浙江省专升本高等数学常用公式
成人高考专升本《高等数学二》公式大全
成人高考专升本《高等数学二》公式大全1.函数的导数公式:1)常数函数求导:(C)'=02)幂函数求导:(x^n)' = nx^(n-1), 其中n为常数3)指数函数求导:(a^x)' = a^x * ln(a), 其中a>0且a≠14)对数函数求导:(log_a(x))' = 1 / (x * ln(a)), 其中a>0且a≠15)三角函数求导:(sin(x))' = cos(x), (cos(x))' = -sin(x), (tan(x))' = sec^2(x), (cot(x))' = -csc^2(x)6)反三角函数求导:(arcsin(x))' = 1 / sqrt(1 - x^2), (arccos(x))' = -1 / sqrt(1 - x^2), (arctan(x))' = 1 / (1 + x^2)2.高等数学中的极限公式:1)常数函数极限:lim(C) = C, 其中C为常数2)多项式函数极限:lim(a_n*x^n + a_(n-1)*x^(n-1) + ... +a_1*x + a_0) = a_n*x^n, 其中n为正整数,a_n为非零常数3)指数函数极限:lim(a^x) = 1, 其中a>0且a≠14)对数函数极限:lim(log_a(x)) = log_a(1) = 0, 其中a>0且a≠15)三角函数极限:lim(sin(x) / x) = 1, lim((1 - cos(x)) / x) = 0, 当x趋近于0时3.定积分公式:1)换元积分法:∫f(g(x)) * g'(x)dx = ∫f(u)du, 其中u = g(x) 2)分部积分法:∫u * dv = u * v - ∫v * du3)凑微分法:∫f(x)dx = ∫f(x) *1dx = ∫f(x) *[g'(x)/g'(x)]dx = ∫(f(x) * g'(x))/g'(x)dx4.微分方程公式:1)一阶线性微分方程:dy/dx + P(x)y = Q(x), y = e^(-∫P(x)dx) * ∫[Q(x) * e^(∫P(x)dx)]dx2)一阶齐次线性微分方程:dy/dx = f(y/x), 令v = y/x, 可得dv = [(f(v) - v)/x]dx5.级数公式:1)等比数列前n项和:S_n=a(1-q^n)/(1-q),其中a为首项,q为公比2)调和级数:∑(1/n)是发散级数3)幂级数展开:e^x = ∑(x^n)/n!, sin(x) = ∑[(-1)^n *(x^(2n+1))/(2n+1)!], cos(x) = ∑[(-1)^n * (x^(2n))/(2n)!]。
专升本高等数学公式全集
专升本高等数学公式(全)常数项级数:是发散的调和级数:等差数列:等比数列:nnn n qqq qq nn 1312112)1(32111112+++++=++++--=++++-级数审敛法:散。
存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n nn n nn n s u u u s U U u ∞→+∞→∞→+++=⎪⎩⎪⎨⎧=><=⎪⎩⎪⎨⎧=><=lim ;3111lim2111lim1211 ρρρρρρρρ。
的绝对值其余项,那么级数收敛且其和如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n nn n n n u r r u s u u u u u u u u u u u绝对收敛与条件收敛:∑∑∑∑>≤-+++++++++时收敛1时发散p 级数: 收敛; 级数:收敛;发散,而调和级数:为条件收敛级数。
收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中111)1(1)1()1()2()1()2()2()1(232121p np nnn u u u u u u u u pnn n n幂级数:010)3(lim)3(1111111221032=+∞=+∞===≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x xx x x x x n n nn n nn n时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。
,其中时不定时发散时收敛,使在数轴上都收敛,则必存收敛,也不是在全,如果它不是仅在原点 对于级数时,发散时,收敛于 ρρρρρ函数展开成幂级数:+++''+'+===-+=+-++-''+-=∞→++nn n n n n n nn x n fx f x f f x f x R x f x x n fR x x n x fx x x f x x x f x f !)0(!2)0()0()0()(00lim )(,)()!1()()(!)()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数:)()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-++=+--x n xxxx x x xn n m m m xm m mx x n n nm可降阶的高阶微分方程类型一:()()n y f x =解法(多次积分法):(1)()()n du u yf x f x dx-=⇒=⇒令多次积分求类型二:''(,')y f x y = 解法:'(,)dp p y f x p dx=⇒=⇒令一阶微分方程类型三:''(,')y f y y =解法:'(,)dp dp dy dp p y pf y p dxdy dxdy=⇒==⇒⇒令类型二类型四:)()('x Q y x p y =+若Q(X)等于0,则通解为⎰=-dxx p Ce y)((一阶齐次线性)。
专升本成人高考高数常用公式
专升本成人高考高数常用公式在成人高考高数中,常用的公式有:1. 三角函数相关公式:- sin²θ + cos²θ = 1 (正弦、余弦平方和为1)- sin(α ± β) = sin α cos β ± cos α sin β (正弦的和差公式)- cos(α ± β) = cos α cos β ∓ sin α sin β (余弦的和差公式) - tan(α ± β) = (tan α ± tan β) / (1 ∓ tan α tan β) (正切的和差公式)- sin 2θ = 2 sin θ cos θ (正弦的倍角公式)- cos 2θ = cos²θ - sin²θ = 2 cos²θ - 1 = 1 - 2 sin²θ (余弦的倍角公式)2. 导数相关公式:- (x^n)' = nx^(n-1) (幂函数的导数)- (sin x)' = cos x (正弦函数的导数)- (cos x)' = -sin x (余弦函数的导数)- (tan x)' = sec²x (正切函数的导数)- (e^x)' = e^x (指数函数的导数)- (ln x)' = 1/x (自然对数函数的导数)3. 积分相关公式:- ∫(x^n) dx = x^(n+1) / (n+1) + C (幂函数的不定积分)- ∫sin x dx = -cos x + C (正弦函数的不定积分)- ∫cos x dx = sin x + C (余弦函数的不定积分)- ∫tan x dx = -ln|cos x| + C (正切函数的不定积分)- ∫e^x dx = e^x + C (指数函数的不定积分)- ∫(1/x) dx = ln|x| + C (自然对数函数的不定积分)以上是一些常用的高数公式,需要注意的是,公式可以根据需要进行组合和变形,因此熟练掌握和灵活运用是非常重要的。
专升本同学必备的高等数学公式大全.
