2020高考数学刷题首秧单元质量测试六立体几何理含解析

合集下载

2020高考数学单元质量测试六立体几何理含解析

2020高考数学单元质量测试六立体几何理含解析

乐山市2020届初中学业水平考试生物一、选择题(共60分,每小题3分)19.下列描述中,不属于生物与环境关系的是A.雨露滋润禾苗壮B.风吹草低见牛羊C.大树底下好乘凉D.葵花朵朵向太阳20.生态系统物质循环和能量流动的渠道是A.食物链B.食物网C.消费者D.A和B21.显微镜是人类探索微观世界不可缺少的工具。

下列关于显微镜的使用正确的是A.当环境光线较暗时,用反光镜的凸面镜B.对光完成时,应观察到明亮圆形的视野C.在下降镜筒过程中,眼睛应该看着目镜D.清洁收镜时,使用纱布擦拭物镜、目镜22.细胞是生物体结构和功能的基本单位,细胞的生活依靠细胞各结构的分工合作。

下列细胞结构与功能的关系,错误的是A.细胞膜——控制物质进出B.线粒体一一能量转换器C.细胞壁一一控制物质进出D.叶绿体——能量转换器23.花、果实和种子是绿色开花植物的生殖器官。

开花、传粉后结出果实,下列花与果实各部分的对应关系,正确的是A.子房——果实B.受精卵——种子C.胚珠——胚D.子房壁——种皮24.有人说“包括人类在内的其他生物是‘攀附’着植物的茎蔓才站在这个星球上的。

”这句话道出了绿色植物光合作用的重要意义。

下列关于光合作用的意义说法错误的是A.为动物和人类提供食物B.为自身生活提供有机物C.为自身生活提供无机盐D.为动物和人类提供能量25.呼吸作用是生物的共同特征,下列说法正确的是A.发生的主要部位是叶绿体B.意义是为自身生命活动提供能量C.所需原料是二氧化碳和水D.适当提高温度可以降低呼吸作用26.关于光合作用和呼吸作用及它们在农业生产上的运用,下列说法错误的是A.通过合理密植可达到提高产量的目的B.适时松土有利于根细胞呼吸作用的正常进行C.白天,在温室大棚中增加二氧化碳浓度可提高产量D.农作物在白天只进行光合作用,保证了有机物的生产27.生活存中原地区的人,进入高原一段时间后,血液中的一种成分会显著增加,这种成分是A.血浆B.血小板C.红细胞D.白细胞28.下判说法中错误的是A.白细胞有吞噬消灭病菌,促进止血和加速血液凝固的作用B.输液时,刺入的手背上的“青筋”,就是分布较浅的静脉C.臀部肌肉注射的青霉素,最先到达心脏四个腔中的右心房D.某A型血的人因大量失血需输血,应输入A型血最为安全29.眼球里有一个能折射光线的结构,它能灵敏调节曲度使人可看清远近不同的物体。

2020高考数学刷题首秧第六章立体几何考点测试41空间几何体的表面积和体积文含解析

2020高考数学刷题首秧第六章立体几何考点测试41空间几何体的表面积和体积文含解析

考点测试41 空间几何体的表面积和体积高考概览高考中本考点常见题型为选择题、填空题,分值为5分,中等难度 考纲研读球体、柱体、锥体、台体的表面积和体积计算公式一、基础小题1.若球的半径扩大为原来的2倍,则它的体积扩大为原来的( ) A .2倍 B .4倍 C .8倍 D .16倍 答案 C解析 设原来球的半径为r ,则现在球的半径为2r ,则V 原=43πr 3,V 现=43π·(2r )3,故V 现=8V 原.故选C .2.一个正方体的体积是8,则这个正方体的内切球的表面积是( ) A .8π B .6π C .4π D .π 答案 C解析 设正方体的棱长为a ,则a 3=8,∴a =2.而此正方体的内切球直径为2,∴S 表=4πr 2=4π.3.如图,一个空间几何体的正视图、侧视图都是面积为32,一个内角为60°的菱形,俯视图为正方形,那么这个几何体的表面积为( )A .2 3B .4 3C .8D .4 答案 D解析 由三视图知,原几何体为两个四棱锥的组合体,其中四棱锥的底面边长为1,斜高为1,所以这个几何体的表面积为S =12×1×1×8=4.4.一个直三棱柱的三视图如图所示,其中俯视图是正三角形,则此三棱柱的体积为( )A .32B . 3C .2D .4 答案 B解析 由侧视图可知直三棱柱底面正三角形的高为3,容易求得正三角形的边长为2,所以底面正三角形面积为12×2×3=3.再由侧视图可知直三棱柱的高为1,所以此三棱柱的体积为3×1=3.故选B .5.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A .a 2B .3πa 3πC .23πa 3πD .23a 3π答案 C解析 设圆锥的底面半径为r ,母线长为l ,由题意知,2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.6.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于( )A .10 cm 3B .20 cm 3C .30 cm 3D .40 cm 3答案 B解析 由三视图可知,该几何体是一个直三棱柱ABC -A 1B 1C 1截去一个三棱锥B 1-ABC ,则该几何体的体积为V =12×3×4×5-13×12×3×4×5=20(cm 3).故选B .7.某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143C .163 D .6答案 B解析 依题意,所求几何体是一个四棱台,其中上底面是边长为1的正方形、下底面是边长为2的正方形,高是2,因此其体积等于13×(12+22+1×4)×2=143.故选B .8.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的表面积为( )A .24+(2-1)πB .24+(22-2)πC .24+(5-1)πD .24+(23-2)π 答案 B解析 如图,由三视图可知,该几何体是棱长为2的正方体挖出两个圆锥体所得.由图中知圆锥的半径为1,母线为2,该几何体的表面积为S =6×22-2π×12+2×12×2π×1×2=24+(22-2)π,故选B .9.已知一个几何体的三视图如图所示,则其体积为( )A .10+πB .2+π2C .2+π12D .2+π4答案 D解析 根据几何体的三视图还原其直观图如图所示,显然可以看到该几何体是一个底面长为2,宽为1,高为1的正棱柱与一个底面半径为1,高为1的14圆柱组合而成,其体积为V =2×1×1+14×π×12×1=2+π4,故选D .10.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 答案 3解析 由题意知,圆台中截面圆的半径为十寸,圆台内水的体积为V =13πh (r 2中+r 2下+r中r 下)=π3×9×(102+62+10×6)=588π(立方寸),降雨量为V142π=588π196π=3(寸). 11.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.答案26解析 易知该几何体是正四棱锥.连接BD ,设正四棱锥P -ABCD ,由PD =PB =1,BD =2,则PD ⊥PB .设底面中心O ,则四棱锥高PO =22,则其体积是V =13Sh =13×12×22=26. 12.如图,在平面四边形ABCD 中,已知AB ⊥AD ,AB =AD =1,BC =CD =5,以直线AB 为轴,将四边形ABCD 旋转一周,则所得旋转体的体积为________.答案 12π解析 由题意,该旋转体是一圆台内部挖去一个圆锥,如图1所示:如图2,过点C 作CE ⊥AB ,连接BD .在等腰直角三角形ABD 中,BD =AD 2+AB 2=2. 在△BDC 中,CD 2=BD 2+BC 2-2BD ·BC cos ∠DBC , 所以25=2+25-102cos ∠DBC ,所以cos ∠DBC =210,所以sin ∠DBC =1-cos 2∠DBC=7210. 因为∠CBE =180°-∠ABD -∠DBC =135°-∠DBC ,所以sin ∠CBE =sin(135°-∠DBC )=22cos ∠DBC +22sin ∠DBC =45.在Rt △BCE 中,CE =BC sin ∠CBE =4,所以BE =BC 2-CE 2=3,AE =4.所以圆台上、下底面圆的面积分别为S 上=π,S 下=16π,圆台体积V 1=13(S 上+S 下+S 上S 下)·AE =28π,圆锥体积V 2=13×16π×3=16π,所以旋转体体积V =V 1-V 2=12π.二、高考小题13.(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π 答案 B解析 由三视图可知两个同样的几何体可以拼成一个底面直径为6,高为14的圆柱,所以该几何体的体积V =12×32×π×14=63π.故选B .14.(2018·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8 答案 C解析 由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上、下底边的长分别为1 cm,2 cm ,高为2 cm ,直四棱柱的高为2 cm .故直四棱柱的体积V =1+22×2×2=6 cm 3.15.(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π 答案 B解析 根据题意,可得截面是边长为22的正方形,结合圆柱的特征,可知该圆柱的底面为半径是2的圆,且高为22,所以其表面积为S =2π(2)2+2π×2×22=12π.故选B .16.(2018·全国卷Ⅰ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( )A .8B .6 2C .8 2D .8 3 答案 C解析 在长方体ABCD -A 1B 1C 1D 1中,连接BC 1,根据线面角的定义可知∠AC 1B =30°,因为AB =2,AB BC 1=tan30°,所以BC 1=23,从而求得CC 1=BC 21-BC 2=22,所以该长方体的体积为V =2×2×22=82.故选C .17.(2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 3答案 B解析 如图所示,点M 为三角形ABC 的重心,E 为AC 的中点,当DM ⊥平面ABC 时,三棱锥D -ABC 体积最大,此时,OD =OB =R =4.∵S △ABC =34AB 2=93, ∴AB =6,∵点M 为三角形ABC 的重心,∴BM =23BE =23,∴在Rt △OMB 中,有OM =OB 2-BM 2=2. ∴DM =OD +OM =4+2=6,∴(V 三棱锥D -ABC )max =13×93×6=183.故选B .18.(2018·全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°,若△SAB 的面积为8,则该圆锥的体积为________.答案 8π解析 如图所示,∠SAO =30°,∠ASB =90°,又S △SAB =12SA ·SB =12SA 2=8,解得SA =4,所以SO =12SA =2,AO =SA 2-SO 2=23,所以该圆锥的体积为V =π3·OA 2·SO =8π. 19.(2018·天津高考)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为________.答案112解析 由题意知四棱锥的底面EFGH 为正方形,其边长为22,即底面面积为12,由正方体的性质知,四棱锥的高为12.故四棱锥M -EFGH 的体积V =13×12×12=112.20.(2018·江苏高考)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.答案 43解析 多面体由两个完全相同的正四棱锥组合而成,其中正四棱锥的底面边长为2,高为1,∴其体积为13×(2)2×1=23,∴多面体的体积为43.三、模拟小题21.(2018·邯郸摸底)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,已知该几何体的各个面中有n 个面是矩形,体积为V ,则( )A .n =4,V =10B .n =5,V =12C .n =4,V =12D .n =5,V =10答案 D解析 由三视图可知,该几何体为直五棱柱,其直观图如图所示,故n =5,体积V =2×22+12×2×1=10.故选D .22.(2018·福州模拟)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4πB .16π3C .32π3D .16π答案 D解析 如图,可知球的半径R =OH 2+AH 2=12+(3)2=2,进而这个球的表面积为4πR 2=16π.故选D .23.(2018·合肥质检一)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .5π+18B .6π+18C .8π+6D .10π+6 答案 C解析 该几何体的表面积是由球的表面积、球的大圆面积、半个圆柱的侧面积以及圆柱的纵切面面积组成.从而该几何体的表面积为4π×12+π×12+12×2π×3+3×2=8π+6.故选C .24.(2018·石家庄质检二)如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A .83B .3C .8D .53 答案 A解析 根据三视图还原该几何体的直观图,如图中四棱锥P -ABCD 所示,则V P -ABCD =V P-AFGD+(V AFB -DEC -V G -ECD )=13×(1+2)×22×1+12×1×2×2-13×12×1×2×1=83.故选A .25.(2018·合肥质检三)我国古代的《九章算术》中将上、下两面为平行矩形的六面体称为“刍童”.如图所示为一个“刍童”的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该“刍童”的表面积为( )A .12 5B .40C .16+12 3D .16+12 5 答案 D解析 易得侧面梯形的高为22+12=5,所以一个侧面梯形的面积为12×(2+4)×5=35.故所求为4×35+2×(2×4)=125+16.故选D .26.(2018·福建质检)已知底面边长为42,侧棱长为25的正四棱锥S -ABCD 内接于球O 1.若球O 2在球O 1内且与平面ABCD 相切,则球O 2的直径的最大值为________.答案 8解析 如图,正四棱锥S -ABCD 内接于球O 1,SO 1与平面ABCD 交于点O .在正方形ABCD 中,AB =42,AO =4.在Rt △SAO 中,SO =SA 2-OA 2=(25)2-42=2.设球O 1的半径为R ,则在Rt △OAO 1中,(R -2)2+42=R 2,解得R =5,所以球O 1的直径为10.当球O 2与平面ABCD 相切于点O 且与球O 1相切时,球O 2的直径最大.又因为SO =2,所以球O 2的直径的最大值为10-2=8.一、高考大题1.(2016·江苏高考)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1)若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大? 解 (1)由PO 1=2知,O 1O =4PO 1=8. 因为A 1B 1=AB =6,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3).正四棱柱ABCD -A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3).所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a m ,PO 1=h m , 则0<h <6,O 1O =4h . 连接O 1B 1.因为在Rt △PO 1B 1中,O 1B 21+PO 21=PB 21, 所以⎝⎛⎭⎪⎫22a 2+h 2=36, 即a 2=2(36-h 2). 于是仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h=263(36h -h 3),0<h <6, 从而V ′=263(36-3h 2)=26(12-h 2).令V ′=0,得h =23或h =-23(舍). 当0<h <23时,V ′>0,V 是单调增函数; 当23<h <6时,V ′<0,V 是单调减函数. 故h =23时,V 取得极大值,也是最大值. 因此,当PO 1=2 3 m 时,仓库的容积最大.2.(2018·全国卷Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.解 (1)证明:由已知可得∠BAC =90°,即AB ⊥AC . 又AB ⊥DA ,且AC ∩DA =A ,所以AB ⊥平面ACD . 又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC . (2)由已知可得,DC =CM =AB =AC =3,DA =32. 又BP =DQ =23DA ,所以BP =22.作QE ⊥AC ,垂足为E ,则QE 綊13DC .由已知及(1)可得DC ⊥平面ABC , 所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q -ABP 的体积为V 三棱锥Q -ABP =13×QE ×S △ABP =13×1×12×3×22sin45°=1.二、模拟大题3.(2018·武昌调研)如图,已知某几何体的三视图如下(单位:cm).(1)画出这个几何体的直观图(不要求写画法); (2)求这个几何体的表面积及体积. 解 (1)这个几何体的直观图如图所示.(2)这个几何体可看成是正方体AC 1及直三棱柱B 1C 1Q -A 1D 1P 的组合体. 由PA 1=PD 1=2,A 1D 1=AD =2,可得PA 1⊥PD 1. 故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=22+42(cm 2),所求几何体的体积V =23+12×(2)2×2=10(cm 3).4.(2018·浙江杭州一模)已知一个三棱台的上、下底面分别是边长为20 cm 和30 cm 的正三角形,各侧面是全等的等腰梯形,且各侧面的面积之和等于两底面面积之和,求棱台的体积.解 如图所示,在三棱台ABC -A ′B ′C ′中,O ′,O 分别为上、下底面的中心,D ,D ′分别是BC ,B ′C ′的中点,则DD ′是等腰梯形BCC ′B ′的高,又C ′B ′=20 cm ,CB =30 cm ,所以S 侧=3×12×(20+30)×DD ′=75DD ′.S 上+S 下=34×(202+302)=3253(cm 2). 由S 侧=S 上+S 下,得75DD ′=3253, 所以DD ′=1333(cm),又因为O ′D ′=36×20=1033(cm), OD =36×30=53(cm), 所以棱台的高h =O ′O =D ′D 2-(OD -O ′D ′)2=⎝ ⎛⎭⎪⎫13332-⎝⎛⎭⎪⎫53-10332=43(cm),由棱台的体积公式,可得棱台的体积为V =h3(S 上+S 下+S 上S 下)=433×⎝ ⎛⎭⎪⎫3253+34×20×30 =1900(cm 3).故棱台的体积为1900 cm 3.。

高考理科数学3年真题汇编专题06 立体几何(解答题)(解析版)

高考理科数学3年真题汇编专题06 立体几何(解答题)(解析版)

专题06 立体几何(解答题)1.【2020年高考全国Ⅰ卷理数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,PO =.(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值.【解析】(1)设DO a =,由题设可得,,63PO a AO a AB a ===,2PA PB PC a ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得1(0,1,0),(0,1,0),(,,0),(0,0,222E A C P --. 所以31(,,0),(0,1,)222EC EP =--=-. 设(,,)x y z =m 是平面PCE 的法向量,则00EPEC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即021022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,可取(=m . 由(1)知AP=是平面PCB 的一个法向量,记AP =n , 则cos ,|||5⋅==nm n m n m |. 所以二面角B PC E --的余弦值为5. 【点晴】本题主要考查线面垂直的证明以及利用向量求二面角的大小,考查学生空间想象能力,数学运算能力,是一道容易题.2.【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【解析】(1)因为M ,N 分别为BC ,B 1C 1的中点,所以1MN CC ∥.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面11EB C F .(2)由已知得AM ⊥BC .以M 为坐标原点,MA 的方向为x 轴正方向, MB 为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM连接NP ,则四边形AONP 为平行四边形,故1,0)3PM E =.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设(,0,0)Q a,则1(NQ B a =, 故21123223210(,,4()),||33B E a a B E =-----=. 又(0,1,0)=-n 是平面A 1AMN 的法向量,故1111π10sin(,)cos ,2||B E B E B E B E ⋅-===⋅n n n |n |所以直线B 1E 与平面A 1AMN .3.【2020年高考全国Ⅱ卷理数】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BFFB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【解析】设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则 110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则 22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n .因为121212cos ,||||⋅〈〉==⋅n n n n n n ,所以二面角1A EF A --.4.【2020年高考江苏】在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【解析】因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥. 又/EF ⊂平面11AB C ,1AB ⊂平面11AB C , 所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC , 所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C =所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题.5.【2020年高考浙江】如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC . (Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.【解析】(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得CD =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥.由45ACB ∠=︒,12BC CD ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥. (Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角. 由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角.设CD =.由2,DO OC BO BC ===,得BD OH =所以sin OH OCH OC ∠==,因此,直线DF 与平面DBC . 方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-. 设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|sin |cos ,||||OC OC OC θ⋅===⋅n |n n |.因此,直线DF 与平面DBC . 【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题.6.【2020年高考天津】如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,DE 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.【解析】依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n .因此有|||cos ,|A CA C CA ⋅〈〉==n n n sin ,6CA 〈〉=n .所以,二面角1B B E D --. (Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是cos ,||||AB AB AB ⋅==n n n .所以,直线AB 与平面1DB E . 7.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A−MA 1−N 的正弦值. 【答案】(1)见解析;(2. 【解析】(1)连结B 1C ,ME . 因为M ,E 分别为BB 1,BC 的中点, 所以ME ∥B 1C ,且ME =12B 1C . 又因为N 为A 1D 的中点,所以ND =12A 1D . 由题设知A 1B 1=DC ,可得B 1C =A 1D ,故ME =ND , 因此四边形MNDE 为平行四边形,MN ∥ED . 又MN ⊄平面EDC 1, 所以MN ∥平面C 1DE . (2)由已知可得DE ⊥DA .以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则(2,0,0)A ,A 1(2,0,4),2)M ,(1,0,2)N ,1(0,0,4)A A =-,1(12)A M =--,1(1,0,2)A N =--,(0,MN =.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以2040x z z ⎧-+-=⎪⎨-=⎪⎩,.可取=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是cos ,||5⋅〈〉===‖m n m n m n ,所以二面角1A MA N -- 【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.8.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.【答案】(1)证明见解析;(2 【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A , 故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒, 故AE AB =,12AA AB =.以D 为坐标原点,DA 的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB =,(1,1,1)CE =-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0). 于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --的正弦值为2. 【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.9.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【答案】(1)见解析;(2)30.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE . (2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC . 由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH.以H 为坐标原点,HC 的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,则A (–1,1,0),C (1,0,0),G (2,0),CG =(1,0AC =(2,–1,0). 设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,20.x x y ⎧=⎪⎨-=⎪⎩ 所以可取n =(3,6,又平面BCGE 的法向量可取为m =(0,1,0),所以cos ,||||2⋅〈〉==n m n m n m .因此二面角B –CG –A 的大小为30°.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,最后通过建系的向量解法将求二面角转化为求二面角的平面角问题,突出考查考生的空间想象能力.10.【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【答案】(1)见解析;(2)(3)见解析. 【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD . 又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2).因为E 为PD 的中点,所以E (0,1,1). 所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭.设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩ 令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以cos ,||⋅〈〉==‖n p n p n p . 由题知,二面角F −AE −P(3)直线AG 在平面AEF 内. 因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--, 所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭. 由(2)知,平面AEF 的法向量=(1,1,1)--n . 所以4220333AG ⋅=-++=n . 所以直线AG 在平面AEF 内.【名师点睛】(1)由题意利用线面垂直的判定定理即可证得题中的结论;(2)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F −AE −P 的余弦值;(3)首先求得点G 的坐标,然后结合平面AEF 的法向量和直线AG 的方向向量即可判断直线是否在平面内.11.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.【答案】(1)见解析;(2)49;(3)87. 【解析】依题意,可以建立以A 为原点,分别以AB AD AE ,,的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>,则()1,2,F h .(1)依题意,(1,0,0)AB =是平面ADE 的法向量,又(0,2,)BF h =,可得0BF AB ⋅=,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE . (2)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--.设(,,)x y z =n 为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-n n n .所以,直线CE 与平面BDE 所成角的正弦值为49. (3)设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩m m 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,h ⎛⎫=-⎪⎝⎭m .由题意,有||1cos ,||||3⋅〈〉===m n m n m n ,解得87h =.经检验,符合题意. 所以,线段CF 的长为87.【名师点睛】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.12.【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .【答案】(1)见解析;(2)见解析.【解析】(1)因为D ,E 分别为BC ,AC 的中点, 所以ED ∥AB .在直三棱柱ABC−A 1B 1C 1中,AB ∥A 1B 1,所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC−A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.13.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E ,EG由于O 为A 1G 的中点,故122A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B1,0),1B,3,2F ,C (0,2,0).因此,33(,2EF =,(BC =-. 由0EF BC ⋅=得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ. 由(1)可得1=(310)=(02BC A C --,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,得00y y ⎧+=⎪⎨=⎪⎩,取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.14.【2018年高考全国Ⅰ卷理数】如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.【答案】(1)见解析;(2.【解析】方法一:(1)由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF.又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.(2)在平面DEF中,过P作PH⊥EF于点H,连接DH,如图,由于EF为平面ABCD和平面PEF的交线,PH⊥EF,则PH⊥平面ABFD,故PH⊥DH.则DP与平面ABFD所成的角为PDH∠.在三棱锥P-DEF中,可以利用等体积法求PH.因为DE∥BF且PF⊥BF,所以PF⊥DE,又△PDF≌△CDF,所以∠FPD=∠FCD=90°,所以PF⊥PD,由于DE∩PD=D,则PF⊥平面PDE,故13F PDE PDEV PF S-=⋅△,因为BF∥DA且BF⊥平面PEF,所以DA⊥平面PEF,所以DE⊥EP.设正方形的边长为2a,则PD=2a,DE=a,在△PDE 中,PE =,所以22PDE S a =△,故36F PDE V a -=, 又2122DEF S a a a =⋅=△,所以232F PDE V PH a a -==,所以在△PHD 中,sin PH PDH PD ∠==,故DP 与平面ABFD 方法二:(1)由已知可得,BF ⊥PF ,BF ⊥EF , 所以BF ⊥平面PEF . 又BF ⊂平面ABFD , 所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,||BF 为单位长,建立如图所示的空间直角坐标系H −xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE 又PF =1,EF =2,故PE ⊥PF .可得32PH EH ==.则33(0,0,0),(1,,0),(1,22H P D DP --=HP =为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则34sin ||4||||3HP DP HP DPθ⋅===.所以DP 与平面ABFD. 15.【2018年高考全国II 卷理数】如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.【答案】(1)见解析;(2)4. 【解析】(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP = 连结OB .因为2AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,122OB AC ==. 由222OP OB PB +=知PO OB ⊥. 由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz -.C由已知得(0,0,0),(2,0,0),(0,2,0),(0,2,0),O B A C P AP -=取平面PAC 的法向量(2,0,0)OB =.设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-. 设平面PAM 的法向量为(,,)x y z =n .由0,0AP AM ⋅=⋅=n n 得20(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩,可取,)a a =--n ,所以cos ,OB =n .由已知可得|cos ,|2OB =n .=2.解得4a =-(舍去),43a =.所以4()3=-n .又(0,2,PC =-,所以cos ,PC =n所以PC 与平面PAM 所成角的正弦值为4. 16.【2018年高考全国Ⅲ卷理数】如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.【答案】(1)见解析;(2. 【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD . 因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD , 故BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径, 所以 DM ⊥CM . 又 BCCM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD , 故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz .当三棱锥M −ABC 体积最大时,M 为CD 的中点.由题设得(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)D A B C M ,(2,1,1),(0,2,0),(2,0,0)AM AB DA =-==设(,,)x y z =n 是平面MAB 的法向量,则0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA 是平面MCD 的法向量,因此5cos ,5||||DA DA DA ⋅==n n n ,2sin ,5DA =n , 所以面MAB 与面MCD . 17.【2018年高考江苏卷】如图,在正三棱柱ABC −A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.【答案】(1;(2.【解析】如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OCOO 为基底,建立空间直角坐标系O −xyz. 因为AB =AA 1=2,所以1110,1,0,,0,1,0,0,1,())()()2,,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以1,2)2P -, 从而131(,,2)(0,2,22),BP AC ==--,故111|||cos ,|||||5BP AC BP AC BP AC ⋅===⋅. 因此,异面直线BP 与AC 1 (2)因为Q 为BC 的中点,所以1,0)2Q , 因此33(,0)2AQ =,11(0,2,2),(0,0,2)AC CC ==.设n =(x ,y ,z )为平面AQC 1的一个法向量, 则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即30,2220.y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ, 则111||sin |cos |,|||CC CC CC |θ==⋅⋅==n n n 所以直线CC 1与平面AQC 1. 18.【2018年高考江苏卷】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC . 【答案】(1)见解析;(2)见解析.【解析】(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1. 因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .19.【2018年高考浙江卷】如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.【答案】(1)见解析;(2【解析】方法一:(1)由11112,4,2,,AB AA BB AA AB BB AB ===⊥⊥得111AB A B ==, 所以2221111A B AB AA +=.故111AB A B ⊥.由2BC =,112,1,BB CC ==11,BB BC CC BC ⊥⊥得11B C =由2,120AB BC ABC ==∠=︒得AC =由1CC AC ⊥,得1AC =,所以2221111AB B C AC +=,故111AB B C ⊥.因此1AB ⊥平面111A B C .(2)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD .由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB , 由111C D A B ⊥得1C D ⊥平面1ABB , 所以1C AD ∠是1AC 与平面1ABB 所成的角.由111111BC A B AC ==111111cos C A B C A B ∠=∠=,所以1C D =故111sin 13C D C AD AC ∠==. 因此,直线1AC 与平面1ABB所成的角的正弦值是13. 方法二:(1)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz .由题意知各点坐标如下:111(0,(1,0,0),(0,(1,0,2),A B A B C因此11111(1,3,2),(1,3,2),(0,23),AB A B AC ==-=- 由1110AB A B ⋅=得111AB A B ⊥.由1110AB AC ⋅=得111AB AC ⊥. 所以1AB ⊥平面111A B C . (2)设直线1AC 与平面1ABB 所成的角为θ.由(1)可知11(0,23,1),(1,3,0),(0,0,2),AC AB BB ===设平面1ABB 的法向量(,,)x y z =n .由10,0,AB BB ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x z ⎧+=⎪⎨=⎪⎩可取(=n .所以111|sin |cos ,|13|||AC AC AC θ⋅===⋅n |n n |. 因此,直线1AC 与平面1ABB 所成的角的正弦值是13. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.20.【2018年高考北京卷理数】如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点,AB=BC,AC =1AA =2.(1)求证:AC ⊥平面BEF ;(2)求二面角B−CD −C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.【答案】(1)见解析;(2)21;(3)见解析. 【解析】(1)在三棱柱ABC -A 1B 1C 1中,∵CC 1⊥平面ABC ,∴四边形A 1ACC 1为矩形.又E ,F 分别为AC ,A 1C 1的中点,∴AC ⊥EF .∵AB =BC .∴AC ⊥BE ,∴AC ⊥平面BEF .(2)由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1.又CC 1⊥平面ABC ,∴EF ⊥平面ABC .∵BE ⊂平面ABC ,∴EF ⊥BE .如图建立空间直角坐标系E -xyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).∴=(201)=(120)CD CB ,,,,,, 设平面BCD 的法向量为()a b c =,,n , ∴00CD CB ⎧⋅=⎪⎨⋅=⎪⎩n n ,∴2020a c a b +=⎧⎨+=⎩, 令a =2,则b =-1,c =-4,∴平面BCD 的法向量(214)=--,,n , 又∵平面CDC 1的法向量为=(020)EB ,,,∴cos =||||EBEB EB ⋅<⋅>=-n n n .由图可得二面角B -CD -C 1为钝角,所以二面角B -CD -C 1的余弦值为 (3)由(2)知平面BCD 的法向量为(214)=--,,n , ∵G (0,2,1),F (0,0,2),∴=(021)GF -,,, ∴2GF ⋅=-n ,∴n 与GF 不垂直,∴GF 与平面BCD 不平行且不在平面BCD 内,∴GF 与平面BCD 相交.21.【2018年高考天津卷理数】如图,AD BC ∥且AD =2BC ,AD CD ⊥,EG AD ∥且EG =AD ,CD FG ∥且CD =2FG ,DG ABCD ⊥平面,DA =DC =DG =2.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN CDE ∥平面;(2)求二面角E BC F --的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(1)见解析;(2;(3)3. 【解析】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.满分13分. 依题意,可以建立以D 为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,32,1),N (1,0,2).(1)依题意DC =(0,2,0),DE =(2,0,2).设n 0=(x ,y ,z )为平面CDE 的法向量,则0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即20220y x z =⎧⎨+=⎩,,不妨令z=–1,可得n 0=(1,0,–1).又MN =(1,32-,1),可得00MN ⋅=n ,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得BC =(–1,0,0),(122)BE =-,,,CF =(0,–1,2). 设n =(x ,y ,z )为平面BCE 的法向量,则00BC BE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即0220x x y z -=⎧⎨-+=⎩,, 不妨令z =1,可得n =(0,1,1).设m =(x ,y ,z )为平面BCF 的法向量,则00BC CF ⎧⋅=⎪⎨⋅=⎪⎩,,m m 即020x y z -=⎧⎨-+=⎩,, 不妨令z =1,可得m =(0,2,1).因此有cos<m ,n>=||||⋅=m n m n sin<m ,n. 所以,二面角E –BC –F. (3)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得(12)BP h =--,,. 易知,DC =(0,2,0)为平面ADGE 的一个法向量,故 cos BP DC BP DC BP DCh ⋅<⋅>==,解得h ∈[0,2]..所以线段DP的长为3。

