第17章反比例函数练习题

合集下载

八年级数学下17章反比例函数单元测试题

八年级数学下17章反比例函数单元测试题

第17章《反比例函数》测试题一、选择题:1.下列函数中,不属于y 与x 反比例函数的是( ) A.1xy = B.11y x =+ C.1y x -=- D.13y x= 2.有以下判断:①圆面积公式2S r π=中,面积S 与半径r 成正比例;②运动的时间与速度成反比例;③当电压不变时,电流强度和电阻成反比例;④圆柱体的体积公式213V r h π=中,当体积V 不变时,圆柱的高h 与底面半径r 的平方成反比例,其中错误的有( )A.1个B.2个C.3个D.4个3.若y 与x 成反比例,x 与z 成正比例,则y 是z 的( ) A. 正比例函数 B. 反比例函数 C. 一次函数 D. 不能确定4.如图,A 为反比例函数ky x=图象上一点,AB 垂直x 轴于B 点,若S △AOB =3,则k 的值为( ) A 、6B 、3C 、+3或-3D 、+6或-65.(2009年娄底)市一小数学课外兴趣小组的同学每人制作一个面积为200cm 2的矩形学具进行展示. 设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形长y (cm )与宽x (cm )之间的函数关系的图象大致是 ( )6.在同一直角坐标平面内,如果直线1y x k =与双曲线2k y x=没有交点,那么1k 和2k 的关系一定是( )A.1k <0,2k >0B.1k >0,2k <0C.1k 、2k 同号D.1k 、2k 异号7.(09河池)如图5,A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( ) A . 2S = B . 4S = C .24S << D .4S >8.(2009丽水市)如图,点P 在反比例函数1y x =(x > 0)的图象上,且横坐标为2. 若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P '.则在第一象限内,经过点P '的反比例函数图象的解析式是( )A .)0(5>-=x xy B .)0(5>=x x yC . )0(6>-=x x yD . )0(6>=x xy9.(09恩施市)一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若2≤x ≤10,则y 与x 的函数图象是( )10.在同一坐标系中,函数ky x=和3y kx =+的图象大致是二、填空题: 11.如果函数122--=m xm y 是反比例函数,那么=m ____________.12.已知y 与x 成反比例,且当2-=x 时,3=y ,则y 与x 的函数关系是_________,当3-=x 时,=y _____________。

八年级数学下册第十七章反比例函数单元测试课标试题

八年级数学下册第十七章反比例函数单元测试课标试题

第十七章 反比例函数才能检测一、填空〔27〕 1.反比例函数()0≠=k xky 的图象经过点〔2,-3〕,那么k 的值是_______,图象在__________象限,当x>0时,y 随x 的减小而__________. 2假设反比例函数xk y 3-=的图象位于一、三象限内,正比例函数x k y )92(-=过二、四象限,那么k 的整数值是________。

x k y 22--=〔k 为常数〕的图象上有三个点〔-2,1y 〕,(-1,2y ),〔21,3y 〕,函数值1y ,2y ,3y 的大小为 ;4.反比例函数22)12(-+=kx k y 在每个象限内y 随x 的增大而增大,那么k=5 假如一次函数y=mx+n 与反比例函数x m n y -=3的图象相交于点〔21,2〕,那么这两个函数解析式分别为 、1与x 成正比例(比例系数为k 1),y 2与x 成反比例(比例系数为k 2),假设函数y=y 1+y 2的图象经过点(1,2),(2,12),那么8k 1+5k 2的值是________. 7 假设m <-1,那么以下函数:①()0 x xmy =;② y =-mx+1; ③ y = mx; ④ y =(m + 1)x 中,y 随x 增大而增大的是___________。

8.教师给出一个函数,甲、乙、丙、丁四人各指出这个函数的一个性质,甲:函数图象不经过第三象限;乙:函数图象经过第一象限;丙:y 随x 的增大而减小;丁:当2<x 时,0>y 。

这四人表达都正确,请构造出满足上述所有性质的一个函数_______________。

9如图2,在x 轴上点P 的右侧有一点D ,过点D 作x 轴的垂线交双曲线xy 1=于点B ,连结BO 交AP 于C ,设△AOP 的面积为S 1,梯形BCPD 面积为S 2,那么S 1与S 2的大小关系是S 1 S 2。

〔选填“>〞“<〞或者“=〞〕x二、选择题〔每一小题3分,一共21分〕 1、 函数y kx =-与y k x=〔k ≠0〕的图象的交点个数是〔 〕 A. 0 B. 1 C. 2 D. 不确定2.向高为H 的圆柱形水杯中注水,水杯底面半径为2,那么注水量y 与水深x 的函数图象是 ( )3.面积为4的矩形一边为x ,另一边为y ,那么y 与x 的变化规律用图象大致表示为 〔 〕4以下各点中,在函数xy 2-=的图像上的是〔 〕 A 、〔2,1〕 B 、〔-2,1〕 C 、〔2,-2〕 D 、〔1,2〕 5.如图,关于x 的函数y=k(x-1)和y=-kx(k ≠0), 它们在同一坐标系内的图象大致是( ) 6. 在xy 1=的图象中,阴影局部面积不为1的是〔 〕.OyxA OyxC OxB yOxD7.1y +2y =y,其中1y 与1x成反比例,且比例系数为1k ,而2y 与2x 成正比例,且比例系数为2k ,假设x=-1时,y=0,那么1k ,2k 的关系是( )A.12k k + =0B.12k k =1C.12k k - =0D.12k k =-1三、解答题〔52分〕1.一定质量的二氧化碳,当它的体积35m V =时,它的密度3/98.1m kg =ρ.①求ρ与V 的函数关系式;②当39m V =时,求二氧化碳的密度ρ.〔4〕2〔7〕如图正比例函数y=k 1x 所构成的正方形的面积为4。

反比例函数测试题(含答案)

反比例函数测试题(含答案)

