初中平面几何公式大全
初中数学几何公式大全
初中数学几何公式大全几何是数学的一个分支,主要研究点、线、面以及它们之间的关系和性质。
在初中数学中,几何是一个重要的学习内容,涉及到很多基本概念和公式。
下面将详细介绍初中数学几何公式的大全。
一、平面几何公式1. 直角三角形的勾股定理:在一个直角三角形中,直角边的平方等于其他两边平方的和。
即a² + b² = c²,其中a和b为直角边,c为斜边。
2. 任意三角形的海伦公式:在任意三角形ABC中,设a、b、c为边长,p为半周长,则三角形的面积S可以通过海伦公式计算:S = √[p(p-a)(p-b)(p-c)]。
3. 任意三角形的正弦定理:在任意三角形ABC中,设a、b、c为边长,A、B、C为对应的角度,则正弦定理可以表达为a/sinA = b/sinB = c/sinC。
4. 任意三角形的余弦定理:在任意三角形ABC中,设a、b、c为边长,A、B、C为对应的角度,则余弦定理可以表达为c² = a² + b² - 2ab*cosC。
5. 任意三角形的面积公式:在任意三角形ABC中,设a、b、c为边长,h为对应高,则三角形的面积S可以通过公式S = 1/2 * b * h计算。
6. 等腰三角形的性质:在等腰三角形ABC中,两底边相等,顶角相等,底角相等。
7. 相似三角形的性质:如果三角形ABC和三角形DEF相似,那么它们的对应边长之比相等,即AB/DE = BC/EF = AC/DF。
8. 平行线的性质:平行线具有以下性质:互不相交;位于同一平面中;在同一平面内,与同一直线相交的两条平行线,与第三条直线所成的对应角相等;两个平行线被一条截线切割后,对应角相等。
二、立体几何公式1. 立方体的体积公式:立方体的体积V等于边长的立方,即V = a³,其中a为边长。
2. 正方体的面积公式:正方体的表面积S等于6倍边长的平方,即S = 6a²,其中a为边长。
(手打)平面解析几何所有公式
(适合高一)平面解析几何(直线与圆)所有公式 1.两点间距离公式:两点()11,A x y ,()22,B x y .()()212212y y x xAB -+-=2.点到直线距离公式:()00,y x P ,直线0=++C By Ax .2200BA CBy Ax d +++= 3.中点坐标:),(11y x A 和()22,y x B 的中点坐标为⎪⎭⎫⎝⎛++2,22211y x y x4.斜率公式: ①已知两点()11,A x y ,()22,B x y )(21x x ≠, 则1212x x y y k --=②已知倾斜角α,则αtan =k5.斜率的取值范围:()+∞∞-∈,k6.倾斜角范围:[)︒∈1800,α7.直线方程的五种形式:(1)点斜式方程:点()00,y x A , 斜率k .()00x x k y y -=-(2)斜截式方程:斜率k ,截距b .[或给点()b ,0].※截距b 是坐标, 有+,有-,有0。
b kx y += (3)两点式方程:),(11y x A ,()22,B x y (21x x ≠且21y y ≠)则121121x x x x y y y y --=--(21x x ≠,且21y y ≠) (4)截距式方程.横截距a ,纵截距b [或给点()0,a ,()b ,0]则1=+bya x (0≠a 且0≠b )(5)一般式方程:适合与所有条件,最后统一写成方程形式)0(022≠+=++B A C By Ax8.两条直线的位置关系 (1)相交⇔(一般式)01221≠-B A B A⇔(一般式))0(222121≠≠B A B B A A⇔(斜截式)21k k ≠(2)平行⇔(一般式)01221=-B A B A 且02121≠-B C C B 或02112≠-C A C A⇔(一般式))0(222212121≠≠=C B A C C B B A A⇔(斜截式)21k k =且21b b ≠(3)重合⇔(一般式))0(,,212121≠===λλλλC C B B A A⇔(一般式)212121C C B B A A ==⇔(一般式)01221=-B A B A 且02121=-B C C B 或02112=-C A C A⇔(斜截式)21k k =且21b b = (4)垂直⇔(一般式)02121=+B B A A⇔(斜截式)121-=k k9.一般式方程0=++C By Ax (0≠B ,保证斜率k 存在)与斜截式方程b kx y +=关系:BCb B A k -=-=,10.常用结论(1)与0=++C By Ax 平行的直线方程为)(0C D D By Ax ≠=++※必须写(2)与0=++C By Ax 垂直的直线方程为0=+-D Ay Bx(3)两条平行直线01=++C By Ax 与02=++C By Ax 之间的距离2221BA C C d +-= 11.圆的方程(1)标准方程:()()222r b y a x =-+-。
初中几何证明的所有公理和定理
初中几何证明的所有公理和定理几何学是数学的一个分支,研究平面和空间中的图形、形状、大小以及它们之间的关系。
在几何学中,有一些基本的公理和定理被广泛应用于证明其他几何结论。
以下是初中几何中常用的公理和定理。
一、公理1.尺规公理:任意两点可以用直尺连接,任意一点可以用剪刀间距来复原。