2020高考数学刷题首秧单元质量测试六立体几何理含解析

2020高考数学刷题首秧单元质量测试六立体几何理含解析

单元质量测试(六)时间:120分钟■总满分:150分第I卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)1. 某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是()A.圆柱B .圆锥C .棱锥D .棱柱答案B解析易知仅圆锥的三视图中一定不会出现正方形,故选 B.2.(2018 •郑州检测)已知一三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()答案C解析由已知条件得直观图如图所示,正视图是直角三角形,中间的线是看不见的线PA形成的投影,应为虚线•故选 C.3. 已知各顶点都在一个球面上的正四棱柱的高为2,这个球的表面积为6n ,则这个正四棱柱的体积为()A. 1 B . 2 C . 3 D . 4答案B解析S表=4n R = 6 n ,「. R=中,设正四棱柱底面边长为X,贝U x + x + 2 = (2 R)2, V正四棱柱=2 .故选B.4. (2018 •贵阳模拟)设m n为两条不同的直线,a , 3为两个不同的平面,给出下列命题:①若mLa ,n L3,则 a//3;②若nVa ,nV/3,则 a//3;③若m//a ,n//a,则n Vn;④若n L a ,n丄a,则n Vn上述命题中,所有真命题的序号是()A.①④ B .②③ C .①③ D .②④答案A解析对于①,垂直于同一条直线的两个平面互相平行,所以①正确;对于②,平行于同一条直线的两个平面的位置关系不确定,所以②错误;对于③,平行于同一个平面的两条直线的位置关系不确定,所以③错误;对于④,垂直于同一个平面的两条直线互相平行,所以④正确.故选A.5. (2018 •太原三模)如图是某几何体的三视图,则这个几何体的体积是()A. 2+ n^B. 2 + 专n nC. 4+ 亍D. 4 + "2答案A1解析由三视图可知,该几何体由一个半圆柱与三棱柱组成,这个几何体的体积V= 2X n X12X 1 + 1 X(2)2X 2= 2+亍.故选A.6. (2018 •江西赣州二模)某几何体的主视图和左视图如图1,它的俯视图的直观图是矩形OABC,如图2,其中OA1= 6, OC = 2,则该几何体的侧面积为()A. 48 B . 64 C . 96 D . 128答案C解析由题图2及斜二测画法可知原俯视图为如图所示的平行四边形OABC设CB与y 轴的交点为D,则易知CD= 2, OD= 2X2/2 = 师,二CO=QCD+ 0D= 6 = OA •••俯视图是以6为边长的菱形,由三视图知几何体为一个直四棱柱,其高为4,所以该几何体的侧面积为4X6X4= 96.故选 C.7. (2018 •郑州质检三)已知A, B, C, D四点在半径为.5的球面上,且AC= BD= 4, AD=BC=0, AB= CD则三棱锥D- ABC的体积是()A. 6 7 B . 4 7 C . 2 7 D . 7答案CD- ABC放在长、宽、高分别为a, b, c的长方体中,则依解析如图所示,将三棱锥题意有a + c2= A C= 16, a2+ b2= BC = 11, a2+ b2+ c2= 2R2= 20,「a =护, 解得b = 2,.c = 3,& (2018 •山西四校联考)如图所示,P 为矩形ABCD 所在平面外一点,矩形对角线交点为 O, M 为PB 的中点,给 出下列五个结论:① PD//平面AMC ②OM 平面PCD ③OMZ 平面PDA ④OM/平面PBA ⑤ OMT 平面PBC其中正确的个数是( )A. 1 B . 2 C . 3 D . 4 答案 C解析 矩形ABCD 勺对角线AC 与BD 交于点O,所以O 为BD 的中点•在△ PBD 中, M 是PB 的中点,所以 OM ^A PBD 的中位线,OM/ PD 贝卩PD//平面 AMC OMT 平面PCD 且OM/ 平面PDA 因为M€ PB 所以OM 与平面PBA 平面PBC 相交.故选 C.9. (2018 •大庆质检一)已知一个圆柱的轴截面是边长为a 的正方形.在圆柱内有一个球O 该球与圆柱的上、下底面及母线均相切,则圆柱内除了球之外的几何体的体积为33 33n an a n a n aB . TC . T D. TT答案3亍.而圆柱体的内切球的直径也为 a ,故其体积为3内除球体以外部分的体积为 V = V 1 —匕=君.故选D.10. (2018 •湖南长沙四校联考)祖暅是南北朝时代的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幕势既同,则积不容异”.意思是:夹在两个平行平面之间的两个 几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等, 那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体, 图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为( )则三棱锥A ABC 勺体积为abc — 1 431-2abc = 2 7•选 C. A. 解析 由题意可知,该圆柱底面直径和高都是 a , 故其体积为 V = n R 2h = nx "2x a =24 n _3 4 n & r y x 23n a ,所以圆柱体A.①②B.①③ C .②④ D .①④答案D解析设截面与底面的距离为h,则①中截面内圆的半径为h,则截面圆环的面积为n (戌一h2);②中截面圆的半径为R— h,则截面圆的面积为n (R— h)2;③中截面圆的半径为R—h,则截面圆的面积为n R-22;④中截面圆的半径为氏一h2,则截面圆的面积为n (氏2-i;I—h).所以①④中截面的面积相等,故其体积相等,故选 D.11. (2018 •浙江高考)已知四棱锥S—ABCD勺底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为0 1, SE与平面ABCD所成的角为0 2,二面角S— AB-C的平面角为0 3,则()A. 0 1 w 0 2< 0 3 B . 0 3< 0 2< 0 1C. 0 1 w 0 3W 0 2 D . 0 2W 0 3W 0 1答案D解析由题意知该四棱锥为正四棱锥,设AB AD BC的中点分别为P, M N连接MN过点E作直线MN的垂线交MN于点Q设0为S在底面ABC[内的射影,连接SQ OP 0E —/ / OS OSSP SQ 则/ SEQ= 0 1, / SEO= 0 2, / SPO= 03, - - tan 0 2= QE tan 0 3= Qp - OP^ OE••• tan 0 3>tan 0 2.又 EQ L MN EQ L SO MN? SO= Q MN SQ 平面 SOQ 「. EQL 平面等,则a 截此正方体所得截面面积的最大值为 ()A 耳B -写C -子D 肯 答案 A解析 根据相互平行的直线与平面所成的角是相等的, 所以在正方体 ABC B AB i CD 中,平面ABD 与线AA , AB , AD 所成的角是相等的,所以平面 ABD 与正方体的每条棱所在的直线所成角都是相等的,同理平面CBD 也满足与正方体的每条棱所在的直线所成的角都是相等的,要求截面面积最大,则截面的位置为夹在两个面 ABD 与CBD 中间的,且过棱的中点的正六边形,边长为-,所以其面积为S = 6X 3X 22= 罕,故选A .2 4 4第n 卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)R 心铁球,水面高度恰好升高 r ,则-= _____________ .答案宁解析 由水面高度升高r ,得圆柱体积增加 n R"r,恰好是半径为r 的实心铁球的体积, 因此有3 n r 3=n .故R =彳^3.3r314.直三棱柱 ABC-ABC 的六个顶点都在球 O 的球面上.若AB= BC= 2, Z ABC= 90°,AA = 2y/2,则球O 的表面积为 ________ .答案 16 n解析由题设可知,直三棱柱可以补成一个球的内接长方体, 所以球的直径为长方体的 体对角线长,即,2? + 2 + 2、J2 2 = 4,故球O 的表面积S = 4 n R = 16 n .SOQ 又 SQ ?平面 SQQ • EQL SQ 二 tan 0 SQ 匸EQ •/ SQ > SQ EQ= OP • tan 0 i >tan 0 3.故n 有 tan 0 i >tan 0 3>tan 0 2.由图可知 0 i , 0 2, 0 3€ 0,—.0 1> 0 3> 0 2,故选 D.12. (2018 •全国卷I )已知正方体的棱长为 1,每条棱所在直线与平面a 所成的角相13.如图,一个底面半径为R 的圆柱形量杯中装有适量的水.若放入一个半径为r 的实(3)15 •已知某几何体的三视图如图所示,则其体积为答案8 n解析由三视图可知该几何体为一个底面半径为1,高为5的圆柱与一个底面半径为 1 ,高为3的圆柱的组合体,其体积为V= nX12X (5 + 3)= 8 n •16. (2018 •唐山模拟)已知一个几何体由八个面围成,每个面都是正三角形,有四个顶点在同一平面内且为正方形,若该八面体的棱长为2,所有顶点都在球O上,则球O的表面积为________ .答案8 n解析依题意,该八面体的各个顶点都在同一球面上,则其中四点所组成的截面在球的大圆面上,因为该八面体的棱长为2,所以这四点组成的正方形的对角线的长为 2 2,故球的半径为.2,该球的表面积为4n ( 2)= 8 n .三、解答题(本大题共6小题,共70分•解答应写出文字说明、证明过程或演算步骤)17. (2018 •珠海摸底)(本小题满分10分)中秋节即将到来,为了做好中秋节商场促销活动,某商场打算将进行促销活动的礼品盒重新设计•方案如下:将一块边长为10的正方形纸片ABCD剪去四个全等的等腰三角形(△ SEE ,△ SFF ,△ SGG,A SHH ),再将剩下的阴影部分折成一个四棱锥形状的包装盒S- EFGH其中A, B, C, D重合于点O, E与E' 重合,F与F'重合,G与G重合,H与H'重合(如图所示).⑴求证:平面SEGL平面SFH5⑵已知AE=㊁,过0作OML SH于点M 求cos / EMO勺值.解(1)证明:因为折叠后A, B, C D重合于一点0,所以拼接成底面EFGH勺四个直角三角形必为全等的等腰直角三角形, 所以底面EFGH H正方形,故EGL FH.因为在原平面图形中,△ SEE ◎△ SGG,所以SE= SG所以EGL SO又FHn S0= 0 FH?平面SFH SO?平面SFH故EGL平面SFH又因为EG平面SEG所以平面SEGL平面SFH5⑵依题意,当AE=㊁时,5即0E= 2.Rt △ SHC中, 0H= 2, SH=誓,故S0- 5,比S0- 0H 厂所以0廉一厂=,5 .由⑴知EGL平面SFH且0M平面SFH故EGL 0M 从而E0£ 0M故Rt△ EM0^ , EM= E0+ 0Ml=专,0M 2所以cos / EM O E M P 3.18. (2018 •安徽江淮十校联考)(本小题满分12分)四棱锥A- BCD中,EB// DC,且EB丄平面ABC EB= 1 , DC= BC= AB= AC= 2 , F 是棱AD的中点.(1)证明:EF丄平面ACD⑵求二面角B— AE- D的余弦值.解⑴证明:取AC中点M连接FM, BM1•/ F 是AD中点,•••FM/ DC 且FM= q DO 1.又•••EB/ DC EB= 1,•FM綊EB•四边形FMBE^平行四边形.•EF// BM 又BC= AB= AC•△ ABC是等边三角形,•BML AC,••• EBL平面ABC EB// DC•CD L平面ABC •CD L BM又CD T AC= C,•BM L平面ACD •EF丄平面ACD(2)取BC中点N连接AN则AN L BQ AN丄平面BCD以N为原点建立如图所示的空间直角坐标系.则各点坐标为A(0 , 0 , .3) , B(0, —1, 0) , Q0 , 1 , 0), D(2 , 1, 0) , E(1 , — 1 , 0).可得(0, 1 , .3), BE= (1 , 0 , 0) , E A= ( —1, 1 , 3) , E D= (1 , 2 , 0),设平面ABE的法向量为n1 = (X1 ,屮,z",可取 n i = (0,- 3, 1),设平面ADE 勺法向量为 n 2=(X 2, y 2, z",n 2 • EA = 0,— X 2 + y 2 +、/3Z 2= 0,则?得,耳『2. E D = 0,X+ 2y 2= 0,因此,所求二面角的余弦值就是一19. (2018 •湖北重点中学联考二 )(本小题满分12分)如图1,等腰直角三角形 ABC 的 底边AB= 2,点D 在线段AC 上,DEIAB 于点E,现将△ ADE 沿 DE 折起到△ PDE 勺位置(如图 2).(1) 求证:PBL DE(2)若PEL BE 直线PD 与平面PBC 所成的角为30°,求平面PDE 与平面PBC 所成的锐 .面角的正弦值.解 (1)证明:由图 1,图 2 可知,DEL PE, DEL BE PE A BE= E, •••DEL 平面 PBE 又 PB?平面 PBE ••• PB! DE n i • 0n i • BE= 0,得 y +. 3z i =o , x i = 0,注意到二面角 B- AE- D 是钝二面角,图IbB(2)由⑴及PEL BE可知,DE BE PE两两互相垂直.分别以ED, EB, EP勺方向为x轴、y轴、z轴的正方向建立空间直角坐标系Exyz.设| PE = a(0< a<l),则B(0 , 2- a, 0) , Qa, 0, 0) , C(1 , 1 - a, 0) , RO, 0, a),PB= (0 , 2 —a,- a), BO (1 , - 1, 0).设平面PBOn= 0, n= (x, y, z),贝V2 - a y - az= 0,x - y = 0,•••平面PBC的一个法向量为n= (a, a, 2-a),•••直线PD与平面PBC所成的角为30°且PD= (a, 0, - a),I a2-a2-a | •sin30 = 何•也需2+ 2-a 2'•a= 2(舍去)或a=彳.•平面PBC的一个法向量为2 2n= 5, 5,85.易知平面PDE的一个法向量为m= (0 ,1 , 0),设所求的锐二面角为e,则cos0=黑=¥ ,所以sin e = ^634,6即平面PDE与平面PBC所成的锐二面角的正弦值为-I4620. (2018 •山东青岛统一质检)(本小题满分12分)如图,圆柱H横放在底面边长为1 的正六棱锥P- ABCDE的顶点P上, 0和Q分别是圆柱左和右两个底面的圆心,正六棱锥P -ABCDE的底面中心为O, Pd 1, M N分别是圆柱H的底面圆O的最高点和最低点,G是圆柱H的底面圆O的最低点,P为NG勺中点,点M 0, N, A, O, D G P共面,0 , P, D 共线,四边形ADG 为矩形.⑴证明:平面PCD(2)求二面角M- CD- A的大小.注:正棱锥就是底面是一个正多边形,顶点在底面上的正投影为底面的中心的棱锥.解⑴证明:连接P0(图略),••• P为NG的中点,0为MN的中点,•••P0// MG 又点0, P, D 共线,•PD/ MG•/ PD?平面PCD MG平面PCD•MQ平面PCD⑵•/ 0为正六棱锥P- ABCDE的底面中心,•- PQ_底面ABCDEF取BC的中点W图略),连接0W AD则点0在AD上 , 0WL AD分别以0A 0W 0P为x轴、y轴、z轴建立空间直角坐标系0xyz•/ P为NG的中点,四边形ADG!为矩形,0为AD的中点,P0= 1 ,•NA/ P0 NA= P0= 1,从而NAL底面ABCDEF ••• M N分别是圆柱H的底面圆0的最高点和最低点,•••0NX底面ABCDEF从而M 0, N, A四点共线,•••正六棱锥P-ABCDE的底面边长为1, •AD= 2 , •••四边形ADG!为矩形,NG/ AD且NG= AD= 2 ,1又P为NG的中点,NP// AD 且NP= ?AD= 1 ,•••在厶0AD中,NP%A 0AD的中位线,从而N为0A的中点,•0N= AN= 1 ,1 x /3故 M i , 0, 3), J 2 2, 0, q — 1, 0, 0),T 13 TDO 2,亍,0,DM= (2 , 0, 3).设平面MCD 勺法向量为 m ^ (x , y , z ),令 x = 1,贝 V y = —#, z = — 3,••• m= 1,取平面ABCDE 的一个法向量为 n = &= (0 , 0, 1). 设二面角M — CD- A 的大小为锐角0 , … | rrr n | 1 则cos0 =而匚T = 2,因此0 =n 3,即二面角 M-CD — A 的大小为 专.3 321. (2018 •河北衡水中学九模)(本小题满分12分)已知正三棱柱 AB (— ABC 中,E , F(1)求证:平面 ACFL 平面 AEF;n⑵ 若二面角F — EA — C 的平面角为§,求实数 入的值,并判断此时二面角 E — CF — A是否为直二面角,请说明理由.解 (1)证明:因为三棱柱 ABC- ABC 是正三棱柱, 所以AA 丄平面ABC 所以AA 丄CF. 又厶ABC 是正三角形,F 为AB 的中点,DC= 0,由'Tm- T M= 0x J3y_+^^= 0,?啓 2,2x + 3z = 0.分别为BB , AB 的中点,设 AAAB所以CFL AB,又ABH AA= A,故CF!平面AEF,又CF ?平面AQF,所以平面 AQF 丄平面AEF.(2)如图,以F 为坐标原点,F B FC 方向分别为x 轴、y 轴的正方向建立如图所示的空 间直角坐标系,不妨设底边长 AB= 2,由题意AA = 2入,则 F (0 , 0, 0) , A ( - 1, 0, 2 入),E (1 , 0,入),Q0,3, 0).Ec= ( - 1, ,3,-入),FC = (0 , 3, 0) , AE = (2 , 0,-入),设平面EAC 的法向量为n = (x , y , z ),n • EC=- x +书y —入小• A T E = 2x —入 z = 0,令z = 2,则平面EAC 的一个法向量为n =(入,.3入,2),由(1)可知FC= (0,西,0)为平面AEF 的一个法向量,由(1)可知EF 丄CF, AF 丄CF由定义可知/ EFA 为二面角E — CF- A 的平面角.满足 EF + AF 2 = AE 2 ,则/ EFA =_2 , 此时二面角E — CF- A 为直二面角.22. (2018 •江西南昌二模)(本小题满分12分)如图,四棱锥 P — ABCD 中 ,底面 ABCDz= 0,故 cos n^= F C- nI F C | n |,解得入=是直角梯形,AB// CD ABL AD AB= 2CD= 2AD= 4,侧面PAB是等腰直角三角形,PA= PB,平面PABL平面ABCD点E, F分别是棱AB PB上的点,平面CEF/平面PAD(1) 确定点E, F的位置,并说明理由;(2) 求二面角A EF—C的余弦值.解(1)因为平面CEF//平面PAD平面CEF T平面ABC』CE平面PAD T平面ABC』AD所以CE/ AD,又因为AB// DC所以四边形AECDI平行四边形,所以DC= AE= 2A B,即点E是AB的中点.因为平面CEF//平面PAD平面CEF P平面PAB= EF,平面PAD T平面PAB= PA所以EF// PA因为点E是AB的中点,所以点F是PB的中点,综上,E, F分别是AB, PB的中点.(2)连接PE 因为PA= PB AE= EB所以PEL AB,又因为平面PABL平面ABCD平面PA印平面ABC』AB所以PEL平面ABCD又因为ABL AD所以CEL AB.如图,以点E为坐标原点,EC EB EP所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则B(0 , 2, 0) , Q2 , 0, 0) , D(2 , - 2, 0) , E(0 , 0, 0) , F(0 , 0, 2),由中点公式得到F(0 , 1, 1),则E C= (2 , 0, 0) , E F= (0 , 1, 1) , E D= (2 , - 2, 0),设平面CEF平面DEF的法向量分别为m^ (X1 , y1 , Z1), n= (X2 ,屮,Z2),由m±EC m± EF,2X1 + 0 •y1 + 0 •乙=0 , 得〔2・X1 + y1 + z「0 ,令y1= 1,得m r (0 , 1, —1),由n丄ED n丄EF,2x2 —2y2+ 0 •Z2= 0 , 得c c0 •X2+ y2+ Z2= 0 ,令y2= 1,得n= (1 , 1, —1),n 2 6所以cos〈m- n〉= = ==,I m i n| 羽3 '因为二面角D- EF—C是锐角,所以二面角D- EF—C的余弦值是丐621。

2020年高考数学试题分项版解析专题08 立体几何(学生版) 理

2020年高考数学试题分项版解析专题08 立体几何(学生版) 理

2020年高考试题分项版解析数学(理科)专题08 立体几何(学生版)一、选择题:1.(2020年高考广东卷理科6)某几何体的三视图如图1所示,它的体积为()A.12π B.45π C.57π D.81π2. (2020年高考北京卷理科7)某三棱锥的三视图如图所示,该三梭锥的表面积是()3.(2020年高考福建卷理科4)一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是()A.球 B.三棱锥 C.正方体 D.圆柱4.(2020年高考浙江卷理科10)已知矩形ABCD,AB=1,BC2将 ABD沿矩形的对角线BD所在的直线进行翻着,在翻着过程中,()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直7. (2020年高考湖南卷理科3)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是()8.(2020年高考新课标全国卷理科7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 189.(2020年高考新课标全国卷理科11)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )()A 26 ()B 36 ()C 23 ()D 2210.(2020年高考江西卷理科10)如右图,已知正四棱锥S ABCD -所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分,记(01),SE x x =<<截面下面部分的体积为(),V x 则函数()y V x =的图像大致为( )11.(2020年高考安徽卷理科6)设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥则“αβ⊥”是“a b ⊥”的( )()A 充分不必要条件 ()B 必要不充分条件()C 充要条件 ()D 即不充分不必要条件13. (2020年高考四川卷理科6)下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行15.(2020年高考全国卷理科4)已知正四棱柱1111ABCD A B C D -中,12,22,AB CC E ==为1CC 的中点,则直线1AC 与平面BED 的距离为( )A .2B .3C .2D .116.(2020年高考重庆卷理科9)设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是( )(A )(0,2) (B )(0,3) (C )(1,2) (D )(1,3)二、填空题:2.(2020年高考辽宁卷理科16)已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的求面上,若PA ,PB ,PC 两两互相垂直,则球心到截面ABC 的距离为_______.3.(2020年高考江苏卷7)如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥D D BB A 11-的体积为 cm 3.4.(2020年高考天津卷理科10)―个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m .8.(2020年高考上海卷理科8)若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 .9.(2020年高考上海卷理科14)如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2=BC ,若c AD 2=,且a CD AC BD AB 2=+=+,其中a 、c 为常数,则四面体ABCD 的体积的最大值是.11.(2020年高考全国卷理科16)三菱柱ABC-A1B1C1中,底面边长和侧棱长都相等, BAA1=CAA1=60°则异面直线AB1与BC1所成角的余弦值为____________.三、解答题:2. (2020年高考广东卷理科18)(本小题满分13分)如图5所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点 E在线段PC上,PC⊥平面BDE。

2020年高考数学真题模拟好题专题练习:立体几何(附答案与详解)

2020年高考数学真题模拟好题专题练习:立体几何(附答案与详解)

高考数学真题模拟好题专题练习:立体几何【命题趋势】立体几何一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,理科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及二面角问题.本专题针对高考高频知识点以及题型进行总结,希望通过本专题的学习,能够掌握高考数学中的立体几何的题型,将高考有关的立体几何所有分数拿到.【满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求.内切圆问题:转化成正方体的内切圆去求.求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.对于二面角问题应采用建立立体坐标系去求.但是坐标系要注意采用左手系务必要标记准确对应点以及法向量对应的坐标.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)1.(2019·安徽高考模拟(理))已知,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列命题正确的是( )A .若//,//m n αα,则//m nB .若,αγβγ⊥⊥,则//αβC .若//,//m n αα,且,m n ββ⊂⊂,则//αβD .若,m n αβ⊥⊥,且αβ⊥,则m n ⊥2.(2019·四川射洪中学高三月考(理))已知某几何体的三视图如图所示,则该几何体的最大边长为( )A B C D .3.(2019·安徽高考模拟(理))当动点P 在正方体1111ABCD A B C D -的体对角线1A C 上运动时,异面直线BP 与1AD 所成角的取值范围是( )A .,64ππ⎡⎤⎢⎥⎣⎦B .,63ππ⎡⎤⎢⎥⎣⎦C .,43ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎫⎪⎢⎣⎭4.(2019·湖南高三期末(理))设a ,b 是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( )A .a b ∥,b α⊂,则a P αB .a α⊂,b β⊂,αβ∥,则a b ∥C .a α⊂,b α⊂,a β∥,b β∥,则αβ∥D .αβ∥,a α⊂,则a β∥ 5.(2019·贵州高考模拟(理))如图在正方体1111ABCD A B C D -中,点O 为线段BD 的中点. 设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是( )A .B .C .33D .[3 6.(2019·宁夏吴忠中学高考模拟(理))已知直三棱柱111C C AB -A B 中,C 120∠AB =o ,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A B C D 7.(2019·广东高考模拟(理))已知三棱锥P ABC -的底面ABC 是边长为2的等边三角形,PA ⊥平面ABC ,且2PA =,则该三棱锥外接球的表面积为( )A .683πB .20πC .48πD .283π 8.(2019·河南高考模拟(理))如图,点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个结论:①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ;1DP BC ⊥③;④平面1PDB ⊥平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个9.(2019·河北高考模拟(理))正方体1111ABCD A B C D -的棱上(除去棱AD)到直线 1A B 与1CC 的距离相等的点有3个,记这3个点分别为,,E F G ,则直线1AC 与平面EFG 所成角的正弦值为( )A B C D 10.(2019·湖北高考模拟(理))如图,已知四面体ABCD 为正四面体,2,AB E F =,。