反比例函数测试题(含答案)(时间90分钟 满分100分)班级 学号 姓名 得分一、选择题(每小题3分,共24分) 1.如果x 、y 之间的关系是10(0)ax y a -+=≠,那么y 是x 的 ( )A .正比例函数B .反比例函数C .一次函数D .二次函数 2.函数y =-4x 的图象与x 轴的交点的个数是( )A .零个B .一个C .两个D .不能确定3.反比例函数y =-4x 的图象在( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限 4.已知关于x 的函数y =k (x +1)和y =-kx(k ≠0)它们在同一坐标系中的大致图象是(• )5.已知反比例函数y=x k 的图象经过点(m ,3m ),则此反比例函数的图象在 ( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球发将爆炸.为了安全起见,气球的体积应 ( )A .不小于54m 3B .小于54m 3C .不小于45m 3D .小于45m 37.如果点P 为反比例函数x y 4=的图象上一点,PQ ⊥x 轴,垂足为Q ,那么△POQ的面积为 ( )A .2B . 4C .6D . 8 8.已知:反比例函数x my 21-=的图象上两点A (x 1,y 1),B (x 2, y 2)当x 1<0<x 2时,y 1<y 2,则m 的取值范围( )A .m <0B .m >0C .m <21 D .m >21二、填空题(每小题2分,共20分)9.有m 台完全相同的机器一起工作,需m 小时完成一项工作,当由x 台机器(x 为不大于m 的正整数)完成同一项工作时,所需的时间y 与机器台数x 的函数关系式是____.10.已知y 与x 成反比例,且当x 32=-时,y =5,则y 与x 的函数关系式为__________. 11.反比例函数xy 3=的图象在第一象限与第 象限. 3) 第6题12.某食堂现有煤炭500吨,这些煤炭能烧的天数y 与平均每天烧煤的吨数x 之间的函数关系式是 . 13.若nxm y ++=2)5(是反比例函数,则m 、n 的取值是 .14.两位同学在描述同一反比例函数的图象时,甲同学说:这个反比例函数图象上任意一点到两坐标轴的距离的积都是3;乙同学说:这个反比例函数的图象与直线y =x 有两个交点,你认为这两位同学所描述的反比例函数的解析式是 .15.在ABC △的三个顶点A (2,-3)、B (-4,-5)、C (-3,2)中,可能在反比例函数(0)ky k x=>的图象上的点是 .16.如果反比例函数4ny x-=的图象位于第二、四象限,则n 的取值范围是_______;如果图象在每个象限内,y 随x 的增大而减小,则n 的取值范围是 .17.如图,△P 1OA 1、△P 2A 1 A 2是等腰直角三角形,点P 1、P 2在函数4(0)y x x=>的图象上,斜边OA 1、A 1 A 2都在x 轴上,则点A 2的坐标是 .18.两个反比例函数k y x =和1y x=在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x =的图象于点B ,当点P 在ky x =的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等; ④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确结论的序号都填上,少填或错填不给分).三、解答题(共56分) 19.(4分)反比例函数xky =的图象经过点A (2 ,3). (1)求这个函数的解析式;(2)请判断点B (1 ,6)是否在这个反比例函数的图象上,并说明理由.20.(4分)已知三角形的一边为x ,这条边上的高为y ,三角形的面积为3,写出y 与x 的函数表达式,并画出函数的图象.OA 12第17题21.(4分)如图,一次函数y =kx +b 的图像与反比例函数xmy =的图像相交于A 、B 两点,(1)利用图中条件,求反比例函数和一次函数的解析式(2)根据图像写出使一次函数的值大于反比例函数的值的x 的取值范围.22.(6分)某蓄水池的排水管每时排水8 m 3,6h 可将满池水全部排空. (1)蓄水池的容积是多少?(2)如果增加排水管,使每时排水量达到Q (m 3),那么将满池水排空所需的时间t (h )将如何变化?(3)写出t 与Q 之间的函数关系式.(4)如果准备在5小时之内将满水池排空,那么每时的排水量至少为多少? (5)已知排水管的最大排水量为每时12m 3,那么最少多长时间可将满池水全部排空?23.(6分)双曲线5y x=在第一象限的一支上有一点C (1,5),过点C 的直线y =kx +b (k >0)与x 轴交于点A (a ,0).(1)求点A 的横坐标a 与k 之间的函数关系式;(2)当该直线与双曲线在第一象限内的另一交点D 的横坐标是9时,求△COA 的面积.第23题图第21题图24.(6分)已知反比例函数xmy 3-=和一次函数1-=kx y 的图象都经过点m P (,)3m -(1)求点P 的坐标和这个一次函数的解析式;(2)若点M (a ,1y )和点N (1+a ,2y )都在这个一次函数的图象上.试通过计算或利用一次函数的性质,说明1y 大于2y25.(6分)近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知800度近视眼镜镜片的焦距为0.125米, (1)求y 与x 的函数关系;(2)若张华同学近视眼镜镜片的焦距为0.25米,你知道他的眼睛近视多少度吗?26.(6分)对于取消市场上使用的杆秤的呼声越来越高,原因在于一些不法商贩在卖货时将秤砣挖空,或更换较小称砣,使砣较轻,从而欺骗顾客. (1)如图,对于同一物体,哪个图用的是标准秤砣,哪个用的是较轻的秤砣? (2)在称同一物体时,所称得的物体质量y (千克)与所用秤砣质量x (千克)之间满足 关系.(3)当砣较轻时,称得的物体变重,这正好符合哪个函数的哪些性质?图1图227.(6分)联想电脑公司新春期间搞活动,规定每台电脑0.7万元,交首付后剩余的钱数y 与时间t 的关系如图所示: (1)根据图象写出y 与t 的函数关系式. (2)求出首付的钱数.(3)如果要求每月支付的钱数不少于400元,那么还至少几个才能将所有的钱全部还清?28.(8分)如图,直线b kx y +=与反比例函数xk y '=(x <0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为-4. (1)试确定反比例函数的关系式; (2)求△AOC 的面积.新人教八年级(下)第17章《反比例函数》答案一、选择题1.B ;2. A ;3. B ;4. A ;5. B ;6. C ;7.A ;8. C .二、填空题9.y =x m 2 10.152y x=- 11.三 12.y =x 50013.m ≠-5 n =-3 14.y=x315.B 16.n >4,n <4 17.(0) 18.①②④ 三、解答题19.(1)y =x6;(2)在 20. y =6x,图像略 21.(1)2y x=-,1y x =--;(2) 2x <-或0x <<122.(1)348m ;(2)t 将减小;(3)48t Q=;(4)4859.6Q Q==,;月)y ()(5)48412t ==23.(1)51a k=-+, (2) 25 24.(1)12--=x y ;(2)略 25.(1)100y x=,(2)400度 26.(1)图②是用与秤配套的秤砣,图①则使用较轻的秤砣.(2)反比例. (3)函数y =xk(k >0),当x 变小时,y 增大 27.(1)y =t 6000 ;(2)7000-6000=1000(元);(3)400=t6000,t =1528.(1)8xy =-;(2)126。

人教版初中数学第17章 反比例函数章水平测试(二)及答案

人教版初中数学第17章 反比例函数章水平测试(二)及答案

第17章 反比例函数单元水平测试一、选择题(每小题2分,共20分)1.点P (-3,4)一定在下列哪个函数的图象上( ).A .12x y -= B .x y 12-= C .xy 34-= D .623+-=x y2.在第三象限中,下列函数中:①y =-3x ;②y =x8;③y =-2x +5;④y =-5x -6,y 随x 的增大而减小的有( ).A .1个B .2个C .3个D .4个 3.若y与-3x成反比例,x与z4成正比例,则y是z的( ). A .正比例函数 B .反比例函数 C .一次函数 D .不能确定 4.双曲线ky x=经过点(),m m - ()0m ≠,则它的两个分支分别在( ). A .第一、二象限内;B .第二、四象限内;C .第一、三象限内;D .第三、四象限内 5.已知反比例函数(0)ky k x=<的图象上有同一象限内两点A (1x ,1y ),B (2x ,2y ),且12x x <,则12y y -的值是( ).A .正数B .负数C .非正数D .不能确定 6.正比例函数y =k 1x 和反比例函数xk y 2=交于A (1、m ),B (n ,-2)两点,则m n +等于( ).A .3B .-1C .1D .-3 7.如图所示,A (1x ,1y )、B (2x ,2y )、C (3x ,3y )是函数xy 1=的图象在第一象限分支上的三个点,且1x <2x <3x ,过 A 、B 、C 三点分别作坐标轴的垂线,得矩形ADOH 、BEON 、CFOP , 它们的面积分别为S 1、S 2、S 3,则下列结论中正确的是( ).A .S 1<S 2<S 3B .S 3 <S 2< S 1C .S 2< S 3< S 1D .S 1=S 2=S 3 8.如图,在同一直角坐标系中,函数y =kx -k 与ky x=(k ≠0)的图象大致是( ).ABCD9.已知反比例函数xy 1=的图像经过P (m ,n ),则化简)1)(1(n n m m +-的结果正确的是( ).A .2m 2B .2n 2C .n 2-m 2D .m 2-n 2 10.若点(1π-,1y ),(-π,2y ),(21a +,3y )都是反比例函数4y x=上的点,则下列各式中,正确的是( ).A .1y >2y >3yB .2y >1y >3yC . 3y >1y >2yD .3y >2y >1y 二、填空题(每小题3分,共24分)11.把一张一百元人民币换成其他面额的,其换成的元数x 和换成的张数y 的关系如下表:由上表得换成的张数y (张)与换成的元数x (元)之间的函数关系式是 . 12.函数2y x=-的图像,在每一个象限内,y 随x 的增大而 . 13.若函数图象上任意一点的的横、纵坐标之积等于-5,那么这个函数是_________函数,其解析式是 .14.已知正比例函数x m y )12(-=与反比例函数xmy -=3的图象交点在第一、三象限,则m 的取值范围为 .15.函数y =x4,当y≥-2时,x 的取值范围是 (可结合图像解) 16.已知反比例函数xky =图象与直线x y 2=和1+=x y 的图象过同一点,则k = .17.P 是反比例函数图像上一点,且点P 到x 轴的距离为3,到y 轴的距离为2,则该函数的表达式为 . 18.若反比例函数y =xk 3-的图像位于一、三象限内,正比例函数y =(2k -9)x 过二、四象限,则k 的整数值是 . 三、解答题(共56分)19.现有一水塔,水塔内装有水20m 3,如果每小时从排水管中放水x (m 3),则要经过y (h )就可以把水放完.(1)求y 与x 之间的函数关系式;(2(3)当x=4时,求时间y的值.20.已知y-1与x成反比例关系,且点(-2,3)在其图象上,求y与x的函数解析式.21.某空调厂的装配车间原计划用2个月时间(每月以30天计算),每天组装150台空调.(1)从组装空调开始,每天组装的台数m(单位:台/天)与生产的时间t(单位:天)之间有怎样的函数关系?(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?22.请分别写出反比例函数3yx=和2yx=-的图象的性质的两个共同点和不同点.23.已知:反比例函数xky =和一次函数12-=x y ,其中一次函数的图像经过点(k ,5). (1)试求反比例函数的解析式;(2)在同一平面直角坐标系中画出上述两函数的图像上,根据图象判断这两个函数图象有没有交点?如果有,清说明交点在哪些象限内.24.如图,一次函数y ax b =+的图象与反比例函数ky x=的图象交于M 、N 两点. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值 的x 的取值范围.25.已知反比例函数xmy 3-=和一次函数1-=kx y 的图象都经过点m P (,)3m - ⑴ 求点P 的坐标和这个一次函数的解析式;⑵ 若点M(a ,1y )和点N (1+a ,2y )都在这个一次函数的图象上.试通过计算或利用一次函数的性质,说明1y 大于2ym )N26.已知双曲线4y x=-与直线y kx b =+有一个公共点A (m ,2),直线y kx b =+与y 轴交于B 点,且AOB S △=4。

八年级下册数学第十七章反比例函数单元测试一(附答案)

八年级下册数学第十七章反比例函数单元测试一(附答案)