2.同位角公理:同位角互等。
3.平行公理:通过点外一条直线的直线,与这条直线平行的直线只有唯一一条。
4.直线偏转公理:过直线和不在直线上的一点,有且只有一条直线与该直线相交。
二、定理1.垂直平分线定理:平分一条线段的直线必垂直于该线段。
2.三角形内角和定理:三角形内角的和为180°。
3.直角三角形定理:在直角三角形中,两个直角三角形的边长和斜边相等。
4.点到直线的距离定理:点到直线的距离等于点到该直线上垂线的距离。
5.等腰三角形定理:等腰三角形的底边中点到顶点的距离等于底边的一半。
6.等边三角形定理:等边三角形的三条边相等。
7.三角形外角定理:三角形外角等于其对应内角的和。
8.直角三角形的勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。
9.海伦公式:已知三角形的三边长,可以通过海伦公式求解其面积。
10.等周定理:等周的两角相等,反之亦成立。
11.三角形中位线定理:三角形两边中点连线中位线,且平分第三边。
12.周长定理:四边形周长等于各边长的和。
13.三角形周长定理:三角形的周长等于三边长的和。
14.三角形中线定理:三角形中线等分中位线,且平分第三边。
15.三角形终边定理:一个角的终边上的点,到另一个角所在的直线的距离永远相等。
16.五边形内角和定理:五边形的内角和是540°。
17.钝角三角形的边长关系:钝角三角形两边长的平方和小于斜边长的平方。
18.三角形的相似性定理:对应角等价、对应边成比例的两个三角形为相似三角形。
19.平行线的性质定理:平行条边分别过枚角且长度成正比,则连线为平行线。
20.重叠三角形定理:如果两个角和一个边分别相等,则两个三角形相等。
初中几何公式大全
初中几何公式大全1.点与线-点:几何学中没有大小和形状的概念,只是一个位置。
-线:长度无穷,宽度为0,由无数个点组成。
2.线段-长度:AB的长度记作AB。
-中点:线段AB的中点为M,AM=MB。
-分点:P是线段AB上的一点,AP:PB=k:l,则P在线段AB上的坐标为(k/(k+l),l/(k+l))。
3.直线和射线-直线:长度无穷,无端点,可通过两点唯一确定。
-射线:起点至无限远的部分。
4.角度-角度:由两条线段的共同端点及其夹角所构成。
-顶点:角的公共端点。
-内角:映射到射线上的点在角内部。
-外角:映射到射线上的点在角外部。
-展角:角度为180度。
5.三角形-三角形:由3条线段组成的图形。
-内角和:三角形内角的和为180度。
-直角三角形:一角为90度的三角形。
6.平行四边形-平行四边形:具有4条边且两对边互相平行的四边形。
7.矩形和正方形-矩形:具有4个角均为直角的四边形。
-正方形:具有4个角均为直角且4条边相等的四边形。
8.梯形和同位角-梯形:具有一对平行边的四边形。
-同位角:两条直线被一条截线交叉形成的内角和外角互为补角。
9.圆-圆:由平面内与一个给定点的距离相等的所有点组成。
-圆心:圆心是到圆上任意一点距离都相等的点。
-直径:经过圆心的线段,两端点在圆上。
10.圆周率11.平面几何公式-面积公式:-正方形面积=边长²-矩形面积=长×宽-三角形面积=底边长×高/2-平行四边形面积=底边长×高-梯形面积=(上底+下底)×高/2-圆面积=π×半径²-周长公式:-正方形周长=4×边长-矩形周长=2×(长+宽)-三角形周长=边1+边2+边3-平行四边形周长=2×(边1+边2)-梯形周长=边1+边2+边3+边4-圆周长=2×π×半径-三角形的勾股定理:-a²=b²+c²,其中a、b、c分别为直角三角形的两条直角边与斜边。
最新初中数学各种公式
最新初中数学各种公式一、代数公式1. 二次方差公式:(a+b)^2 = a^2 + 2ab + b^22. 平方差公式:(a-b)^2 = a^2 - 2ab + b^23.二次恒等式:(a+b)(a-b)=a^2-b^24.平方根性质:√(a*b)=√a*√b5.同底数幂相乘:a^m*a^n=a^(m+n)6.同底数幂相除:a^m/a^n=a^(m-n)7.同底数幂的指数相加:(a^m)^n=a^(m*n)8.幂函数相除:(a^m)/(b^m)=(a/b)^m9.转化为乘方形式:a^(1/n)=n√a10.转化为乘方形式:√a=a^(1/2)二、三角函数公式1. 三角函数正弦:sin(x) = 对边长度 / 斜边长度2. 三角函数余弦:cos(x) = 临边长度 / 斜边长度3. 三角函数正切:tan(x) = 对边长度 / 临边长度4. 三角函数余切:cot(x) = 临边长度 / 对边长度5. 正切和余切的关系:tan(x) = 1 / cot(x)6. 三角函数正弦的倒数:csc(x) = 1 / sin(x)7. 三角函数余弦的倒数:sec(x) = 1 / cos(x)8. 三角函数正切的倒数:cot(x) = 1 / tan(x)9. 平方和公式:sin^2(x) + cos^2(x) = 110. 差积公式:sin(a ± b) = sin(a)cos(b) ± cos(a)sin(b)三、平面几何公式1.直角三角形勾股定理:a^2+b^2=c^22.等腰三角形两边平方和等于底边平方的两倍:2a^2=b^23.