高等数学公式高等数学公式导数公式:(tgx)'=sec2x(ctgx)'=-csc2x(secx)'=secx⋅tgx(cscx)'=-cscx⋅ctgx(ax)'=axlna(logax)'=1xlna(arcsinx)'=1-x21(arccosx)'=--x21(arctgx)'=1+x21(arcctgx)'=-1+x基本积分表:三角函数的有理式积分:⎰tgxdx=-lncosx+C⎰ctgxdx=lnsinx+C⎰secxdx=lnsecx+tgx+C⎰cscxdx=lncscx-ctgx+Cdx1x=arctg+C⎰a2+x2aadx1x-a=ln⎰x2-a22ax+a+Cdx1a+x=ln⎰a2-x22aa-x+Cdxx=arcsin+C⎰a2-x2aπ2ndx2=sec⎰cos2x⎰xdx=tgx+Cdx2⎰sin2x=⎰cscxdx=-ctgx+C⎰secx⋅tgxdx=secx+C⎰cscx⋅ctgxdx=-cscx+Cax⎰adx=lna+Cx⎰shxdx=chx+C⎰chxdx=shx+C⎰dxx2±a2=ln(x+x2±a2)+Cπ2 In=⎰sinxdx=⎰cosnxdx=00n-1In-2n⎰⎰⎰xa222x+adx=x+a+ln(x+x2+a2)+C22xa22222x-adx=x-a-lnx+x2-a2+C22xa2x2222a-xdx=a-x+arcsin+C22a222u1-u2x2dusinx=,cosx=,u=tg,dx=2221+u1+u1+u2一些初等函数:两个重要极限:1 / 12高等数学公式ex-e-x双曲正弦:shx=2ex+e-x双曲余弦:chx=shxex-e-x双曲正切:thx==chxex+e-xarshx=ln(x+x+1)archx=±ln(x+x2-1)11+xarthx=ln21-x三角函数公式: ·诱导公式:limsinx=1x→0x1lim(1+)x=e=2.718281828459045...x→∞x·和差角公式: ·和差化积公式:sin(α±β)=sinαcosβ±cosαsinβcos(α±β)=cosαcosβ sinαsinβtg(α±β)= tgα±tgβ1 tgα⋅tgβctgα⋅ctgβ 1ctg(α±β)=ctgβ±ctgαsinα+sinβ=2sinα+β22α+βα-βsinα-sinβ=2cossin22α+βα-βcosα+cosβ=2coscos22α+βα-βcosα-cosβ=2sinsin22cosα-β2 / 12高等数学公式 ·倍角公式:sin2α=2sinαcosαcos2α=2cos2α-1=1-2sin2α=cos2α-sin2αctg2α-1ctg2α=2ctgα2tgαtg2α=1-tg2α·半角公式:sin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tgα-tg3αtg3α=1-3tg2αsintgα2=±=±-cosαα+cosαcos=±222-cosα1-cosαsinαα1+cosα1+cosαsinα==ctg=±==1+cosαsinα1+cosα21-cosαsinα1-cosαα2 ·正弦定理:abc===2R ·余弦定理:c2=a2+b2-2abcosC sinAsinBsinCarcsinx=·反三角函数性质:π2-arccosx arctgx=π2-arcctgx高阶导数公式——莱布尼兹(Leibniz)公式:(uv)(n)k(n-k)(k)=∑Cnuvk=0n=u(n)v+nu(n-1)v'+中值定理与导数应用: n(n-1)(n-2)n(n-1) (n-k+1)(n-k)(k)uv''+ +uv+ +uv(n)2!k!拉格朗日中值定理:f(b)-f(a)=f'(ξ)(b-a)f(b)-f(a)f'(ξ)=F(b)-F(a)F'(ξ)曲率:当F(x)=x时,柯西中值定理就是拉格朗日中值定理。
(完整版)专升本数学公式大全
导数公式:专升本高等数学公式大全2(tgx) sec x (arcsin x)(ctgx) 2 csc x(secx) secx tgx (arccosx)(cscx) cscx ctgx(a x) a x I na(arctgx) (Iog a X) 1 (arcctgx)1 1a r 2 1 X2.1 X2 1 X2基本积分表:三角函数的有理式积分:tgxdx In cosx C ctgxdx In sin x C secxdx In secx tgx Ccscxdx In cscx ctgx Cdx 2 .2 sec xdx tgx C cos xdx 2・2 csc xdx ctgx C sin xsecx tgxdx secx Cdx ~2 2 a x 1 丄x arctg C a adx x2a2dx2 2a x 丄ln|x a2a |x a1 , a x In2a a xcscx ctgxdx cscx Cxa x dx CIn ashxdx chx Cchxdx shx C异—arcsin 仝C “ a2 x2 adx 2 2 ——2 2 "( x x a ) C.x a2 2nn sin xdx ncos xdx 0 0'、 2 a dx x 2 x 2 a2x2a2 dx x ..x2a22<a2 2x dx x ■ a2 2 xI n2a . / In(x2a2I ——In x2x2 a2)2a . x arcs in C2 2 a2usinx 2,cosx1 u 2一些初等函数: 双曲正弦:shx 双曲余弦:chx 双曲正切:thxtg2,dx2du V~u\两个重要极限:xxe e2 xxe e2 x x shx e e xxchx e esin x ’ lim 1 x 0x lim(1丄广 x xe 2.718281828459045…arshx ln(x x 2 1) archx In (x x 2 1)arthx 1|n1 