八年级下册数学第十七章反比例函数单元测试一(附答案)学校:___________姓名:___________班级:___________考号:___________一、选择题 1.若反比例函数ky x=的图象经过点(3)m m ,,其中0m ≠,则此反比例函数的图象( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限 2.若反比例函数xy 4-=的图象经过点(a ,-a )则a 的值为( ) A .2B .-2C .2±D .±23.(2011贵州六盘水,8,3分)若点(-3,y 1)、(-2,y 2)、(1,y 3)在反比例函数xy 2=的图像上,则下列结论正确的是( ) A .y 1> y 2> y 3 B .y 2> y 1> y 3 C .y 3> y 1> y 2 D .y 3> y 2> y 1 4.若A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)是反比例函数y=x3图象上的点,且x 1<x 2 <0<x 3,则y 1、y 2、y 3的大小关系正确的是 ( ) A y 3>y 1>y 2 B y 1>y 2>y 3C y 2>y 1>y 3D y 3>y 2>y 15.已知关于x 的函数y=k (x-1) 和ky x =-(0)k ≠,它们在同一坐标系中的图象大致是( )6.函数x y 2=的图象经过的点是( )A.(2,1)B.(2,-1)C.(2,4)D.(21-,2)7.如图,已知菱形ABCD 的边长为2㎝,︒=∠60A ,点M 从点A 出发,以1㎝/s 的速度向点B 运动,点N 从点A 同时出发,以2㎝/s 的速度经过点D 向点C 运动,当其中一个动点到达端点时,另一个动点也随之停止运动. 则△AMN 的面积y (㎝2) 与点M 运动的时间t (s)的函数的图像大致是( )8.下列各点中,在反比例函数8y x=图象上的是 A .(-1,8)B .(-2,4)C .(1,7)D .(2,4)9.若函数x m y 2+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是(A )2->m (B )2-<m (C )2>m (D )2<m 10.下列四个点中,有三个点在同一反比例函数xky =的图象上,则不在这个函数图象上的点是 ( )A .(5,1)B .(-1,5)C .(35,3)D .(-3,35-)二、填空题11. 如图,一次函数y=mx 与反比例函数y=x k的图象交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ∆=3,则k 的值是 .12.如图,点A 在双曲线y=的第一象限的那一支上,AB 垂直于x 轴与点B ,点C 在x 轴正半轴上,且OC=2AB ,点E 在线段AC 上,且AE=3EC ,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为 .yxO12 3yx3yxO12 3(A ) (B )(C ) (D ) yxO12 313.两个反比例函数48,y y x x==-的图象在第一象限,第二象限如图,点P 1、P 2、P 3……P 2012在4y x=的图象上,它们的横坐标分别是有这样规律的一行数列1,3,5,7,9,11,……,过点P 1、P 2、P 3、……、P 2012分别做x 轴的平行线,与8y x=-的图象交点依次是Q 1 、Q 2、Q 3、……、Q 2012,则点Q 2012的横坐标是 .14.如图,直线2-==kx y (k >0)与双曲线xky =在第一象限内的交点面积为R ,与x 轴的交点为P ,与y 轴的交点为Q ;作RM ⊥x 轴于点M ,若△OPQ 与△PRM 的面积是4:1,则=k15.如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345A A A A A 、、、、分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OPA A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S S 、、、、,则5S 的值为 。

八年级数学下册 第十七章 反比例函数单元综合测试(含解析) 新人教版

八年级数学下册 第十七章 反比例函数单元综合测试(含解析) 新人教版

第十七章反比例函数单元检测(时间:45分钟,满分:100分)一、选择题(每小题3分,共24分)1.下列各点中,在函数y =6x-图象上的是( ). A .(-2,-4) B .(2,3) C .(-1,6) D .1,32⎛⎫- ⎪⎝⎭2.在下图中,反比例函数y =21k x+的图象大致是( ).3.三角形的面积为1时,底y 与该底边上的高x 之间的函数关系的图象是( ).4.如图,点P 在反比例函数y =1x(x >0)的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P ′.则在第一象限内,经过点P ′的反比例函数图象的解析式是( ).A .y =5x -(x >0) B .y =5x(x >0) C .y =6x -(x >0) D .y =6x(x >0) 5.若近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m ,则y 与x 的关系式为( ).A .y =400x(x >0) B .y =14x (x >0)C .y =100x (x >0) D .y =1400x (x >0) 6.已知点(-1,y 1),(2,y 2),(3,y 3)在反比例函数y =21k x--的图象上.下列结论中正确的是( ).A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 1>y 2D .y 2>y 3>y 17.如图,反比例函数y =mx的图象与一次函数y =kx +b 的图象交于点M ,N ,已知点M 的坐标为(1,3),点N 的纵坐标为-1,根据图象信息可得关于x 的方程mx=kx +b 的解为( ).A .-3,1B .-3,3C .-1,1D .3,-18.在平面直角坐标系中,直线y =6-x 与函数y =4x(x >0)的图象相交于A ,B 两点,设点A 的坐标为(x 1,y 1),那么长为x 1,宽为y 1的矩形面积和周长分别为( ).A .4,12B .8,12C .4,6D .8,6 二、填空题(每小题4分,共20分)9.已知反比例函数y =kx 的图象经过点(1,-2),则k =__________. 10.如图是反比例函数y =kx(k ≠0)在第二象限内的图象,若图中的矩形OABC 的面积为2,则k =__________.11.如图,反比例函数y =kx的图象位于第一、三象限,其中第一象限内的图象经过点A (1,2),请在第三象限内的图象上找一个你喜欢的点P ,你选择的P 点坐标为__________.12.过反比例函数y =kx(k ≠0)图象上一点A ,分别作x 轴,y 轴的垂线,垂足分别为B ,C ,如果△ABC 的面积为3,则k 的值为__________.13.双曲线y 1、y 2在第一象限的图象如图所示,y 1=4x,过y 1上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴于C ,若S △AOB =1,则y 2的解析式是__________.三、解答题(共56分)14.(本小题满分10分)如图所示,在平面直角坐标系中,一次函数y =kx +1的图象与反比例函数y =9x的图象在第一象限相交于点A ,过点A 分别作x 轴、y 轴的垂线,垂足分别为点B ,C .如果四边形OBAC 是正方形,求一次函数的关系式.15.(本小题满分10分)由物理知识知道,在力F (N)的作用下,物体会在力F 的方向上发生位移s (m),力F 所做的功W (J)满足:W =Fs .当W 为定值时,F 与s 之间的函数图象如图所示.(1)力F 所做的功是多少?(2)试确定F 与s 之间的函数表达式; (3)当F =4 N 时,s 是多少?16.(本小题满分12分)已知如图中的曲线是反比例函数y =5mx(m 为常数)图象的一支.(1)求常数m 的取值范围;(2)若该函数的图象与正比例函数y =2x 的图象在第一象限的交点为A (2,n ),求点A 的坐标及反比例函数的解析式.17.(本小题满分12分)如图所示,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx(k ≠0)的图象交于M ,N 两点.(1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x的范围.18.(本小题满分12分)给出下列命题:命题1:点(1,1)是直线y=x与双曲线y=1x的一个交点;命题2:点(2,4)是直线y=2x与双曲线y=8x的一个交点;命题3:点(3,9)是直线y=3x与双曲线y=27x的一个交点;…….(1)请观察上面命题,猜想出命题n(n是正整数);(2)证明你猜想的命题n是正确的.参考答案1. 答案:C2. 答案:D3. 答案:C4. 答案:D5. 答案:C 设y =k x ,将(0.25,400)代入y =kx,得k =100, ∴y =100x(x >0). 6. 答案:B 因为-k 2-1<0,所以反比例函数y =21k x--的图象在第二、四象限,(2,y 2),(3,y 3)在同一象限,y 随x 的增大而增大,即y 2<y 3<0,又y 1>0,所以y 1>y 3>y 2.7. 答案:A 由M (1,3)代入y =mx得,m =3,所以y =3x ,将N 点纵坐标-1代入y =3x,得x =-3. 所以N (-3,-1),根据图象的意义知,方程mx=kx +b 的解就是它们的交点坐标的横坐标,所以方程的解为-3或1.8. 答案:A 因为y =6-x 与函数y =4x的图象相交于A ,B ,则有点A (x 1,y 1)的坐标满足两个关系式y 1=6-x 1,y 1=14x ,且x 1>0,y 1>0. 所以长为x 1,宽为y 1的矩形面积为x 1y 1=4,矩形周长为2(y 1+x 1)=2×6=12,故选A. 9. 答案:-2 10. 答案:-211. 答案:答案不唯一,如(-1,-2) x ,y 满足xy =2且x <0,y <0即可. 12. 答案:6或-6 根据反比例函数的几何意义可得出S △ABC =12|k |,所以|k |=6,则k =±6.13. 答案:y 2=6x y 1=4x,过y 1上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴于C ,S △AOB =1.∴△CBO 面积为3,∴y 2的解析式是y 2=6x. 14. 解:∵S 正方形OBAC =OB 2=9,∴OB =AB =3, ∴点A 的坐标为(3,3).∵点A 在一次函数y =kx +1的图象上, ∴3k +1=3,解得k =23. ∴一次函数的关系式是y =23x +1. 15. 解:(1)W =Fs =2×7.5=15(J).(2)F =15s. (3)当F =4 N 时,s =15154F ==3.75(m). 16. 解:(1)∵这个反比例函数的图象分布在第一、三象限,∴5-m >0,解得m <5.(2)∵点A (2,n )在正比例函数y =2x 的图象上, ∴n =2×2=4,则A 点的坐标为(2,4). 又∵点A 在反比例函数y =5mx-的图象上, ∴4=52m-,即5-m =8. ∴反比例函数的解析式为y =8x. 17. 分析:(1)利用点N 的坐标可求出反比例函数的表达式,据此求点M 的坐标.由两点M ,N 的坐标可求出一次函数的表达式;(2)反比例函数的值大于一次函数的值表现在图象上,就是双曲线在直线的上方,由此可求出x 的范围.解:(1)把N (-1,-4)代入y =k x 中,得-4=1k -, 所以k =4.反比例函数的表达式为y =4x. 又点M (2,m )在双曲线上,所以m =2,即点M (2,2).把M (2,2),N (-1,-4)代入y =ax +b 中,得22,4.a b m a b +=⎧⎨-+=-⎩解得2,2.a b =⎧⎨=-⎩故一次函数的表达式为y =2x -2.(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值.18. 解:(1)命题n :点(n ,n 2)是直线y =nx 与双曲线y =3n x的一个交点(n 是正整数).(2)把2,x n y n=⎧⎨=⎩代入y =nx ,左边=n 2,右边=n ·n =n 2, ∵左边=右边,∴点(n ,n 2)在直线上.同理可证:点(n ,n 2)在双曲线上,∴点(n ,n 2)是直线y =nx 与双曲线y =3n x的一个交点,命题正确.。