正方形对角线长度:d=a√24.长方形周长公式:周长=2(长+宽)5.长方形面积公式:面积=长*宽6.正方形周长公式:周长=4边长7.正方形面积公式:面积=边长^28.圆的周长公式:周长=2πr9.圆的面积公式:面积=πr^210.等边三角形高公式:高=√3/2*边长四、立体几何公式1.立方体体积公式:体积=边长^32.立方体表面积公式:表面积=6*边长^23.正方体体积公式:体积=边长^34.正方体表面积公式:表面积=6*边长^25.圆柱体体积公式:体积=πr^2h6. 圆柱体侧面积公式:侧面积= 2πrh7. 圆柱体表面积公式:表面积= 2πr^2 + 2πrh五、概率统计公式1.频数:频数=一些数值出现的次数2.相对频数:相对频数=频数/总次数3.概率:概率=频数/总次数4.期望值:期望值=数据值*概率之和5. 成对数据的协方差:Cov(X,Y) = Σ((Xi-μx)(Yi-μy))/(n-1)6.样本方差:s^2=Σ(Xi-μ)^2/(n-1)7.样本标准差:s=√s^2这些公式覆盖了初中数学的各个领域,希望能对你的学习有所帮助。
初中平面几何知识的60个定理
初中平面几何知识的60个定理1、勾股定理、勾股定理((毕达哥拉斯定理毕达哥拉斯定理) )小学都应该掌握的重要定理小学都应该掌握的重要定理 2、射影定理、射影定理((欧几里得定理欧几里得定理) )重要重要3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分的两部分重要重要4、四边形两边中心的连线的两条对角线中心的连线交于一点、四边形两边中心的连线的两条对角线中心的连线交于一点学习中位线时的一个常见问题,中考不需要,初中竞赛需要学习中位线时的一个常见问题,中考不需要,初中竞赛需要5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
完全没有意义,学习解析几何后显然的结论,不用知道完全没有意义,学习解析几何后显然的结论,不用知道6、三角形各边的垂直一平分线交于一点。
、三角形各边的垂直一平分线交于一点。
重要重要7、从三角形的各顶点向其对边所作的三条垂线交于一点、从三角形的各顶点向其对边所作的三条垂线交于一点重要重要8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 中考不需要,竞赛中很显然的结论中考不需要,竞赛中很显然的结论9、三角形的外心,垂心,重心在同一条直线上。
、三角形的外心,垂心,重心在同一条直线上。
高中竞赛中非常重要的定理,称为欧拉线高中竞赛中非常重要的定理,称为欧拉线1010、、(九点圆或欧拉圆或费尔巴赫圆九点圆或欧拉圆或费尔巴赫圆))三角形中,三角形中,三边中心、三边中心、三边中心、从各顶点向其对边所引垂线的垂从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,高中竞赛中的常用定理高中竞赛中的常用定理1111、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线((欧拉线欧拉线))上 高中竞赛中会用,不常用高中竞赛中会用,不常用1212、库立奇、库立奇、库立奇**大上定理:大上定理:((圆内接四边形的九点圆圆内接四边形的九点圆) ) ) 圆周上有四点,过其中任三点作三角形,圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
图形公式大全表
图形公式大全表所有图形的公式一、平面图形公式:1、正方形 s=a²或对角线×对角线÷2 c=4a2、平行四边形 s=ah3、三角形s=ah÷24、梯形s=(a b)×h÷25、圆形s=πr2 c=πd6、椭圆s=πr7、扇形 s=lr/2二、立体图形公式:1、长方体的表面积=2×(长×宽长×高宽×高) 用符号表示是:s=2(ab bc ca)2、长方体的体积 =长×宽×高用符号表示是:v=abh 或底面积×高用符号表示是:v=sh3、正方体的表面积=棱长×棱长×6 用符号表示是:s=a²×64、正方体的体积=棱长×棱长×棱长用符号表示是:v=a³5、圆柱的侧面积=底面周长×高用符号表示是:s侧=πd×h6、圆柱的表面积=2×底面积侧面积用符号表示是:s=πr²×2 dπh7、圆柱的体积=底面积×高用符号表示是:v=πr²×h8、圆锥的体积=底面积×高÷3 用符号表示是:v=πr²×h÷39、圆锥侧面积=1/2*母线长*底面周长10、圆台体积=[s s′ √(ss′)]h÷311、球体体积=(1/3*s*h)*(4*pi*r²)/s=4/3*pi*r²三、立体几何图形:1、柱体:包括圆柱和棱柱。
棱柱又可分为直棱柱和斜棱柱,按底面边数的多少又可分为三棱柱、四棱柱、n棱柱;棱柱体积都等于底面面积乘以高,即v=sh;2、锥体:包括圆锥体和棱锥体,棱锥分为三棱锥、四棱锥及n棱锥;棱锥体积为v=sh/3 ;3、旋转体:包括圆柱、圆台、圆锥、球、球冠、弓环、圆环、堤环、扇环、枣核形等。
初中数学各种常用公式大全
初中数学各种常用公式大全初中数学是我们学习过程中的重要学科之一,其中包含了大量的公式。
接下来,本文将为大家整理出初中数学中各种常用公式大全。