2020高考数学刷题首秧单元质量测试七解析几何理含解析

2020高考数学刷题首秧单元质量测试七解析几何理含解析

单元质量测试(七)时间:120分钟满分:150分第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.直线3x +3y -1=0的倾斜角大小为( ) A .30° B .60° C .120° D .150° 答案 C 解析 ∵k =-33=-3,∴α=120°.故选C .2.“a =2”是“直线y =-ax +2与y =a4x -1垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 由a =2得两直线斜率满足(-2)×24=-1,即两直线垂直;由两直线垂直得(-a )×a4=-1,解得a =±2.故选A .3.已知双曲线y 2a 2-x 2b2=1(a >0,b >0)的离心率为3,则双曲线的渐近线方程为( )A .y =±22x B .y =±2x C .y =±2x D .y =±12x答案 A解析 由题意得,双曲线的离心率e =c a =3,故b a=2,故双曲线的渐近线方程为y =±a b x =±22x . 4.(2018·邯郸摸底)已知F 1,F 2分别是双曲线C :x 29-y 27=1的左、右焦点,P 为双曲线C 右支上一点,且|PF 1|=8,则|F 1F 2||PF 2|=( )A .4B .3C .2 2D .2 答案 A解析 由x 29-y 27=1知c 2=a 2+b 2=16,所以|F 1F 2|=2c =8,由双曲线定义知||PF 1|-|PF 2||=2a =6,所以|PF 2|=2或|PF 2|=14(P 在右支上,舍去),所以|F 1F 2||PF 2|=4.5.(2018·福州模拟)已知双曲线C 的两个焦点F 1,F 2都在x 轴上,对称中心为原点,离心率为3.若点M 在C 上,且MF 1⊥MF 2,M 到原点的距离为3,则C 的方程为( )A .x 24-y 28=1 B .y 24-x 28=1C .x 2-y 22=1 D .y 2-x 22=1答案 C解析 显然OM 为Rt △MF 1F 2的中线,则|OM |=12|F 1F 2|=c =3.又e =c a =3a =3,得a =1.进而b 2=c 2-a 2=2.故C 的方程为x 2-y 22=1,故选C . 6.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A .12B .23C .34D .45 答案 C解析 令c =a 2-b 2.如图,据题意,|F 2P |=|F 1F 2|,∠F 1PF 2=30°,∴∠F 1F 2P =120°,∴∠PF 2x =60°,∴|F 2P |=2⎝ ⎛⎭⎪⎫3a 2-c =3a -2c .∵|F 1F 2|=2c ,∴3a -2c =2c ,∴3a =4c ,∴c a =34,即椭圆的离心率为34.故选C .7.(2018·大庆质检一)已知等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=-12x 的准线交于A ,B 两点,|AB |=25,则C 的实轴长为( )A . 2B .2C .2 2D .4 答案 D解析 因为抛物线y 2=-12x 的准线为x =3,而等轴双曲线C 的焦点在x 轴上,所以A ,B 两点关于x 轴对称,且|AB |=25,所以点(3,±5)在双曲线上,代入双曲线的方程x 2-y 2=a 2中得9-5=a 2=4,所以a =2,即2a =4,故双曲线C 的实轴长为4.故选D .8.(2018·乌鲁木齐一诊)已知抛物线y 2=4x 与圆F :x 2+y 2-2x =0,过点F 作直线l ,自上而下顺次与上述两曲线交于点A ,B ,C ,D ,则下列关于|AB |·|CD |的值的说法中,正确的是( )A .等于1B .等于16C .最小值为4D .最大值为4 答案 A解析 圆F 的方程为(x -1)2+y 2=1.设直线l 的方程为x =my +1.代入y 2=4x 得y2-4my -4=0,y 1y 2=-4.设点A (x 1,y 1),D (x 2,y 2).则|AF |=x 1+1,|DF |=x 2+1,所以|AB |=|AF |-|BF |=x 1,|CD |=|DF |-|CF |=x 2,所以|AB |·|CD |=x 1x 2=116(y 1y 2)2=1.故选A .9.(2018·沈阳质检一)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),O 为坐标原点,F 为双曲线的右焦点,以OF 为直径的圆与双曲线的渐近线交于一点A ,若∠AFO =π6,则双曲线C的离心率为( )A .2B . 3C . 2D .233答案 A解析 如图所示,在△AOF 中,∠OAF =90°,又∠AFO =30°,所以∠AOF =60°,故b a=tan60°=3,所以e =1+b 2a2=2,故选A . 10.(2019·唐山模拟)已知F 1,F 2为双曲线Γ:x 2a 2-y 220=1(a >0)的左、右焦点,P 为双曲线Γ左支上一点,直线PF 1与双曲线Γ的一条渐近线平行,PF 1⊥PF 2,则a =( )A . 5B . 2C .4 5 D .5 答案 A解析 如图,记PF 2与双曲线的渐近线l 的交点为M .与PF 1平行的双曲线的渐近线为y=25a x ,由PF 1⊥PF 2,得PF 2⊥l ,则F 2(c ,0)到直线l :25ax -y =0的距离为d =25a c25a2+12=25ca 2+20=25.而△OMF 2为直角三角形,所以|OM |=|OF 2|2-|MF 2|2=c 2-20=a .又OM ∥F 1P ,O 是F 1F 2的中点,所以|F 1P |=2|OM |=2a ,|PF 2|=2|MF 2|=45.而由双曲线的定义,有|PF 2|-|PF 1|=2a ,即45-2a =2a ,所以a =5.故选A .11.(2018·衡阳三模)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1,y 轴上的点P在椭圆以外,且线段PF 1与椭圆E 交于点M .若|OM |=|MF 1|=33|OP |,则椭圆E 的离心率为( )A .12B .32C .3-1D .3+12 答案 C解析 过M 作MH ⊥x 轴于点H ,由|OM |=|MF 1|,知H 为OF 1的中点,进而MH 为△PF 1O 的中位线,则M 为F 1P 的中点.从而依题意,有12|F 1P |=33|OP |,即32=|OP ||F 1P |=sin ∠OF 1P ,则∠OF 1P =π3.则△MF 1O 是边长为c 的等边三角形.连接MF 2(F 2为椭圆E 的右焦点),则由OM =OF 1=OF 2可知∠F 1MF 2=π2.故e =2c 2a =|F 1F 2||MF 1|+|MF 2|=2c (1+3)c =21+3=3-1.故选C .12.(2018·合肥质检一)如图,已知椭圆x 2a 2+y 24=1(a >0)的左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于M ,N 两点,交y 轴于点H .若F 1,H 是线段MN 的三等分点,则△F 2MN 的周长为( )A .20B .10C .2 5D .4 5 答案 D解析 解法一:设点H (0,t ),0<t <2,则由F 1,H 是线段MN 的三等分点,可知点N (c ,2t ),M (-2c ,-t ).则有⎩⎪⎨⎪⎧c 2a 2+4t 24=1,4c 2a 2+t24=1,消去t 2得15e 2=3,则e 2=15.又b =2,则1-e 2=b 2a 2,即1-15=4a2,解得a 2=5,从而由椭圆的定义可知△F 2MN 的周长为4a =45,故选D .解法二:由F 1,H 是线段MN 的三等分点,知H 是线段F 1N 的中点,又O 是F 1F 2的中点,则OH ∥F 2N ,从而F 2N ⊥F 1F 2,故Nc ,b 2a ,H 0,b 22a .又F 1是线段MH 的中点,则M -2c ,-b 22a.由点M 在椭圆上,可得4c 2a 2+b 44a 2×4=1.又b 2=4=a 2-c 2,从而有4(a 2-4)a 2+1a 2=1,解得a 2=5,从而由椭圆的定义可知△F 2MN 的周长为4a =45,故选D .第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.若k ∈R ,直线y =kx +1与圆x 2+y 2-2ax +a 2-2a -4=0恒有交点,则实数a 的取值范围是________.答案 [-1,3]解析 因为直线y =kx +1恒过定点(0,1),题设条件等价于点(0,1)在圆内或圆上,则02+12-2a ·0+a 2-2a -4≤0且2a +4>0,解得-1≤a ≤3.14.(2018·浙江宁波质检)与圆(x -2)2+y 2=1外切,且与直线x +1=0相切的动圆圆心的轨迹方程是________.答案 y 2=8x解析 设动圆圆心为P (x ,y ),则(x -2)2+y 2=|x +1|+1,依据抛物线的定义结合题意可知动圆圆心P (x ,y )的轨迹是以(2,0)为焦点,x =-2为准线的抛物线,故方程为y 2=8x .15.(2018·贵阳模拟)已知过抛物线y 2=2px (p >0)的焦点F ,且倾斜角为60°的直线与抛物线交于A ,B 两点,若|AF |>|BF |,且|AF |=2,则p =________.答案 1解析 过点A 作AM ⊥x 轴交x 轴于点M ,由∠AFM =60°,|AF |=2得|FM |=1,且点A 到抛物线的准线l :x =-p2的距离为2,而|FM |=1,所以抛物线的焦点F 到准线的距离为1,即p =1.16.已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.答案 12解析 解法一:由椭圆方程知椭圆C 的左焦点为F 1(-5,0),右焦点为F 2(5,0).则M (m ,n )关于F 1的对称点为A (-25-m ,-n ),关于F 2的对称点为B (25-m ,-n ),设MN 中点为(x ,y ),所以N (2x -m ,2y -n ).所以|AN |+|BN |=(2x +25)2+(2y )2+(2x -25)2+(2y )2=2[](x +5)2+y 2+(x -5)2+y2,故由椭圆定义可知|AN |+|BN |=2×6=12.解法二:根据已知条件画出图形,如图.设MN 的中点为P ,F 1,F 2为椭圆C 的焦点,连接PF 1,PF 2.显然PF 1是△MAN 的中位线,PF 2是△MBN 的中位线,∴|AN |+|BN |=2|PF 1|+2|PF 2|=2(|PF 1|+|PF 2|)=2×6=12.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(2018·河南郑州检测)(本小题满分10分)已知坐标平面上动点M (x ,y )与两个定点P (26,1),Q (2,1),且|MP |=5|MQ |.(1)求点M 的轨迹方程,并说明轨迹是什么图形;(2)记(1)中轨迹为C ,过点N (-2,3)的直线l 被C 所截得的线段长度为8,求直线l 的方程.解 (1)由题意,得|MP ||MQ |=5,即(x -26)2+(y -1)2(x -2)2+(y -1)2=5,化简,得x 2+y 2-2x -2y -23=0,所以点M 的轨迹方程是(x -1)2+(y -1)2=25. 轨迹是以(1,1)为圆心,5为半径的圆. (2)当直线l 的斜率不存在时,l :x =-2, 此时所截得的线段长度为252-32=8, 所以l :x =-2符合题意.当直线l 的斜率存在时,设l 的方程为y -3=k (x +2), 即kx -y +2k +3=0,圆心(1,1)到直线l 的距离d =|3k +2|k 2+1.由题意,得|3k +2|k 2+12+42=52,解得k =512.所以直线l 的方程为512x -y +236=0,即5x -12y +46=0.综上,直线l 的方程为x =-2或5x -12y +46=0.18.(2018·佛山质检一)(本小题满分12分)已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的右顶点与抛物线C 2:y 2=2px (p >0)的焦点重合,椭圆C 1的离心率为12,过椭圆C 1的右焦点F 且垂直于x 轴的直线被抛物线C 2截得的弦长为42.(1)求椭圆C 1和抛物线C 2的方程;(2)过点A (-2,0)的直线l 与C 2交于M ,N 两点,点M 关于x 轴的对称点为M ′,证明:直线M ′N 恒过一定点.解 (1)设椭圆C 1的半焦距为c ,依题意,可得a =p2,则C 2:y 2=4ax .代入x =c ,得y 2=4ac ,即y =±2ac , 则有⎩⎪⎨⎪⎧4ac =42,c a =12,a 2=b 2+c 2,解得a =2,b =3,c =1.所以椭圆C 1的方程为x 24+y 23=1,抛物线C 2的方程为y 2=8x .(2)证明:依题意,可知直线l 的斜率不为0, 可设l :x =my -2.联立⎩⎪⎨⎪⎧x =my -2,y 2=8x ,消去x ,整理得y 2-8my +16=0.设点M (x 1,y 1),N (x 2,y 2),则点M ′(x 1,-y 1), 由Δ=(-8m )2-4×16>0,解得m <-1或m >1. 且有y 1+y 2=8m ,y 1y 2=16,m =y 1+y 28,所以直线M ′N 的斜率k M ′N =y 2+y 1x 2-x 1=8mm (y 2-y 1)=8y 2-y 1. 可得直线M ′N 的方程为y -y 2=8y 2-y 1(x -x 2), 即y =8y 2-y 1x +y 2-8(my 2-2)y 2-y 1=8y 2-y 1x +y 2(y 2-y 1)-y 2(y 1+y 2)+16y 2-y 1=8y 2-y 1x -16y 2-y 1=8y 2-y 1·(x -2). 所以当m <-1或m >1时,直线M ′N 恒过定点(2,0).19.(2019·深圳调研)(本小题满分12分)已知直线l 经过抛物线C :x 2=4y 的焦点F ,且与抛物线C 交于A ,B 两点,抛物线C 在A ,B 两点处的切线分别与x 轴交于点M ,N .(1)求证:AM ⊥MF ;(2)记△AFM 和△BFN 的面积分别为S 1和S 2,求S 1·S 2的最小值. 解 (1)证明:不妨设A (x 1,y 1),B (x 2,y 2), 其中y 1=x 214,y 2=x 224.由导数知识可知,抛物线C 在点A 处的切线l 1的斜率k 1=x 12,则切线l 1的方程y -y 1=x 12(x -x 1),令y =0,可得M x 12,0.因为F (0,1),所以直线MF 的斜率k MF =1-00-x 12=-2x 1.所以k 1·k MF =-1,所以AM ⊥MF . (2)由(1)可知S 1=12|AM |·|MF |,其中|AM |=x 1-x 122+y 21=x 214+y 21=y 1+y 21=y 1·1+y 1,|MF |=x 122+1=y 1+1,所以S 1=12|AM |·|MF |=12(y 1+1)·y 1.同理可得S 2=12(y 2+1)y 2.所以S 1·S 2=14(y 1+1)(y 2+1)y 1y 2=14(y 1y 2+y 1+y 2+1)y 1y 2. 设直线l 的方程为y =kx +1,联立方程组⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,可得x 2-4kx -4=0,所以x 1x 2=-4,所以y 1y 2=(x 1x 2)216=1.所以S 1·S 2=14(y 1+y 2+2)≥14(2y 1y 2+2)=1,当且仅当y 1=y 2时,等号成立. 所以S 1·S 2的最小值为1.20.(2018·太原三模)(本小题满分12分)已知抛物线C 1:y 2=8x 的焦点F 也是椭圆C 2:x 2a 2+y 2b2=1(a >b >0)的右焦点,点P (0,2)在椭圆短轴CD 上,且P C →·P D →=-1. (1)求椭圆C 2的方程;(2)设Q 为椭圆C 2上的一个不在x 轴上的动点,O 为坐标原点,过椭圆C 2的右焦点F 作OQ 的平行线,交椭圆C 2于M ,N 两点,求△QMN 面积的最大值.解 (1)由C 1:y 2=8x ,知焦点F 坐标为(2,0), 所以a 2-b 2=4.由已知得点C ,D 的坐标分别为(0,-b ),(0,b ), 又P C →·P D →=-1,于是4-b 2=-1,解得b 2=5,a 2=9, 所以椭圆C 2的方程为x 29+y 25=1.(2)设点M (x 1,y 1),N (x 2,y 2),Q (x 3,y 3), 直线MN 的方程为x =my +2.由⎩⎪⎨⎪⎧x =my +2,x 29+y25=1,可得(5m 2+9)y 2+20my -25=0.则y 1+y 2=-20m 5m 2+9,y 1y 2=-255m 2+9, 所以|MN |=(1+m 2)[(y 1+y 2)2-4y 1y 2] =(1+m 2)-20m 5m 2+92+1005m 2+9=30(1+m 2)5m 2+9.因为MN ∥OQ ,所以△QMN 的面积等于△OMN 的面积.又点O 到直线x =my +2的距离d =21+m 2,所以△QMN 的面积S =12|MN |·d =12×30(m 2+1)5m 2+9×2m 2+1=30m 2+15m 2+9. 令m 2+1=t ,则m 2=t 2-1(t ≥1), S =30t 5(t 2-1)+9=30t 5t 2+4=305t +4t . 因为f (t )=5t +4t在[1,+∞)上单调递增, 所以当t =1时,f (t )取得最小值9.所以△QMN 的面积的最大值为103. 21.(2018·重庆一模)(本小题满分12分)已知F 1,F 2分别为椭圆C :x 23+y 22=1的左、右焦点,点P (x 0,y 0)在椭圆C 上.(1)求PF 1→·PF 2→的最小值;(2)若y 0>0且PF 1→·F 1F 2→=0,已知直线l :y =k (x +1)与椭圆C 交于两点A ,B ,过点P且平行于直线l 的直线交椭圆C 于另一点Q ,问:四边形PABQ 能否成为平行四边形?若能,请求出直线l 的方程;若不能,请说明理由.解 (1)由题意可知,F 1(-1,0),F 2(1,0),∴PF 1→=(-1-x 0,-y 0),PF 2→=(1-x 0,-y 0),∴PF 1→·PF 2→=x 20+y 20-1=13x 20+1. ∵-3≤x 0≤3,∴PF 1→·PF 2→的最小值为1.(2)∵PF 1→·F 1F 2→=0,∴x 0=-1.∵y 0>0,∴P -1,233. 设A (x 1,y 1),B (x 2,y 2).联立直线与椭圆方程,得(2+3k 2)x 2+6k 2x +3k 2-6=0,由根与系数的关系可知x 1+x 2=-6k 22+3k 2,x 1·x 2=3k 2-62+3k2. ∴由弦长公式可知|AB |=1+k 2|x 1-x 2|=43(1+k 2)2+3k 2. ∵P -1,233,PQ ∥AB , ∴直线PQ 的方程为y -233=k (x +1). 设Q (x 3,y 3).将PQ 的方程代入椭圆方程可知(2+3k 2)x 2+6kk +233x +3k +2332-6=0,∵x 0=-1,∴x 3=2-3k 2-43k 2+3k2, ∴|PQ |=1+k 2·|x 0-x 3|=1+k 2·|4-43k |2+3k2. 若四边形PABQ 为平行四边形,则|AB |=|PQ |, ∴43·1+k 2=|4-43k |,解得k =-33. 故符合条件的直线l 的方程为y =-33(x +1), 即x +3y +1=0. 22.(2018·衡阳三模)(本小题满分12分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a ≥3>b >0)的离心率为63,且椭圆C 上的动点P 到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程;(2)椭圆C 上是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A ,B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由.解 (1)依题意e =ca =63,则c 2=23a 2, 所以b 2=a 2-c 2=13a 2. 因为a ≥3,所以b ≥1.设P (x ,y )是椭圆C 上任意一点,则x 2a 2+y 2b 2=1, 所以x 2=a 21-y 2b 2=a 2-3y 2, 所以|PQ |=x 2+(y -2)2=a 2-3y 2+(y -2)2 =-2(y +1)2+a 2+6(y ∈[-b ,b ]).因为b ≥1,当y =-1时,|PQ |有最大值a 2+6=3, 可得a =3,所以b =1,c =2.故椭圆C 的方程为x 23+y 2=1. (2)假设存在点M (m ,n )在椭圆C 上,满足题意, 所以m 23+n 2=1,m 2=3-3n 2, 设点A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧ mx +ny =1,x 2+y 2=1,得(m 2+n 2)x 2-2mx +1-n 2=0. 所以Δ=4m 2-4(m 2+n 2)(1-n 2)=4n 2(m 2+n 2-1)=8n 2(1-n 2)>0,可得n 2<1.由根与系数的关系得x 1+x 2=2m m 2+n 2, x 1x 2=1-n 2m 2+n 2, 所以y 1y 2=1-mx 1n ·1-mx 2n=1-m (x 1+x 2)+m 2x 1x 2n 2=1-m 2m 2+n 2, 所以|AB |=(x 1-x 2)2+(y 1-y 2)2 =x 21+y 21+x 22+y 22-2(x 1x 2+y 1y 2) =2-21-n 2m 2+n 2+1-m 2m 2+n 2 =21-1m 2+n 2. 设原点O 到直线AB 的距离为h ,则h =1m 2+n 2,所以S △OAB =12|AB |·h =1m 2+n 21-1m 2+n 2. 设t =1m 2+n 2, 由0≤n 2<1,得m 2+n 2=3-2n 2∈(1,3],所以t ∈13,1, S △OAB =t (1-t )=-t -122+14,t ∈13,1, 所以,当t =12时,S △OAB 面积最大,为12. 此时,点M 的坐标为62,22或62,-22或-62,22或-62,-22.。

2020年高中高三教学质量检测 含答案

2020年高中高三教学质量检测  含答案

2020年高中高三教学质量检测数 学 (理科)本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生要务必填写答题卷上的有关项目.2.选择题每小题选出答案后,用黑色字迹的钢笔或签字笔把答案代号填在答题卷对应的空格内.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卷的整洁.考试结束后,将答题卷和答题卡交回. 参考公式: 锥体的体积公式:13V Sh =.其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设U =R ,集合{}|1A y y x =≥,}{240B x Z x =∈-≤,则下列结论正确的是A .}{2,1A B =--I B . ()(,0)U A B =-∞U ðC .[0,)A B =+∞UD . }{()2,1U A B =--I ð 2.已知向量a =r ,(1,0)b =-r ,则|2|a b +=r rA .1B.C. 2D. 43.如图:正方体ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 、K 、L 分别为AB 、BB 1、B 1C 1、C 1D 1、D 1D 、DA的中点,则六边形EFGHKL 在正方体面上的射影可能是4.已知i 是虚数单位,使(1)ni +为实数的最小正整数n 为A .2B .4C .6D .85.已知sin()sin ,0,352ππααα++=--<<则2cos()3πα+等于A .45-B .35-C .35D .456.下列说法中,不正确...的是ABC DABC D A 1B 1C 1D 1H G FK LEA .“x y =”是“x y =”的必要不充分条件;B .命题:p x ∀∈R ,sin 1x ≤,则:p x ⌝∃∈R ,sin 1x >;C .命题“若,x y 都是偶数,则x y +是偶数”的否命题是“若,x y 不是偶数,则x y +不是偶数”;D .命题:p 所有有理数都是实数,:q 正数的对数都是负数,则()()p q ⌝∨⌝为真命题.7.已知实数,m n 满足01n m <<<,给出下列关系式 ①23mn= ②23log log m n = ③23m n = 其中可能成立的有A .0个B .1个C .2个D .3个8.设12,,,(4)n a a a n ≥L 是各项均不为零的等差数列,且公差0d ≠.设()n α是将此数列删去某一项得到的数列(按原来的顺序)为等比数列的最大的n 值,则()n α=A .4B .5C .6D .7二、填空题:本大共7小题,考生作答6小题,每小题5分,满分30分) (一)必做题(9~13题)9. 某体育赛事志愿者组织有1000名志愿者,其中参加过2008北京奥运会志愿服务的有250名,新招募的2010年广州亚运会愿者750名.现用分层抽样的方法从中选出100名志愿者调查他们的服务能力,则选出新招募的广州亚运会志愿者的人数是 .10. 已知函数2()(sin cos )1f x x x =+-,x ∈R , 则()f x 的最小正周期是 . 11. 右图给出的是计算201614121++++Λ的 值的一个框图,其中菱形判断框内应填入的条件是_________.12. 若实数x 、y 满足20,,,x y y x y x b -≥⎧⎪≥⎨⎪≥-+⎩且2z x y =+的最小值为3,则实数b 的值为_____.13.若等差数列{}n a 的首项为1,a 公差为d ,前n 项的和为n S ,则数列{}nS n为等差数列,且通项为1(1)2n S da n n =+-⋅.类似地,若各项均为正数的等比数列{}nb 的首项为1b ,公比为q ,前n 项的积为n T ,第11题图则数列{}n n T 为等比数列,通项为____________________. (二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程)极坐标系中,直线l 的极坐标方程为sin()26πρθ+=,则极点在直线l 上的射影的极坐标是____________.15.(几何证明选讲)如图,以4AB =为直径的圆与△ABC 的两边 分别交于,E F 两点,60ACB ∠=o,则EF = .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)已知海岸边,A B 两海事监测站相距60 mile n ,为了测量海平面上两艘油轮,C D 间距离,在,A B 两处分别测得75CBD ∠=o,30ABC ∠=o , 45DAB ∠=o ,60CAD ∠=o (,,,A B C D 在同一个水平面内).请计算出,C D 两艘轮船间距离.17.(本题满分12分)某市为鼓励企业发展“低碳经济”,真正实现“低消耗、高产出”,施行奖惩制度.通过制定评分标准,每年对本市50%的企业抽查评估,评出优秀、良好、合格和不合格四个等次,并根据等级给予相应的奖惩(如下表).某企业投入100万元改造,由于自身技术原因,能达到以上四个等次的概率分别为111123824,,,,且由此增加的产值分别为60万元、40万元、20万元、5-万元.设该企业当年因改造而增加利润为ξ.(Ⅰ)在抽查评估中,该企业能被抽到且被评为合格以上等次的概率是多少? (Ⅱ)求ξ的数学期望.评估得分 (0,60)[)7060, [)8070, []10080,评定等级 不合格合格良好优秀奖惩(万元)80- 30 60 10018.(本题满分14分)如图,在棱长为1的正方体1111ABCD A B C D -中,P 为线段1AD 上的点,且满足1(0)D P PA λλ=>u u u u r u u u r.(Ⅰ)当1λ=时,求证:平面11ABC D ⊥平面PDB ; (Ⅱ)试证无论λ为何值,三棱锥1D PBC -的体积 恒为定值;(Ⅲ)求异面直线1C P 与1CB 所成的角的余弦值.第18题图第16题图CAEF第15题图19.(本题满分14分)已知函数2()ln f x x ax b x =++(0x >,实数a ,b 为常数). (Ⅰ)若1,1a b ==-,求函数()f x 的极值; (Ⅱ)若2a b +=-,讨论函数()f x 的单调性.20.(本题满分14分)如图,抛物线21:8C y x =与双曲线22222:1(x y C a a b-=12,C C 在第一象限的交点,且25AF =. (Ⅰ)求双曲线2C 的方程;(Ⅱ)以1F 为圆心的圆M 与双曲线的一条渐近线相切,圆N :22(2)1x y -+=.平面上有点P 满足:存在过点P 的无穷多对互相垂直的直线12,l l ,它们分别与圆,M N 相交,且直线1l 被圆M 截得的弦长与直线2l 被圆N 截得的弦长的比,试求所有满足条件的点P 的坐标.21.(本题满分14分)设0a >,函数21()f x x a=+. (Ⅰ)证明:存在唯一实数01(0,)x a∈,使00()f x x =;(Ⅱ)定义数列{}n x :10x =,1()n n x f x +=,*n N ∈.(i )求证:对任意正整数n 都有2102n n x x x -<<; (ii) 当2a =时, 若10(2,3,4,)2k x k <≤=L , 证明:对任意*m N ∈都有:1134m k k k x x +--<⋅.2020年高三教学质量检测数学试题(理科)参考答案和评分标准一、选择题:(每题5分,共40分)题号 12345678选项D C B B D C C A二、填空题(每题5分,共30分) 9.75 10. π 11.10?i > 12.94 1311n b -= 14. (2,)3π 15.2 三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)解:方法一:在ABD ∆中,由正弦定理得:sinAD ABABD =∠,∴6060sin(3075)60sin 7541sin[180(453075)]sin 302AD +====-++o o oo o o o o…………………4分 同理,在在ABC ∆中,由正弦定理得:sin sin AC ABABC ACB =∠∠ 16060sin 302sin[180(453060)]sin 45AC ⨯====-++oo o o o o ……………………………………………8分∴计算出,AD AC 后,再在ACD ∆中,应用余弦定理计算出CD 两点间的距离:CD ==………………………………………………………10分===∴,C D 两艘轮船相距 mile n .………………………………………………………………12分方法二:在ABC ∆中,由正弦定理得:sin sin BC ABBAC=∠,∴6060sin(6045)60sin 751)sin[180(456030)]sin 452BC +====-++o o oo o o o o…………………4分 同理,在在ABD∆中,由正弦定理得:BD ABADB=606060sin 45221sin[180(453075)]sin 302BD ====-++oo o o o o……………………………………8分 ∴计算出,BC BD 后,再在BCD ∆中,应用余弦定理计算出CD 两点间的距离:CD == ………………………………………………………10分== =∴,C D 两艘轮船相距 mile n . ………………………………………………………12分 17.(本题满分12分)解:(Ⅰ)设该企业能被抽中的概率且评为合格以上等次的概率为P ,则111123238248P ⎛⎫=++⨯= ⎪⎝⎭………………………………………………………4分 (Ⅱ)依题意,ξ的可能取值为185,105,80,60,50,40,0,60,------则1612181)50(,612131)0(,412121)60(=⨯=-==⨯===⨯==ξξξP P P412121)40(,48121241)185(=⨯=-==⨯=-=ξξP P ,111111111(60),(80),(105)326821624248P P P ξξξ=-=⨯==-=⨯==-=⨯=则其分布列为10分第18题图 ∴1111115(60406050801851054616486E ξ=-⨯+-⨯+--⨯+--⨯=-)()()()(万元) ………………………………………………………12分18.(本题满分12分)方法一、证明:(Ⅰ)∵正方体1111ABCD A B C D -中,AB ⊥面11AA D D ,又11AB ABC D ⊂∴平面11ABC D ⊥平面11AA D D , ………………………2分 ∵1λ=时,P 为1AD 的中点,∴1DP AD ⊥, 又∵平面11ABC D I 平面11AA D D 1AD =, ∴DP ⊥平面11ABC D ,又DP ⊂平面PDB ,∴平面11ABC D ⊥平面PDB .……………………………………………………4分 (Ⅱ)∵11//AD BC , P 为线段1AD 上的点, ∴三角形1PBC 的面积为定值,即1122122PBC S ∆==,……………………………………………6分 又∵//CD 平面11ABC D ,∴点D 到平面1PBC 的距离为定值,即22h =, ……………………………………………………8分 ∴三棱锥1D BPC -的体积为定值,即111122133226D PBC PBC V S h -∆=⋅⋅=⨯=. 也即无论λ为何值,三棱锥1D PBC -的体积恒为定值16;……………………………………………10分(Ⅲ)∵由(Ⅰ)易知1B C ⊥平面11ABC D ,又1C P ⊂平面11ABC D ,∴11B C C P ⊥, ……………………………………………12分 即异面直线1C P 与1CB 所成的角为定值90o,从而其余弦值为0.………………………………………14分 方法二、如图,以点D 为坐标原点,建立如图所示的坐标系.(Ⅰ)当1λ=时,即点P 为线段1AD 的中点,则11(,0,)22P ,又(0,0,0)D 、(1,1,0)B∴11(,0,)22PD =--u u u r ,11(,1,)22PB =-u u u r ,设平面PDB 的法向量为(,,)n x y z =r ,……………………1分则00PD n PB n ⎧⋅=⎪⎨⋅=⎪⎩u u u r r r u u u r r r ,即11002211022x z x y z ⎧-+-=⎪⎪⎨⎪+-=⎪⎩,令1y =,解得(1,1,1)n =-r , ……………………2分 又∵点P 为线段1AD 的中点,∴1DP AD ⊥,∴DP ⊥平面11ABC D ,∴平面11ABC D 的法向量为11(,0,)22PD =--u u u r , ……………………3分∵110022PD n ⋅=+-=u u u r r ,∴平面11ABC D ⊥平面PDB , ………………………………………4分(Ⅱ)略;(Ⅲ)∵1(0)D P PA λλ=>u u u u r u u u r ,∴1(,0,)11P λλλ++, ………………………………………11分又1(0,1,1)C 、(0,1,0)C 、1(1,1,1)B ,∴1(,1,)11C P λλλλ-=-++u u u r ,1(1,0,1)CB =u u u r , ………………………………………12分∵110011C P CB λλλλ-⋅=++=++u u u r u u u r ………………………………………13分∴不管λ取值多少,都有11C P CB ⊥,即异面直线1C P 与1CB 所成的角的余弦值为0.……………14分19.(本题满分12分)解:(Ⅰ)函数2()ln f x x x x =+-,则1()21f x x x'=+-,………………………………………1分 令()0f x '=,得1x =-(舍去),12x =. ……………………………………………2分 当102x <<时,()0f x '<,函数单调递减; ……………………………………………3分 当12x >时,()0f x '>,函数单调递增; ……………………………………………4分 ∴()f x 在12x =处取得极小值3ln 24+. ……………………………………………5分(Ⅱ)由于2a b +=-,则2a b =--,从而2()(2)ln f x x b x b x =-++,则(2)(1)()2(2)b x b x f x x b x x --'=-++=……………………………………………5分 令()0f x '=,得12bx =,21x =. ……………………………………………7分① 当02b≤,即0b <时,函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞;…8分② 当01b<<,即02b <<时,列表如下:所以,函数()f x 的单调递增区间为(0,)2,(1,)+∞,单调递减区间为(,1)2b ;…………………10分③ 当12b=,即2b =时,函数()f x 的单调递增区间为(0,)+∞;………………………………11分 ④当1b>,即2b >时,列表如下:所以函数()f x 的单调递增区间为(0,1),(,)2b +∞,单调递减区间为(1,)2b ; …………………13分综上:当02b≤,即0b <时,函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞; 当012b <<,即02b <<时,函数()f x 的单调递增区间为(0,)2b ,(1,)+∞,单调递减区间为(,1)2b;当12b=,即2b =时,函数()f x 的单调递增区间为(0,)+∞; 当12b >,即2b >时,函数()f x 的单调递增区间为(0,1),(,)2b +∞,单调递减区间为(1,)2b . ………………………………14分20.(本题满分12分)解:(Ⅰ)∵抛物线21:8C y x =的焦点为2(2,0)F ,∴双曲线2C 的焦点为1(2,0)F -、2(2,0)F , ……………………………………………… 1分设00(,)A x y 在抛物线21:8C y x =上,且25AF =,由抛物线的定义得,025x +=,∴03x =, ………………………………………………2分∴2083y =⨯,∴0y =± ……………………………………………… 3分∴1||7AF ==, ……………………………………………… 4分 又∵点A 在双曲线上,由双曲线定义得,2|75|2a =-=,∴1a =, ……………………………………………… 5分∴双曲线的方程为:2213y x -=. ……………………………………………… 6分 (Ⅱ)设圆M 的方程为:222(2)x y r ++=,双曲线的渐近线方程为:y =,∵圆M 与渐近线y =相切,∴圆M 的半径为d ==,………………………………… 7分 故圆M :22(2)3x y ++=, ………………………………… 8分 设点00(,)P x y ,则1l 的方程为00()y y k x x -=-,即000kx y kx y --+=,2l 的方程为001()y y x x k-=--,即000x ky x ky +--=,∴点M 到直线1l 的距离为1d =,点N 到直线2l 的距离为2d =,∴直线1l 被圆M 截得的弦长s = 直线2l 被圆N 截得的弦长t = ………………………………… 11分 由题意可得,s t ==2200003(2)(2)x ky k kx y +-=+-,00002k kx y -=+- ①00002k kx y -=--+②……… 12分由①得:0000(2)0x k y +-+-=, ∵该方程有无穷多组解,∴0000200x y ⎧+=⎪+-=,解得001x y =⎧⎪⎨=⎪⎩,点P 的坐标为.………………………………… 13分由②得:0000(2)0x k y ++--=,∵该方程有无穷多组解,∴0000200x y ⎧++=⎪--=,解得001x y =⎧⎪⎨=⎪⎩P 的坐标为(1,.∴满足条件的点P 的坐标为或(1,. ………………………………… 14分21.(本题满分12分)(Ⅰ)证明: ①3()10f x x x ax =⇔+-=. ………………………………… 1分 令3()1h x x ax =+-,则(0)10h =-<,311()0h a a =>, ∴1(0)()0h h a⋅<. ………………………………… 2分 又/2()30h x x a =+>,∴3()1h x x ax =+-是R 上的增函数. ………………………………… 3分 故3()1h x x ax =+-在区间10,a ⎛⎫⎪⎝⎭上有唯一零点, 即存在唯一实数010,x a ⎛⎫∈ ⎪⎝⎭使00()f x x =. ………………………………… 4分 ②当1n =时, 10x =,211()(0)x f x f a ===,由①知010,x a ⎛⎫∈ ⎪⎝⎭,即102x x x <<成立;………… 5分 设当(2)n k k =≥时, 2102k k x x x -<<,注意到21()f x x a=+在()0,+∞上是减函数,且0k x >, 故有:2102()()()k k f x f x f x ->>,即2021k k x x x +>>∴2021()()()k k f x f x f x +<<, ………………………………… 7分 即21022k k x x x ++<<.这就是说,1n k =+时,结论也成立.故对任意正整数n 都有:2102n n x x x -<<. ………………………………… 8分 (2)当2a =时,由10x =得:211()(0)2x f x f ===,2112x x -= ………………………………… 9分222132222221211122(2)(2)x x x x x x x x --=-=++++22121211114244x x x x x x -+⎛⎫<=⋅-= ⎪⎝⎭……………………………… 10分 当2k ≥时,102k x <≤Q , ∴22112222111122(2)(2)k k k k k k k k x x x x x x x x -+----=-=++++114k k k k x x x x ---+<14k k x x --< 2212321144k k k x x x x ---⎛⎫⎛⎫<⋅-<<⋅- ⎪ ⎪⎝⎭⎝⎭L 14k ⎛⎫< ⎪⎝⎭ ………………………………… 12分 对*m N ∀∈,1121()()()m k k m k m k m k m k k k x x x x x x x x +++-+-+-+-=-+-++-L 1121m k m k m k m k k k x x x x x x ++-+-+-+≤-+-++-L ………………………………… 13分1122111114444k k m m x x +--⎛⎫≤+++++- ⎪⎝⎭L 111114141141134343414m k k k k m k k x x x x ++--⎛⎫=-=⋅-⋅-<⋅= ⎪⋅⎝⎭- ………………………………… 14分。