第17章 反比例函数 单元测试卷(A)3

第17章  反比例函数  单元测试卷(A)3

第17章 反比例函数 单元测试卷(A )一、选择题(每小题2分,共20分)1.下列各变量之间是反比例函数关系的是( ).A .存入银行的利息和本金B .在耕地面积一定的情况下,人均占有耕地面积与人口数C .汽车行驶的时间与速度D .电线的长度与其质量 2.函数x k y =的图象经过点(2,8),则下列各点不在xky =图像上的是( ). A .(4,4) B .(-4,-4) C .(8,2) D .(-2,8) 3.如果反比例函数xky =的图象经过点(-1,5),那么直线1y kx =+一定不经过( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.函数y kx =-与k y x=(k ≠0)的图象的交点的个数是( ). A. 2 B.1 C. 0 D.不确定5.若点(3,4)是反比例函数xm m y 122++=图象上一点,则此函数图象必经过点( ).A.(3,-4)B.(2,-6)C.(4,-3)D. (2,6) 6.已知不等式ax b +>0的解集为x >b a -,那么双曲线ay x=的图象上的点一定位于( ).A .第一象限B .第二象限C .第一、三象限D .第二、四象限 7.函数1y x=-的图象上有两点),(11y x A 、),(22y x B 且21x x <,那么下列结论正确的是( ).A.21y y <B.21y y >C.21y y =D.1y 与2y 之间的大小关系不能确定8.一条直线与双曲线x y 1=的交点是A (a ,4),B (-1,b ),则这条直线的解析式为( ) A .34-=x y B .341+=x y C .34+=x y D .34--=x y9.函数y =-kx +k 与y =xk-(k ≠0)在同一坐标系中的图象可能是( ).10.如图,点P 是x 轴上的一个动点,过点P 作 x 轴的垂线PQ 交双曲线xy 1=于点Q ,连结OQ ,当点P 沿x 轴正半方向运动时, Rt △QOP 面积( ).A .逐渐减小B .逐渐增大C .保持不变D .无法确定 二、填空题(每小题3分,共24分)11.一般地,函数 是反比例函数,其图象是 ,当k <0时,图象两支在 象限内. 12.反比例函数y =x2,当y =6时,x =_________. 13.近视眼镜的度数y (度)与焦距x (米)的函数关系式为100y x=,已知某同学近视眼镜镜片的焦距为0. 25米,则该同学配的镜片的度数是__________度.14.若函数的图象经过点(2,1),则函数的表达式可能是____________(写出一个即可). 15.已知函数y =x k 的图像过点(31,43),则函数的关系式是 ,当y =65时,x= .16.若函数y =4x 与y =x 1的图象有一个交点是(21,2),则另一个交点坐标是 _.17.点P 在反比例函数y =x6-的图像上,若点P 的纵坐标小于-1,则点P 的横坐标的取值范围是 . 18.直线y =-2x ─2与双曲线y =xk相交于点A ,与x 、y 轴交于点B 、C ,AD ⊥x 轴于点D ,如果ADB S △=COB S △, 那么k = . 三、解答题(共56分)19.有一个水池,池内原有水500升,现在以每分钟20升注入水,35分钟可注满水池. (1)水池的容积是多少?(2)若每分钟注入的水量达到Q 升,注满水池需要t 分钟,写出t 与Q 之间的关系式. (3)若要20分钟注满水池,每分钟的注水量应达到多少升?20.甲、乙两地相距12千米,一辆汽车从甲地开往乙地,若设汽车的平均速度为每小时x千米,到达乙地所用的时间为y 小时,(1)y 与x(221.在反比例函数y =42008k x-图像的每一条曲线上,y 随x 的增大而减小,求k 的取值范围.22.我们学过反比例函数,例如小明准备用20元钱去买单价为x 元/千克的水果,那么他能够购买的水果的重量y (千克)与x 之间就是反比例函数关系.函数解析式是xy 20=,其中x >0.请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数的量的实例,并写出它的函数关系式.你自己能完成吗?实例:_______________________________________________________________________ ___________________.函数关系式:____________________________.23.已知反比例函数xky =与一次函数b kx y +=的图象都经过点(-2,-1),求这两个函数解析式.24.面积一定的梯形,其上底长是下底长的21,设下底长x =10 cm 时,高y =6 cm (1)求y 与x 的函数关系式;(2)求当y =5 cm 时,下底长多少?25.若反比例函数xy 6=与一次函数4-=mx y 的图象都经过点A (a ,2) (1)求点A 的坐标;(2)求一次函数4-=mx y 的解析式.26.如图,已知一次函数b kx y +=的图象与反比例函数xy 8-=的图象交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是2-,求: (1)一次函数的解折式; (2)△AOB 的面积.27.已知点A (-2,0)和点B (2,0),点P 在函数y =x1-的图像上,如果△PAB 的面积是6,求点P 的坐标.28.如图,反比例函数1k y x=图象在第一象限的分支上有一点C (1,3),过点C 的直线2y k x b =+〔k < 0〕与x 轴交于点A (a ,0).(1)求反比例函数的解析式;(2)求A 点横坐标a 和2k 之间的函数关系式;(3)当直线与反比例函数的图象在第一象限内的另一交点的横坐标为3时,求△COA 的面积.参考答案一、选择题1.B 2.D 3.C 4.C 5.D 6.C 7.D 8.C 9.A 10.C 二、填空题 11.(0)k y k x =≠、双曲线、第二和第四 12.13 13.400 14.2y x = 15.14y x=、 310 16.(12-,-2) 17.0<x <6 18.-4 三、解答题19.(1)1200升(2)1200t Q=(3)60升 20.(1)12y x =(x >0)(2)略21.k >502 22.京沪高速公路全长约为1262km ,汽车沿京沪高速公路从上海驶往北京,汽车完成全程所需的时间t (h )与行驶的平均速度v (km/h)是反比例函数关系,1262t v= 23.一次函数解析式23y x =+,反比例函数解析式2y x =24.(1)60y x= (2)下底长12cm . 25.(1)A 点坐标(3,2) (2)24y x =- 26.(1)一次函数解析式2y x =-+ (2)△AOB 的面积是6. 27.P 点坐标是(13,-3)或(-13,3) 28.(1)3y x = (2)a =225k k - (3)△COA 面积是6。

新人教版初中数学八年级下册第17章反比例函数单元测试

新人教版初中数学八年级下册第17章反比例函数单元测试

第十七章 反比例函数单元测试题 一、选择题(每小题5分.共25分) 1.下列函数中.y 是x 的反比例函数的是( ) (A)12y x =- (B) 21y x = (C) 11y x =- (D) 11y x =- 2.已知y 与x 成正比例.z 与y 成反比例,那么z 与x 之间的关系是( ) (A)成正比例, (B)成反比例 (c)有可能成正比例,也有可能是反比例 (D)无法确定. 3.如图,函数(1)y k x =+与k y x =在同一坐标系中,图象只能是下图中的( ) 4.三角形的面积为24cm ,底边上的高()y cm 与底边()x cm 之间的函数关系图象大致应为( )5.已知反比例函数(0)ky k x =<的图象上有两点1122(,)(,)A x y B x y ,且12x x <则12y y -的值是( )(A)正数 (B)负数 (C)非正数 (D)不能确定二、填空题(每小题5分,共25分)密封线铜陵第七中学初二( )班姓名:编号:6.某奶粉生产厂要制造一种容积为2升(1升=1立方分米)的圆柱形桶,桶的底面面积S 与桶高h 有怎样的函数关系式 .7.一水桶的下底面积是盖面积的2倍,如果将其底朝下放在桌子上,它对桌面的压强是600Pa ,翻过来放, 对桌面的压强是 .8.设有反比例函数1k y x+=,1122(,)(,)x y x y 为其图象上两点,若12x x <0<,12y y >则k 的取值范围 .9.直线y kx b =+过一、三、四象限,则函数错误!不能通过编辑域代码创建对象。