1. 直线方程:点斜式:y - y1 = k(x - x1)斜截式:y = kx + b截距式:x/a + y/b = 12. 二次函数:标准式:y = a(x - m)² + n顶点式:y = a(x - h)² + k一般式:y = ax² + bx + c3. 三角函数:正弦函数:sin θ = 对边 / 斜边余弦函数:cos θ = 临边 / 斜边正切函数:tan θ = 对边 / 临边余切函数:cot θ = 临边 / 对边4. 平面几何:欧拉公式:V - E + F = 2三角形面积公式:S = 1/2bh 正方形面积公式:S = a²长方形面积公式:S = ab圆面积公式:S = πr²圆周长公式:C = 2πr5. 空间几何:球体表面积公式:S = 4πr²球体体积公式:V = (4/3)πr³直角坐标系中两点距离公式:d = √((x2-x1)² + (y2-y1)² + (z2-z1)²)6. 概率统计:全概率公式:P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn) 贝叶斯公式:P(B|A) = P(A|B)P(B) / [P(A|B)P(B) + P(A|Bc)P(Bc)]期望公式:E(X) = ∑xiP(xi)方差公式:Var(X) = E(X²) - [E(X)]²以上就是初中数学各种常用公式的大全。
在学习过程中,我们需要结合不同的题型,运用不同的公式,寻找最佳解决方案,让我们更好地应对数学考试。
平面几何的26个定理
高一数学竞赛班二试讲义第1讲 平面几何中的26个定理班级 姓名一、知识点金1. 梅涅劳斯定理:若直线l 不经过ABC ∆的顶点,并且与ABC ∆的三边,,BC CA AB 或它们的延长线分别交于,,P Q R ,则1BP CQ AR PC QA RB⋅⋅= 注:梅涅劳斯定理的逆定理也成立(用同一法证明)2. 塞瓦定理: 设,,P Q R 分别是ABC ∆的三边,,BC CA AB 或它们的延长线上的点,若,,AP BQ CR 三线共点,则1BP CQ AR PC QA RB⋅⋅= 注:塞瓦定理的逆定理也成立3. 托勒密定理:在四边形ABCD 中,有AB CD BC AD AC BD ⋅+⋅≥⋅,并且当且仅当四边形ABCD 内接于圆时,等式成立。
AB AE AC ADBC ED AC AD==⇒又4. 西姆松定理:若从ABC ∆外接圆上一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F ,则,,D E F 三点共线。
西姆松定理的逆定理:从一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F 。
若,,D E F 三点共线,则点P 在ABC ∆的外接圆上。
5. 蝴蝶定理:圆O 中的弦PQ 的中点M ,过点M 任作两弦AB ,CD ,弦AD 与BC 分别交PQ 于X ,Y ,则M 为XY 之中点。
证明:过圆心O 作AD 与BC 的垂线,垂足为S 、T ,,OY ,OM ,SM ,MT 。
∴AM/CM=AD/BC∵AS=1/2AD,BT=1/2BC ∴AM/CM=AS/CT又∵∠A=∠C ∴△AMS∽△CMT∴∠MSX=∠MTY∴∠OMX+∠OSX=180°∴O,S ,X ,M同理,O ,T ,∴∠MTY=∠MOY,∠MSX=∠MOX∴∠MOX=∠MOY , ∵OM⊥PQ ∴XM=YM注:把圆换成椭圆、抛物线、双曲线蝴蝶定理也成立6. 坎迪定理:设AB 是已知圆的弦,M 是AB 上一点,弦,CD EF 过点M ,连结,CF ED ,分别交AB 于,L N ,则1111LM MN AM MB-=-。
初中最复杂公式
初中最复杂公式
初中数学中有很多公式,其中一些可能对某些学生来说比较复杂。
以下是一些初中数学中比较复杂的公式:
1. 平面几何中的勾股定理及其逆定理:勾股定理是一个用于计算直角三角形斜边的长度,而逆定理则是用来判断一个三角形是否为直角三角形。
2. 三角函数公式:三角函数公式包括正弦、余弦、正切等,这些公式用于计算三角形的角度和边长之间的关系。
3. 代数中的一元二次方程:一元二次方程的形式为 ax^2 + bx + c = 0,解这个方程需要使用配方法、公式法或因式分解法等技巧。
4. 分式方程:分式方程的形式为 (x/a) + (y/b) = 1,解这个方程需要消去分母,将其转化为整式方程。
5. 平面几何中的相似三角形:相似三角形是指两个三角形在形状上相同,但大小不同。
相似三角形有一些特殊的性质和定理,例如相似三角形的对应角相等,对应边成比例。
6. 圆的性质和定理:圆是一个常见的几何图形,它有一些特殊的性质和定理,例如圆周角定理、切线长定理等。
这些公式在初中数学中都有广泛的应用,需要学生熟练掌握和运用。
初中常见数学公式大全