x2 1 三角函数公式: •诱导公式:-和差化积公式:sin( )sin coscos sin cos( )cos cossin sin、tg tgtg()1 tg tgctg()ctgctg 1ctgctg-和差角公式: sin sin sinsincos cos cos cos2sin cos — 2 2 2 cossin —222 cos cos —2 2 2 sin ------- s in ------2 2sin 2 2si n cos2 2cos2ctg2 ctg2 2ctgtg2 2tg 2•倍角公式:cos1 -半角公式: 1 1 2si n2 2cos ・2sin sin3 3si ncos3 4cos3tg33tg4sin33cos-3tg~2sin —21 cos21 coscos—21 cos21 cos sinsin 1 cosct g-1 cos sin1 cos sin 1 cos-正弦定理:,一sin A sin B 亠2Rsin C -余弦定理:b22abcosC-反三角函数性质: arcs inxarccosx arctgx arcctgx高阶导数公式一一莱布尼兹( Leibniz公式:(uv)(n)nCnU(nk 0k)v(k)u(n)v nu(n 1)v n(n 1)u2!(n 2)vn(n 1) (n kk!1) (n k)v(k)uv(n)中值定理与导数应用: 拉格朗日中值定理:柯西中值定理: f(b)f(b)f (a)f (a)F ()f ( )(b a))当F(x) x时,曲率:F(b) F(a)柯西中值定理就是拉格朗日中值定理。
浙江省专升本高等数学常用公式
浙江省专升本高等数学常用公式在浙江省的专升本高等数学考试中,常用公式是我们必须掌握的重要知识点之一、下面我将介绍一些浙江省专升本高等数学中常用的公式。
1.三角函数常用公式-正弦函数的三角恒等式:- $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$- $\sin 2A = 2\sin A \cos A$- $\sin A \pm \sin B = 2\sin \frac{A \pm B}{2}\cos \frac{A \mp B}{2}$-余弦函数的三角恒等式:- $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$- $\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 -2\sin^2 A$-正切函数的三角恒等式:- $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A\tan B}$- $\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$2.数列求和公式-等差数列求和公式:- $S_n = \frac{n}{2}(a_1 + a_n)$,其中 $S_n$ 是前 n 项和,$a_1$ 是首项,$a_n$ 是第 n 项。
-等比数列求和公式:- $S_n = \frac{a_1(1 - q^n)}{1 - q}$,其中 $S_n$ 是前 n 项和,$a_1$ 是首项,$q$ 是公比。
-平方数列求和公式:- $S_n = \frac{n(n+1)(2n+1)}{6}$3.二次函数相关公式-一次函数的斜率公式:- $k = \frac{y_2 - y_1}{x_2 - x_1}$-一次函数的截距公式:- $b = y - kx$,其中 b 是截距,(x, y) 是直线上的一点。
专升本数学考试公式集合
专升本数学考试公式集合
专升本数学考试公式集合包括但不限于以下内容:
1. 代数部分:
一次方程与二次方程。
一次方程为 ax+b=0(a≠0);二次方程为
ax²+bx+c=0(a≠0)。
解一次方程为 x=-b/a;求二次方程的解为 x=(-
b±√(b²-4ac))/(2a)。
指数与对数。
指数为 an;指数与对数的运算性质包括
a^ma^n=a^(m+n) 和 a^m/a^n=a^(m-n)。
2. 三角函数部分:包括三角函数的有理式积分、两个重要极限、三角函数公式、高阶导数公式、定积分公式等。
3. 微分方程的相关概念,以及函数展成幂级数等内容。
4. 空间解析几何和向量代数部分,涉及平面的方程等。
5. 常数项级数和级数审敛法。
此外,还有导数公式、基本积分表等也是专升本数学考试的重要内容。
以上信息仅供参考,建议查阅专升本数学考试大纲或咨询专业教师,获取更准确全面的信息。
同时,考生在备考时,不仅要记忆公式,还要理解其含义和适用条件,以及如何在实际问题中应用。
浙江专升本数学公式
高等数学公式导数公式:ctgx x x tgx x x x ctgx x tgx x x csc )(csc sec )(sec csc )(sec )(22⋅-='⋅='-='='22211)(11)(arccos 11)(arcsin x arctgx x x x x ='--='-='⎰++-=-Cax a x a x dx x a arcsin 2222222三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 两个重要极限:·和差角公式:·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos 2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( ...sin =xx·倍角公式:(αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ban y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:。