的图象在 象限,并且在每一个象限内y 随x 的增大而 .10.如图所示是三个反比例函数1k y x =,2k y x =,3k y x=的图象,由此观察1k 、2k 、3k 的大小关系是 (用“<”连接).三、解答下列问题.(第11、12两题各10分,13题14分,14题16分,共50分)11.已知变量y 与()1x +成反比例,且当2x =时,1y =-,求y 和x 之间的函数关系.12.如图.正比例函数(0)y kx k =>与反比例函数k y x=的图象相交于A 、C 两点,过A作x轴的垂线交x轴于B,连 BC,求△ABC的面积13.某空调厂的装配车间计划组装9000台空调:⑴从组装空调开始,每天组装的台数m(单位:台/天)与生产的时间t(单位:天)之间有怎样的函数关系?⑵原计划用2个月时间(每月以30天计算)完成,由于气温提前升高,厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?14.如图,正方形OABC的面积为9,点O为坐标原点,点B 在函数(0,0)k y k x x =>>的图象上,点(,)P m n 是函数(0,0)k y k x x=>>的图象上任意一点,边点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,并设矩形OEPF 和正方形OABC 不重合部分的面积为S.(提示:考虑点P 在点B 的左侧或右侧两种情况)⑴求B 点的坐标和k 的值; ⑵当92S =时,求P 点的坐标; ⑶写出S 关于m 的函数关系式.。

第17章反比例函数单元测试题(含答案)

第17章反比例函数单元测试题(含答案)

第17章《反比例函数》单元测试题(满分100分,时间40分钟)班级: __________ 姓名:__________学号: __________一、选择题(每题4分,共24分)1.下列函数中, y 是x 的反比例函数的是( )A 、21x y =B 、52+=x yC 、xy=8D 、53+=x y2. 已知反比例函数)0(≠=k xky 上有一个点(-4,-2),则点( )在此函数图象上。

A 、A(3,4)B 、B(2,4)C 、C(-4,2)D 、D(4,-2)3. 若反比例函数y =xk 3-的图像在每一个象限内,y 随x 的增大而增大,则有( ) A 、 k 0≠ B 、k 3≠ C 、k<3 D 、k>34.设A( 1x ,1y ) B (2x ,2y )是反比例函数xy 5= 图像上的两点, 若1x <2x <0 则1y 与 2y之间的关系是( )。

A 、1y <2y <0B 、2y <1y <0C 、1y >2y >0D 、2y >1y >0 5.一次函数y=kx —1 与 反比例函数)0(≠=k xky 的图像的形状大致是( )A B C D6.如图2,双曲线上两点A、B,AP垂直x轴,垂足为P,BD垂直于x 轴,垂足为D。

连接OA、OB,设△AOP 的面积为S 1,△BOD 面积为S 2,则S 1与S 2的大小关系是( )。

A 、S 1=S 2B 、S 1<S 2C 、S 1>S 2D 、无法确定二、填空题(每题4分,共24分) 7.已知反比例函数y=xk的图像经过点(3 ,—2) 则此函数的解析式为____________,当x>0时 y 随x 的增大而____________。

8.写出一个具有性质“在每个象限内y 随x 的增大而减小”的反比例函数的表达式为___________。

9. 某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 .(写出自变量的取值范围)x10.直线b x y +-=5与双曲线xy 2-= 相交于点p (—2 ,m ) ,则 b=____________。

八年级数学下册 第17章 反比例函数复习练习题(一)(答案不全) 试题

八年级数学下册 第17章 反比例函数复习练习题(一)(答案不全) 试题

轧东卡州北占业市传业学校第17章 反比例函数复习练习题〔一〕一、填空题1.假设函数22)12(--=mx m y 是反比例函数,且它的图像在第二、四象限,那么m 的值是2.假设梯形的下底长为x ,上底长为下底长的13,高为y ,面积为60,那么y 与x 的函数关系是____________.〔不考虑x 的取值范围〕 3.反比例函数xm y 1+=的图象经过点〔2,1〕,那么m 的值是 . 4.反比例函数的图象经过点〔m ,2〕和〔-2,3〕那么m 的值为 . 5.请你写出一个图象在第一、三象限的反比例函数.答: . 6.反比例函数y =xa 2-的图象在第二、四象限,那么a 的取值范围是 . 7.反比例函数y=2k x-,其函数图象在第一、第三象限内,那么k 的值可为_______〔写出满足条件的一个值即可〕。

8.假设A (1x ,1y )、B (2x ,2y )在函数12y x=的图象上,那么当1x 、2x 满足________时,1y >2y . 9.假设A(x 1,y 1),B(x 2,y 2)是双曲线xy 3=上的两点,且x 1>x 2>0,那么y 1 y 2〔填“>〞“=〞“<〞〕. 10.如图,反比例函数xky =)0(<k 的图象与经过原点的直线l 相交于A 、B 两点,A 点坐标为)1,2(-,那么B 点的坐标为 .11.如图是一次函数y 1=kx+b 和反比例函数y 2=mx的图象,观察图象写出y 1>y 2时,x 的取值范围 12.如图,P 是反比例函数(0)ky k x=<图象上的一点,由P 分别向x 轴和y 轴引垂线,阴影局部面积为3,那么k= 。

13.如图,点C 为反比例函数6y x=-上的一点,过点C 向坐标轴引垂线,垂足分为 A 、B ,那么四边形AOBC 的面积为 .14.点A (2,1)在反比例函数ykx =的图像上,当1﹤x ﹤4时,y 的取值范围是 . 15.函数()()1240y x x y x x==>≥0,的图象如下列图,那么结论:①两函数图象的交点A 的坐标为()22,;②当2x >时,21y y >;③当1x =时,3BC =;④当x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小.其中正确结论的序号是 .16.如图,直线OA 与反比例函数的图象在第一象限交于A 点,AB ⊥x 轴于点B ,假设△OAB的面积为2,那么k = . 17.如图,假设点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,那么k = .18.如图,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,假设1S =阴影,那么12S S += .19.如图,在x轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345A A A A A 、、、、分别作x轴的垂线与反比例函数的()20y x x=≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S S 、、、、,那么5S 的值为 . 20.如图,在反比例函数2y x=〔〕的图象上,有点,它们的横坐标依次为1,2,3,4.分别过这些点作轴与轴的垂线,图中所构成的阴影局部的面积从左到右依次为,那么.21. 双曲线xky =和一次函数y =ax +b 的图象的两个交点分别是A(-1,-4),B(2,m),那么a +2b =___.直线5y x b =-+与双曲线 2y x=-相交于点P (2,)m -,那么 b = 。

第17章反比例函数与三角形综合题专训含详细解析

第17章反比例函数与三角形综合题专训含详细解析

华师大版八年级下册第17章反比例函数与三角形综合题专训(含答案)一、反比例函数与等腰三角形结合试题1、(常州)如图,反比例函数y=的图象与一次函数y=x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.【解答】解:(1)k=4,S△PAB=15.提示:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图1,把x=4代入y=x,得到点B的坐标为(4,1),把点B(4,1)代入y=,得k=4.解方程组,得到点A的坐标为(﹣4,﹣1),则点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△PAB=2S△AOP.设直线AP的解析式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,求得直线AP的解析式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC=OCAR+OCPS=×3×4+×3×1=,∴S△PAB=2S△AOP=15;(2)过点P作PH⊥x轴于H,如图2.B(4,1),则反比例函数解析式为y=,设P(m,),直线PA的方程为y=ax+b,直线PB的方程为y=px+q,联立,解得直线PA的方程为y=x+﹣1,联立,解得直线PB的方程为y=﹣x++1,∴M(m﹣4,0),N(m+4,0),∴H(m,0),∴MH=m﹣(m﹣4)=4,NH=m+4﹣m=4,∴MH=NH,∴PH垂直平分MN,∴PM=PN,∴△PMN是等腰三角形;(3)∠PAQ=∠PBQ.理由如下:过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),直线AQ的解析式为y=px+q,则有,解得:,∴直线AQ的解析式为y=x+﹣1.当y=0时, x+﹣1=0,解得:x=c﹣4,∴D(c﹣4,0).同理可得E(c+4,0),∴DT=c﹣(c﹣4)=4,ET=c+4﹣c=4,∴DT=ET,∴QT垂直平分DE,∴QD=QE,∴∠QDE=∠QED.∵∠MDA=∠QDE,∴∠MDA=∠QED.∵PM=PN,∴∠PMN=∠PNM.∵∠PAQ=∠PMN﹣∠MDA,∠PBQ=∠NBE=∠PNM﹣∠QED,∴∠PAQ=∠PBQ.试题2、(黄冈校级自主招生)如图,直线OB是一次函数y=2x的图象,点A的坐标是(0,2),点C在直线OB上且△ACO为等腰三角形,求C点坐标.【解答】解:若此等腰三角形以OA为一腰,且以A为顶点,则AO=AC1=2.设C1(x,2x),则得x2+(2x﹣2)2=22,解得,得C1(),若此等腰三角形以OA为一腰,且以O为顶点,则OC2=OC3=OA=2,设C2(x′,2x′),则得x′2+(2x′)2=22,解得=,∴C2(),又由点C3与点C2关于原点对称,得C3(),若此等腰三角形以OA为底边,则C4的纵坐标为1,从而其横坐标为,得C4(),所以,满足题意的点C有4个,坐标分别为:(),(),(),C4().试题3、(广西来宾,23,10分)已知反比例函数的图像与一次函数图像交于点A (1,4)和B(m, -2).(1)求这两个函数的关系式.(2)如果点C与点A关于x轴对称,求△ABC的面积。