2020年高考数学试题分项版—立体几何(解析版)

2020年高考数学试题分项版—立体几何(解析版)

2020年高考数学试题分项版——立体几何(解析版)一、选择题1.(2020·全国Ⅰ理,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).2.(2020·全国Ⅰ理,10)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆,若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a .由πr 2=4π,得r =2, 则33a =2,a =23,OO 1=a =2 3. 在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.3.(2020·全国Ⅱ理,7)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H 答案 A解析 由三视图还原几何体,如图所示,由图可知,所求端点在侧视图中对应的点为E .4.(2020·全国Ⅱ理,10)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C 解析如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心.设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.5.(2020·全国Ⅲ理,8)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.6.(2020·新高考全国Ⅰ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90° 答案 B解析 如图所示,⊙O 为赤道平面,⊙O 1为A 点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.7.(2020·新高考全国Ⅱ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°答案 B解析如图所示,⊙O为赤道平面,⊙O1为A点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.8.(2020·北京,4)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+ 3 B.6+2 3 C.12+ 3 D.12+2 3答案 D解析 由三视图还原几何体,该几何体为底面是边长为2的正三角形,高为2的直三棱柱, S 底=2×34×22=2 3. S 侧=3×2×2=12,则三棱柱的表面积为23+12.9.(2020·北京,10)2020年3月14日是全球首个国际圆周率日(π Day).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ) A .3n ⎝⎛⎭⎫sin 30°n +tan 30°n B .6n ⎝⎛⎭⎫sin 30°n +tan 30°n C .3n ⎝⎛⎭⎫sin 60°n +tan 60°n D .6n ⎝⎛⎭⎫sin 60°n+tan 60°n 答案 A解析 设内接正6n 边形的周长为C 1,外切正6n 边形的周长为C 2,如图(1)所示,sin 360°12n =BC 1, ∴BC =sin 30°n,∴AB =2sin 30°n ,C 1=12n sin 30°n.如图(2)所示,tan 360°12n =B ′C ′1,∴B ′C ′=tan 30°n,∴A ′B ′=2tan 30°n ,C 2=12n tan 30°n .∴2π=C 1+C 22=6n ⎝⎛⎭⎫sin 30°n +tan 30°n , ∴π=3n ⎝⎛⎭⎫sin 30°n+tan 30°n . 10.(2020·天津,5)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( )A .12πB .24πC .36πD .144π 答案 C解析 由题意知,正方体的体对角线就是球的直径 ∴2R =(23)2+(23)2+(23)2=6, ∴R =3,∴S 球=4πR 2=36π.11.(2020·浙江,5)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm 3)是( )A.73B.143 C .3 D .6 答案 A解析 如图,三棱柱的体积V 1=12×2×1×2=2,三棱锥的体积V 2=13×12×2×1×1=13,因此,该几何体的体积V =V 1+V 2=2+13=73.12.(2020·浙江,6)已知空间中不过同一点的三条直线l ,m ,n ,“l ,m ,n 共面”是“l ,m ,n 两两相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 如图,直线l ,m ,n 不过同一点,且l ,m ,n 共面有三种情况:①同一平面内三线平行;②两平行线与另一线相交;③三线两两相交.因此,“l ,m ,n 两两相交”是“l ,m ,n 共面”的一种情况,即“l ,m ,n 共面”是“l ,m ,n 两两相交”的必要不充分条件.13.(2020·全国Ⅰ文,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).14.(2020·全国Ⅰ文,12)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a . 由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.15.(2020·全国Ⅱ文,11)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C解析 如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心. 设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.16.(2020·全国Ⅲ文,9)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.二、填空题1.(2020·全国Ⅱ理,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.2.(2020·全国Ⅲ理,15)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.3.(2020·新高考全国Ⅰ,16)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________. 答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q , 连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3= 2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.4.(2020·新高考全国Ⅱ,13)棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱BB 1,AB 的中点,则三棱锥A 1-D 1MN 的体积为________. 答案 1解析 如图,由正方体棱长为2,得S △A 1MN =2×2-2×12×2×1-12×1×1=32,又易知D 1A 1为三棱锥D 1-A 1MN 的高,且D 1A 1=2, ∴1111A D MN D A MN V V --==13·1A MN S △·D 1A 1=13×32×2=1. 5.(2020·江苏,9)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,则此六角螺帽毛坯的体积是________cm 3.答案 ⎝⎛⎭⎫123-π2 解析 螺帽的底面正六边形的面积 S =6×12×22×sin 60°=63(cm 2),正六棱柱的体积V 1=63×2=123(cm 3), 圆柱的体积V 2=π×0.52×2=π2(cm 3),所以此六角螺帽毛坯的体积 V =V 1-V 2=⎝⎛⎭⎫123-π2cm 3. 6.(2020·浙江,14)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, ∴r =12l .又圆锥侧面展开图为半圆, ∴12πl 2=2π, ∴l =2,∴r =1.7.(2020·全国Ⅱ文,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.8.(2020·全国Ⅲ文,16)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.三、解答题1.(2020·全国Ⅰ理,18)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE =AD .△ABC 是底面的内接正三角形,P 为DO 上一点,PO =66DO .(1)证明:P A ⊥平面PBC ; (2)求二面角B -PC -E 的余弦值.(1)证明 由题设,知△DAE 为等边三角形,设AE =1, 则DO =32,CO =BO =12AE =12, 所以PO =66DO =24, PC =PO 2+OC 2=64,PB =PO 2+OB 2=64, 又△ABC 为等边三角形,则BAsin 60°=2OA , 所以BA =32, P A =PO 2+OA 2=64, P A 2+PB 2=34=AB 2,则∠APB =90°,所以P A ⊥PB ,同理P A ⊥PC , 又PC ∩PB =P ,所以P A ⊥平面PBC . (2)解 过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 所在直线为x 轴,ON 所在直线为y 轴,OD 所在直线为z 轴,建立如图所示的空间直角坐标系,则E ⎝⎛⎭⎫-12,0,0,P ⎝⎛⎭⎫0,0,24, B ⎝⎛⎭⎫-14,34,0,C ⎝⎛⎭⎫-14,-34,0,PC →=⎝⎛⎭⎫-14,-34,-24,PB →=⎝⎛⎭⎫-14,34,-24,PE →=⎝⎛⎭⎫-12,0,-24,设平面PCB 的一个法向量为n =(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PB →=0,得⎩⎨⎧-x 1-3y 1-2z 1=0,-x 1+3y 1-2z 1=0,令x 1=2,得z 1=-1,y 1=0, 所以n =(2,0,-1),设平面PCE 的一个法向量为m =(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧m ·PC →=0,m ·PE →=0,得⎩⎨⎧-x 2-3y 2-2z 2=0,-2x 2-2z 2=0,令x 2=1,得z 2=-2,y 2=33, 所以m =⎝⎛⎭⎫1,33,-2,故cos 〈m ,n 〉=m ·n|m |·|n |=223×103=255, 所以二面角B -PC -E 的余弦值为255.2.(2020·全国Ⅱ理,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 由已知得AM ⊥BC .以M 为坐标原点,MA →的方向为x 轴正方向,|MB →|为单位长度,建立如图所示的空间直角坐标系,则AB =2,AM = 3.连接NP ,则四边形AONP 为平行四边形, 故PM =233,E ⎝⎛⎭⎫233,13,0.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设Q (a,0,0), 则NQ =4-⎝⎛⎭⎫233-a 2,B 1⎝⎛⎭⎪⎫a ,1,4-⎝⎛⎭⎫233-a 2, 故B 1E →=⎝ ⎛⎭⎪⎫233-a ,-23,-4-⎝⎛⎭⎫233-a 2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量,故sin ⎝⎛⎭⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉 =n ·B 1E →|n ||B 1E →|=1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 3.(2020·全国Ⅲ理,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.(1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求二面角A -EF -A 1的正弦值.(1)证明 设AB =a ,AD =b ,AA 1=c ,如图,以C 1为坐标原点,C 1D 1—→,C 1B 1—→,C 1C —→的方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系C 1-xyz .连接C 1F ,则C 1(0,0,0),A (a ,b ,c ), E ⎝⎛⎭⎫a ,0,23c ,F ⎝⎛⎭⎫0,b ,13c , EA →=⎝⎛⎭⎫0,b ,13c ,C 1F →=⎝⎛⎭⎫0,b ,13c , 所以EA →=C 1F →,所以EA ∥C 1F , 即A ,E ,F ,C 1四点共面, 所以点C 1在平面AEF 内.(2)解 由已知得A (2,1,3),E (2,0,2),F (0,1,1),A 1(2,1,0), 则AE →=(0,-1,-1),AF →=(-2,0,-2), A 1E →=(0,-1,2),A 1F →=(-2,0,1). 设n 1=(x 1,y 1,z 1)为平面AEF 的法向量, 则⎩⎪⎨⎪⎧n 1·AE →=0,n 1·AF →=0,即⎩⎪⎨⎪⎧-y 1-z 1=0,-2x 1-2z 1=0,可取n 1=(-1,-1,1).设n 2=(x 2,y 2,z 2)为平面A 1EF 的法向量, 则⎩⎪⎨⎪⎧n 2·A 1E →=0,n 2·A 1F →=0,即⎩⎪⎨⎪⎧-y 2+2z 2=0,-2x 2+z 2=0,同理可取n 2=⎝⎛⎭⎫12,2,1. 因为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-77,所以二面角A -EF -A 1的正弦值为427. 4.(2020·新高考全国Ⅰ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,如图建立空间直角坐标系D -xyz ,因为PD =AD =1,则有D (0,0,0),C (0,1,0),A (1,0,0),P (0,0,1),B (1,1,0), 设Q (m,0,1),则有DC →=(0,1,0),DQ →=(m,0,1),PB →=(1,1,-1), 设平面QCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎪⎨⎪⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ), 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB 与平面QCD 所成角的正弦值等于 |cos 〈n ,PB →〉|=|1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2m m 2+1≤33·1+2|m |m 2+1≤33·1+1=63,当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63. 5.(2020·新高考全国Ⅱ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB =2,求PB 与平面QCD 所成角的正弦值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形,所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),C (0,1,0), B (1,1,0),P (0,0,1),DC →=(0,1,0),PB →=(1,1,-1).由(1)设Q (a,0,1),则BQ →=(a -1,-1,1). 由题意知(a -1)2+2=2, ∴a =1,∴DQ →=(1,0,1).设n =(x ,y ,z )是平面QCD 的一个法向量, 则⎩⎪⎨⎪⎧n ·DQ →=0,n ·DC →=0,即⎩⎪⎨⎪⎧x +z =0,y =0,可取n =(1,0,-1),∴cos 〈n ,PB →〉=n ·PB →|n |·|PB →|=63,故PB 与平面QCD 所成角的正弦值为63. 6.(2020·北京,16)如图,在正方体ABCD -A 1B 1C 1D 1中,E 为BB 1的中点.(1)求证:BC 1∥平面AD 1E ;(2)求直线AA 1与平面AD 1E 所成角的正弦值. (1)证明 在正方体ABCD -A 1B 1C 1D 1中, AB ∥A 1B 1且AB =A 1B 1,A 1B 1∥C 1D 1且A 1B 1=C 1D 1, ∴AB ∥C 1D 1且AB =C 1D 1,∴四边形ABC 1D 1为平行四边形,则BC 1∥AD 1, ∵BC 1⊄平面AD 1E ,AD 1⊂平面AD 1E , ∴BC 1∥平面AD 1E .(2)解 以点A 为坐标原点,AD ,AB ,AA 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系A -xyz ,设正方体ABCD -A 1B 1C 1D 1的棱长为2, 则A (0,0,0),A 1(0,0,2),D 1(2,0,2),E (0,2,1), AD 1→=(2,0,2),AE →=(0,2,1),AA 1→=(0,0,2), 设平面AD 1E 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AD 1→=0,n ·AE →=0,得⎩⎪⎨⎪⎧2x +2z =0,2y +z =0,令z =-2,得x =2,y =1,则n =(2,1,-2). cos 〈n ,AA 1→〉=n ·AA 1→|n |·|AA 1→|=-43×2=-23.因此,直线AA 1与平面AD 1E 所成角的正弦值为23.7.(2020·天津,17)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC ⊥BC ,AC =BC =2,CC 1=3,点D ,E 分别在棱AA 1和棱CC 1上,且AD =1,CE =2,M 为棱A 1B 1的中点.(1)求证:C 1M ⊥B 1D ;(2)求二面角B -B 1E -D 的正弦值;(3)求直线AB 与平面DB 1E 所成角的正弦值.(1)证明 依题意,以C 为坐标原点,分别以CA →,CB →,CC 1→的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得C (0,0,0),A (2,0,0),B (0,2,0),C 1(0,0,3),A 1(2,0,3),B 1(0,2,3),D (2,0,1),E (0,0,2),M (1,1,3).则C 1M →=(1,1,0),B 1D →=(2,-2,-2), ∵C 1M →·B 1D →=2-2+0=0,∴C 1M ⊥B 1D .(2)解 依题意,CA →=(2,0,0)是平面BB 1E 的一个法向量,EB 1→=(0,2,1),ED →=(2,0,-1). 设n =(x ,y ,z )为平面DB 1E 的法向量, 则⎩⎪⎨⎪⎧n ·EB 1→=0,n ·ED →=0,即⎩⎪⎨⎪⎧2y +z =0,2x -z =0.不妨设x =1,可得n =(1,-1,2).∴cos 〈CA →,n 〉=CA →·n |CA →||n |=66,∴sin 〈CA →,n 〉=1-16=306. ∴二面角B -B 1E -D 的正弦值为306. (3)解 依题意,AB →=(-2,2,0),由(2)知,n =(1,-1,2)为平面DB 1E 的一个法向量, ∴cos 〈AB →,n 〉=AB →·n |AB →||n |=-33,∴直线AB 与平面DB 1E 所成角的正弦值为33. 8.(2020·江苏,15)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.证明 (1)因为E ,F 分别是AC ,B 1C 的中点, 所以EF ∥AB 1.又EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF ∥平面AB 1C 1.(2)因为B 1C ⊥平面ABC ,AB ⊂平面ABC , 所以B 1C ⊥AB .又AB ⊥AC ,B 1C ⊂平面AB 1C ,AC ⊂平面AB 1C , B 1C ∩AC =C , 所以AB ⊥平面AB 1C . 又因为AB ⊂平面ABB 1, 所以平面AB 1C ⊥平面ABB 1.9.(2020·江苏,22)在三棱锥A -BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F -DE -C 的大小为θ,求sin θ的值.解 (1)如图,连接OC ,因为CB =CD ,O 为BD 的中点,所以CO ⊥BD .又AO ⊥平面BCD ,所以AO ⊥OB ,AO ⊥OC .以{OB →,OC →,OA →}为基底,建立空间直角坐标系O -xyz . 因为BD =2,CB =CD =5,AO =2, 所以B (1,0,0),D (-1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1). 所以AB →=(1,0,-2),DE →=(1,1,1),所以|cos 〈AB →,DE →〉|=|AB →·DE →||AB →|·|DE →|=|1+0-2|5×3=1515.因此,直线AB 与DE 所成角的余弦值为1515. (2)因为点F 在BC 上,BF =14BC ,BC →=(-1,2,0).所以BF →=14BC →=⎝⎛⎭⎫-14,12,0. 又DB →=(2,0,0),故DF →=DB →+BF →=⎝⎛⎭⎫74,12,0.设n 1=(x 1,y 1,z 1)为平面DEF 的一个法向量, 则⎩⎪⎨⎪⎧ DE →·n 1=0,DF →·n 1=0,即⎩⎪⎨⎪⎧x 1+y 1+z 1=0,74x 1+12y 1=0,令x 1=2,得y 1=-7,z 1=5,所以n 1=(2,-7,5). 设n 2=(x 2,y 2,z 2)为平面DEC 的一个法向量, 又DC →=(1,2,0),则⎩⎪⎨⎪⎧DE →·n 2=0,DC →·n 2=0,即⎩⎪⎨⎪⎧x 2+y 2+z 2=0,x 2+2y 2=0,令x 2=2,得y 2=-1,z 2=-1, 所以n 2=(2,-1,-1). 故|cos θ|=|n 1·n 2||n 1|·|n 2|=|4+7-5|78×6=1313. 所以sin θ=1-cos 2θ=23913. 10.(2020·浙江,19)如图,在三棱台ABC -DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(1)证明:EF ⊥DB ;(2)求直线DF 与平面DBC 所成角的正弦值.(1)证明 如图(1),过点D 作DO ⊥AC ,交直线AC 于点O ,连接OB .由∠ACD =45°,DO ⊥AC ,得CD =2CO . 由平面ACFD ⊥平面ABC ,得DO ⊥平面ABC , 所以DO ⊥BC .由∠ACB =45°,BC =12CD =22CO ,得BO ⊥BC .所以BC ⊥平面BDO ,故BC ⊥DB . 由ABC -DEF 为三棱台, 得BC ∥EF ,所以EF ⊥DB .(2)解 方法一 如图(2),过点O 作OH ⊥BD ,交直线BD 于点H ,连接CH .由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角. 由BC ⊥平面BDO ,得OH ⊥BC , 故OH ⊥平面DBC ,所以∠OCH 为直线CO 与平面DBC 所成角. 设CD =22,则DO =OC =2,BO =BC =2, 得BD =6,OH =233,所以sin ∠OCH =OH OC =33.因此,直线DF 与平面DBC 所成角的正弦值为33. 方法二 由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图(3),以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O-xyz .设CD =22,由题意知各点坐标如下:O (0,0,0),B (1,1,0),C (0,2,0),D (0,0,2).因此OC →=(0,2,0),BC →=(-1,1,0),CD →=(0,-2,2). 设平面DBC 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·BC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧-x +y =0,-2y +2z =0,可取n =(1,1,1),所以sin θ=|cos 〈OC →,n 〉|=|OC →·n ||OC →|·|n |=33.因此,直线DF 与平面DBC 所成角的正弦值为33. 11.(2020·全国Ⅰ文,19)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面P AB ⊥平面P AC ;(2)设DO =2,圆锥的侧面积为3π,求三棱锥P -ABC 的体积. (1)证明 ∵D 为圆锥顶点,O 为底面圆心, ∴OD ⊥平面ABC ,∵P 在DO 上,OA =OB =OC , ∴P A =PB =PC ,∵△ABC 是圆内接正三角形, ∴AC =BC ,△P AC ≌△PBC ,∴∠APC =∠BPC =90°,即PB ⊥PC ,P A ⊥PC , P A ∩PB =P ,∴PC ⊥平面P AB ,PC ⊂平面P AC ,∴平面P AB ⊥平面P AC .(2)解 设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为πrl =3π,rl =3,OD 2=l 2-r 2=2,解得r =1,l =3,AC =2r sin 60°=3, 在等腰直角三角形APC 中, AP =22AC =62, 在Rt △P AO 中,PO =AP 2-OA 2=64-1=22, ∴三棱锥P -ABC 的体积为V P -ABC =13PO ·S △ABC =13×22×34×3=68.12.(2020·全国Ⅱ文,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO =AB =6,AO ∥平面EB 1C 1F ,且∠MPN =π3,求四棱锥B-EB 1C 1F 的体积.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 因为AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN , 平面A 1AMN ∩平面EB 1C 1F =PN , 所以AO ∥PN ,又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP =ON =13AM =3,PM =23AM =23,EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B -EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离. 如图,作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F , 故MT =PM sin ∠MPN =3. 底面EB 1C 1F 的面积为12(B 1C 1+EF )·PN =12×(6+2)×6=24. 所以四棱锥B -EB 1C 1F 的体积为13×24×3=24.13.(2020·全国Ⅲ文,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.证明:(1)当AB =BC 时,EF ⊥AC ; (2)点C 1在平面AEF 内. 证明 (1)如图,连接BD ,B 1D 1. 因为AB =BC ,所以四边形ABCD 为正方形,故AC ⊥BD .又因为BB 1⊥平面ABCD ,AC ⊂平面ABCD , 于是AC ⊥BB 1.又BD ∩BB 1=B ,BD ,BB 1⊂平面BB 1D 1D , 所以AC ⊥平面BB 1D 1D .又因为EF ⊂平面BB 1D 1D ,所以EF ⊥AC .(2)如图,在棱AA 1上取点G ,使得AG =2GA 1,连接GD 1,FC 1,FG , 因为ED 1=23DD 1,AG =23AA 1,DD 1∥AA 1且DD 1=AA 1,所以ED 1∥AG 且ED 1=AG , 所以四边形ED 1GA 为平行四边形, 故AE ∥GD 1.因为B 1F =13BB 1,GA 1=13AA 1,BB 1∥AA 1且BB 1=AA 1,所以B 1F ∥GA 1,且B 1F =GA 1, 所以四边形B 1FGA 1是平行四边形, 所以FG ∥A 1B 1且FG =A 1B 1, 所以FG ∥C 1D 1且FG =C 1D 1, 所以四边形FGD 1C 1为平行四边形, 故GD 1∥FC 1. 所以AE ∥FC 1.所以A ,E ,F ,C 1四点共面,即点C 1在平面AEF 内.。