初中常见数学公式大全以下是初中数学常见公式的详细列表:1.等式和方程- 一次方程:ax + b = 0- 二次方程:ax^2 + bx + c = 0- 方程组:ax + by = c; dx + ey = f2.比例与比例关系-比例公式:a/b=c/d-百分比关系:a%=(a/100)*b3.三角形-周长:P=a+b+c-面积:A=0.5*b*h-勾股定理:c^2=a^2+b^2- 正弦定理:sinA/a = sinB/b = sinC/c- 余弦定理:c^2 = a^2 + b^2 - 2ab * cosC 4.圆-周长:C=2πr-面积:A=πr^25.平面几何-长方形面积:A=a*b-正方形面积:A=a^2-三角形面积:A=0.5*b*h-梯形面积:A=0.5*(a+b)*h-平行四边形面积:A=b*h-等腰梯形面积:A=0.5*(a+b)*h6.植被统计-标准差:标准差是一组数据在统计分布中反映离散度大小的一种措施。
-方差:方差是对数据分散程度的一种度量。
-折线图:折线图用折线来表示一组数据的变化趋势。
7.数据统计-平均数:平均数是数值型数据中的一个统计指标,表示一组数据的集中趋势。
-中位数:中位数是按数字顺序排序后的中间数。
-众数:众数是指一组数据中出现次数最多的数。
-异常值:在一组数据中与其他数据明显不同的取值。
8.概率与统计-事件概率:事件A发生的概率P(A)=(A发生的可能数)/(总的可能数)-加法原理:如果事件A和事件B互不相容,那么P(A∪B)=P(A)+P(B) -乘法原理:一个事件不能同时发生的概率P(A∩B)=P(A)*P(B,A)9.几何图形-正方体体积:V=a^3-球体积:V=(4/3)*π*r^3-圆柱体积:V=π*r^2*h-圆锥体积:V=(1/3)*π*r^2*h10.分数运算- 分数加法:a/b + c/d = (ad + bc)/bd- 分数减法:a/b - c/d = (ad - bc)/bd- 分数乘法:a/b * c/d = ac/bd- 分数除法:(a/b) / (c/d) = ad/bc这些公式是初中数学中常见的公式。
几何计算公式大全
几何计算公式大全一、平面几何公式:1.周长和面积公式:-矩形:周长=2*(长+宽),面积=长*宽-正方形:周长=4*边长,面积=边长^2-圆:周长=2*π*半径,面积=π*半径^2-三角形:周长=边1+边2+边3,面积=(底边*高)/2-梯形:周长=边1+边2+边3+边4,面积=(上底+下底)*高/22.角度和三角函数公式:-弧度和角度的转换关系:度=弧度*(180/π),弧度=度*(π/180)- 正弦定理:a/sin(A) = b/sin(B) = c/sin(C),其中a、b、c是三角形的三条边,A、B、C是对应的角度。
- 余弦定理:c^2 = a^2 + b^2 - 2ab*cos(C),其中c是三角形的斜边,a、b是两个相邻角的边长,C是这两个边对应的夹角。
3.直线和平面的方程公式:-点斜式方程:y-y1=斜率(x-x1),其中(x1,y1)是直线上的一点,斜率可以用两点之间的高度差除以水平距离表示。
-两点式方程:(y-y1)/(y2-y1)=(x-x1)/(x2-x1),其中(x1,y1)和(x2,y2)是直线上的两个点。
-一般式方程:Ax+By+C=0,其中A、B、C是常数,表示直线上的所有点。
二、立体几何公式:1.体积和表面积公式:-立方体:体积=边长^3,表面积=6*边长^2-正方体:体积=边长^3,表面积=6*边长^2-圆柱体:体积=π*半径^2*高,曲面积=2*π*半径*高,总表面积=2*π*半径*(半径+高)-圆锥体:体积=(π*半径^2*高)/3,曲面积=π*半径*侧面长度,总表面积=π*半径*(侧面长度+半径)-球体:体积=(4/3)*π*半径^3,表面积=4*π*半径^22.直角三角形的性质:-毕达哥拉斯定理:直角三角形的两条直角边的平方和等于斜边的平方,即a^2+b^2=c^2- 直角三角形的角度关系:直角的两个锐角的正弦、余弦和正切函数值满足sin(A) = cos(B) = a/c,sin(B) = cos(A) = b/c,tan(A) =a/b,tan(B) = b/a。
平面 解析几何公式
平面解析几何公式 1、 直线的斜率坐标公式:2121y y x x -- 2、直线方程点斜式:00(x x )y y k -=- 斜截式:y kx b =+ 两点式:112121y y x x y y x x --=-- (1212,x x y y ≠≠) 截距式:1x y ab+=一般式:0ax by c ++= (,a b 不同时为0) 3、两点之间的距离公式:A (11,x y )B (22,x y )两点的距离公式:4点到直线的距离公式:点P (00,x y )到直线0ax by c ++=的距离为:d =5、两平行直线的距离公式:直线1L :10Ax By C ++= 直线2L :20Ax By C ++=的距离公式为:d =6、圆的标准方程:222(x a)(y b)r -+-=圆心是:(a,b)o ,半径是:r 7圆的一般方程:220x y Dx Ey C ++++=圆心是:(,)22D E o --,半径是:r =8、椭圆的标准方程焦点在x 轴上的标准方程:22221x y a b+= (a b 0)>> 焦点坐标:12(a,0),(a,0)F F -准线方程:2a x c=±焦点在y 轴上的标准方程:22221y x a b+= (a b 0)>> 焦点坐标:12(0,b),(0,b)F F -准线方程:2a y c=±a,b,c 三者之间的关系:222a b c =+离心率:c e a=两准线之间的距离:22a