖϖωψϕωψϕωψϕ方向导数与梯度:上的投影。

相关文档
最新文档