专升本高等数学公式全集
专升本高等数学公式(全)常数项级数:是发散的调和级数:等差数列:等比数列:nnn n q q q q q nn 1312112)1(32111112+++++=++++--=++++-级数审敛法:散。
存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞→+∞→∞→+++=⎪⎩⎪⎨⎧=><=⎪⎩⎪⎨⎧=><=lim ;3111lim 2111lim 1211 ρρρρρρρρ。
的绝对值其余项,那么级数收敛且其和如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n nn n n n u r r u s u u u u u u u u u u u绝对收敛与条件收敛:∑∑∑∑>≤-+++++++++时收敛1时发散p 级数: 收敛; 级数:收敛;发散,而调和级数:为条件收敛级数。
收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中111)1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p n n n n幂级数:010)3(lim)3(1111111221032=+∞=+∞===≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n nn n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。
,其中时不定时发散时收敛,使在数轴上都收敛,则必存收敛,也不是在全,如果它不是仅在原点 对于级数时,发散时,收敛于ρρρρρ函数展开成幂级数:+++''+'+===-+=+-++-''+-=∞→++nn n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f !)0(!2)0()0()0()(00lim )(,)()!1()()(!)()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数:)()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-++=+--x n xx x x x x x n n m m m x m m m x x n n nm 可降阶的高阶微分方程类型一:()()n y f x =解法(多次积分法):(1)()()n duu y f x f x dx-=⇒=⇒令多次积分求 类型二:''(,')y f x y = 解法:'(,)dpp y f x p dx=⇒=⇒令一阶微分方程 类型三:''(,')y f y y =解法:'(,)dp dp dy dp p y p f y p dx dy dx dy=⇒==⇒⇒令类型二 类型四:)()('x Q y x p y =+若Q(X)等于0,则通解为⎰=-dxx p Ce y )((一阶齐次线性)。
专升本数学公式汇总
专升本数学公式汇总在专升本的数学考试中,理解和记忆数学公式是至关重要的。
下面,我们整理了一些在专升本数学考试中常用的数学公式,供大家参考。
1、求和公式本文(n=1,∞) x^n = 1/ (1 - x)2、幂运算公式本文a^m)^n = a^(mn) (m,n为正整数)本文ab)^n = a^n b^n (n为正整数)a^mn = (a^m)^n (m,n为正整数)本文a/b)^n = a^n / b^n (n为正整数)本文a^m) / (a^n) = a^(m-n) (a≠0,m,n为正整数)本文a/b) / (c/d) = (a/b) × (d/c) (a、b、c、d≠0)本文a+b)^2 = a^2 + 2ab + b^23、对数公式log(a) (M N) = log(a) M + log(a) N,log(a) (M / N) = log(a) M - log(a) N,log(a) M^n = nlog(a) M,log(a) b^n = nlog(a) b,log(a) b/c = log(a) b - log(a) c,log(a) (b c) = log(a) b + log(a) c,log(a) b的n次方 = nlog(a) b,log(a) (b的n次方)= nlog(a) b。
4、三角函数公式sin(A+B)=sinAcosB+cosAsinB,sin(A-B)=sinAcosB-cosAsinB,cos(A+B)=cosAcosB-sinAsinB,cos(A-B)=cosAcosB+sinAsinB,tan(A+B)=(tanA+tanB)/(1-tanAtanB),tan(A-B)=(tanA-tanB)/(1+tanAtanB)。
以上是专升本数学考试中常用的一些公式,希望大家能够熟练掌握并应用于解题中。
也要注意公式的适用范围和条件,避免在解题中出现错误。
高等数学各章重要公式及知识点归总
第一章 函数类1. y=x 1,x ≠0 →y=□1,□≠0 (-∞,0)∪(0,+∞)类2.y=2n x ,x ≥0 →y=2n □,□≥0 [0,+∞)反函数(一一对应)1. 函数的定义域对应着反函数的值域 函数的值域对应着反函数的定义域2. 若f (x )过(a ,b ),f -1(x )过(b ,a )3. f (x )和f -1(x )的图像关于y=x 对称4.Sinx sin[arcsinx]=x →arcsinx arcsin[sinx]=xEg.f[f -1(3)]=3基本初等函数幂函数:y=x u ,u 取任意的实数 共同点(1,1)偶函数:图像关于y 轴对称 y=x 2 指数函数(变化最快):y=a x ,a >0且a ≠12共同点(0,1)对数函数:y=log a x ,a >0且a ≠1 y=a x →log a y=x →y=log a x1.a >1 (若a=e ≈2.71 →y=log e x=lnx ) 2.0<a <1共同点(1,0)y=e x 反函数是 y=log e x=lnx反sinx :ππcosx :[2k π-π,2k π] k ∈z ,增函数 [2k π,2k π+π] k ∈z ,减函数tanx:单调增区间:z k k π2πk π2π-∈++),(cotx:→1.