八年级数学下册 第 17章 反比例函数测试题(一)(答案不全)

八年级数学下册 第 17章 反比例函数测试题(一)(答案不全)

第17章 反比例函数测试题座号________姓名____________分数_________一、填空题(每空2分,共28分)1.已知-2与成反比例,当=3时,=1,则与间的函数关系式为 ; 2.反比例函数的图象经过点(2,5),若点(1,n )在反比例函数的图象上,则n 的值是. 3.函数的图像,在每一个象限内,随的增大而 ,请您任意写一个点使其在此函数的图像上,所写的点的坐标可为4.已知反比例函数的图象经过点P(一l ,2),则这个函数的图象位于第 象限. 5.已知正比例函数与反比例函数的图象都过A (,1),则正比例函数的解析式是 6.若反比例函数y=的图象位于第二、四象限,则k 的取值范围是 。

7.若点A (-1,y 1),B (2,y 2),C (3,y 3)都在反比例函数的图象上,则y 1,y 2,y 3 的大小关系是 .8.一个直角三角形的两直角边长分别为,且其面积为2,则与之间的函数关系式是 .9.已知一次函数y =ax +b 的图像经过第一、二、四象限,,则函数的图象在第象限 . 10.直线与双曲线相交于点,则 。

11.如图,已知点C 为反比例函数图像上的一点,过点C 向坐标轴引垂线,垂足分别为A 、B ,若四边形AOBC 的面积为6,则此反比例函数的解析式是 .12.反比例函数的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为 .13.在轴的正半轴上依次截取,过点分别作轴的垂线与反比例函数的图象相交于点,得直角三角形并设其面积分别为则的值为 . 二、选择题(每小题3分,共24分)14.下列函数中,反比例函数是( )A 、B 、C 、D 、 15.若与-3成反比例,与成正比例,则是的( ) A 、正比例函数 B 、反比例函数 C 、一次函数 D 、不能确定16.市一小数学课外兴趣小组的同学每人制作一个面积为200cm 2的矩形学具进行展示.,设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形长y (cm )与宽x (cm )之间的函数关系的图象大致是( )17.对于反比例函数,下列说法不正确...的是( ) A .点在它的图象上 B .它的图象在第一、三象限 C .当时,随的增大而增大 D .当时,随的增大而减小 18.函数与在同一坐标系内的图象可以是( )19.在反比例函数的图象的每一条曲线上,的增大而增大,则的值可以是( )A .B .0C .1D .2 20.如图,在直角坐标系中,点是轴正半轴上的一个定点,点是双曲线() 上的一个动点,当点的横坐标逐渐增大时,的面积将会( )A .逐渐增大B .不变C .逐渐减小D .先增大后减小21.如图,正比例函数与反比例函数的图象相交于两点,过点作轴的垂线交轴于点,连接,则的面积等于( )A .2B .4C .6D .8 x y O A .x y O B . x y O C . x y O D . A B C DO O OO三、解答题(共48分)22.(8分)已知,与成正比例,与x-3成反比例,当x=0时,y=2;当x=1时,y=0.(1)求y与x之间的函数关系式;(2)当x=2时,求y的值。

八年级数学(第17章 反比例函数)综合练习题试题

八年级数学(第17章 反比例函数)综合练习题试题

轧东卡州北占业市传业学校反比例函数练习一、选择题〔每题3分,共36分〕1、假设函数132)1(+++=m mx m y 是反比例函数,那么m 的值为〔 〕A 2-=m B 1=m C 2=m 或1=m D 2-=m 且1-=m2、以下函数中,y 是x 的反比例函数的是〔 〕Ax y 21-= B 21x y = Cx y 31-= D 3=xy 3、反比例函数xk y 2-=的图象位于第一、第三象限,那么k 的取值范围是〔 〕 A 2>kB 2≥kC 2≤kD 2<k4、在反比例函数xmy 21-=的图象上有两点),(11y x A ,),(22y x B ,当210x x <<时,有21y y <,那么m 的取值范围是〔 〕A 0<mB 0>mC 21<mD 21>m 5、当a 取何值时,反比例函数xa y 3-=的图象的一个分支上满足y 随x 的增大而增大〔 〕A 3>aB 3<aC 3≥aD 3≤a6、反比例函数xy 2=,以下结论中不正确的选项是〔 〕 A 图象必经过点〔1,2〕 By 随x 的增大而减小C 图象在第一、三象限内D 假设1>x,那么2<y7、三角形的面积为8cm 2,这时底边上的高y 〔cm 〕和底边x 〔cm 〕之间的函数关系图象是〔 〕 A B C D 8、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p 〔kPa 〕是气体体积V(m 3)的反比例函数,其图象如下列图,当气球内的气压大于120kPa 时,气球将爆炸,为了平安起见,气体的体积应〔 〕 A 小于45 m 3 B 大于54m 3 C 不小于54m 3 D 小于54m 38题图 10题图 9、正比例函数x y 2=与反比例函数)0(≠=k xky 的图象有一个交点为〔2,4〕,那么另一个交点坐标为〔 〕A 〔2,4-〕B 〔2-,4-〕C 〔2-,4〕D 〔2-,2-〕 10、如下列图矩形的面积为4,那么反比例函数的解析式为〔 〕 Ax y 4=B x y 4-=C xy 8= Dx y 8-=11、假设1-<m 时,那么在以下函数①)0(>=x xmy ,②1+-=mx y ,③mx y =,④x m y )1(+=中,y 值随x 值的增大而增大的是〔 〕A ①②B ②③C ①③D ②④ 12、如图,第四象限的角平分线OM 与反比例函数)0(≠=k xky 的图象交于点A ,23=OA ,那么该函数的解析式为〔 〕 Ax y 3=B x y 3-=C xy 9= Dxy 9-=二、填空题〔每空3分,共18分〕1、菱形的面积为10,两条对角线的长分别为x ,y ,那么y 与x 的函数关系式为y2、假设双曲线xy 6-=经过点m A (,m 2-〕,那么m 的值为 3、考察xy 2=的图象,当1≤y 时,x 的取值范围为 4、y 是2x 的反比例函数,当3=x 时,4=y ,那么当23=x 时,y 的值为5、反比例函数xky =的图象如下列图,那么一次函数k kx y +=的图象不经过第 象限.6、在函数a x a y (12--=为常数〕的图象上有三点),1(1y -,),41(2y -,2(312y ,3y 的大小关系是三、解答题〔1、2、3、4每题9分,5题10分,共46分〕 1、反比例函数)0(≠=m xmy 的图象经过点A 〔2-,1〕,一次函数)0(≠+=k b kx y 的图象经过点C 〔0,3〕与点A ,且与反比例函数的图象相交于另一点B .〔1〕分别求出反比例函数与一次函数的解析式. 〔2〕求点B 的坐标.2、反比例函数xk y 1=的图象与一次函数b x k y +=2的图象交于A 〔1,5〕,B 〔n ,1-〕两点.〔1〕求反比例函数与一次函数的解析式.〔2〕当x 取何值时,反比例函数的值大于一次函数的值? 3、直线x y 21=与双曲线xky =交于A 点,且点A 的横坐标为4. 〔1〕求k 的值.〔2〕假设双曲线xky =上一点C 的纵坐标为8,求△AOC 的面积. 4、21y y y -=,1y 与x 成正比例,2y 与x 成反比例.当1=x 时,0=y ;当2=x 时,3=y .当6=x时,求y 的值.5、假设一次函数12-=x y 和反比例函数xky 2=的图象都经过点〔1,1〕 〔1〕求反比例函数的解析式.〔2〕点A 在第三象限,且同时在两个函数的图像上,求点A 的坐标.〔3〕利用〔2〕的结果,假设点B 的坐标为〔2,0〕,且以点A ,O ,B ,P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.。

第十七章--反比例函数练习题(含答案)

第十七章--反比例函数练习题(含答案)

第十七章 反比例函数一、基础知识1. 定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。

x ky =还可以写成kxy =1-2. 反比例函数解析式的特征:⑴等号左边是函数y ,等号右边是一个分式。

分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1. ⑵比例系数0≠k⑶自变量x 的取值为一切非零实数。

⑷函数y 的取值是一切非零实数。

3. 反比例函数的图像 ⑴图像的画法:描点法① @ ② 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ③ 描点(有小到大的顺序) ④ 连线(从左到右光滑的曲线)⑵反比例函数的图像是双曲线,xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。

⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。

⑷反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xky = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。

45. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出k ) 6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数xky =中的两个变量必成反比例关系。