d c =焦点到相应的准线的距离:2b d c=9、双曲线的标准方程:焦点在x 轴上的标准方程:22221x y a b-= (a 0,b 0)>>焦点坐标:12(a,0),(a,0)F F -准线方程:2a x c=±焦点在y 轴上的标准方程:22221y x a b-= (a 0,b 0)>>焦点坐标:12(0,b),(0,b)F F -准线方程:2a y c=±a,b,c 三者之间的关系:222c a b =+离心率:c e a=两准线之间的距离:22a d c =焦点到相应的准线的距离:2b d c=10、抛物线的标准方程:(1)焦点在x 轴的正半轴时:22y px = (0p >)焦点坐标:(,0)2p F 准线方程:x 2p=-(2)焦点在x 轴的负半轴时:22y px =- (0p >)焦点坐标:(,0)2p F -准线方程:x 2p=(3)焦点在y 轴的正半轴时:22x py = (0p >)焦点坐标:(0,)2p F 准线方程:2py =-(4)焦点在y 轴的负半轴时:22x py =- (0p >)焦点坐标:(0,)2p F -准线方程:2p y =。
平面几何146个知识点
平面几何146个知识点12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补初中几何公式:三角形15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和20 推论 3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理 1 在角的平分线上的点到这个角的两边的距离相等28 定理 2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合初中几何公式:等腰三角形30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论 3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论 1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b 的平方和、等于斜边 c 的平方,即a+b=c47 勾股定理的逆定理如果三角形的三边长a、b、c 有关系a+b=c,那么这个三角形是直角三角形初中几何公式:四边形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理n 边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理 3 平行四边形的对角线互相平分56 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形初中几何公式:矩形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理 1 有三个角是直角的四边形是矩形63 矩形判定定理 2 对角线相等的平行四边形是矩形初中几何公式:菱形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理 2 对角线互相垂直的平行四边形是菱形初中几何公式:正方形69 正方形性质定理 1 正方形的四个角都是直角,四条边都相等70 正方形性质定理 2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理 2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式:等腰梯形74 等腰梯形性质定理等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等76 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77 对角线相等的梯形是等腰梯形初中几何公式:等分78 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理 3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理 3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三个点确定一条直线110 垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111 推论 1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112 推论2 圆的两条平行弦所夹的弧相等113 圆是以圆心为对称中心的中心对称图形114 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116 定理一条弧所对的圆周角等于它所对的圆心角的一半117 推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118 推论 