奇函数:sinx,tanx,cotx原点对称偶函数:cosx y=x对称2.有界函数:sinx,cosx 有界是根据值域定的3.周期函数:sinx,cosx→T=2πtanx,cotx→T=πtanx·cotx=1 sin0=0Sin2x=2sinxcosxCos2x=cos2x-sin2x=2cos2x-1=1-2sin2x2.特殊角度→函数值反三角函数:arcsinx,arccosx,arctanx,arccotx arcsinx:arccox:arctanx :arccotx:→1.奇函数:arcsinx ,arctanx2.有界函数:arcsinx ,arccosx ,arctanx ,arccotxarcsin1=2π arcsin 23=3π arctan1=4π arctan 3=3π定义域: -1≤x ≤1复合函数:y=f (u),u=g (x ) , y=f[g(x)] Z ⊂D复合1.y=u 2,u=sinx →y=sin 2x2.y=u 3,u=cosv ,v=2x+3→y=cos 3(2x+3) 条件:3.y=arccosu ,u=x 2+3→y=arccos (x 2+3)×初等函数:由基本的初等函数经过有限次的四则运算及复合得到的函数 复合函数的分解:1.由内到外,分解的每一步必须为基本初等型 2.遇到四则运算或基本初等型则停止 e x ,x ≥0 分段函数:f (x )=X+1,x <0取整函数:设x 为任一实数,不超过x 的最大整数称为x 的整数部分,记作:[x] Eg: [1.5]=1 [2.8]=2 [4.5]=4 [e]=2 [π]=3[-1.5]=-2 [-2.8]=-3 [-4.5]=-5 x-1<[x]≤x 隐函数:x+y=2,sinx+cosy=3参数方程: x=sint x=t 2+2→y 与x →y 与xy=cost y=3t引入参数,导致y 与x 有联系幂指函数:y=u (x )v (x )→1.lny=lnu (x )v (x )=v (x )lnu (x )2.)()()()(x lnu x v x lnu e ey x v ==,恒等变形函数的性质:必须在所给的定义域内单调性,有界性,周期性,奇偶性1.常见的有界函数:sinx,cosx,arcsinx,arccosx,arctanx,arccotx2.有界函数的运算:有界+有界=有界有界-有界=有界有界×有界=有界无穷大量±有界一定>0+∞+有界=+∞-∞+有界=-∞周期函数:sinx→T=2πcosx→T=2πtanx→T=πcotx→T=π奇偶性:1.偶函数:图像关于y轴对称,f(x0)=f(-x0)2.奇函数:图像关于原点对称,f(x0)=-f(-x0)常见的奇函数:sinx,tanx,cotx,arcsinx,arctanx,x n(n为奇数)常见的偶函数:cosx,x n(n为偶数),|x|常熟C C,C≠0→偶函数0,可奇可偶奇偶运算规则:偶偶:+ - ×÷是偶函数→x2,1-x2,x2(1-x)2,1+x2,,cosx1=secx奇奇:+ - 是奇函数x+x3×÷是偶函数x×x=x2x·sinx sin4x=sinx·sinx·sinx·sinx 1+x21+x2 1-x2奇偶:×÷是奇函数x×x2=x3+ - 可奇,可偶,非奇非偶极限等差数列: 1,2,3,4,……,n ,…… 公差d=1,通项x n =n=1+(n-1)×1通项x n =x 1+(n-1)d →等差数列:首项x 1,公差d前n 项和,(求和公式):2nxn +x1)(等比数列:2,22,23,24,……,2n 公比q=2,x n =2n =2·2n-1 X n =x 1·q n-1 →等比数列:首项x 1(x 1≠0),公比q (q ≠1)前n 项和公式:s n 特殊数列前n 项和:1.2n 1n n 4321k z n 1k )(+=+⋯⋯++++== 2.=+=+⋯⋯+++==21)n-2n (11)-2n 5311-2k z n 1k ()(n 2 3.1k z n =k 2=12+22+32+……+n 2=61-2n 1n n ))((+ 4.1k z =∞k 3=13+23+33+……+n 3=]2n 1n [)(+ 2 5.1n 1-n 131-2121-111n n 12?11?11k k 1z n 1k ++⋯⋯++=++⋯⋯++=+=)()(=1n 1-1+ =1n n + 数列极限的定义:若不存在常数a ,则极限不存在,或x n 发散1-q几何含义:当n>N 时,所有的点x n 都落在(a-ε,a+ε)内,只有有限个(至多只有N 个)在其外数列的性质:极限存在的充要条件:左极限=右极限1.唯一性2.有界性:|x n -a|<ξ3.保号性:∀ξ>0,∃n >N ,使得|x n -a|<ξ 若a >0,n >N 时,x n >0 若a <0,n >N 时,x n <0 去心领域:只考虑点a 邻近的点,不考虑点a ,即考虑点集(a-δ,a )∪(a ,a+δ),称这个点集为点a 的去心邻域函数的极限性质:1.函数极限的唯一性:若A =∞→→)(x f lim x x0x ,则极限必唯一2.函数极限的局部有界性3.函数极限的局部保号性:若A =→)(x f lim x0xA >0,0<|x-x 0|<δ,f (x )>0A <0,0<|x-x 0|<δ,f (x )<0无穷小(无穷小量)与无穷大常数的极限永远是本身关系:1.