2020高考数学百所名校立体几何分项解析汇编之衡水中学专版答案解析(14页)

2020高考数学百所名校立体几何分项解析汇编之衡水中学专版答案解析(14页)

2020高考数学百所名校立体几何分项解析汇编之衡水中学专版立体几何一、选择题1. 【2020届河北省衡水中学高三上学期五调考试】鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,从外表上看,六根等长的正四棱柱分成三组,经榫卯起来,如图,若正四棱柱的高为,底面正方形的边长为,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为( )(容器壁的厚度忽略不计)A .B .C .D .2. 【2020届河北省衡水中学高三上学期五调考试】在正方体中,是棱的中点,是侧面内的动点,且平面,则与平面所成角的正切值构成的集合是( )A .B .C .D . 90o 6136π40π41π44π1111ABCD A B C D -E 1CC F 11BCC B 1A F P 1D AE 1A F 11BCC Bt |5t t 禳镲镲睚镲镲铪|25t t 禳镲镲睚镲镲铪{|2t t剟{|2t t 剟3. 【河北省衡水市2019届高三下学期第三次质量检测】已知三棱锥中,,, 直线与底面所成角为,则此时三棱锥外接球的表面积为 ( ) A .B .C .D .4. 【河北省衡水中学2019-2020学年度高三年级上学期四调考试】如图,圆柱的轴截面为正方形,为弧的中点,则异面直线与所成角的余弦值为( )ABC .D.5. 【河北省衡水中学2019-2020学年度高三年级上学期四调考试】如图,点P 在正方体的面对角线上运动,则下列四个结论:三棱锥的体积不变;平面; ;平面平面.其中正确的结论的个数是A .1个B .2个C .3个D .4个6. 【河北省衡水中学2019-2020学年度高三年级上学期四调考试】如图,三棱柱的高为6,点D ,E 分别在线段,上,,A BCD -2AB AC BD CD ====2BC AD =AD BCD 3π8π6π9π5πABCD E »BCAE BC 661111ABCD A B C D -1BC ①1A D PC -1//A P ②1ACD 1DP BC ⊥③④1PDB ⊥1ACD ()111ABC A B C -11A C 1B C 111A C 3DC =11B C 4B =E.点A ,D ,E 所确定的平面把三棱柱切割成体积不相等的两部分,若底面的面积为6,则较大部分的体积为A .22B .23C .26D .277.【河北省衡水中学2018届高三毕业班模拟演练一】我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,上广二丈,袤三丈,下广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),上底宽2丈,长3丈;下底宽3丈,长4丈;高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,再次相加,再乘以高,最后除以6.则这个问题中的刍童的体积为( )A .13.25立方丈B .26.5立方丈C .53立方丈D .106立方丈 8.【河北衡水金卷2019届高三12月第三次联合质量测评数学(理)试题】一正方体被两平面截去部分后剩下几何体的三视图如图所示,则该几何体的表面积为A .B .C .D .9. 【河北衡水金卷2019届高三12月第三次联合质量测评数学(理)试题】 利用一半径为4cm 的圆形纸片(圆心为O)制作一个正四棱锥.方法如下:ABC V ()(1)以O为圆心制作一个小的圆;(2)在小的圆内制作一内接正方形ABCD;(3)以正方形ABCD的各边向外作等腰三角形,使等腰三角形的顶点落在大圆上(如图);(4)将正方形ABCD作为正四棱锥的底,四个等腰三角形作为正四棱锥的侧面折起,使四个等腰三角形的顶点重合,问:要使所制作的正四棱锥体积最大,则小圆的半径为A.B.C.D.10 【河北省衡水中学2018—2019学年高三年级上学期四调考试数学(理)试题】一个简单几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.11. 【河北省衡水中学2018—2019学年高三年级上学期四调考试数学(理)试题】如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为()A .B .C .D .12. 【河北省衡水中学2018届高三第十七次模拟考试数学(理)试题】 如图是某几何体的三视图,则该几何体的体积为( )A .6B .9C .12D .1813.【河北省衡水中学2018届高三上学期七调考试数学(理)试题】正四面体ABCD 中, M 是棱AD 的中点, O 是点A 在底面BCD 内的射影,则异面直线BM 与AO 所成角的余弦值为( )A .6 B .3 C .4 D .514【河北省衡水中学2018年高考押题(三)】某几何体的三视图如图所示,其中俯视图下半部分是半径为2的半圆,则该几何体的表面积是( )A .808π+B .804π+C .808π-D .804π- 15.【河北省衡水中学2019届高三第一次摸底考试】 如图,在正方体中,点,分别为棱,的中点,点为上底面的中心,过,,三点的平面把正方体分为两部分,其中含的部分为,不含的部分为,连结和的任一点,设与平面所成角为,则的最大值为A .B .C .D .16.【河北省衡水中学2019届高三上学期期中考试理科数学试题】 已知某几何体的三视图如图所示,则该几何体的体积为( )A .B .3πC .D .6π17.【河北省衡水中学2019届高三上学期期中考试理科数学试题】如图,在四棱锥P -ABCD 中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP =MC ,则点M 在正方形ABCD 内的轨迹为( )18. 【河北省衡水中学2019届高三上学期期中考试理科数学试题】 已知球O 与棱长为4的正方体的所有棱都相切,点M 是球O 上一点,点N 是△的外接圆上的一点,则线段的取值范围是A .B .C .D .二、填空题1. 【河北省衡水中学2019-2020学年度高三年级上学期四调考试】如图(1),在等腰直角中,斜边,D 为的中点,将沿折叠得到如图(2)所示的三棱锥,若三棱锥_________.图(1) 图(2)2.【河北省衡水中学2018—2019学年高三年级上学期四调考试数学(理)试题】 已知直三棱柱中,,则异面直线与所成角的余弦值为ABC ∆4AB =AB ACD ∆CD C A BD '-C A BD '-A DB '∠=_______.3. 【河北省衡水中学2018—2019学年高三年级上学期四调考试数学(理)试题】 三棱锥中,平面,为正三角形,外接球表面积为,则三棱锥的体积的最大值为______.4. 【河北省衡水中学2018届高三第十六次模拟考试数学(理)试题】 已知直三棱柱中,,,,若棱在正视图的投影面内,且与投影面所成角为,设正视图的面积为,侧视图的面积为,当变化时,的最大值是__________.5. 【河北省衡水中学2018届高三高考押题(一)理数试题试卷】已知球O 是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A BCD -的外接球,3,BC AB ==E 在线段 BD 上,且3BD BE =,过点E 作圆O 的截面,则所得截面圆面积的取值范围是__________.6. 【河北省衡水中学2018届高三十六模】 已知直三棱柱中,,,,若棱在正视图的投影面内,且与投影面所成角为,设正视图的面积为,侧视图的面积为,当变化时,的最大值是__________.7.【河北省衡水中学2019届高三上学期期中考试理科数学试题】如图1,在矩形ABCD 中, 2AB =, 1BC =, E 是DC 的中点;如图2,将DAE ∆沿AE 折起,使折后平面DAE ⊥平面ABCE ,则异面直线AE 和DB 所成角的余弦值为__________.三、解答题1. 【2020届河北省衡水中学高三上学期五调考试】如图,在三棱柱中,,点是的中点.(1)求证: 平面;(2)若,求直线与平面所成角的正弦值.2. 【河北省衡水市2019届高三下学期第三次质量检测】如图,在口中,,沿将翻折到的位置,使平面平面.(1)求证:平面;(2)若在线段上有一点满足,且二面角的大小为,求的值.3.【河北省衡水中学2018届高三毕业班模拟演练一】在矩形中,,,点是线段上靠近点的一个三等分点,点是线段上的一个动点,且.如图,将沿折起至,使得平面平面.111ABC A B C -11160,,2BAC A AC A AB AA AB AC ∠=∠=∠===oOBC BC ⊥1A AO 11A O =1BB 11A C BABCD 30,2A AD AB ∠===oBD ABD ∆A BD '∆A BC '⊥A BD'A D '⊥BCD A C 'M A M A C λ'='M BD C --60o λ(1)当时,求证:;(2)是否存在,使得与平面所成的角的正弦值为?若存在,求出的值;若不存在,请说明理由.4.【河北省衡水中学2018—2019学年高三年级上学期四调考试数学(理)试题】如图,直线平面,直线平行四边形,四棱锥的顶点在平面上,,,,,分别是与的中点.(1)求证:平面;(2)求二面角的余弦值.5. 【河北衡水金卷2019届高三12月第三次联合质量测评数学(理)试题】如图所示,底面为菱形的直四棱柱被过三点的平面截去一个三棱锥(图一)得几何体(图二),E为的中点.(1)点F为棱上的动点,试问平面与平面是否垂直?请说明理由;(2)设,当点F 为中点时,求锐二面角的余弦值. 6. 【河北省衡水中学2018届高三第十次模拟考试数学(理)试题】如图所示,四棱锥P ABCD -的底面为矩形,已知1PA PB PC BC ====, AB =,过底面对角线AC 作与PB 平行的平面交PD 于E .(1)试判定点E 的位置,并加以证明;(2)求二面角E AC D --的余弦值.7. 【河北省衡水中学2018届高三第十六次模拟考试数学(理)试题】如图,在底面是菱形的四棱锥P ABCD -中, PA ⊥平面ABCD , 60,2ABC PA AB ∠=︒==,点E F、分别为BC PD 、的中点,设直线PC 与平面AEF 交于点Q .(1)已知平面PAB ⋂平面PCD l =,求证: //AB l .(2)求直线AQ 与平面PCD 所成角的正弦值.8. 【河北省衡水中学2018届高三第十七次模拟考试数学(理)试题】四棱锥中,面,底面是菱形,且,,过点作直线,为直线上一动点.(1)求证:; (2)当面面时,求三棱锥的体积.9. 【河北省衡水中学2018届高三高考押题(一)理数试题试卷】如图,点C 在以AB 为直径的圆O 上, PA 垂直与圆O 所在平面, G 为 AOC ∆的垂心 (1)求证:平面OPG ⊥平面 PAC ;(2)若22PA AB AC ===,求二面角A OP G --的余弦值.10. 【河北省衡水中学2018届高三上学期七调考试数学(理)试题】如图所示,在四棱柱中,底面是梯形,,侧面为菱形,.(Ⅰ)求证:; (Ⅰ)若,,直线与平面所成的角为,求平面与平面所成锐二面角的余弦值.11. 【河北省衡水中学2018年高考押题(三)】如图所示,在四棱锥中,平面平面.(1)求证:;(2)若二面角为,求直线与平面所成的角的正弦值.12. 【河北省衡水中学2019届高三第一次摸底考试】在中,,分别为,的中点,,如图1.以为折痕将折起,使点到达点的位置,如图2.如图1 如图2(1)证明:平面平面;(2)若平面平面,求直线与平面所成角的正弦值。

2020年高考理科数学《立体几何》题型归纳与训练及答案解析

2020年高考理科数学《立体几何》题型归纳与训练及答案解析

12020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明1例1如图,高为1的等腰梯形 ABCD 中,AM = CD = 3AB = 1•现将△AMD 沿MD 折起,使平面 AMD 丄 平面 MBCD ,连接 AB , AC.试判断:在AB 边上是否存在点【解析】线面平行,可以线线平行或者面面平行推出。

此类题的难点就是如何构造辅助线。

构造完辅助线,证明过程只须注意规范的符号语言描述即可。

本题用到的是线线平行推出面面平行。

【易错点】不能正确地分析DN 与BN 的比例关系,导致结果错误。

【思维点拨】此类题有两大类方法: 1.构造线线平行,然后推出线面平行。

此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。

在此,我们需要借助倒推法进行分析。

首先,此类型题目大部分为证明题,结论必定是正确的,我们以此 为前提可以得到线面平行。

再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。

从这个角度上看我们可以看出线线平行推线面 平行的本质就是过已知直线做一个平面与已知平面相交即可。

如本题中即是过AD 做了一个平面ADB与平面MPC 相交于线PN 。

最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。

即先证1【答案】当AP = 3AB 时,有AD //平面MPC. 理由如下:连接BD 交MC 于点N ,连接NP.在梯形 MBCD 中,DC // MB ,DN NB DC MB 12,Ap 1在△ADB 中,pp 二」AD 〃 PN . •/ AD?平面 MPC , PN?平面 MPC , ••• AD //平面 MPC.P ,使AD //平面 MPC?并说明理由AD平行于PN,最后得到结论。

构造交线的方法我们可总结为如下三个图形。

PP上一方法二方法三2.构造面面平行,然后推出线面平行。

高考数学复习总结专题05 立体几何(选择题、填空题) (解析版)

高考数学复习总结专题05 立体几何(选择题、填空题) (解析版)

立体几何(选择题、填空题)1.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()515 1 5 1 5 1A. B. C. D.4 2 4 2【答案】C【解析】【分析】1设C D a,PE b,利用P O2 CD PE 得到关于a,b的方程,解方程即可得到答案.22a【详解】如图,设C D a,PE b,则P O PE 2 2 2 ,OE b41 a2 1 b b由题意P O2 ab,即b 2 ab,化简得4() 2 210,2 4 2 a ab1 5解得(负值舍去).a 4故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.2.【2020年高考全国I I卷理数】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()A. EB. FC.GD.H【答案】A【解析】【分析】根据三视图,画出多面体立体图形,即可求得M 点在侧视图中对应的点.【详解】根据三视图,画出多面体立体图形,D D B C上的点在俯视图中对应的点为N,3 4上的点在正视图中都对应点M,直线1 4∴在正视图中对应M ,在俯视图中对应N 的点是D4,线段D D,上的所有点在侧试图中都对应E ,∴点3 4D4在侧视图中对应的点为E .故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.A, B,C 为球O 的球面上的三个点,⊙O为 A B C的外接圆,若⊙O3. 【2020 年高考全国Ⅰ卷理数】已知11的面积为 4π , AB BC AC OO ,则球O的表面积为()1A. 64πB. 48πC. 36πD. 32π【答案】A 【解析】 【分析】由已知可得等边 AB C 的外接圆半径,进而求出其边长,得出O O的值,根据球的截面性质,求出球的半 1径,即可得出结论. 【详解】设圆O半径为 ,球的半径为 R ,依题意, r 14,r 2 , A B C为等边三角形,得r2由正弦定理可得 AB 2rsin 60 2 3 ,O O AB 2 3 ,根据球的截面性质O O 平面 ABC , 11 O O O A ,R OA O O2 O A 2 OO 1 2 r 4 , 21 1 1 1 O 球2 的表面积 S 4R 64 .故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题. 4. 【2020 年高考全国Ⅲ理数】下图为某几何体的三视图,则该几何体的的表面积是( )A.6+4 2B.4+4 2C.6+2 3D.4+2 3【答案】C【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形1根据立体图形可得:S△ABC S△AD C S△C DB 22 22根据勾股定理可得:AB A D DB 2 2△A DB是边长为22的等边三角形根据三角形面积公式可得:1 1 3S △A D B AB AD s in60(22) 2 2 32 2 2该几何体的表面积是:3223623.故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题. 5. 【2020 年高考全国 I I 卷理数】已知△ABC 是面积为若球 O 的表面积为 16π,则 O 到平面 ABC 的距离为( 3 9 34的等边三角形,且其顶点都在球 O 的球面上. )3 A. 3 B.C. 1D.22【答案】C 【解析】 【分析】根据球O 的表面积和 ABC 的面积可求得球O 的半径 R 和 AB C 外接圆半径 ,由球的性质可知所求距r 离 2 2 .d R r 【详解】设球O 的半径为 R ,则 4 R 16 ,解得: R 2 . 2 设 AB C 外接圆半径为 ,边长为 a,r 9 3ABC是面积为 的等边三角形, 41 3 9 32 a 22 9 a 2 ,解得: a 3,r a 2 93 , 2 24 3 4 3 4球心 O 到平面 ABC 2 2 的距离d R r 43 1.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明 确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.6. 【2019 年高考全国Ⅰ卷理数】已知三棱锥 P −AB C 的四个顶点在球 O 的球面上,PA=PB=P C ,△ABC 是边 长为 2 的正三角形,E ,F 分别是 PA ,AB 的中点,∠CEF =90°,则球 O 的体积为A .8 6B . 4 6 D . 6C . 2 6 【答案】D【解析】解法一: PA P B PC, ABC 为边长为 2 的等边三角形,P ABC为正三棱锥,△ PB AC ,又 E , F 分别为 PA , AB 的中点,EF ∥PB ,EF AC ,又 EF CE ,C E AC C,EF 平面 PAC ,∴ PB 平面 PAC ,APB PA PB PC 2 ,P ABC 为正方体的一部分, 2R 2 2 2 6 ,即6 4 4 6 68 R, V R 3 π 6,故选 D . P A, AB 2 3 3解法二:设 PA PB PC 2x ,E, F 分别为 的中点, 1EF ∥PB ,且 EF PB x ,△ABC 为边长为 2 的等边三角形,C F 3 ,21 又 CEF 90,CE 3 x 2, AE PA x , 2 x 243 x 22 x2△AEC 中,由余弦定理可得 cos EAC作 PD AC 于 D ,,A D 1 x 2 4 3 x 4x 21PA PC \ D AC cos EAC , , 为 的中点, ,PA 2x 2x1 2 2x 2 1 2,x 2,x ,PA PB PC 2 ,2 2又 AB=B C=A C=2 , PA , PB , PC 两两垂直,6 2R 2 2 2 6 ,R,24 4 6 68 V R 3 6 ,故选 D. 3 3【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到 三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.7. 【2019 年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 C .α,β平行于同一条直线 【答案】BB .α内有两条相交直线与β平行 D .α,β垂直于同一平面【解析】由面面平行的判定定理知: 内两条相交直线都与 平行是∥的充分条件,由面面平行性质定理知,若∥,则必要条件,故选 B .内任意一条直线都与 平行,所以平行是∥内两条相交直线都与的【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用 面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易 犯的错误为定理记不住,凭主观臆断,如:“若 a ,b ,a b ,则 ∥ ∥”此类的错误.8. 【2019 年高考全国Ⅲ卷理数】如图,点 N 为正方形 AB C D 的中心,△EC D 为正三角形,平面 EC D ⊥平 面 ABC D ,M 是线段 E D 的中点,则A .B M =E N ,且直线 B M ,EN 是相交直线 B .B M ≠EN ,且直线 B M ,E N 是相交直线C .B M =E N ,且直线 B M ,E N 是异面直线D .B M ≠EN ,且直线 B M ,EN 是异面直线 【答案】B【解析】如图所示,作 EO C D 于O ,连接O N ,B D ,易得直线 B M ,E N 是三角形 EB D 的中线,是 相交直线.过 M 作 MF OD 于 F ,连接 BF ,AB C D ,E O C D, E O 平面C DE ,EO平面C D E 平面 平面 ABC D , M F 平面 AB C D ,△MFB 与△EO N 均为直角三角 形 . 设 正 方 形 边 长 为 2 , 易 知 E O 3,ON 1,EN 2 ,3 5M F,BF ,BM 7 ,B M EN ,故选 B .2 2【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利 用垂直关系,再结合勾股定理进而解决问题.9. 【2018 年高考全国Ⅰ卷理数】某圆柱的高为 2,底面周长为 16,其三视图如图.圆柱表面上的点 M 在正 视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长度为A . 2 17B . 2 5 D .2C .3 【答案】B【解析】根据圆柱的三视图以及其本身的特征,知点 M 在上底面上,点 N 在下底面上,且可以确定点 M 和点 N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处, 所以所求的最短路径的长度为 ,故选 B .【名师点睛】该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需 要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平 铺,利用平面图形的相关特征求得结果.10. 【2018 年高考全国Ⅰ卷理数】已知正方体的棱长为 1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为3 342 3 3 A .C .B .D .3 2 43 2【答案】A【解析】根据相互平行的直线与平面所成的角是相等的,AB C D A B C D 中,1所以在正方体 1 1 1AB D AA , A B , A D 所成的角是相等的,11 11 1平面 与线 1 1AB D 所以平面 与正方体的每条棱所在的直线所成角都是相等的,11 C BD 1同理,平面 也满足与正方体的每条棱所在的直线所成角都是相等的,AB D C BD要求截面面积最大,则截面的位置为夹在两个面与1中间,且过棱的中点的正六边形,且1 12边长为,223 2 3 34所以其面积为S 6,故选A.4 2【名师点睛】该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.即首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.11.【2018年高考全国Ⅲ卷理数】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【答案】A【解析】本题主要考查空间几何体的三视图.由题意知,俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A.12.【2018年高考全国Ⅲ卷理数】设A ,,,是同一个半径为的球的球面上四点,△A B C 为等边三B C D 4角形且其面积为A.12 3,则三棱锥D ABC 体积的最大值为9 3B.18 3D.54 3C.24 3【答案】B【解析】如图所示,设点 M 为三角形 ABC 的重心,E 为 AC 中点,当点 D 在平面 ABC 上的射影为 M 时,三棱锥 D ABC 的体积最大,此时,O D OB R 4,3 S △AB CAB 9 3 ,AB 6 ,点 M 为三角形 ABC 的重心,2 4 2B M BE 2 3 ,3 Rt △OB M 中,有O M OB 2 2 2,D M O D O M 4 2 6,B M1V DABCm ax9 36 18 3 ,故选 B. 3【名师点睛】本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公 式,判断出当点 D 在平面 ABC 上的射影为三角形 AB C 的重心时,三棱锥 DABC 体积最大很关键,2由 M 为三角形 ABC 的重心,计算得到 B M BE 2 3 ,再由勾股定理得到 O M ,进而得到结果, 3属于较难题型.13. 【2018 年高考全国Ⅱ卷理数】在长方体 AB C D A B C D 中,AB BC 1,AA 3 ,则异面直线 A D 与 1 1 1 1 11 D B 所成角的余弦值为1 1 A .5 5 B . D .6 5 2 C .52【答案】C【解析】方法一:用一个与原长方体相同的长方体拼到原长方体的前面,B P ∥A D D B DP= 5B P 2,,则11如图,则 1,连接 DP ,易求得 1 DB P A D DB与所成的角,11是异面直线1 D B2 1 B P 2 DP 25 4 5 5 由余弦定理可得cos DB P 1. 12DB PB 4 5 5 1 1故选 C.方法二:以 D 为坐标原点,DA,D C,D D 所在直线分别为 x ,y ,z 轴建立空间直角坐标系, 1D 0, 0, 0, A 1, 0, 0,B 1, 1, 3,D 0, 0, 3A D1, 0, 3 ,DB 1, 1, 3 ,则 ,所以 1 1 1 1cos AD , DB A D DB A D DB 1 3 2 5 5 1 1因为 , 1 15 1 15 A D DB 所以异面直线 与 所成角的余弦值为 1,故选 C. 15【名师点睛】先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角 与线线角相等或互补关系求结果.利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”, 构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”, 求出直线的方向向量或平面的法向量;第四,破“应用公式关”. ABC A B C 中, ABC 120 BC CC 1,AB 2 ,,113. 【2017 年高考全国Ⅱ卷理数】已知直三棱柱1 1 1 AB BC 所成角的余弦值为1则异面直线 与 13 15 5 A .B .D .2 103 C . 53【答案】CAB C D A B C D ,1【解析】如图所示,补成直四棱柱 1 1 1则所求角为 BC D,BC 2, BD 2 21 221cos 60 3,C D AB 5 ,11 1 1 BC12 5105 易得 C D 12 BD 2BC 12 ,因此cos BC D,故选 C . 1C D1【名师点睛】平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为 共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是(0,],当所作的角为钝角时,应取它的补角作为两条异面2直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.14.【2017年高考全国Ⅰ卷理数】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12D.16C.14【答案】B【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)212,故选.B2【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图.15.【2017年高考全国Ⅱ卷理数】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90 C.42B.63 D.36【答案】B【解析】由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积V 32 436,上半部分是一个底面半径为,高为的圆柱的一半,其体积3 611 V (3 26) 27,故该组合体的体积V V V36 27 63.21 2 2故选 B .【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规 则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何 体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空 间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用 相应体积公式求解.16. 【2017 年高考全国Ⅲ卷理数】已知圆柱的高为 1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的体积为3π π A .C .B .D .4 π π24【答案】B【解析】绘制圆柱的轴截面如图所示:21 1 3 由题意可得: AC 1, AB ,结合勾股定理,底面半径 r 1 2,2 2 223 3由圆柱的体积公式,可得圆柱的体积是V πr 2h π 1 π ,故选 B.2 4【名师点睛】(1)求解空间几何体体积的关键是确定几何体的元素以及线面的位置关系和数量关系, 利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、 补形法等方法进行求解.17. 【2020 年高考全国 I I 卷理数】设有下列四个命题: p :两两相交且不过同一点的三条直线必在同一平面内.1p :过空间中任意三点有且仅有一个平面.2p :若空间两条直线不相交,则这两条直线平行.3p :若直线 l 平面α,直线 m ⊥平面α,则 m ⊥l . 4则下述命题中所有真命题的序号是__________.p p p p p ppp③④122334① ② 1 4【答案】①③④【解析】【分析】p p2利用两交线直线确定一个平面可判断命题的真假;利用三点共线可判断命题的真假;利用异面直线可1p p4判断命题的真假,利用线面垂直的定义可判断命题的真假.再利用复合命题的真假可得出结论.3p1l1l2【详解】对于命题,可设与相交,这两条直线确定的平面为;l l若与相交,则交点A 在平面内,3 1l l同理,与的交点B 也在平面内,3 2所以,AB ,即l3,命题为真命题;p1p2对于命题,若三点共线,则过这三个点的平面有无数个,p命题为假命题;2p对于命题,空间中两条直线相交、平行或异面,3p命题为假命题;3p4,若直线m 平面,对于命题m 垂直于平面则内所有直线,直线l 平面,直线m 直线,lp命题为真命题.4综上可知,,为真命题,,为假命题,p p p p为假命题,1 2为真命题,1 4p p p p为真命题.3 4为真命题,2 3故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力, 属于中等题.18. 【2020 年高考全国Ⅲ理数】已知圆锥的底面半径为 1,母线长为 3,则该圆锥内半径最大的球的体积为_________. 2 【答案】 3【解析】 【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值. 【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,B C 2, AB AC 3 其中 ,且点 M 为 BC 边上的中点,设内切圆的圆心为O ,1由于A M 3 2 1 22 2 ,故 S △ABC2 2 2 2 2 , 2r设内切圆半径为 ,则:1 1 1 S △AB C S △A O B S △BO C S △A O C AB r BC r AC r2 2 21 3 3 2r2 2 ,22 4 2解得: r =,其体积:V r 3 . 2 3 32故答案为:. 3【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的 位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于 球的直径.19. 【2019 年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用 3D 打印技术制作模型.如图,该模型为长方体AB C D A B C D 挖去四棱锥 O —EF G H 后所得的几何体,其中 O 为长方体的中心,E ,F ,G ,H 分11 1 1AB = BC = 6 cm, AA = 4 cm 别为所在棱的中点, ,3D 打印所用原料密度为 0.9 g/cm 3,不考虑打印 1损耗,制作该模型所需原料的质量为___________g .【答案】118.81【解析】由题意得, S 46 4 23 12cm 2 ,四边形EF G H2 1∵四棱锥 O −EF G H 的高为 3cm , ∴V O EF G H 123 12cm 3 .3AB C D A B C D V 466 144cm,3又长方体 的体积为 1 1 1 1 2 所以该模型体积为 VV V144 12 132cm 3 ,其质量为 0.9132 118.8g .OEF G H2 【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式 求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质 量即可.20. 【2019 年高考全国Ⅱ卷理数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图 1).半正多面体是 由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图 2 是一个棱数为 48 的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为 1.则该半正多面体共 有________个面,其棱长为_________.(本题第一空 2 分,第二空 3 分.)【答案】26,21【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826个面.x如图,设该半正多面体的棱长为,则AB BE x,延长CB与FE 的延长线交于点G,延长BC交正方体的棱于H ,由半正多面体对称性可知,△BG E 为等腰直角三角形,2 2BG GE C H x,G H 2x x(21)x1,2 21x21,21即该半正多面体的棱长为21.【名师点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形.721.【2018年高考全国I I卷理数】已知圆锥的顶点为S,母线SA,SB 所成角的余弦值为,SA与圆锥8 底面所成角为45°,若△SAB 的面积为515,则该圆锥的侧面积为__________.【答案】402π7 15 8【解析】因为母线 SA , SB 所成角的余弦值为 ,所以母线 SA , SB 所成角的正弦值为,因为 81 15 8 △SAB 的面积为5 15 ,设母线长为l ,所以l 2 25 15 ,l80 , 2π 2因为 SA 与圆锥底面所成角为 45°,所以底面半径为 r l cosl , 4 22 因此圆锥的侧面积为 πr lπl 40 2π. 22【名师点睛】本题考查线面角、圆锥的侧面积、三角形面积等知识点,考查学生空间想象与运算能力. 先根据三角形面积公式求出母线长,再根据母线与底面所成角得底面半径,最后根据圆锥侧面积公式 求结果.22. 【2017 年高考全国 I 卷理数】如图,圆形纸片的圆心为 O ,半径为 5 c m ,该纸片上的等边三角形 ABC 的中心为 O.D ,E ,F 为圆 O 上的点,△DB C ,△ECA ,△FA B 分 别是以 BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以 BC ,CA ,AB 为折 痕折起△DB C ,△ECA ,△FAB ,使得 D ,E ,F 重合,得到三棱锥.当△ABC 的边长变 化时,所得三棱锥体积(单位:cm 3)的最大值为 【答案】 4 15.【解析】如下图,连接 DO 交 BC 于点 G ,设 D ,E ,F 重合于 S 点,正三角形的边长为 x(x>0),则 1 3 3O G x x. 3 2 63FG SG 5x , 6223 3x3x, SO h SG2GO2 5 x 556 631 1 3 3 15 3 三棱锥的体积V S △ABC h x2 5 5 x 4 x 5 . 5x3 34 3 1233 5 3 设 n x 5x 4x 5 ,x>0,则 n x 20x 3 x 4, 3 3x 4 n x 0 ,即 4x 30,得 ,易知 n x 在 令 处取得最大值. x 4 3x 4 3 3 15∴V max 48 5 4 4 15 .12【名师点睛】对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.。