2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119 推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120 定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L 和⊙O 相交d<r ②直线L 和⊙O 相切d=r ③直线L 和⊙O 相离d>r122 切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123 切线的性质定理圆的切线垂直于经过切点的半径124 推论 1 经过圆心且垂直于切线的直线必经过切点125 推论 2 经过切点且垂直于切线的直线必经过圆心126 切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127 圆的外切四边形的两组对边的和相等128 弦切角定理弦切角等于它所夹的弧对的圆周角129 推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130 相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131 推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132 切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133 推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134 如果两个圆相切,那么切点一定在连心线上135①两圆外离d>R+r ②两圆外切d=R+r ③两圆相交R-r<d<R+r(R>r) ④两圆内切d=R-r(R>r) ⑤两圆内含d<R-r(R>r)136 定理相交两圆的连心线垂直平分两圆的公共弦137 定理把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n 边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形138 定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139 正n 边形的每个内角都等于(n-2)×180°/n 140 定理正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形141 正n 边形的面积Sn=pnrn/2p表示正n 边形的周长142 正三角形面积√3a/4 a 表示边长143 如果在一个顶点周围有k 个正n 边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144 弧长计算公式:L=n∏R/180145 扇形面积公式:S 扇形=n∏R/360=LR/2146 内公切线长= 外公切线长=塞瓦定理在△ABC内任取一点O,直线AO、BO、CO分别交对边于D、E、F,则(BD/DC)×(CE/EA)×(AF/FB)=1梅涅劳斯定理:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1勾股定理:a2+b2=c2圆幂定理(切割线)托勒密定理圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积蝴蝶定理设M为圆内弦PQ的中点,过M作弦AB 和CD。
数学平面解析几何公式
数学平面解析几何公式数学的世界中,平面解析几何占据着重要的地位。
它通过坐标系将几何问题转化为代数问题,使我们能够更直观地理解和解决几何问题。
本文将为您详细介绍平面解析几何中常用的公式。
一、直线方程1.一般式方程:Ax + By + C = 0其中,A、B、C为常数,且A和B不同时为0。
2.斜截式方程:y = kx + b其中,k为直线的斜率,b为直线在y轴上的截距。
3.点斜式方程:y - y1 = k(x - x1)其中,(x1, y1)为直线上的一个点,k为直线的斜率。
二、圆的方程圆的标准方程为:(x - a) + (y - b) = r其中,(a, b)为圆心坐标,r为圆的半径。
三、椭圆的方程椭圆的标准方程为:(x / a) + (y / b) = 1其中,a和b分别为椭圆的半长轴和半短轴。
四、双曲线的方程双曲线的标准方程为:(x / a) - (y / b) = 1其中,a和b分别为双曲线的实半轴和虚半轴。
五、抛物线的方程抛物线的标准方程为:y = 2px 或x = 2py其中,p为焦点到准线的距离。
六、坐标变换1.平移变换:(x", y") = (x + h, y + k)其中,(h, k)为平移向量。
2.比例变换:(x", y") = (kx, ly)其中,k和l为比例系数。
3.旋转变换:(x", y") = (x * cosθ - y * sinθ, x * sinθ + y * cosθ)其中,θ为旋转角度。
总结:平面解析几何公式为我们解决几何问题提供了强大的工具。
掌握这些公式,有助于我们更好地理解和运用几何知识。