7. 反比例函数的应用选择题"1、反比例函数y =x n 5+图象经过点(2,3),则n 的值是( ).A 、-2B 、-1C 、0D 、12、若反比例函数y =xk (k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ). A 、(2,-1) B 、(-21,2) C 、(-2,-1) D 、(21,2) 3、已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )4、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ). @A 、成正比例B 、成反比例C 、不成正比例也不成反比例D 、无法确定 5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂 线PQ 交双曲线y =x1于点Q ,连结OQ ,点P 沿x 轴正方向运动时, Rt △QOP 的面积( ).A 、逐渐增大B 、逐渐减小C 、保持不变D 、无法确定 7、在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变. "ρ与V 在一定范围内满足ρ=Vm,它的图象如图所示,则该 气体的质量m 为( ).A 、1.4kgB 、5kgC 、6.4kgD 、7kg8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ).A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 2 9、已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ).Q pxy ot /h Ot /h &v /(km/h)O t /hO t /h v /(km/h) O A . B . @ C ..A 、m <0B 、m >0C 、m <21 D 、m >21 10、如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ). ~A 、x <-1B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2填空题11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 . 12、已知反比例函数xky =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”).13、若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = . 14、反比例函数y =(m +2)x m2-10的图象分布在第二、四象限内,则m 的值为 .15、有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是 . 16、如图,点M 是反比例函数y =xa(a ≠0)的图象上一点, 过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析 *式为 .17、使函数y =(2m 2-7m -9)x m2-9m +19是反比例函数,且图象在每个象限内y 随x 的增大而减小,则可列方程(不等式组)为 .18、过双曲线y =xk(k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______. 19. 如图,直线y =kx(k >0)与双曲线xy 4=交于A (x 1,y 1), B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.解答题21、(8分)如图,P 是反比例函数图象上的一点,且点P 到x 轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式.》23、(10分)如图,已知A (x 1,y 1),B (x 2,y 2)是双曲线y =xk在第一象限内的分支上的两点,连结OA 、OB . (1)试说明y 1<OA <y 1+1y k ; (2)过B 作BC ⊥x 轴于C ,当m =4时, 求△BOC 的面积.24、(10分)如图,已知反比例函数y =-x8与一次函数 y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的 纵坐标都是-2. 求:(1)一次函数的解析式; |(2)△AOB 的面积.25、(11分)如图,一次函数y =ax +b 的图象与反比例函数y =xk的图象交于M 、N 两点.(1)求反比例函数与一次函数的解析式; (2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.`/反比例函数参考答案:一、选择题1、D ;2、A ;3、C ;4、B ;5、D ;6、C7、D ;8、B ;9、D ; 10、D . 二、填空题11、y =x 1000; 12、减小; 13、5 ; 14、-3 ;15、y =xs23 ; 16、y =-x 5; 17、⎩⎨⎧---=+-0972119922>m m m m ; 18、|k|; 19、 20; !三、解答题 21、y =-x6. 23、(1)过点A 作AD ⊥x 轴于D ,则OD =x 1,AD =y 1,因为点A (x 1,y 1)在双曲线y =xk 上,故x 1=1y k ,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k; (2)△BOC 的面积为2.24、(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2; (2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM|=2,于是S △AOB =S △AOM +S △BOM =21|OM|·|y A |+21|OM|·|y B |=21×2×4+21×2×2=6.25、(1)将N (-1,-4)代入y =xk ,得k =4.∴反比例函数的解析式为y =x 4.将M (2,m )代入y =x 4,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨⎧-==.b ,a 22∴一次函数的解析式为y =2x -2.(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七章《反比例函数》提要:本章的重点是结合图象,总结出反比例函数的性质.另一个重点是用待定系数法求反比例函数的解析式,这种方法在求四种基本函数解析式中都已经用到,通过练习,可以观察出有几个待定系数,就需要几对自变量与函数的对应值,即几个方程. 由于知识的限制,无法估计出这个图象到底是什么样子,所以本章的难点就利用是描点法画函数图象.习题:一、填空题1.一般地,函数__________是反比例函数,其图象是__________,当k <0时,图象两支在__________象限内.2.已知反比例函数y x=2,当y =6时,x =_________.3.反比例函数y a x a a =---()3224的函数值为4时,自变量x 的值是_________. 4.反比例函数的图象过点(-3,5),则它的解析式为_________.5.若函数y x =4与y x =1的图象有一个交点是(12,2),则另一个交点坐标是_________. 6.已知反比例函数8y x=-的图象经过点P (a +1,4),则a =___ __. 7.反比例函数6y x=-图象上一个点的坐标是 . 8.已知点(12)-,在反比例函数ky x=的图象上,则k = . 9.已知反比例函数ky x=的图象经过点(36)A --,,则这个反比例函数的解析式是 . 10.若反比例函数1y x=-的图象上有两点1(1)A y ,,2(2)B y ,,则1y ______2y (填“>”或“=”或“<”).11.写出一个图象在第一、三象限的反比例函数的解析式 . 12.请写出一个图象在第二、四象限的反比例函数关系式_____________ 13.已知反比例函数的图象经过点(3,2)和(m ,-2),则m 的值是__.14.在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图17-1所示,P (5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是 米15.如图17-2,反比例函数xy 5=的图象与直线)0(>=k kx y 相交于B 两点,AC ∥y 轴,BC ∥x 轴,则△ABC 的面积等于 个面积单位.16.在ABC △的三个顶点(23)(45)(32)A B C ----,,,,,中,可能在反比例函数(0)ky k x=>的图象上的点是 . 17.近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式为 .18.小明家离学校1.5km ,小明步行上学需min x ,那么小明步行速度(m /min)y 可以表示为1500y x=;水平地面上重1500N 的物体,与地面的接触面积为2m x ,那么该物体对地面压强2(/m )y N 可以表示为1500y x=;,函数关系式1500y x=还可以表示许多不同情境中变量之间的关系,请你再列举1.例.:.二、选择题19.下列函数中,图象经过点(11)-,的反比例函数解析式是( ) A .1y x=B .1y x-=C .2y x=D .2y x-=20.在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( )A .k >3B .k >0C .k <3D . k <0 21.如图17-3,某反比例函数的图像过点M (2-,1),则此反比例函数图17-1图17-6表达式为( ) A .2y x =B .2y x =-C .12y x =D .12y x=- 22.已知反比例函数xky =的图象在第二、第四象限内,函数图象上有两点A (72,y 1)、B (5,y 2),则y 1与y 2的大小关系为( )A 、y 1>y 2B 、y 1=y 2C 、y 1<y 2D 、无法确定23.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( k P a )是气体体积V (m 3 )的反比例函数,其图象如图17-4所示.当气球内的气压大于120 k P a 时,气球将爆炸.为了安全起见,气球的体积应( )A .不小于54m 3B .小于54m 3C .不小于45m 3D .小于45m 324.反比例函数xky =的图象如图17-5所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( ) A .2 B .-2 C .4 D .-4 25.对于反比例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上 B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小26.如图17-6,A 、B 是反比例函数y =x2的图象上的两点.AC 、BD 都垂直于x 轴,垂足分别为C 、D .AB 的延长线交x 轴于点E .若C 、D 的坐标分别为(1,0)、(4,0),则ΔBDE 的面积与ΔACE 的面积的比值是( ). A .21 B .41 C.81 D .16127.在下图中,反比例函数xk y 12+=的图象大致是( )图17-5图17-428.