2020年高考数学试题分项版—立体几何(解析版)

2020年高考数学试题分项版—立体几何(解析版)

2020年高考数学试题分项版——立体几何(解析版)一、选择题1.(2020·全国Ⅰ理,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).2.(2020·全国Ⅰ理,10)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆,若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a .由πr 2=4π,得r =2, 则33a =2,a =23,OO 1=a =2 3. 在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.3.(2020·全国Ⅱ理,7)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H 答案 A解析 由三视图还原几何体,如图所示,由图可知,所求端点在侧视图中对应的点为E .4.(2020·全国Ⅱ理,10)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C 解析如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心.设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.5.(2020·全国Ⅲ理,8)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.6.(2020·新高考全国Ⅰ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90° 答案 B解析 如图所示,⊙O 为赤道平面,⊙O 1为A 点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.7.(2020·新高考全国Ⅱ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°答案 B解析如图所示,⊙O为赤道平面,⊙O1为A点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.8.(2020·北京,4)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+ 3 B.6+2 3 C.12+ 3 D.12+2 3答案 D解析 由三视图还原几何体,该几何体为底面是边长为2的正三角形,高为2的直三棱柱, S 底=2×34×22=2 3. S 侧=3×2×2=12,则三棱柱的表面积为23+12.9.(2020·北京,10)2020年3月14日是全球首个国际圆周率日(π Day).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ) A .3n ⎝⎛⎭⎫sin 30°n +tan 30°n B .6n ⎝⎛⎭⎫sin 30°n +tan 30°n C .3n ⎝⎛⎭⎫sin 60°n +tan 60°n D .6n ⎝⎛⎭⎫sin 60°n+tan 60°n 答案 A解析 设内接正6n 边形的周长为C 1,外切正6n 边形的周长为C 2,如图(1)所示,sin 360°12n =BC 1, ∴BC =sin 30°n,∴AB =2sin 30°n ,C 1=12n sin 30°n.如图(2)所示,tan 360°12n =B ′C ′1,∴B ′C ′=tan 30°n,∴A ′B ′=2tan 30°n ,C 2=12n tan 30°n .∴2π=C 1+C 22=6n ⎝⎛⎭⎫sin 30°n +tan 30°n , ∴π=3n ⎝⎛⎭⎫sin 30°n+tan 30°n . 10.(2020·天津,5)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( )A .12πB .24πC .36πD .144π 答案 C解析 由题意知,正方体的体对角线就是球的直径 ∴2R =(23)2+(23)2+(23)2=6, ∴R =3,∴S 球=4πR 2=36π.11.(2020·浙江,5)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm 3)是( )A.73B.143 C .3 D .6 答案 A解析 如图,三棱柱的体积V 1=12×2×1×2=2,三棱锥的体积V 2=13×12×2×1×1=13,因此,该几何体的体积V =V 1+V 2=2+13=73.12.(2020·浙江,6)已知空间中不过同一点的三条直线l ,m ,n ,“l ,m ,n 共面”是“l ,m ,n 两两相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 如图,直线l ,m ,n 不过同一点,且l ,m ,n 共面有三种情况:①同一平面内三线平行;②两平行线与另一线相交;③三线两两相交.因此,“l ,m ,n 两两相交”是“l ,m ,n 共面”的一种情况,即“l ,m ,n 共面”是“l ,m ,n 两两相交”的必要不充分条件.13.(2020·全国Ⅰ文,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).14.(2020·全国Ⅰ文,12)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a . 由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.15.(2020·全国Ⅱ文,11)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C解析 如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心. 设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.16.(2020·全国Ⅲ文,9)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.二、填空题1.(2020·全国Ⅱ理,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.2.(2020·全国Ⅲ理,15)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.3.(2020·新高考全国Ⅰ,16)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________. 答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q , 连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3= 2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.4.(2020·新高考全国Ⅱ,13)棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱BB 1,AB 的中点,则三棱锥A 1-D 1MN 的体积为________. 答案 1解析 如图,由正方体棱长为2,得S △A 1MN =2×2-2×12×2×1-12×1×1=32,又易知D 1A 1为三棱锥D 1-A 1MN 的高,且D 1A 1=2, ∴1111A D MN D A MN V V --==13·1A MN S △·D 1A 1=13×32×2=1. 5.(2020·江苏,9)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,则此六角螺帽毛坯的体积是________cm 3.答案 ⎝⎛⎭⎫123-π2 解析 螺帽的底面正六边形的面积 S =6×12×22×sin 60°=63(cm 2),正六棱柱的体积V 1=63×2=123(cm 3), 圆柱的体积V 2=π×0.52×2=π2(cm 3),所以此六角螺帽毛坯的体积 V =V 1-V 2=⎝⎛⎭⎫123-π2cm 3. 6.(2020·浙江,14)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, ∴r =12l .又圆锥侧面展开图为半圆, ∴12πl 2=2π, ∴l =2,∴r =1.7.(2020·全国Ⅱ文,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.8.(2020·全国Ⅲ文,16)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.三、解答题1.(2020·全国Ⅰ理,18)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE =AD .△ABC 是底面的内接正三角形,P 为DO 上一点,PO =66DO .(1)证明:P A ⊥平面PBC ; (2)求二面角B -PC -E 的余弦值.(1)证明 由题设,知△DAE 为等边三角形,设AE =1, 则DO =32,CO =BO =12AE =12, 所以PO =66DO =24, PC =PO 2+OC 2=64,PB =PO 2+OB 2=64, 又△ABC 为等边三角形,则BAsin 60°=2OA , 所以BA =32, P A =PO 2+OA 2=64, P A 2+PB 2=34=AB 2,则∠APB =90°,所以P A ⊥PB ,同理P A ⊥PC , 又PC ∩PB =P ,所以P A ⊥平面PBC . (2)解 过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 所在直线为x 轴,ON 所在直线为y 轴,OD 所在直线为z 轴,建立如图所示的空间直角坐标系,则E ⎝⎛⎭⎫-12,0,0,P ⎝⎛⎭⎫0,0,24, B ⎝⎛⎭⎫-14,34,0,C ⎝⎛⎭⎫-14,-34,0,PC →=⎝⎛⎭⎫-14,-34,-24,PB →=⎝⎛⎭⎫-14,34,-24,PE →=⎝⎛⎭⎫-12,0,-24,设平面PCB 的一个法向量为n =(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PB →=0,得⎩⎨⎧-x 1-3y 1-2z 1=0,-x 1+3y 1-2z 1=0,令x 1=2,得z 1=-1,y 1=0, 所以n =(2,0,-1),设平面PCE 的一个法向量为m =(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧m ·PC →=0,m ·PE →=0,得⎩⎨⎧-x 2-3y 2-2z 2=0,-2x 2-2z 2=0,令x 2=1,得z 2=-2,y 2=33, 所以m =⎝⎛⎭⎫1,33,-2,故cos 〈m ,n 〉=m ·n|m |·|n |=223×103=255, 所以二面角B -PC -E 的余弦值为255.2.(2020·全国Ⅱ理,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 由已知得AM ⊥BC .以M 为坐标原点,MA →的方向为x 轴正方向,|MB →|为单位长度,建立如图所示的空间直角坐标系,则AB =2,AM = 3.连接NP ,则四边形AONP 为平行四边形, 故PM =233,E ⎝⎛⎭⎫233,13,0.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设Q (a,0,0), 则NQ =4-⎝⎛⎭⎫233-a 2,B 1⎝⎛⎭⎪⎫a ,1,4-⎝⎛⎭⎫233-a 2, 故B 1E →=⎝ ⎛⎭⎪⎫233-a ,-23,-4-⎝⎛⎭⎫233-a 2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量,故sin ⎝⎛⎭⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉 =n ·B 1E →|n ||B 1E →|=1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 3.(2020·全国Ⅲ理,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.(1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求二面角A -EF -A 1的正弦值.(1)证明 设AB =a ,AD =b ,AA 1=c ,如图,以C 1为坐标原点,C 1D 1—→,C 1B 1—→,C 1C —→的方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系C 1-xyz .连接C 1F ,则C 1(0,0,0),A (a ,b ,c ), E ⎝⎛⎭⎫a ,0,23c ,F ⎝⎛⎭⎫0,b ,13c , EA →=⎝⎛⎭⎫0,b ,13c ,C 1F →=⎝⎛⎭⎫0,b ,13c , 所以EA →=C 1F →,所以EA ∥C 1F , 即A ,E ,F ,C 1四点共面, 所以点C 1在平面AEF 内.(2)解 由已知得A (2,1,3),E (2,0,2),F (0,1,1),A 1(2,1,0), 则AE →=(0,-1,-1),AF →=(-2,0,-2), A 1E →=(0,-1,2),A 1F →=(-2,0,1). 设n 1=(x 1,y 1,z 1)为平面AEF 的法向量, 则⎩⎪⎨⎪⎧n 1·AE →=0,n 1·AF →=0,即⎩⎪⎨⎪⎧-y 1-z 1=0,-2x 1-2z 1=0,可取n 1=(-1,-1,1).设n 2=(x 2,y 2,z 2)为平面A 1EF 的法向量, 则⎩⎪⎨⎪⎧n 2·A 1E →=0,n 2·A 1F →=0,即⎩⎪⎨⎪⎧-y 2+2z 2=0,-2x 2+z 2=0,同理可取n 2=⎝⎛⎭⎫12,2,1. 因为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-77,所以二面角A -EF -A 1的正弦值为427. 4.(2020·新高考全国Ⅰ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,如图建立空间直角坐标系D -xyz ,因为PD =AD =1,则有D (0,0,0),C (0,1,0),A (1,0,0),P (0,0,1),B (1,1,0), 设Q (m,0,1),则有DC →=(0,1,0),DQ →=(m,0,1),PB →=(1,1,-1), 设平面QCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎪⎨⎪⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ), 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB 与平面QCD 所成角的正弦值等于 |cos 〈n ,PB →〉|=|1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2m m 2+1≤33·1+2|m |m 2+1≤33·1+1=63,当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63. 5.(2020·新高考全国Ⅱ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB =2,求PB 与平面QCD 所成角的正弦值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形,所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),C (0,1,0), B (1,1,0),P (0,0,1),DC →=(0,1,0),PB →=(1,1,-1).由(1)设Q (a,0,1),则BQ →=(a -1,-1,1). 由题意知(a -1)2+2=2, ∴a =1,∴DQ →=(1,0,1).设n =(x ,y ,z )是平面QCD 的一个法向量, 则⎩⎪⎨⎪⎧n ·DQ →=0,n ·DC →=0,即⎩⎪⎨⎪⎧x +z =0,y =0,可取n =(1,0,-1),∴cos 〈n ,PB →〉=n ·PB →|n |·|PB →|=63,故PB 与平面QCD 所成角的正弦值为63. 6.(2020·北京,16)如图,在正方体ABCD -A 1B 1C 1D 1中,E 为BB 1的中点.(1)求证:BC 1∥平面AD 1E ;(2)求直线AA 1与平面AD 1E 所成角的正弦值. (1)证明 在正方体ABCD -A 1B 1C 1D 1中, AB ∥A 1B 1且AB =A 1B 1,A 1B 1∥C 1D 1且A 1B 1=C 1D 1, ∴AB ∥C 1D 1且AB =C 1D 1,∴四边形ABC 1D 1为平行四边形,则BC 1∥AD 1, ∵BC 1⊄平面AD 1E ,AD 1⊂平面AD 1E , ∴BC 1∥平面AD 1E .(2)解 以点A 为坐标原点,AD ,AB ,AA 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系A -xyz ,设正方体ABCD -A 1B 1C 1D 1的棱长为2, 则A (0,0,0),A 1(0,0,2),D 1(2,0,2),E (0,2,1), AD 1→=(2,0,2),AE →=(0,2,1),AA 1→=(0,0,2), 设平面AD 1E 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AD 1→=0,n ·AE →=0,得⎩⎪⎨⎪⎧2x +2z =0,2y +z =0,令z =-2,得x =2,y =1,则n =(2,1,-2). cos 〈n ,AA 1→〉=n ·AA 1→|n |·|AA 1→|=-43×2=-23.因此,直线AA 1与平面AD 1E 所成角的正弦值为23.7.(2020·天津,17)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC ⊥BC ,AC =BC =2,CC 1=3,点D ,E 分别在棱AA 1和棱CC 1上,且AD =1,CE =2,M 为棱A 1B 1的中点.(1)求证:C 1M ⊥B 1D ;(2)求二面角B -B 1E -D 的正弦值;(3)求直线AB 与平面DB 1E 所成角的正弦值.(1)证明 依题意,以C 为坐标原点,分别以CA →,CB →,CC 1→的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得C (0,0,0),A (2,0,0),B (0,2,0),C 1(0,0,3),A 1(2,0,3),B 1(0,2,3),D (2,0,1),E (0,0,2),M (1,1,3).则C 1M →=(1,1,0),B 1D →=(2,-2,-2), ∵C 1M →·B 1D →=2-2+0=0,∴C 1M ⊥B 1D .(2)解 依题意,CA →=(2,0,0)是平面BB 1E 的一个法向量,EB 1→=(0,2,1),ED →=(2,0,-1). 设n =(x ,y ,z )为平面DB 1E 的法向量, 则⎩⎪⎨⎪⎧n ·EB 1→=0,n ·ED →=0,即⎩⎪⎨⎪⎧2y +z =0,2x -z =0.不妨设x =1,可得n =(1,-1,2).∴cos 〈CA →,n 〉=CA →·n |CA →||n |=66,∴sin 〈CA →,n 〉=1-16=306. ∴二面角B -B 1E -D 的正弦值为306. (3)解 依题意,AB →=(-2,2,0),由(2)知,n =(1,-1,2)为平面DB 1E 的一个法向量, ∴cos 〈AB →,n 〉=AB →·n |AB →||n |=-33,∴直线AB 与平面DB 1E 所成角的正弦值为33. 8.(2020·江苏,15)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.证明 (1)因为E ,F 分别是AC ,B 1C 的中点, 所以EF ∥AB 1.又EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF ∥平面AB 1C 1.(2)因为B 1C ⊥平面ABC ,AB ⊂平面ABC , 所以B 1C ⊥AB .又AB ⊥AC ,B 1C ⊂平面AB 1C ,AC ⊂平面AB 1C , B 1C ∩AC =C , 所以AB ⊥平面AB 1C . 又因为AB ⊂平面ABB 1, 所以平面AB 1C ⊥平面ABB 1.9.(2020·江苏,22)在三棱锥A -BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F -DE -C 的大小为θ,求sin θ的值.解 (1)如图,连接OC ,因为CB =CD ,O 为BD 的中点,所以CO ⊥BD .又AO ⊥平面BCD ,所以AO ⊥OB ,AO ⊥OC .以{OB →,OC →,OA →}为基底,建立空间直角坐标系O -xyz . 因为BD =2,CB =CD =5,AO =2, 所以B (1,0,0),D (-1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1). 所以AB →=(1,0,-2),DE →=(1,1,1),所以|cos 〈AB →,DE →〉|=|AB →·DE →||AB →|·|DE →|=|1+0-2|5×3=1515.因此,直线AB 与DE 所成角的余弦值为1515. (2)因为点F 在BC 上,BF =14BC ,BC →=(-1,2,0).所以BF →=14BC →=⎝⎛⎭⎫-14,12,0. 又DB →=(2,0,0),故DF →=DB →+BF →=⎝⎛⎭⎫74,12,0.设n 1=(x 1,y 1,z 1)为平面DEF 的一个法向量, 则⎩⎪⎨⎪⎧ DE →·n 1=0,DF →·n 1=0,即⎩⎪⎨⎪⎧x 1+y 1+z 1=0,74x 1+12y 1=0,令x 1=2,得y 1=-7,z 1=5,所以n 1=(2,-7,5). 设n 2=(x 2,y 2,z 2)为平面DEC 的一个法向量, 又DC →=(1,2,0),则⎩⎪⎨⎪⎧DE →·n 2=0,DC →·n 2=0,即⎩⎪⎨⎪⎧x 2+y 2+z 2=0,x 2+2y 2=0,令x 2=2,得y 2=-1,z 2=-1, 所以n 2=(2,-1,-1). 故|cos θ|=|n 1·n 2||n 1|·|n 2|=|4+7-5|78×6=1313. 所以sin θ=1-cos 2θ=23913. 10.(2020·浙江,19)如图,在三棱台ABC -DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(1)证明:EF ⊥DB ;(2)求直线DF 与平面DBC 所成角的正弦值.(1)证明 如图(1),过点D 作DO ⊥AC ,交直线AC 于点O ,连接OB .由∠ACD =45°,DO ⊥AC ,得CD =2CO . 由平面ACFD ⊥平面ABC ,得DO ⊥平面ABC , 所以DO ⊥BC .由∠ACB =45°,BC =12CD =22CO ,得BO ⊥BC .所以BC ⊥平面BDO ,故BC ⊥DB . 由ABC -DEF 为三棱台, 得BC ∥EF ,所以EF ⊥DB .(2)解 方法一 如图(2),过点O 作OH ⊥BD ,交直线BD 于点H ,连接CH .由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角. 由BC ⊥平面BDO ,得OH ⊥BC , 故OH ⊥平面DBC ,所以∠OCH 为直线CO 与平面DBC 所成角. 设CD =22,则DO =OC =2,BO =BC =2, 得BD =6,OH =233,所以sin ∠OCH =OH OC =33.因此,直线DF 与平面DBC 所成角的正弦值为33. 方法二 由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图(3),以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O-xyz .设CD =22,由题意知各点坐标如下:O (0,0,0),B (1,1,0),C (0,2,0),D (0,0,2).因此OC →=(0,2,0),BC →=(-1,1,0),CD →=(0,-2,2). 设平面DBC 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·BC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧-x +y =0,-2y +2z =0,可取n =(1,1,1),所以sin θ=|cos 〈OC →,n 〉|=|OC →·n ||OC →|·|n |=33.因此,直线DF 与平面DBC 所成角的正弦值为33. 11.(2020·全国Ⅰ文,19)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面P AB ⊥平面P AC ;(2)设DO =2,圆锥的侧面积为3π,求三棱锥P -ABC 的体积. (1)证明 ∵D 为圆锥顶点,O 为底面圆心, ∴OD ⊥平面ABC ,∵P 在DO 上,OA =OB =OC , ∴P A =PB =PC ,∵△ABC 是圆内接正三角形, ∴AC =BC ,△P AC ≌△PBC ,∴∠APC =∠BPC =90°,即PB ⊥PC ,P A ⊥PC , P A ∩PB =P ,∴PC ⊥平面P AB ,PC ⊂平面P AC ,∴平面P AB ⊥平面P AC .(2)解 设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为πrl =3π,rl =3,OD 2=l 2-r 2=2,解得r =1,l =3,AC =2r sin 60°=3, 在等腰直角三角形APC 中, AP =22AC =62, 在Rt △P AO 中,PO =AP 2-OA 2=64-1=22, ∴三棱锥P -ABC 的体积为V P -ABC =13PO ·S △ABC =13×22×34×3=68.12.(2020·全国Ⅱ文,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO =AB =6,AO ∥平面EB 1C 1F ,且∠MPN =π3,求四棱锥B-EB 1C 1F 的体积.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 因为AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN , 平面A 1AMN ∩平面EB 1C 1F =PN , 所以AO ∥PN ,又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP =ON =13AM =3,PM =23AM =23,EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B -EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离. 如图,作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F , 故MT =PM sin ∠MPN =3. 底面EB 1C 1F 的面积为12(B 1C 1+EF )·PN =12×(6+2)×6=24. 所以四棱锥B -EB 1C 1F 的体积为13×24×3=24.13.(2020·全国Ⅲ文,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.证明:(1)当AB =BC 时,EF ⊥AC ; (2)点C 1在平面AEF 内. 证明 (1)如图,连接BD ,B 1D 1. 因为AB =BC ,所以四边形ABCD 为正方形,故AC ⊥BD .又因为BB 1⊥平面ABCD ,AC ⊂平面ABCD , 于是AC ⊥BB 1.又BD ∩BB 1=B ,BD ,BB 1⊂平面BB 1D 1D , 所以AC ⊥平面BB 1D 1D .又因为EF ⊂平面BB 1D 1D ,所以EF ⊥AC .(2)如图,在棱AA 1上取点G ,使得AG =2GA 1,连接GD 1,FC 1,FG , 因为ED 1=23DD 1,AG =23AA 1,DD 1∥AA 1且DD 1=AA 1,所以ED 1∥AG 且ED 1=AG , 所以四边形ED 1GA 为平行四边形, 故AE ∥GD 1.因为B 1F =13BB 1,GA 1=13AA 1,BB 1∥AA 1且BB 1=AA 1,所以B 1F ∥GA 1,且B 1F =GA 1, 所以四边形B 1FGA 1是平行四边形, 所以FG ∥A 1B 1且FG =A 1B 1, 所以FG ∥C 1D 1且FG =C 1D 1, 所以四边形FGD 1C 1为平行四边形, 故GD 1∥FC 1. 所以AE ∥FC 1.所以A ,E ,F ,C 1四点共面,即点C 1在平面AEF 内.。

2020年高考数学(理数)大题专项练习立体几何9题(含答案)

2020年高考数学(理数)大题专项练习立体几何9题(含答案)

2020年高考数学(理数)大题专项练习立体几何9题1.如系,--减性M3匚中.班ffeAAtr 底面Ain二足总K为二打正二m唯.已知出0 4足H方rX十就.1口东一,麻用坨AC旧的大小;㈠求冲击宜税M 5承’的距离.门)直携4A 上是否。

花点。

.使DC/平面感a C?若存在.清确定点心的性黄土若不存在谙意可用由,2.如图,在矩形期⑶,NH =二】.廿为C。

上的点,以LW为石痕把折起,使点不到达点P 的位置,耳平面乩甘尸i平面ABCD.连接PB,PC、羔N为网的中点.巾CN#平面AMP.(1 )求线段Gf的《事(II )求平向同尸与平曲BCP所成锐二面角的余荥值,3.如图.在四棱如S - AHCD中.侧面30)为惋角三角形艮垂百于底面钻CD,8 =即小V是口的中点,由中Bg上A配= )*.4B=4D{1 )求证■平胤SC”⑵若骏苑与底面TBCD听成的角为60,求平面M3D 与平面SAC所成的锐二面角的余弦值.4.用国.四幢惟F ■用方匚。

中.忸1植FJJ.面目BCD,AB = AC-4M在找蜀HD 上, IL2AM = MD > X 为PE 的中题.AD/JSC. MN"面PCD-U>求9c的长।门口若为1=2,求:面希M—广材一办的余帮富,B5.如图T在二棹抨£8。

一乩80中.上HC8 =/aCB = 90,匕工4(? = 60, 0,芯分金二1 4」.1 卜II 片「:口:"」・Il JJ = .4('=81,([)求证:4£"平面SC;D;门口求T面BC0与平而17?「所成错.面角的余强囿6.刎四-在四桎箫P A3+33正面是进枪-2的正川乱尸月=FH= /IT. E为PA中心*"?-自™六门£f |干扣内。

.,”在J乂班M纵L. I H"九N『M J- li. IL 卜H I.( “ 卜叫: 以/■■- f ilir『HLf;i力此点汇1找苣件「i.*若_曲曲砰一”\一只为〜一*求HN m氏度•第2页共14页7.8.如用,长方体阻上口一小瓦a仇的侧面匕他马是正方形. (X)证明:W平面孙i(2)若,蚯=2, A£=4t求二面用用的余弦值9.加图.在风冏体力/。