∞=→)(x f lim x0x →0x f 1limx0x =→)(互为倒数关系2.0x f 0x f lim x0x ≠=→)(且)(→∞=→)(x f 1limx0x01=∞ ∞=01总结:极限不存在的三种情形 1.limf (x )=∞ 2.左极限≠右极限3.没有确定的函数值极限值区间内波动]1,1[sinx lim x -=∞→方法一:000=⨯=⨯有界)无穷小量(即无穷小量有界函数 方法二:四则运算:(极限存在,则可以拆) 1.lim[f (x )±g (x )]=limf (x )±limg (x )=A ±B 2.lim[f (x )·g (x )]=limf (x )·limg (x )=A ·B 3.)()()()()(0x lim g x lim f x g x f lim≠==B BA 4.limC ·f (x )=C ·limf (x )=C ·A C 是常数 5.lim[f(x)]n =limf (x )·limf (x )……=A n总结:x →x 0时,x 0在初等函数定义域内,可直接将值代入求极限 方法三:消0因子法(0)方法四:抓大头思想(∞∞) 方法五:利用分子有理化求极限 方法六:先求和再求极限 方法七:先求积再求极限方法八:利用夹逼准则求极限(找两边) 极限存在准则:1.夹逼准则(1)x n ≤y n ≤z n ,且a zn lim a xn lim n n ==∞→∞→,→a yn lim n =∞→(2)g (x )≤f (x )≤h (x ),且A A ==)(,)(x lim h x lim g →A =)(x limf2.单调有界数列必有极限→{x n }单调增且有上届→则{x n }必有极限 数列是以点的形式→{x n }单调减且有下届→则{x n }有极限 方法九:利用两个重要极限求极限0·∞ 谁简单就把谁往下放 ① 1□□sin lim 1x sinx lim0□0x =→=→→1.sin □和分母中的□必须保持一致 → 12xsin2xlim 0x =→2.□→00·∞→∞⨯=⨯→001000 →01⨯∞=∞⨯∞→∞∞②e x 1limx1x =+→)( ①∞1 e x11limxx =+∞→)( ②1+形式→e □1lim 0□□1=+→时)(e n 11lim nn =+∞→)( ③互为倒数总结:若今后遇到∞1型①若)()](1[lim x g x f + 为∞1,则原式=)()(x g x limf e②若)(x g )]([lim x f 为∞1,则原式=)(x g ]1)([lim e ⨯-x f方法十:利用等价无穷小求极限 → 无穷小的比较→型→0,∞,c (c ≠0) 常用的等价无穷小的公式:前提条件 : □→0Sin □~□ , tan □~□ , arcsin □~□ , arctan □~□注意1.因子:只有乘除关系,等价必须是因子 2.非0因子直接代入方法十一:利用左右极限求极限左极限:0-0x x x x x f lim -0<),(→ 右极限:+→+00x x x x x f lim 0<),(极限存在的充要条件:若A A =→→=+→→→)()()(x f lim x f lim x f lim 0-0x x x x x x左极限=右极限极限不存在:1.limf (x )=∞2.左极限≠右极限3.没有确定的函数值极限值区间内波动]1,1[sinx lim x -=∞→注意:分段函数分界点要分左右极限 已知极限求反参数幂指函数方法处理:连续与间断→极限的应用设f (x )在x 0的邻域内又定义,如果)()(0x x x f x f lim 0=→,则称f (x )在x 0处连续。
浙江省专升本高等数学考试定积分部分内容解析
浙江省专升本高等数学考试定积分部分内容解析定积分是数学中的一个分支,是微积分中的一种核心概念。
它是求曲线与x轴之间围成的面积的一种方法,也是解决各种实际问题的基础。
浙江省专升本高等数学考试中,定积分是一个重要的考试内容,它不仅涉及到基本积分公式及性质,还与微积分的各个方面有着密切的联系。
下面,我们就来具体分析一下浙江省专升本高等数学考试定积分部分的内容及解析。
1. 基本积分公式及性质基本积分公式及性质是定积分的基础,考生在考试前一定要熟记它们。
这些公式及性质包括:积分的线性性质:即f(x)+g(x)的积分等于f(x)的积分加上g(x)的积分;k*f(x)的积分等于k乘以f(x)的积分,这里k是一个常数。
积分的换元积分法:即通过代数式的替换来简化定积分,减少计算难度。
这个方法需要记住一些常用的代换公式,如三角函数代换、指数函数代换等。
各种函数的基本积分公式:如幂函数x^n的积分公式、三角函数的积分公式等。
2. 定积分的基本概念考生也要掌握定积分的基础概念,如定积分与不定积分的区别、定积分的几何意义及其运算法则等。
此外,还要熟悉定积分的求解方法,例如分区求和法、中值定理和牛顿-莱布尼兹公式等。
3. 定积分的应用在考试中,定积分的应用也是一个重要的考察点。
这些应用包括:曲线下面积的计算:通过定积分计算曲线与x轴之间的面积,如矩形法、梯形法、辛普森公式等。
旋转体的体积与表面积:此处需要运用反常积分计算,它们依次对应着旋转轴为x轴、旋转轴为y轴的情况。
物理学中的应用:如速度、位移、加速度、质量等的计算,物理学中的现象通过微积分可以具体地进行描述和求解。
在浙江省专升本高等数学考试中,定积分部分是一个较为重要的考察内容,掌握定积分的基本概念、公式及其应用十分必要。
考生在复习中应该重点掌握每个方面的内容,并进行相应的习题练习,以提高考试能力和应变能力。
专接本数学公式大全
专接本数学公式大全在学习数学的过程中,掌握并熟练运用各种数学公式是非常重要的。
数学公式既是数学知识的精华,也是解题的利器。
为了帮助广大专接本学生更好地掌握数学公式,本文将为大家梳理一份全面、可靠的数学公式大全,供大家参考使用。