若A (a 1,b 1),B (a 2,b 2)是反比例函数xy 2-=图象上的两个点,且a 1<a 2,则b 1与b 2的大小关系是( )A .b 1<b2 B .b 1 = b2 C .b 1>b 2D .大小不确定29.反比例函数2k y x=-(k 为常数,0k ≠)的图象位于( )A.第一、二象限 B.第一、三象限 C.第二、四角限D.第三、四象限30.如图17-7,是一次函数y =kx +b 与反比例函数y =2x的图像,则关于x 的方程kx +b =2x的解为( ) A .x l =1,x 2=2 B .x l =-2,x 2=-1 C .x l =1,x 2=-2 D .x l =2,x 2=-1 31.已知正比例函数x k y 11=和反比例函授xk y 22=的图像都经过点(2,1),则1k 、2k 的值分别为:( )A .1k =21,2k =2B .1k =2,2k =21C .1k =2,2k =2D .1k =21,2k =2132.函数y x m =+与(0)my m=≠在同一坐标系内的图象可以是( )三、解答题33.直线y kxb =+过x 轴上的点A (32,0),且与双曲线y k x=相交于B 、C 两点,已知B 点坐标为(-12,4),求直线和双曲线的解析式.xA .xB .xC .xD .图17-734.已知一次函数y x =+2与反比例函数y k x=的图象的一个交点为P (a ,b ),且P到原点的距离是10,求a 、b 的值及反比例函数的解析式.35.已知函数y m m x m m =+-+-()21222是一次函数,它的图象与反比例函数y k x=的图象交于一点,交点的横坐标是13,求反比例函数的解析式.36.已知:反比例函数xky =和一次函数12-=x y ,其中一次函数的图像经过点(k ,5). (1)试求反比例函数的解析式;(2)若点A 在第一象限,且同时在上述两函数的图像上,求A 点的坐标.37.已知反比例函数xmy 3-=和一次函数1-=kx y 的图象都经过点m P (,)3m -. (1)求点P 的坐标和这个一次函数的解析式;(2)若点M(a ,1y )和点N (1+a ,2y )都在这个一次函数的图象上.试通过计算或利用一次函数的性质,说明1y 大于2y .38.如图17-8已知一次函数8+-=x y 和反比例函数xky =图象在第一象限内有两个不同的公共点A 、B .(1)求实数k 的取值范围;(2)若ΔAOB 的面积S =24,求k 的值.图17-839.如图17-9,已知A (-4,2)、B (n ,-4)是一次函数y =kx +b 的图象与反比例函数m y x= 的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.40.从甲、乙两题中选做一题即可.如果两题都做,只以甲题计分.题甲:如图17-10,反比例函数ky x=的图象与一次函数y mx b =+的图象交于(13)A ,,(1)B n -,两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x 取何值时,反比例函数的值大于一次函数的值.图17-941.如图17-11,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点. (1)试确定上述反比例函数和一次函数的表达式;(2)求AOB △的面积.42.如图17-12,已知直线12y x =与双曲线(0)ky k x=>交于A B ,两点,且点A 的横坐标为4. (1)求k 的值;(2)若双曲线(0)ky k x=>上一点C 的纵坐标为8,求AOC △的面积; (3)过原点O 的另一条直线l 交双曲线(0)ky k x=>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.参考解析图17-11图17-12一、填空题1.y k x=,k ≠0;双曲线;二、四2.13(点拨:将y =6代入解析式,解关于x 的方程即可)3.-1 (点拨:由函数y a x a a =---()3224为反比例函数可知2241a a --=-,可解得a =-1,a =3(舍去),将a =-1,y =4代入,求解关于x 的方程) 4.y x=-15(点拨:利用待定系数法求解)5.(-12,-2)(点拨:可通过将两个函数组成关于x 、y 的二元一次方程组求解,或者由图象的对称性可知,两个交点关于原点对称) 6.-3(点拨:将点P (a +1,4)代入) 7.满足条件6xy =-的任一点()x y ,均可 8.-2(点拨:将点(12)-,代入函数解析式) 9.18y x=(点拨:将点(36)A --,代入函数解析式) 10.<(点拨:利用函数图象,在每一象限内,函数值随着自变量的增大而减小,A 、B 两点都在第一象限内,所以可得出结论)11.答案不唯一,如:y =2x 12.答案不唯一,如:y =-2x13.-3 (点拨:在同一反比例函数图象上的所有点的横纵坐标的乘积是一个定值,据此可求得结果m 的值)14.0.5(点拨:在同一反比例函数图象上的所有点的横纵坐标的乘积是一个定值,据此可求出当力达到10牛时,移动距离为0.5米)15.10(点拨:由对称性知识可分析得知,△ABC 的面积是图象上某一个点横纵坐标乘积绝对值的2倍)16.B (点拨:根据反比例函数图象上的点的横纵坐标的乘积等于函数的系数k 可知,因为k 是大于0的,所以可能在图象上的点只有B ) 17.100y x=(点拨:利用待定系数法可求得结果) 18.体积为1 5003cm 的圆柱底面积为2cm x ,那么圆柱的高(cm)y 可以表示为1500y x= (其它列举正确均可) 二、选择题19.B (点拨:图象上横纵坐标的点的乘积是一个定值为-1)20.A (点拨:在每一象限内,y 都随x 的增大而减小,则系数为正数) 21.B (点拨:利用待定系数法,设ky x=,然后将点M (-2,1)代入求出待定系数即可)22.A (点拨:利用函数图象,将点A 、B 在图象上描出,然后判断函数值的大小) 23.C (点拨:根据图象上的已知点的坐标,利用待定系数法求出函数解析式)24.D (点拨:由图象上的点所构成的三角形面积为可知,该点的横纵坐标的乘积绝对值为4,又因为点M 在第二象限内,所以可知反比例函数的系数为-4)25.C (点拨:系数为2,大于0,图象为位于一、三象限,在每一象限内,函数值随着自变量的增而减小)26.D (点拨:由图象上的已知点的坐标可知,两个三角形的底与高的比均为1:4,所以面积之比为1:16) 27.D (点拨:因为一个数的平方具体非负性,所以21k +一定大于或等于1,故函数图象位于一、三象限)28.D (点拨:函数的系数小于0,图象位于二、四象限,在每一象限内,函数值随着自变量的增大而减小,但现在的A 、B 两点并不能确定是否在同一象限内,因而无法作出判断)29.C (点拨:系数为负数,图象位于二、四象限) 30.C (点拨:则关于x 的方程kx +b =2x的解,可以看作是一次函数y =kx +b 与反比例函数y =2x的图像的交点的横坐标) 31.A (点拨:将点(2,1)分别代入两个函数解析式即可)32.B (点拨:先由反比例函数的图象判断反比例函数的系数m 的符号,然后再由同一个图象中的直线判断一次函数中m 的符号,看两个m 的符号是否能一致) 三、解答题33.解析:由题意知点A (32,0),点B (-12,4)在直线y kx b =+上,由此得032412=+=-+⎧⎨⎪⎪⎩⎪⎪k b k b ∴=-=⎧⎨⎩k b 23 点B (-12,4)在双曲线y k x =上∴=-412k ,k =-2∴双曲线解析式为y x=-234.解析:由题设,得b a b k a a b =+=+=⎧⎨⎪⎪⎩⎪⎪210022 ∴===⎧⎨⎪⎩⎪a b k 116848,a b k 228648=-=-=⎧⎨⎪⎩⎪ ∴=a 6,b =8或a =-8,b =-6,y x =48 35.解析:由已知条件m m m m 222010+≠+-=⎧⎨⎪⎩⎪ ∴≠≠-=-=⎧⎨⎩m m m m 0221,或 ∴=m 1使y x =-32 代入y k x = ∴--=3202x x k 因图象交于一点,∴=∆0 即4120+=k∴=-k 13 ∴=-y x13.36.解析:(1) 因为一次函数12-=x y 的图像经过点(k ,5)所以有 125-=k解得3=k ,所以反比例函数的解析式为xy 3=. (2)由题意得:⎪⎩⎪⎨⎧-==123x y x y 解这个方程组得:⎪⎩⎪⎨⎧==223y x ⎩⎨⎧-=-=31y x 因为点A 在第一象限,则0>x ,0>y ,所以点A 的坐标为(23,2) 37.解析:(1)12--=x y ;(2)∵M 、N 都在12--=x y 上,∴121--=a y ,321)1(22--=-+-=a a y ,∴0231)32(1221>=+-=-----=-a a y y ,∴21y y >.38.解析:(1)160<<k ,(2)7=k ,略解:∵24)(2112=-=-=∆∆∆x x OC S S S COA COB AOB ∴)(42412x x -=,∴364)(21221=-+x x x x ,而k x x x x =⋅=+2121,8, ∴36464=-k ,∴7=k39.解析:(1)∵ 点A (-4,2)和点B (n ,-4)都在反比例函数y =xm的图象上, ∴2,44.m m n ⎧=⎪⎪-⎨⎪-=⎪⎩解得8,2.m n =-⎧⎨=⎩又由点A (-4,2)和点B (2,-4)都在一次函数y =kx +b 的图象上,∴42,2 4.k b k b -+=⎧⎨+=-⎩ 解得1,2.k b =-⎧⎨=-⎩ ∴ 反比例函数的解析式为8y x =-,一次函数的解析式为y =-x -2 .(2)x 的取值范围是x >2或-4<x <0 . 40.解析:(1)(13)A ,在k y x =的图象上,3k ∴=,3y x ∴= ,又(1)B n -,在3y x=的图象上,3n ∴=-,即(31)B --, ,313m b m b =+⎧⎨-=-+⎩,解得:1m =,2b =, 反比例函数的解析式为3y x=,一次函数的解析式为2y x =+, (2)从图象上可知,当3x <-或01x <<时,反比例函数的值大于一次函数的值.41.解析:(1)∵点(21)A -,在反比例函数my x=的图象上,(2)12m =-⨯=-∴.∴反比例函数的表达式为2y x =-. ∵点(1)B n ,也在反比例函数2y x=-的图象上,2n =-∴,即(12)B -,.把点(21)A -,,点(12)B -,代入一次函数y kx b =+中,得 212k b k b -+=⎧⎨+=-⎩,,解得11k b =-⎧⎨=-⎩,.∴一次函数的表达式为1y x =--. (2)在1y x =--中,当0y =时,得1x =-.∴直线1y x =--与x 轴的交点为(10)C -,. ∵线段OC 将AOB △分成AOC △和BOC △,1113111212222AOB AOC BOC S S S =+=⨯⨯+⨯⨯=+=△△△∴. 42.解析:(1)点A 横坐标为4,∴当4x =时,2y =. ∴点A 的坐标为(42),.点A 是直线12y x =与双曲线(0)k y k x =>的交点,428k ∴=⨯=. (2)如答图17-1,点C 在双曲线上,当8y =时,1x =∴点C 的坐标为(18),.过点A C ,分别做x 轴,y 轴的垂线,垂足为M N ,,得矩形DMON .32ONDM S =矩形,4ONC S =△,9CDA S =△,4OAM S =△.3249415AOC ONC CDA OAM ONDM S S S S S =---=---=△△△△矩形.。

相关文档
最新文档