2020高考数学刷题首秧单元质量测试四数列理含解析

2020高考数学刷题首秧单元质量测试四数列理含解析

单元质量测试(四)时间:120分钟满分:150分第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.等差数列{a n}的前n项和为S n,且S3=6,a3=0,则公差d=()A.-1 B.1 C.2 D.-2答案 D解析由S3=6,知a1+d=2;由a3=0,知a1+2d=0,联立Error!解得d=-2.故选D.2.在等差数列{a n}中,a3+a9=27-a6,S n表示数列{a n}的前n项和,则S11=() A.18 B.99 C.198 D.297答案 B解析由等差数列的性质得2a6=27-a6,所以a6=9,又S11=11a6=99.故选B.13.在等比数列{a n}中,a1=2,a4=,若a k=2-5,则k=()2A.5 B.6 C.9 D.10答案 Da4 1 2 解析设该数列的公比为q,则由等比数列的通项公式可得,q3==,∴q=2-,∴a1 4 32k-1a k=a1q k-1=2·q k-1=2-5,∴q k-1=2-6,∴=6,∴k=10.314.在数列{x n}中,若x1=1,x n+1=-1,则x2018=()x n+11 1A.-1 B.-C.D.12 2答案 B1 1 1解析将x1=1代入x n+1=-1,得x2=-,再将x2代入x n+1=-1,得x3x n+1 2 x n+11=1,所以数列{x n}的周期为2,故x2018=x2=-.故选B.2S85.已知公差不为零的等差数列{a n}的前n项和为S n,a10=S4,则=()a9A.4 B.5 C.8 D.10答案 A4 × 3 8 × 7 解析由a10=S4得a1+9d=4a1+d=4a1+6d,即a1=d≠0.所以S8=8a1+2 2S8 36d36dd=8a1+28d=36d,所以===4.故选A.a9 a1+8d9d6.(2018·甘肃天水检测)已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n=()1A.2n-1 B.2n-12 3C.n-1 D.n-13 2答案 DS n+1 3解析因为a n+1=S n+1-S n,所以S n=2a n+1=2(S n+1-S n),所以=,所以数列{S n}S n 23 3是以S1=a1=1为首项,为公比的等比数列,所以S n=n-1.故选D.2 27.数列{a n}中,a1=-60,a n+1=a n+3,则|a1|+|a2|+…+|a30|=()A.-495 B.765 C.1080 D.3105答案 B解析由a1=-60,a n+1=a n+3可得a n=3n-63,则a21=0,|a1|+|a2|+…+|a30|=-(a1+a2+…+a20)+(a21+…+a30)=S30-2S20=765.故选B.8.(2018·安徽淮南模拟)已知{a n}中,a n=n2+λn,且{a n}是递增数列,则实数λ的取值范围是()A.(-2,+∞)B.[-2,+∞)C.(-3,+∞)D.[-3,+∞)答案 C解析∵{a n}是递增数列,∴∀n∈N*,a n+1>a n,∴(n+1)2+λ(n+1)>n2+λn,化简得λ>-(2n+1),∴λ>-3.故选C.9.等差数列{a n}的前n项和为S n,若a7>0,a8<0,则下列结论正确的是()A.S7<S8 B.S15<S16 C.S13>0 D.S15>0答案 C解析因为公差非零的等差数列具有单调性(递增数列或递减数列),由已知可知该等差数列{a n}是递减的,且S7 最大,即S n≤S7 对一切n∈N*恒成立.可见A 错误;易知15 13a16<a15<0,S16=S15+a16<S15,B错误;S15=(a1+a15)=15a8<0,D错误;S13=(a1+a13)=2 213a7>0.故C正确.10.(2018·福建漳州调研)《九章算术》是我国古代的数学名著,书中有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共猎得五鹿,欲以爵次分之,问各得几何?”其意思:“共有五头鹿,人以爵次进行分配(古代数学中“以爵次分之”这种表述,一般表示等差分配,在本题中表示等差分配).”在这个问题中,若大夫得“一鹿、三分鹿之二”,则簪裹得()A.一鹿、三分鹿之一B.一鹿C.三分鹿之二D.三分鹿之一答案 B2 解析由题意可知,五人按等差数列分五鹿,设大夫得的鹿数为首项a1,且a1=1+=35 5 × 4 1 5 1,公差为d,则5a1+d=5,解得d=-,所以a3=a1+2d=+2×-=1,所以簪3 2 3 3 3裹得一鹿,故选B.11.(2018·襄阳四校联考)我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:1 1 1 1(1)构造数列1,,,,…,;①2 3 4 nn(2)将数列①的各项乘以,得到一个新数列a1,a2,a3,a4,…,a n.则a1a2+a2a3+a3a42+…+a n-1a n=()n2 n-1 2A.B.4 4n n-1n n+1C.D.4 4答案 Cn n n 1 n n2 1 解析依题意可得新数列为,,,…,×,所以a1a2+a2a3+…+a n-1a n=2 4 6 n 2 41× 21 1 1 1 n2 n n-1n2 1 1 1 n-1++…+=1-+-+…+-=·=.故选C.2 ×3 n-1n 3 n-1 n4 n 44 2 212.(2018·河南六市第一次联考)若正项递增等比数列{a n}满足1+(a2-a4)+λ(a3-a5)=0(λ∈R),则a6+λa7的最小值为()A.-2 B.-4 C.2 D.4答案 D解析∵{a n}是正项递增的等比数列,∴a1>0,q>1,由1+(a2-a4)+λ(a3-a5)=0,1 a6得1+(a2-a4)+λq(a2-a4)=0,∴1+λq=,∴a6+λa7=a6(1+λq)==a4-a2 a4-a2q4 [q2-1+1]21 1==(q2-1)+2+q2-1≥2q+2=4(q2-1>0),当且仅当q2-1·q2-1 q2-1 q2-1=2时取等号,∴a6+λa7的最小值为4.故选D.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)EarlybirdS413.设等比数列{a n}的公比q=2,前n项和为S n,则=________.a215答案21-q4a1·S4 1-q1-q4 1-24 15 解析====.a2 2a1q q1-q 2 ×1-2114.若数列{a n}满足a n+a n+1=(n∈N*),且a1=1,S n是数列{a n}的前n项和,则S21=2________.答案 61解析由a n+a n+1==a n+1+a n+2,得a n+2=a n,则a1=a3=a5=…=a21,a2=a4=a621 =…=a20,所以S21=a1+(a2+a3)+(a4+a5)+…+(a20+a21)=1+10×=6.215.(2018·江西吉安一中、九江一中等八所重点中学4月联考)若{a n},{b n}满足a n b n=1,a n=n2+3n+2,则{b n}的前2018项和为________.1009 答案20201 1 1 1解析∵a n b n=1,且a n=n2+3n+2,∴b n===-,∴n2+3n+2n+2n+1n+1 n+21 1 1 1 1 1 1 1 1 1 1010-1 1009{b n}的前2018项和为-+-+-+…+-=-==.2 3 3 4 4 5 2019 2020 2 2020 2020 202016.(2018·河北邯郸第一次模拟)已知数列{a n},{b n}的前n项和分别为S n,T n,b n-a n=2n+1,且S n+T n=2n+1+n2-2,则2T n=________.答案2n+2+n(n+1)-4解析由题意知T n-S n=b1-a1+b2-a2+…+b n-a n=n+2n+1-2,又S n+T n=2n+1+n2-2,所以2T n=T n-S n+S n+T n=2n+2+n(n+1)-4.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(2018·云南统测)(本小题满分10分)设等比数列{a n}的前n项和为S n,a1+a2+a3=26,S6=728.(1)求数列{a n}的通项公式;(2)求证:S n+21-S n S n+2=4×3n.解(1)设等比数列{a n}的公比为q,由728≠2×26得,S6≠2S3,∴q≠1.由已知得Error!解得Error!∴a n=2×3n-1.2 ×1-3n(2)证明:由(1)可得S n==3n-1.1-3∴S n+1=3n+1-1,S n+2=3n+2-1.∴S n+21-S n S n+2=(3n+1-1)2-(3n-1)(3n+2-1)=4×3n.18.(2018·南昌一模)(本小题满分12分)已知等比数列{a n}的前n项和为S n,满足S4=2a4-1,S3=2a3-1.(1)求{a n}的通项公式;16(2)记b n=log 2 ,求b1+b2+…+b n的最大值.S n+1解(1)设{a n}的公比为q,由S4-S3=a4,得a42a4-2a3=a4,所以=2,所以q=2.a3又因为S3=2a3-1,所以a1+2a1+4a1=8a1-1,所以a1=1.所以a n=2n-1.1-2n(2)由(1)知,S n==2n-1,1-216所以b n=log 2 =2log224-n=8-2n,b n+1-b n=-2,b1=8-2=6,所以数列{b n}S n+1是首项为6,公差为-2的等差数列,所以b2=4,b3=2,b4=0,当n>5时b n<0,所以当n =3或n=4时,b1+b2+…+b n的最大值为12.19.(2018·湖南长沙模拟)(本小题满分12分)设S n是数列{a n}的前n项和,已知a1=1,S n=2-2a n+1.(1)求数列{a n}的通项公式;1(2)设b n=(-1)n log a n,求数列{b n}的前n项和T n.2解(1)∵S n=2-2a n+1,a1=1,∴当n=1时,S1=2-2a2,得S1 a1 1 a2=1-=1-=;2 2 2当n≥2时,S n-1=2-2a n,1 ∴当n≥2时,a n=2a n-2a n+1,即a n+1=a n,21 又a2=a1,21∴{a n}是以1为首项,为公比的等比数列.21 ∴数列{a n}的通项公式为a n=.2n-1(2)由(1)知b n=(-1)n(n-1),∴T n=0+1-2+3-…+(-1)n(n-1),n 当n为偶数时,T n=(-0+1)+(-2+3)+…+[-(n-2)+n-1]=;2n+1 1-n当n为奇数时,T n=T n+1-b n+1=-n=,2 2∴T n=Error!1 a n20.(2018·太原三模)(本小题满分12分)已知数列{a n}满足a1=,a n+1=.2 2a n+11(1)求证:数列是等差数列,并求{a n}的通项公式;a n1(2)若数列{b n}满足b n=,求数列{b n}的前n项和S n.2n a na n解(1)证明:因为a n+1=,2a n+11 1 且可知a n≠0,所以-=2,a n+1 a n1 所以数列是等差数列.a n1 1 1所以=+2(n-1)=2n,即a n=.a n a1 2n2n n (2)因为b n==,2n2n-12 3 n 所以S n=b1+b2+…+b n=1+++…+,2 22 2n-11 123 n则S n=+++…+,两式相减得2 2 22 23 2n1 1 1 1 1 nS n=1++++…+-2 2 22 23 2n-1 2n1 n=21--,2n2nn+2所以S n=4-.2n-121.(2018·河北唐山一模)(本小题满分12分)已知数列{a n}为单调递增数列,S n为其前n项和,2S n=a2n+n.(1)求{a n}的通项公式;a n+2 1(2)若b n=,T n为数列{b n}的前n项和,证明:T n< .2n+1·a n·a n+1 2解(1)当n=1时,2S1=2a1=a21+1,所以(a1-1)2=0,即a1=1,又{a n}为单调递增数列,所以a n≥1.由2S n=a2n+n得2S n+1=a n+21+n+1,Earlybird所以2S n+1-2S n=a n+21-a2n+1,则2a n+1=a n+21-a2n+1,所以a2n=(a n+1-1)2.所以a n=a n+1-1,即a n+1-a n=1,所以{a n}是以1为首项,1为公差的等差数列,所以a n=n.a n+2 n+2(2)证明:b n==2n+1·a n·a n+1 2n+1·n·n+11 1=-,n·2n n+1·2n+11 1 1 1 1 1 1所以T n=-+-+…+-=-1 × 212 × 22 2 × 223 × 23 n·2nn+1·2n+1 21 1< .n+1·2n+1222.(2019·昆明模拟)(本小题满分12分)设数列{a n}的前n项和为S n,a1=1,当n≥2时,an=2a n S n-2S2n.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k2n+1对一切正整数n都成立?若存在,求k的取值范围;若不存在,请说明理由.解(1)∵当n≥2时,a n=S n-S n-1,a n=2a n S n-2S2n,∴S n-S n-1=2(S n-S n-1)S n-2S2n.∴S n-1-S n=2S n S n-1.1 1∴-=2.S n S n-11 1 1 1∴数列是首项为==1,公差为2的等差数列,即=1+(n-1)×2=2n-1.∴S n S n S1 a1 S n1=.2n-11 1当n≥2时,a n=S n-S n-1=-2n-1 2n-1-1-2=.2n-12n-3∵当n=1时,a 1=1不适合上式,∴数列{a n}的通项公式为a n=Error!1+S11+S2…1+S n(2)设b n=.2n+11+S11+S2…1+S n1+S n+1则b n+1=2n+3Earlybird1 1由(1)知S n=,S n+1=,2n-1 2n+1b n+11+S n+12n+1 2n+2 4n2+8n+4∴===>1.b n2n+3 2n+12n+34n 2+8n+3 又b n>0,∴数列{b n}是单调递增数列.由(1+S1)(1+S2)…(1+S n)≥k2n+1,得b n≥k.2 2 3∴k≤b1==.3 3∴存在正数k,使(1+S1)(1+S2)…(1+S n)≥k2n+1对一切正整数n都成立,且k的2 3 取值范围为0,.3。

2020高考数学衡水第六次检测理数答案(1)

2020高考数学衡水第六次检测理数答案(1)

<"$"*%"<"'-&$*<" ###则 $! *$" #<-" '"#$!$" #
!#由 "#%"<" '-&" '-<- +##得 #$<$!#所 以"7>"
#"":""*"%-"#$!
*!&$" "
*! #
" <"
#因
为":-"#
-
槡 "+!'+""#<"$! '$""#< %$!*$"&"'-$!$" #
%; 分 &-
-


@?
#"&""
*
,
*"?
*"%!(
! "
*
! "
'
! )
*
! )
'-
! -
*
,
*
! ?
'?!*!&
-
#"%!!((""?&*"%!(?*!!&#"?*!'?"*!!
%!" 分 &-
-
!9!命题立意考查频率分布直方图 及 其 应 用平 均 数样-
本频率估计总体 概 率离 散 型 随 机 变 量 的 分 布 列 与 数-