一、初等数学公式1. 代数运算公式:- 二项式定理:$ (a+b)^n = C_n^0a^n + C_n^1a^{n-1}b + C_n^2a^{n-2}b^2 + \ldots + C_n^na^0b^n $- 平方差公式:$ (a-b)^2 = a^2 - 2ab + b^2 $- 平方和公式:$ (a+b)^2 = a^2 + 2ab + b^2 $2. 特殊函数公式:- 正弦函数和余弦函数的和差化积:$ \sin(a \pm b) = \sin a \cos b \pm \cos a \sin b $- 正弦函数和余弦函数的二倍角公式:$ \sin(2a) = 2\sin a \cos a $- 正切函数的和差化积:$ \tan(a \pm b) = \frac{\tan a \pm \tan b}{1\mp \tan a \tan b} $3. 平面解析几何公式:- 点到直线的距离公式:$ d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} $- 两直线夹角的余弦公式:$ \cos \theta = \frac{A_1A_2 +B_1B_2}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}} $- 两点间距离的公式:$ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} $二、高等数学公式1. 导数和微分公式:- 反函数求导公式:$ (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} $- 乘积法则:$ (uv)' = u'v + uv' $- 链式法则:$ (f(g(x)))' = f'(g(x)) \cdot g'(x) $2. 积分公式:- 不定积分的线性性质:$ \int (af(x) + bg(x))dx = a\int f(x)dx + b\int g(x)dx $- 分部积分公式:$ \int u dv = uv - \int v du $- 牛顿-莱布尼茨公式:$ \int_a^b f(x)dx = F(b) - F(a) $3. 常微分方程公式:- 一阶线性齐次常微分方程的解法:$ \frac{dy}{dx} + P(x)y = 0, y = Ce^{- \int P(x)dx} $三、线性代数公式1. 矩阵公式:- 矩阵乘法的分配律:$ A(B+C) = AB + AC $- 矩阵的转置运算公式:$ (A^T)_{ij} = A_{ji} $2. 向量公式:- 向量内积的性质:$ \textbf{a} \cdot \textbf{b} = \|\textbf{a}\|\|\textbf{b}\| \cos \theta $3. 行列式公式:- 行列式交换行列性质:$ |A| = -|A^T| $- 行列式展开定理:$ |A| = \sum_{j=1}^n (-1)^{i+j}a_{ij}M_{ij} $四、概率论与数理统计公式1. 随机变量和概率公式:- 期望的线性性质:$ E(aX + bY) = aE(X) + bE(Y) $- 条件概率公式:$ P(A|B) = \frac{P(AB)}{P(B)} $- Bayes公式:$ P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^n P(B|A_i)P(A_i)} $2. 统计估计和假设检验公式:- 正态总体均值的置信区间:$ \bar{X} -z_{\alpha/2}\frac{\sigma}{\sqrt{n}} < \mu < \bar{X} +z_{\alpha/2}\frac{\sigma}{\sqrt{n}} $- 卡方分布的性质:$ X^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i} $以上仅是数学公式大全的一部分,希望能帮助到广大专接本学生更好地学习和掌握数学知识。
专升本高等数学公式全集
专升本高等数学公式(全)常数项级数:2)1(32111112nn n q q q q q nn +=++++--=++++- 等差数列:等比数列: 常见数列的前n 项和:)1(21321+=++++n n n2)12(531n n =-++++ )14(31)12(53122222-=-++++n n n)12)(1(613212222++=++++n n n n )2)(1(31)1(433221++=+++⋅+⋅+⋅n n n n n111)1(1431321211+-=+++⋅+⋅+⋅n n n'''0y py q ++=(二阶线性常系数齐次微分方程)解法(特征方程法):21,20p q λλλ++=⇒=(一)122121240x x p q y c e c e λλλλ∆=->⇒≠⇒=+(二)12120()x y c c x e λλλλ∆=⇒==⇒=+(三)12120,(cos sin )x i i y e c x c x αλαβλαβββ∆<⇒=+=-⇒=+1.导数公式:x x 2sec )(tan ='x x 2c s c )(c o t -=' x x x c o t c s c )(c s c -=' x x x t a n s e c )(s e c =' x x a a a ∙='ln )( x x e e =')( a x x a ln 1)(log ='211)(a r c s i n x x -=' 211)(a r c c o s x x --=' 211)(arctan x x +=' 211)c o t (x x a r c +-=' x x f x x f x f x ∆'-∆+'=''→)()(l i m)(0基本积分表:三角函数的有理式积分:两个重要极限:常用三角函数公式:x x 22sec tan 1=+x x 22c s c c o t 1=+x xx 2tan 1tan 22tan -=2cos 12sin 2x x -=2c o s 12c o s 2x x +=x x x s i n c o s 12t a n -=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ...590457182818284.2)11(lim 1sin lim==+=∞→→e xx xx x x·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ中值定理与导数应用:拉格朗日中值定理。