初中数学竞赛重要定理公式(平面几何篇)
初中数学竞赛重要定理公式(平面几何篇)初中数学竞赛中,平面几何是一个重要的考点。
以下是一些重要的定理、公式和结论。
三角形面积公式(包括海伦公式):三角形的面积S可以用以下公式计算:$S=\sqrt{p(p-a)(p-b)(p-c)}$,其中$p=\frac{1}{2}(a+b+c)$,$a$,$b$,$c$分别为三角形的三条边长。
另外,三角形的面积也可以用以下公式计算:$S=\frac{1}{2}ab\sin C$,其中$a$,$b$为两边,$C$为两边之间的夹角。
还有一个海伦公式:$S=\frac{1}{2}ah_a$,其中$h_a$为三角形顶点$A$到边$BC$的垂线长度,$a$为边$BC$的长度。
XXX定理:对于三角形$\triangle ABC$及其底边上的一点$D$,有$AB^2\cdot DC+AC^2\cdot BD-AD^2\cdotBC=BC\cdot DC\cdot BD$。
XXX定理:对于一个内接四边形,其对角线之积等于两组对边乘积之和,即$AC\cdot BD=AB\cdot CD+AD\cdot BC$。
逆命题也成立。
同时还有广义托勒密定理:$AB\cdotCD+AD\cdot BC\geq AC\cdot BD$。
蝴蝶定理:如果$AB$是圆$O$的弦,$M$是$AB$的中点,弦$CD$,$EF$经过点$M$,$CF$,$DE$交$AB$于$P$,$Q$,则$MP=QM$。
勾股定理(毕达哥拉斯定理):对于一个直角三角形,锐角对边的平方等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍;钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍。
同时还有广义勾股定理。
中线定理(巴布斯定理):对于一个三角形$\triangleABC$,如果$BC$的中点为$P$,则有$AB^2+AC^2=2(AP^2+BP^2)$。
同时,中线的长度可以用以下公式计算:$m_a=\frac{1}{2}\sqrt{2b^2+2c^2-a^2}$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何要想取得好成绩,几何公式一定要烂熟于胸。
几何公式是做好几何题的根基,因此同学们一定要在几何公式上多下功夫。
本文总结了初中几何公式140条。
初中几何公式:线1过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行初中几何公式:角9 同位角相等,两直线平行10 错角相等,两直线平行11 同旁角互补,两直线平行12两直线平行,同位角相等13 两直线平行,错角相等14 两直线平行,同旁角互补初中几何公式:三角形15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形角和定理三角形三个角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合初中几何公式:等腰三角形30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式:四边形48定理四边形的角和等于360°49四边形的外角和等于360°50多边形角和定理n边形的角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形初中几何公式:矩形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形初中几何公式:菱形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形初中几何公式:正方形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式:等腰梯形74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形初中几何公式:等分78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101圆是定点的距离等于定长的点的集合102圆的部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的接四边形的对角互补,并且任何一个外角都等于它的对角121①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d﹥R+r ②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆切d=R-r(R﹥r) ⑤两圆含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个切圆,这两个圆是同心圆139正n边形的每个角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n∏R/180145扇形面积公式:S扇形=n∏R/360=LR/2146公切线长= d-(R-r) 外公切线长= d-(R+r)。