专升本数学公式汇总
专升本高等数学公式一、求极限方法:1、当x 趋于常数0x 时的极限:02200x x lim(ax bx c)ax bx c →++=++;00000ax bcx d ax b limcx d cx d x x ++≠+−−−−−−→++→当; 00000cx d ,ax b ax b lim cx dx x +=+≠+−−−−−−−−−−−→∞+→当但; 2220020ax bx f cx dx e ,ax bx f lim x x cx dx e++++=++=−−−−−−−−−−−−−−→→++当且可以约去公因式后再求解。
2、当x 趋于常数∞时的极限:3、可以使用洛必达发则:0f (x)f (x)x f (x)g(x)lim lim g(x)g (x)x x '→∞→∞−−−−−−−−−−−−−−−→'→∞→∞当时,与都或;对0x →也同样成立。
而且,只要满足条件,洛必达发则可以多次使用。
二、求导公式:1、0c '=;2、1n n (x )nx -'=;3、x x (a )a lnx '=;4、x x (e )e '=;5、1(log x)a xlna'=6、1(ln x)x '=;7、(sin x)cos x '=;8、(cos x)sin x '=-;9、2(tan x)sec x '=10、2(cot x)csc x '=-;11、(sec x)sec xtan x '=;12、(cscx)cscxcot x '=- 13、(arcsin x)'=;14、(arccos x)'=;15、211(arctan x)x '=+;16、211(arccot x)x'=-+;17、(shx)chx '=;18、(chx)shx '=;19、2(thx)ch x -'=;20、(arshx)'=;21、(archx)'=;22、211(arthx)x'=-; 三、求导法则:(以下的5、7、8三点供高等数学本科的学员参阅) 1、(u(x)v(x))u (x)v (x)'''±=±;2、(kv(x))kv (x)''=; 3、(u(x)v(x))v(x)u (x)v (x)u(x)'''⋅=+;4、2u(x)u (x)v(x)v (x)u(x)()v(x)v (x)''-'=4、复合函数y f[]ϕ=(x )的求导:f []=f (u)u (x),u=(x)ϕϕ'''(x )其中。
专升本高等数学常用公式
专升本高等数学常用公式高等数学是大学本科阶段的核心课程之一,其中常用的公式有很多。
下面是高等数学常用公式的一个简要总结。
由于篇幅限制,无法给出所有的公式,但会涵盖主要的内容。
微分学常用公式:1. 极限的定义:对于函数f(x),若lim(x->a)f(x)=L,则称函数f(x)在点a处的极限为L,记作lim(x->a)f(x)=L。
2. 导数定义:如果函数f(x)在点x0处有极限lim(h->0)[f(x0+h)-f(x0)]/h存在,则称函数f(x)在x0处可导,导数为f'(x0),即f'(x0)=lim(h->0)[f(x0+h)-f(x0)]/h。
3.基本导数公式:-常函数导数:(c)'=0,其中c为常数。
- 幂函数导数:(x^n)' = nx^(n-1),其中n为正整数。
-指数函数导数:(e^x)'=e^x。
- 对数函数导数:(lnx)' = 1/x。
-三角函数导数:* (sinx)' = cosx。
* (cosx)' = -sinx。
* (tanx)' = sec^2x。
* (cotx)' = -csc^2x。
* (arcsinx)' = 1/√(1-x^2)。
* (arccosx)' = -1/√(1-x^2)。
* (arctanx)' = 1/(1+x^2)。
* (arccotx)' = -1/(1+x^2)。
-复合函数导数:*(f(g(x)))'=f'(g(x))*g'(x),其中f(x)和g(x)都可导。
积分学常用公式:1.不定积分公式:-基本初等函数积分:* ∫(c)dx = cx,其中c为常数。
* ∫(x^n)dx = (x^(n+1))/(n+1),其中n不等于-1* ∫(e^x)dx = e^x。
* ∫(lnx)dx = xlnx - x,其中x>0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省专升本高等数学常用公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。
:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααα定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dxx f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。
代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。
是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-== (马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuF v uG F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。