全国通用2020-2022年三年高考数学真题分项汇编专题06立体几何解答题理

全国通用2020-2022年三年高考数学真题分项汇编专题06立体几何解答题理

06 立体几何(解答题)(理科专用)1.【2022年全国甲卷】在四棱锥P−ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1 ,AB=2,DP=√3.(1)证明:BD⊥PA;(2)求PD与平面PAB所成的角的正弦值.【答案】(1)证明见解析;(2)√5.5【解析】【分析】(1)作DE⊥AB于E,CF⊥AB于F,利用勾股定理证明AD⊥BD,根据线面垂直的性质可得PD⊥BD,从而可得BD⊥平面PAD,再根据线面垂直的性质即可得证;(2)以点D为原点建立空间直角坐标系,利用向量法即可得出答案.(1)证明:在四边形ABCD中,作DE⊥AB于E,CF⊥AB于F,因为CD//AB,AD=CD=CB=1,AB=2,所以四边形ABCD为等腰梯形,所以AE=BF=1,2,BD=√DE2+BE2=√3,故DE=√32所以AD2+BD2=AB2,所以AD⊥BD,因为PD⊥平面ABCD,BD⊂平面ABCD,所以PD⊥BD,又PD∩AD=D,所以BD⊥平面PAD,又因PA⊂平面PAD,所以BD⊥PA;(2)解:如图,以点D 为原点建立空间直角坐标系, BD =√3,则A(1,0,0),B(0,√3,0),P(0,0,√3),则AP⃗⃗⃗⃗⃗ =(−1,0,√3),BP ⃗⃗⃗⃗⃗ =(0,−√3,√3),DP ⃗⃗⃗⃗⃗ =(0,0,√3), 设平面PAB 的法向量n⃗ =(x,y,z), 则有{n →⋅AP →=−x +√3z =0n →⋅BP →=−√3y +√3z =0,可取n ⃗ =(√3,1,1), 则cos〈n ⃗ ,DP⃗⃗⃗⃗⃗ 〉=n⃗ ⋅DP ⃗⃗⃗⃗⃗⃗ |n ⃗ ||DP ⃗⃗⃗⃗⃗⃗ |=√55, 所以PD 与平面PAB 所成角的正弦值为√55.2.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD =CD,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设AB =BD =2,∠ACB =60°,点F 在BD 上,当△AFC 的面积最小时,求CF 与平面ABD 所成的角的正弦值. 【答案】(1)证明过程见解析 (2)CF 与平面ABD 所成的角的正弦值为4√37【解析】 【分析】(1)根据已知关系证明△ABD ≌△CBD ,得到AB =CB ,结合等腰三角形三线合一得到垂直关系,结合面面垂直的判定定理即可证明;(2)根据勾股定理逆用得到BE ⊥DE ,从而建立空间直角坐标系,结合线面角的运算法则进行计算即可. (1)因为AD =CD ,E 为AC 的中点,所以AC ⊥DE ;在△ABD 和△CBD 中,因为AD =CD,∠ADB =∠CDB,DB =DB ,所以△ABD ≌△CBD ,所以AB =CB ,又因为E 为AC 的中点,所以AC ⊥BE ; 又因为DE,BE ⊂平面BED ,DE ∩BE =E ,所以AC ⊥平面BED , 因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD . (2)连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED , 所以AC ⊥EF ,所以S △AFC =12AC ⋅EF , 当EF ⊥BD 时,EF 最小,即△AFC 的面积最小. 因为△ABD ≌△CBD ,所以CB =AB =2, 又因为∠ACB =60°,所以△ABC 是等边三角形, 因为E 为AC 的中点,所以AE =EC =1,BE =√3, 因为AD ⊥CD ,所以DE =12AC =1,在△DEB 中,DE 2+BE 2=BD 2,所以BE ⊥DE . 以E 为坐标原点建立如图所示的空间直角坐标系E −xyz ,则A (1,0,0),B(0,√3,0),D (0,0,1),所以AD ⃗⃗⃗⃗⃗ =(−1,0,1),AB ⃗⃗⃗⃗⃗ =(−1,√3,0), 设平面ABD 的一个法向量为n⃗ =(x,y,z ), 则{n ⃗ ⋅AD ⃗⃗⃗⃗⃗ =−x +z =0n ⃗ ⋅AB⃗⃗⃗⃗⃗ =−x +√3y =0 ,取y =√3,则n ⃗ =(3,√3,3),又因为C (−1,0,0),F (0,√34,34),所以CF⃗⃗⃗⃗⃗ =(1,√34,34),所以cos⟨n ⃗ ,CF ⃗⃗⃗⃗⃗ ⟩=n ⃗ ⋅CF⃗⃗⃗⃗⃗ |n ⃗ ||CF⃗⃗⃗⃗⃗ |=√21×√74=4√37,设CF 与平面ABD 所成的角的正弦值为θ(0≤θ≤π2), 所以sinθ=|cos⟨n ⃗ ,CF⃗⃗⃗⃗⃗ ⟩|=4√37, 所以CF 与平面ABD 所成的角的正弦值为4√37.3.【2022年新高考1卷】如图,直三棱柱ABC −A 1B 1C 1的体积为4,△A 1BC 的面积为2√2.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求二面角A −BD −C 的正弦值.【答案】(1)√2 (2)√32【解析】 【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC ⊥平面ABB 1A 1,建立空间直角坐标系,利用空间向量法即可得解. (1)在直三棱柱ABC −A 1B 1C 1中,设点A 到平面A 1BC 的距离为h , 则V A−A 1BC =13S △A 1BC ⋅ℎ=2√23ℎ=V A 1−ABC =13S △ABC ⋅A 1A =13V ABC−A 1B 1C 1=43,解得ℎ=√2,所以点A 到平面A 1BC 的距离为√2; (2)取A 1B 的中点E ,连接AE ,如图,因为AA 1=AB ,所以AE ⊥A 1B , 又平面A 1BC ⊥平面ABB 1A 1,平面A 1BC ∩平面ABB 1A 1=A 1B , 且AE ⊂平面ABB 1A 1,所以AE ⊥平面A 1BC , 在直三棱柱ABC −A 1B 1C 1中,BB 1⊥平面ABC ,由BC ⊂平面A 1BC ,BC ⊂平面ABC 可得AE ⊥BC ,BB 1⊥BC , 又AE,BB 1⊂平面ABB 1A 1且相交,所以BC ⊥平面ABB 1A 1,所以BC,BA,BB 1两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE =√2,所以AA 1=AB =2,A 1B =2√2,所以BC =2, 则A(0,2,0),A 1(0,2,2),B(0,0,0),C(2,0,0),所以A 1C 的中点D(1,1,1), 则BD⃗⃗⃗⃗⃗⃗ =(1,1,1),BA ⃗⃗⃗⃗⃗ =(0,2,0),BC ⃗⃗⃗⃗⃗ =(2,0,0), 设平面ABD 的一个法向量m ⃗⃗ =(x,y,z),则{m ⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =x +y +z =0m ⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ =2y =0,可取m⃗⃗ =(1,0,−1), 设平面BDC 的一个法向量n ⃗ =(a,b,c),则{m ⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =a +b +c =0m ⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =2a =0, 可取n⃗ =(0,1,−1), 则cos〈m ⃗⃗ ,n ⃗ 〉=m⃗⃗⃗ ⋅n ⃗ |m ⃗⃗⃗ |⋅|n ⃗ |=√2×√2=12,所以二面角A −BD −C 的正弦值为√1−(12)2=√32.4.【2022年新高考2卷】如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点.(1)证明:OE//平面PAC ;(2)若∠ABO =∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值. 【答案】(1)证明见解析 (2)1113 【解析】 【分析】(1)连接BO 并延长交AC 于点D ,连接OA 、PD ,根据三角形全等得到OA =OB ,再根据直角三角形的性质得到AO =DO ,即可得到O 为BD 的中点从而得到OE//PD ,即可得证; (2)过点A 作Az//OP ,如图建立平面直角坐标系,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系计算可得; (1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥P −ABC 的高,所以PO ⊥平面ABC ,AO,BO ⊂平面ABC , 所以PO ⊥AO 、PO ⊥BO ,又PA =PB ,所以△POA ≅△POB ,即OA =OB ,所以∠OAB =∠OBA ,又AB ⊥AC ,即∠BAC =90°,所以∠OAB +∠OAD =90°,∠OBA +∠ODA =90°, 所以∠ODA =∠OAD所以AO =DO ,即AO =DO =OB ,所以O 为BD 的中点,又E 为PB 的中点,所以OE//PD , 又OE ⊄平面PAC ,PD ⊂平面PAC , 所以OE//平面PAC(2)解:过点A 作Az//OP ,如图建立平面直角坐标系, 因为PO =3,AP =5,所以OA =√AP 2−PO 2=4,又∠OBA =∠OBC =30°,所以BD =2OA =8,则AD =4,AB =4√3,所以AC =12,所以O(2√3,2,0),B(4√3,0,0),P(2√3,2,3),C (0,12,0),所以E (3√3,1,32), 则AE ⃗⃗⃗⃗⃗ =(3√3,1,32),AB ⃗⃗⃗⃗⃗ =(4√3,0,0),AC ⃗⃗⃗⃗⃗ =(0,12,0), 设平面AEB 的法向量为n ⃗ =(x,y,z ),则{n ⃗ ⋅AE ⃗⃗⃗⃗⃗ =3√3x +y +32z =0n ⃗ ⋅AB ⃗⃗⃗⃗⃗ =4√3x =0 ,令z =2,则y =−3,x =0,所以n ⃗ =(0,−3,2);设平面AEC 的法向量为m⃗⃗ =(a,b,c ),则{m ⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ =3√3a +b +32c =0m ⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =12b =0 ,令a =√3,则c =−6,b =0,所以m ⃗⃗ =(√3,0,−6); 所以cos ⟨n ⃗ ,m ⃗⃗ ⟩=n⃗ ⋅m ⃗⃗⃗ |n ⃗ ||m ⃗⃗⃗ |=√13×√39=−4√313设二面角C −AE −B 为θ,由图可知二面角C −AE −B 为钝二面角, 所以cosθ=−4√313,所以sinθ=√1−cos 2θ=1113故二面角C −AE −B 的正弦值为1113;5.【2021年甲卷理科】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小? 【答案】(1)证明见解析;(2)112B D = 【解析】 【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案; 【详解】(1)[方法一]:几何法 因为1111,//BFA B A B AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,A M B N , 因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点, 易证1Rt Rt BCF B BN ≅,则1CBF BB N ∠=∠.又因为1190BB N B NB ∠+∠=︒,所以1190CBF B NB BF B N ∠+∠=︒⊥,. 又因为111111,BFA B B N A B B ⊥=,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥. [方法二] 【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1BB AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B A C ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤). 因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅=,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++()11=BF B D BF EB BB ⋅+⋅+1BF EB BF BB =⋅+⋅11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=2202-=,所以BF ED ⊥.(2)[方法一]【最优解】:向量法 设平面DFE 的法向量为(),,m x y z =, 因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =, 设平面11BCC B 与平面DEF 的二面角的平面角为θ, 则cos m BA m BAθ⋅=⋅==当12a =时,2224a a -+取最小值为272, 此时cos θ=所以()minsin θ=112B D =. [方法二] :几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE平面11BB C C FT =.作1B HFT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1DHB ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//C G A B 交DS 于点G . 由111113C S C G SA A D ==得11(2)3C G t =-. 又1111BD B T C G C T=,即12(2)3t s s t =--,所以31ts t =+.又111B H B TC F FT =,即11B H =1B H =所以DH === 则11sin B D DHB DH∠===所以,当12t =时,()1min sin DHB ∠= [方法三]:投影法 如图,联结1,FB FN ,DEF 在平面11BB C C 的投影为1B NF ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS Sθ=.设1(02)B D t t =≤≤,在1Rt DB F中,DF =在Rt ECF中,EF D作1B N 的平行线交MN 于点Q .在Rt DEQ △中,DE =在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅sin DFE ∠=1sin 2DFESDF EF DFE =⋅∠13,2B NFS = 1cos B NF DFES Sθ==,sin θ=当12t =,即112B D =,面11BBC C 与面DFE 【整体点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维. 第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面11BB C C 与面DFE 所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面DFE 在面11BB C C 上的投影三角形的面积与DFE △面积之比即为面11BB C C 与面DFE 所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维.6.【2021年乙卷理科】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值. 【答案】(1(2【解析】【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长; (2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果. 【详解】(1)[方法一]:空间坐标系+空间向量法PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,PB AM ⊥,则2210PB AM a ⋅=-+=,解得a =2BC a == [方法二]【最优解】:几何法+相似三角形法如图,连结BD .因为PD ⊥底面ABCD ,且AM ⊂底面ABCD ,所以PD AM ⊥. 又因为PB AM ⊥,PBPD P =,所以AM ⊥平面PBD .又BD ⊂平面PBD ,所以AM BD ⊥.从而90ADB DAM ∠+∠=︒.因为90∠+∠=︒MAB DAM ,所以∠=∠MAB ADB . 所以∽ADB BAM ,于是=AD BAAB BM.所以2112BC =.所以BC = [方法三]:几何法+三角形面积法 如图,联结BD 交AM 于点N .由[方法二]知⊥AM DB .在矩形ABCD 中,有∽DAN BMN ,所以2==AN DA MN BM,即23AN AM =.令2(0)=>BC t t ,因为M 为BC 的中点,则BM t =,DB AM由1122=⋅=⋅DABSDA AB DB AN ,得=t ,解得212t =,所以2==BC t(2)[方法一]【最优解】:空间坐标系+空间向量法设平面PAM 的法向量为()111,,m x y z =,则AM ⎛⎫= ⎪ ⎪⎝⎭,()AP =-, 由111120220m AMy m AP z ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取1x =()2,1,2m =,设平面PBM 的法向量为()222,,n x yz =,BM ⎛⎫=- ⎪ ⎪⎝⎭,()1,1BP =--,由222220220n BM n BP y z ⎧⋅=-=⎪⎨⎪⋅=--+=⎩,取21y =,可得()0,1,1n =,3cos ,7m n m n m n ⋅===⋅⨯ 所以,270sin ,1cos ,14m n m n =-=, 因此,二面角A PM B --[方法二]:构造长方体法+等体积法如图,构造长方体1111ABCD A B C D -,联结11,AB A B ,交点记为H ,由于11AB A B ⊥,1AB BC ⊥,所以AH ⊥平面11A BCD .过H 作1D M 的垂线,垂足记为G .联结AG ,由三垂线定理可知1⊥AG D M , 故AGH ∠为二面角A PM B --的平面角.易证四边形11A BCD 的正方形,联结1D H ,HM . 111111111,2D HMD HMD A HHBMMCD A BCD SD M HG S S SSS=⋅=---正方形,由等积法解得=HG在Rt AHG 中,==AH HG =AG所以,sin AH AGH AG ∠==A PMB -- 【整体点评】(1)方法一利用空坐标系和空间向量的坐标运算求解;方法二利用线面垂直的判定定理,结合三角形相似进行计算求解,运算简洁,为最优解;方法三主要是在几何证明的基础上,利用三角形等面积方法求得.(2)方法一,利用空间坐标系和空间向量方法计算求解二面角问题是常用的方法,思路清晰,运算简洁,为最优解;方法二采用构造长方体方法+等体积转化法,技巧性较强,需注意进行严格的论证.7.【2021年新高考1卷】如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)证明见解析;【解析】 【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可. 【详解】(1)因为AB AD =,O 是BD 中点,所以OA BD ⊥, 因为OA ⊂平面ABD ,平面ABD ⊥平面BCD , 且平面ABD ⋂平面BCD BD =,所以OA ⊥平面BCD . 因为CD ⊂平面BCD ,所以OA CD ⊥. (2)[方法一]:通性通法—坐标法如图所示,以O 为坐标原点,OA 为z 轴,OD 为y 轴,垂直OD 且过O 的直线为x 轴,建立空间直角坐标系O xyz -,则1,0),(0,1,0),(0,1,0)2C D B -,设12(0,0,),(0,,)33A m E m ,所以4233(0,,),(,,0)3322EB m BC =--=,设(),,n x y z =为平面EBC 的法向量,则由00EB n EC n ⎧⋅=⎨⋅=⎩可求得平面EBC 的一个法向量为2(3,1,)n m =--.又平面BCD 的一个法向量为()0,0,OA m=,所以cos ,2n OA ==,解得1m =.又点C 到平面ABD112132A BCD C ABD V V--==⨯⨯⨯=, 所以三棱锥A BCD - [方法二]【最优解】:作出二面角的平面角 如图所示,作EGBD ⊥,垂足为点G .作GF BC ⊥,垂足为点F ,连结EF ,则OA EG ∥.因为OA ⊥平面BCD ,所以EG ⊥平面BCD ,EFG 为二面角E BC D --的平面角.因为45EFG ∠=︒,所以EG FG =. 由已知得1OB OD ==,故1OB OC ==.又30OBC OCB ∠=∠=︒,所以BC =因为24222,,,,133333GD GB FG CD EG OA ======,111122(11)13332A BCD BCDBOCV SO SOA A -==⨯⨯=⨯⨯⨯⨯⨯=[方法三]:三面角公式考虑三面角B EDC -,记EBD ∠为α,EBC ∠为β,30DBC ∠=︒, 记二面角E BC D --为θ.据题意,得45θ=︒. 对β使用三面角的余弦公式,可得cos cos cos30βα=⋅︒,化简可得cos βα=.①使用三面角的正弦公式,可得sin sin sin αβθ=,化简可得sin βα=.② 将①②两式平方后相加,可得223cos 2sin 14αα+=,由此得221sin cos 4αα=,从而可得1tan 2α=±.如图可知π(0,)2α∈,即有1tan 2α=,根据三角形相似知,点G 为OD 的三等分点,即可得43BG =, 结合α的正切值,可得2,13EG OA ==从而可得三棱锥A BCD -【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.8.【2021年新高考2卷】在四棱锥Q ABCD -中,底面ABCD 是正方形,若2,3AD QD QA QC ====.(1)证明:平面QAD ⊥平面ABCD ; (2)求二面角B QD A --的平面角的余弦值. 【答案】(1)证明见解析;(2)23. 【解析】 【分析】(1)取AD 的中点为O ,连接,QO CO ,可证QO ⊥平面ABCD ,从而得到面QAD ⊥面ABCD . (2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥,建如图所示的空间坐标系,求出平面QAD 、平面BQD 的法向量后可求二面角的余弦值. 【详解】(1)取AD 的中点为O ,连接,QO CO . 因为QA QD =,OA OD =,则QO ⊥AD ,而2,AD QA ==2QO ==.在正方形ABCD 中,因为2AD =,故1DO =,故CO =因为3QC =,故222QC QO OC =+,故QOC 为直角三角形且QO OC ⊥, 因为OCAD O =,故QO ⊥平面ABCD ,因为QO ⊂平面QAD ,故平面QAD ⊥平面ABCD .(2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥, 结合(1)中的QO ⊥平面ABCD ,故可建如图所示的空间坐标系.则()()()0,1,0,0,0,2,2,1,0D Q B -,故()()2,1,2,2,2,0BQ BD =-=-. 设平面QBD 的法向量(),,n x y z =,则00n BQ n BD ⎧⋅=⎨⋅=⎩即220220x y z x y -++=⎧⎨-+=⎩,取1x =,则11,2y z ==,故11,1,2n ⎛⎫= ⎪⎝⎭.而平面QAD 的法向量为()1,0,0m =,故12cos ,3312m n ==⨯.二面角B QD A --的平面角为锐角,故其余弦值为23.9.【2020年新课标1卷理科】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC 是底面的内接正三角形,P 为DO上一点,PO .(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值. 【答案】(1)证明见解析;(2. 【解析】 【分析】(1)要证明PA ⊥平面PBC ,只需证明PA PB ⊥,PA PC ⊥即可;(2)方法一:过O 作ON ∥BC 交AB 于点N ,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,分别算出平面PCB 的一个法向量n ,平面PCE 的一个法向量为m ,利用公式cos ,||||n mm n n m ⋅<>=计算即可得到答案. 【详解】(1)[方法一]:勾股运算法证明由题设,知DAE △为等边三角形,设1AE =, 则DO =,1122CO BO AE===,所以PO ==PC PB PA ====又ABC 为等边三角形,则2sin 60BA OA =,所以BA = 22234PA PB AB +==,则90APB ∠=,所以PA PB ⊥, 同理PA PC ⊥,又PC PB P =,所以PA ⊥平面PBC ;[方法二]:空间直角坐标系法 不妨设AB =4sin 60==︒=ABAE AD ,由圆锥性质知DO ⊥平面ABC ,所以==DO ==PO O 是ABC 的外心,因此AE BC ⊥.在底面过O 作BC 的平行线与AB 的交点为W ,以O 为原点,OW 方向为x 轴正方向,OE 方向为y 轴正方向,OD 方向为z 轴正方向,建立空间直角坐标系O xyz -,则(0,2,0)A -,B ,(C ,(0,2,0)E ,P .所以(0,AP =,(=--BP ,(3,=-CP . 故0220⋅=-+=AP BP ,0220⋅=-+=AP CP . 所以AP BP ⊥,AP CP ⊥.又BP CP P =,故AP ⊥平面PBC .[方法三]:因为ABC 是底面圆O 的内接正三角形,且AE 为底面直径,所以AE BC ⊥. 因为DO (即PO )垂直于底面,BC 在底面内,所以PO BC ⊥. 又因为PO ⊂平面PAE ,AE ⊂平面PAE ,PO AE O =,所以BC ⊥平面PAE .又因为PA ⊂平面PAE ,所以PA BC ⊥.设AEBC F =,则F 为BC 的中点,连结PF .设DO a =,且PO ,则AF =,PA =,12PF a =. 因此222+=PA PF AF ,从而PA PF ⊥. 又因为PFBC F =,所以PA ⊥平面PBC .[方法四]:空间基底向量法如图所示,圆锥底面圆O 半径为R ,连结DE ,AE AD DE ==,易得OD =,因为=PO ,所以=PO . 以,,OA OB OD 为基底,OD ⊥平面ABC ,则66=+=-+AP AO OP OA OD , 66=+=-+BP BO OP OB OD ,且212OA OB R ⋅=-,0OA OD OB OD ⋅=⋅=所以6666⎛⎫⎛⎫⋅=-+⋅-+= ⎪ ⎪⎝⎭⎝⎭AP BP OA OD OB OD26610666⋅-⋅-⋅+=OA OB OA OD OB OD OD . 故0AP BP ⋅=.所以AP BP ⊥,即AP BP ⊥. 同理AP CP ⊥.又BP CP P =,所以AP ⊥平面PBC . (2)[方法一]:空间直角坐标系法过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 为x轴,ON 为y 轴建立如图所示的空间直角坐标系,则111(,0,0),((,244EP B C ---,1(,44PC =--,1()44PB =-,1(,0,24PE =--,设平面PCB 的一个法向量为111(,,)n x y z =,由00n PC n PB ⎧⋅=⎨⋅=⎩,得11111100x x ⎧-=⎪⎨-=⎪⎩,令1x 111,0z y =-=,所以(2,0,1)n =-,设平面PCE 的一个法向量为222(,,)m x y z =由00m PC m PE ⎧⋅=⎨⋅=⎩,得22222020x x ⎧-=⎪⎨-=⎪⎩,令21x =,得22z y ==所以3(1,3m =故2cos ,||||3n mmn n m ⋅<>===⋅⨯设二面角B PC E --的大小为θ,由图可知二面角为锐二面角,所以cos θ=[方法二]【最优解】:几何法 设=BCAE F ,易知F 是BC 的中点,过F 作∥FG AP 交PE 于G ,取PC 的中点H ,联结GH ,则∥HF PB .由PA ⊥平面PBC ,得FG ⊥平面PBC . 由(1)可得,222BC PB PC =+,得PB PC ⊥. 所以FH PC ⊥,根据三垂线定理,得GH PC ⊥. 所以GHF ∠是二面角B PC E --的平面角. 设圆O 的半径为r ,则3sin602︒==AF AB r ,2AE r =,12=EF r ,13EF AF =,所以14=FG PA ,1122==FH PB PA ,12=FG FH . 在Rt GFH 中,1tan 2∠==FG GHF FH ,cos ∠=GHF . 所以二面角B PC E --.[方法三]:射影面积法如图所示,在PE 上取点H ,使14HE PE =,设BC AE N =,连结NH .由(1)知14NE AE =,所以∥NH PA .故NH ⊥平面PBC . 所以,点H 在面PBC 上的射影为N .故由射影面积法可知二面角B PC E --的余弦值为cos PCN PCHS θS=.在PCE中,令==PC PE 1CE =,易知=PCES .所以335416PCH PCES S ==.又1328PCNPBCSS ==,故3cos PCN PCHS θS ===所以二面角BPC E --.【整体点评】本题以圆锥为载体,隐含条件是圆锥的轴垂直于底面,(1)方法一:利用勾股数进行运算证明,是在给出数据去证明垂直时的常用方法;方法二:选择建系利用空间向量法,给空间立体感较弱的学生提供了可行的途径;方法三:利用线面垂直,结合勾股定理可证出;方法四:利用空间基底解决问题,此解法在解答题中用的比较少;(2)方法一:建系利用空间向量法求解二面角,属于解答题中求角的常规方法;方法二:利用几何法,通过三垂线法作出二面角,求解三角形进行求解二面角,适合立体感强的学生;方法三:利用射影面积法求解二面角,提高解题速度.10.【2020年新课标2卷理科】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【答案】(1)证明见解析;(2【解析】 【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F ⊥平面1A AMN ,只需证明EF ⊥平面1A AMN 即可;(2)连接NP ,先求证四边形ONPA 是平行四边形,根据几何关系求得EP ,在11B C 截取1B Q EP =,由(1)BC ⊥平面1A AMN ,可得QPN ∠为1B E 与平面1A AMN 所成角,即可求得答案. 【详解】 (1),M N 分别为BC ,11B C 的中点,1//MN BB ∴,又11//AA BB , 1//MN AA ∴,在ABC 中,M 为BC 中点,则BC AM ⊥, 又侧面11BB C C 为矩形, 1BC BB ∴⊥, 1//MN BB ,MN BC ⊥,由MN AM M ⋂=,,MN AM ⊂平面1A AMN , ∴BC ⊥平面1A AMN ,又11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC ,又11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF =11//B C EF ∴ ,//EF BC ∴,又BC ⊥平面1A AMN , ∴EF ⊥平面1A AMN ,EF ⊂平面11EB C F , ∴平面11EB C F ⊥平面1A AMN .(2)[方法一]:几何法如图,过O 作11B C 的平行线分别交1111,A B AC 于点11,E F ,联结11,,,AE AO AF NP , 由于//AO 平面11EB C F ,11//E F 平面11EB C F ,11=AOE F O ,AO ⊂平面11AE F ,11E F ⊂平面11AE F ,所以平面11//AE F 平面11EB C F .又因平面11AE F 平面111=AA B B AE ,平面11EB C F ⋂平面111=AA B B EB ,所以11∥EB AE .因为111B C A N ⊥,11B C MN ⊥,1A N MN N =,所以11B C ⊥面1AA NM .又因1111∥E F B C ,所以11⊥E F 面1AA NM , 所以1AE 与平面1AA NM 所成的角为1∠E AO .令2AB =,则11=NB ,由于O 为111A B C △的中心,故112233==OE NB . 在1Rt AE O 中,122,3===AO AB OE ,由勾股定理得1==AE所以111sin ∠==E O E AO AE 由于11∥EB AE ,直线1B E 与平面1A AMN[方法二]【最优解】:几何法 因为//AO 平面11EFC B ,平面11EFC B 平面1=AMNA NP ,所以∥AO NP .因为//ON AP ,所以四边形OAPN 为平行四边形.由(Ⅰ)知EF ⊥平面1AMNA ,则EF 为平面1AMNA 的垂线. 所以1B E 在平面1AMNA 的射影为NP . 从而1B E 与NP 所成角的正弦值即为所求.在梯形11EFC B 中,设1EF =,过E 作11EG B C ⊥,垂足为G ,则3==PN EG . 在直角三角形1B EG中,1sin ∠==B EG [方法三]:向量法由(Ⅰ)知,11B C ⊥平面1A AMN ,则11B C 为平面1A AMN 的法向量.因为∥AO 平面11EB C F ,AO ⊆平面1A AMN ,且平面1A AMN ⋂平面11EB C F PN =, 所以//AO PN .由(Ⅰ)知11,=∥AA MN AA MN ,即四边形APNO 为平行四边形,则==AO NP AB . 因为O 为正111A B C △的中心,故13==AP ON AM . 由面面平行的性质得111111,33=∥EF B C EF B C ,所以四边形11EFC B 为等腰梯形.由P ,N 为等腰梯形两底的中点,得11PN B C ⊥,则11110,⋅==++=PN B C EB EP PN NB 111111111623+-=-B C PN B C PN B C . 设直线1B E 与平面1A AMN 所成角为θ,AB a ,则21111111sin θ⋅===aEB B C EB B C a 所以直线1B E 与平面1A AMN[方法四]:基底法不妨设2===AO AB AC ,则在直角1AA O 中,1AA =以向量1,,AA AB AC 为基底, 从而1,2π=AA AB ,1,2π=AA AC ,,3π=AB AC .1111123=++=+EB EA AA A B AB AA ,BC AC AB =-, 则12103=EB ,||2BC =. 所以112()3⎛⎫⋅=+⋅-= ⎪⎝⎭EB BC AB AA AC AB 2224333⋅-=-AB AC AB .由(Ⅰ)知BC ⊥平面1A AMN ,所以向量BC 为平面1A AMN 的法向量. 设直线1B E 与平面1A AMN 所成角θ,则11110sin cos ,10||θ⋅===EB BC EB BC EB BC 故直线1B E 与平面1A AMN 所成角的正弦值为sin θ= 【整体点评】(2)方法一:几何法的核心在于找到线面角,本题中利用平行关系进行等价转化是解决问题的关键;方法二:等价转化是解决问题的关键,构造直角三角形是求解角度的正弦值的基本方法; 方法三:利用向量法的核心是找到平面的法向量和直线的方向向量,然后利用向量法求解即可;方法四:基底法是立体几何的重要思想,它是平面向量基本定理的延伸,其关键之处在于找到平面的法向量和直线的方向向量.11.【2020年新课标3卷理科】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【答案】(1)证明见解析;(2. 【解析】 【分析】(1)方法一:连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内;(2)方法一:以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz -,利用空间向量法可计算出二面角1A EF A --的余弦值,进而可求得二面角1A EF A --的正弦值. 【详解】(1)[方法一]【最优解】:利用平面基本事实的推论在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,如图1所示.在长方体1111ABCD A B C D -中,//,BF CG BF CG =,所以四边形BCGF 为平行四边形,则//,BC FG BC FG =,而,//BC AD BC AD =,所以//,AD FG AD FG =,所以四边形DAFG 为平行四边形,即有//AF DG ,同理可证四边形1DEC G 为平行四边形,1//C E DG ∴,1//C E AF ∴,因此点1C 在平面AEF 内.[方法二]:空间向量共线定理以11111,,C D C B C C 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图2所示. 设11111,,3C D a C B b C C c ===,则1(0,0,0),(,0,2),(0,,),(,,3)C E a c F b c A a b c .所以1(,0,2),(,0,2)C E a c FA a c ==.故1C E FA =.所以1AF C E ∥,点1C 在平面AEF 内. [方法三]:平面向量基本定理同方法二建系,并得1(0,0,0),(,0,2),(0,,),(,,3)C E a c F b c A a b c , 所以111(,0,2),(0,,),(,,3)C E a c C F b c C A a b c ===.故111C A C E C F =+.所以点1C 在平面AEF 内. [方法四]:根据题意,如图3,设11111,2,3A D a A B b A A c ===.在平面11A B BA 内,因为12BF FB =,所以1111133B F B B A A ==.延长AF 交11A B 于G ,AF ⊂平面AEF ,11A B ⊂平面1111D C B A .11,G AF G A B ∈∈,所以G ∈平面,AEF G ∈平面1111D C B A ①.延长AE 交11A D 于H ,同理H ∈平面,AEF H ∈平面1111D C B A ②. 由①②得,平面AEF平面1111A B C D GH =.连接11,,GH GC HC ,根据相似三角形知识可得11,2GB b D H a ==.在11Rt C B G 中,1C G =同理,在11Rt C D H 中,1C H =如图4,在1Rt A GH 中,GH = 所以11GH C G C H =+,即G ,1C ,H 三点共线. 因为GH ⊂平面AEF ,所以1C ⊂平面AEF ,得证. [方法五]:如图5,连接11,,DF EB DB ,则四边形1DEB F 为平行四边形,设1DB 与EF 相交于点O ,则O 为1,EF DB 的中点.联结1AC ,由长方体知识知,体对角线交于一点,且为它们的中点,即11AC B D O =,则1AC 经过点O ,故点1C 在平面AEF 内.(2)[方法一]【最优解】:坐标法以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,如图2.则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F ,()0,1,1AE =--,()2,0,2AF =--,()10,1,2A E =-,()12,0,1A F =-,设平面AEF 的一个法向量为()111,,m x y z =,由00m AE m AF ⎧⋅=⎨⋅=⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =-,设平面1A EF 的一个法向量为()222,,n x y z =,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,3cos ,3m n m n m n⋅<>===⨯⋅ 设二面角1A EF A--的平面角为θ,则cos θ=sin7θ∴=. 因此,二面角1A EF A--. [方法二]:定义法在AEF 中,AE AF EF ====即222AE EF AF +=,所以AE EF ⊥.在1A EF 中,11A E A F =6,设,EF AF 的中点分别为M ,N ,连接11,,A M MN A N ,则1,A M EF MN EF ⊥⊥,所以1AMN ∠为二面角1A EFA --的平面角.在1AMN 中,1122MN A M A N ====所以1175cos A MN+-∠==1sin A MN∠==[方法三]:向量法由题意得11AE AF AF AE EF==,由于222AE EF AF+=,所以AE EF⊥.如图7,在平面1A EF内作1A G EF⊥,垂足为G,则EA与1GA的夹角即为二面角1A EF A--的大小.由11AA AE EG GA=++,得22221111222AA AE EG GA AE EG EG GA AE GA=++++⋅⋅+⋅.其中,1EG AG==11AE GA⋅=,1cos,AE GA〉〈=所以二面角1A EF A--.[方法四]:三面角公式由题易得,11EA FA FE EA FA===所以2221111cos2EA EA AAAEAEA EA+-∠===⋅.222cos0,sin12EA EF AFAEF AEFEA EF+-∠===∠=⋅.22211111cos2EA EF A FA EF A EFEA EF+-∠===∠=⋅设θ为二面角1A EF A--的平面角,由二面角的三个面角公式,得111cos cos cos cos sin sin AEA AEF A EF AEF A EF θ∠-∠⋅∠==∠⋅∠sin θ=【整体点评】(1)方法一:通过证明直线1//C E AF ,根据平面的基本事实二的推论即可证出,思路直接,简单明了,是通性通法,也是最优解;方法二:利用空间向量基本定理证明;方法三:利用平面向量基本定理;方法四:利用平面的基本事实三通过证明三点共线说明点在平面内;方法五:利用平面的基本事实以及平行四边形的对角线和长方体的体对角线互相平分即可证出. (2)方法一:利用建立空间直角坐标系,由两个平面的法向量的夹角和二面角的关系求出;方法二:利用二面角的定义结合解三角形求出;方法三:利用和二面角公共棱垂直的两个向量夹角和二面角的关系即可求出,为最优解;方法四:利用三面角的余弦公式即可求出. 12.【2020年新高考1卷(山东卷)】如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. 【答案】(1)证明见解析;(2【解析】 【分析】(1)利用线面垂直的判定定理证得AD ⊥平面PDC ,利用线面平行的判定定理以及性质定理,证得//AD l ,从而得到l ⊥平面PDC ;(2)方法一:根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点(,0,1)Q m ,之后求得平面QCD 的法向量以及向量PB 的坐标,求得cos ,n PB <>的最大值,即为直线PB 与平面QCD 所成角的正弦值的最大值. 【详解】 (1)证明:在正方形ABCD 中,//AD BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以//AD 平面PBC ,又因为AD ⊂平面PAD ,平面PAD 平面PBC l =,所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥因为CD PD D =,所以l ⊥平面PDC .(2)[方法一]【最优解】:通性通法因为,,DP DA DC 两两垂直,建立空间直角坐标系D xyz -,如图所示:因为1PD AD ==,设(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B , 设(,0,1)Q m ,则有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-, 设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩,即00y mx z =⎧⎨+=⎩,令1x =,则z m =-,所以平面QCD 的一个法向量为(1,0,)n m =-,则 1cos ,3n PB n PB n PB⋅+<>==根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB 与平面QCD 所成角的正弦值等于|cos ,|n PB <>====当且仅当1m =时取等号,所以直线PB 与平面QCD [方法二]:定义法如图2,因为l ⊂平面PBC ,Q l ∈,所以Q ∈平面PBC .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元质量测试(六)时间:120分钟满分:150分第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.某空间几何体的三视图中,有一个是正方形,则该空间几何体不可能是( ) A.圆柱 B.圆锥 C.棱锥 D.棱柱答案 B解析易知仅圆锥的三视图中一定不会出现正方形,故选B.2.(2018·郑州检测)已知一三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为( )答案 C解析由已知条件得直观图如图所示,正视图是直角三角形,中间的线是看不见的线PA形成的投影,应为虚线.故选C.3.已知各顶点都在一个球面上的正四棱柱的高为2,这个球的表面积为6π,则这个正四棱柱的体积为( )A.1 B.2 C.3 D.4答案 B解析S表=4πR2=6π,∴R=62,设正四棱柱底面边长为x,则x2+x2+22=(2R)2,∴x=1.∴V 正四棱柱=2.故选B .4.(2018·贵阳模拟)设m ,n 为两条不同的直线,α,β为两个不同的平面,给出下列命题:①若m ⊥α,m ⊥β,则α∥β; ②若m ∥α,m ∥β,则α∥β; ③若m ∥α,n ∥α,则m ∥n ; ④若m ⊥α,n ⊥α,则m ∥n .上述命题中,所有真命题的序号是( ) A .①④ B .②③ C .①③ D .②④ 答案 A解析 对于①,垂直于同一条直线的两个平面互相平行,所以①正确;对于②,平行于同一条直线的两个平面的位置关系不确定,所以②错误;对于③,平行于同一个平面的两条直线的位置关系不确定,所以③错误;对于④,垂直于同一个平面的两条直线互相平行,所以④正确.故选A .5.(2018·太原三模)如图是某几何体的三视图,则这个几何体的体积是( )A .2+π2B .2+π3C .4+π3D .4+π2答案 A解析 由三视图可知,该几何体由一个半圆柱与三棱柱组成,这个几何体的体积V =12×π×12×1+12×(2)2×2=2+π2.故选A .6.(2018·江西赣州二模)某几何体的主视图和左视图如图1,它的俯视图的直观图是矩形O 1A 1B 1C 1,如图2,其中O 1A 1=6,O 1C 1=2,则该几何体的侧面积为( )A .48B .64C .96D .128 答案 C解析 由题图2及斜二测画法可知原俯视图为如图所示的平行四边形OABC ,设CB 与y 轴的交点为D ,则易知CD =2,OD =2×22=42,∴CO =CD 2+OD 2=6=OA ,∴俯视图是以6为边长的菱形,由三视图知几何体为一个直四棱柱,其高为4,所以该几何体的侧面积为4×6×4=96.故选C .7.(2018·郑州质检三)已知A ,B ,C ,D 四点在半径为5的球面上,且AC =BD =4,AD =BC =11,AB =CD ,则三棱锥D -ABC 的体积是( )A .67B .47C .27D .7 答案 C解析 如图所示,将三棱锥D -ABC 放在长、宽、高分别为a ,b ,c 的长方体中,则依题意有⎩⎪⎨⎪⎧a 2+c 2=AC 2=16,a 2+b 2=BC 2=11,a 2+b 2+c 2=(2R )2=20,解得⎩⎨⎧a =7,b =2,c =3,则三棱锥D -ABC 的体积为abc -413·12abc =27.选C .8.(2018·山西四校联考)如图所示,P 为矩形ABCD 所在平面外一点,矩形对角线交点为O ,M 为PB 的中点,给出下列五个结论:①PD ∥平面AMC ;②OM ∥平面PCD ;③OM ∥平面PDA ;④OM ∥平面PBA ;⑤OM ∥平面PBC .其中正确的个数是( ) A .1 B .2 C .3 D .4 答案 C解析 矩形ABCD 的对角线AC 与BD 交于点O ,所以O 为BD 的中点.在△PBD 中,M 是PB 的中点,所以OM 是△PBD 的中位线,OM ∥PD ,则PD ∥平面AMC ,OM ∥平面PCD ,且OM ∥平面PDA .因为M ∈PB ,所以OM 与平面PBA 、平面PBC 相交.故选C .9.(2018·大庆质检一)已知一个圆柱的轴截面是边长为a 的正方形.在圆柱内有一个球O ,该球与圆柱的上、下底面及母线均相切,则圆柱内除了球之外的几何体的体积为( )A .πa 34 B .πa 36 C .πa 38 D .πa312答案 D解析 由题意可知,该圆柱底面直径和高都是a ,故其体积为V 1=πR 2h =π×a 22×a =πa 34.而圆柱体的内切球的直径也为a ,故其体积为V 2=4π3R 3=4π3×a 23=πa36,所以圆柱体内除球体以外部分的体积为V =V 1-V 2=πa 312.故选D .10.(2018·湖南长沙四校联考)祖暅是南北朝时代的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为( )A .①②B .①③C .②④D .①④ 答案 D解析 设截面与底面的距离为h ,则①中截面内圆的半径为h ,则截面圆环的面积为π(R 2-h 2);②中截面圆的半径为R -h ,则截面圆的面积为π(R -h )2;③中截面圆的半径为R -h2,则截面圆的面积为πR -h 22;④中截面圆的半径为R 2-h 2,则截面圆的面积为π(R2-h 2).所以①④中截面的面积相等,故其体积相等,故选D .11.(2018·浙江高考)已知四棱锥S -ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点).设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S -AB -C 的平面角为θ3,则( )A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1 答案 D解析 由题意知该四棱锥为正四棱锥,设AB ,AD ,BC 的中点分别为P ,M ,N 连接MN ,过点E 作直线MN 的垂线交MN 于点Q .设O 为S 在底面ABCD 内的射影,连接SO ,OP ,OE ,SP ,SQ ,则∠SEQ =θ1,∠SEO =θ2,∠SPO =θ3,∴tan θ2=OS OE ,tan θ3=OSOP,∵OP ≤OE ,∴tan θ3≥tan θ2.又EQ ⊥MN ,EQ ⊥SO ,MN ∩SO =O ,MN ,SO ⊂平面SOQ ,∴EQ ⊥平面SOQ ,又SQ ⊂平面SOQ ,∴EQ ⊥SQ .∴tan θ1=SQ EQ,∵SQ ≥SO ,EQ =OP ,∴tan θ1≥tan θ3.故有tan θ1≥tan θ3≥tan θ2.由图可知θ1,θ2,θ3∈0,π2.∴θ1≥θ3≥θ2,故选D . 12.(2018·全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为( )A .334B .233C .324D .32答案 A解析 根据相互平行的直线与平面所成的角是相等的,所以在正方体ABCD -A 1B 1C 1D 1中,平面AB 1D 1与线AA 1,A 1B 1,A 1D 1所成的角是相等的,所以平面AB 1D 1与正方体的每条棱所在的直线所成角都是相等的,同理平面C 1BD 也满足与正方体的每条棱所在的直线所成的角都是相等的,要求截面面积最大,则截面的位置为夹在两个面AB 1D 1与C 1BD 中间的,且过棱的中点的正六边形,边长为22,所以其面积为S =6×34×⎝ ⎛⎭⎪⎫222=334,故选A . 第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.如图,一个底面半径为R 的圆柱形量杯中装有适量的水.若放入一个半径为r 的实心铁球,水面高度恰好升高r ,则R r=________.答案233解析 由水面高度升高r ,得圆柱体积增加πR 2r ,恰好是半径为r 的实心铁球的体积,因此有43πr 3=πR 2r .故R r =233.14.直三棱柱ABC -A 1B 1C 1的六个顶点都在球O 的球面上.若AB =BC =2,∠ABC =90°,AA 1=22,则球O 的表面积为________.答案 16π解析 由题设可知,直三棱柱可以补成一个球的内接长方体,所以球的直径为长方体的体对角线长,即22+22+(22)2=4,故球O 的表面积S =4πR 2=16π.15.已知某几何体的三视图如图所示,则其体积为________.答案8π解析由三视图可知该几何体为一个底面半径为1,高为5的圆柱与一个底面半径为1,高为3的圆柱的组合体,其体积为V=π×12×(5+3)=8π.16.(2018·唐山模拟)已知一个几何体由八个面围成,每个面都是正三角形,有四个顶点在同一平面内且为正方形,若该八面体的棱长为2,所有顶点都在球O上,则球O的表面积为________.答案8π解析依题意,该八面体的各个顶点都在同一球面上,则其中四点所组成的截面在球的大圆面上,因为该八面体的棱长为2,所以这四点组成的正方形的对角线的长为22,故球的半径为2,该球的表面积为4π(2)2=8π.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(2018·珠海摸底)(本小题满分10分)中秋节即将到来,为了做好中秋节商场促销活动,某商场打算将进行促销活动的礼品盒重新设计.方案如下:将一块边长为10的正方形纸片ABCD剪去四个全等的等腰三角形(△SEE′,△SFF′,△SGG′,△SHH′),再将剩下的阴影部分折成一个四棱锥形状的包装盒S-EFGH,其中A,B,C,D重合于点O,E与E′重合,F与F′重合,G与G′重合,H与H′重合(如图所示).(1)求证:平面SEG ⊥平面SFH ;(2)已知AE =52,过O 作OM ⊥SH 于点M ,求cos ∠EMO 的值.解 (1)证明:因为折叠后A ,B ,C ,D 重合于一点O ,所以拼接成底面EFGH 的四个直角三角形必为全等的等腰直角三角形, 所以底面EFGH 是正方形,故EG ⊥FH . 因为在原平面图形中,△SEE ′≌△SGG ′, 所以SE =SG ,所以EG ⊥SO .又FH ∩SO =O ,FH ⊂平面SFH ,SO ⊂平面SFH , 故EG ⊥平面SFH . 又因为EG ⊂平面SEG , 所以平面SEG ⊥平面SFH . (2)依题意,当AE =52时,即OE =52.Rt △SHO 中,OH =52,SH =552,故SO =5,所以OM =SO ·OHSH=5. 由(1)知EG ⊥平面SFH ,且OM ⊂平面SFH , 故EG ⊥OM ,从而EO ⊥OM ,故Rt △EMO 中,EM =EO 2+OM 2=352,所以cos ∠EMO =OM EM =23.18.(2018·安徽江淮十校联考)(本小题满分12分)四棱锥A -BCDE 中,EB ∥DC ,且EB ⊥平面ABC ,EB =1,DC =BC =AB =AC =2,F 是棱AD 的中点.(1)证明:EF ⊥平面ACD ; (2)求二面角B -AE -D 的余弦值.解 (1)证明:取AC 中点M ,连接FM ,BM , ∵F 是AD 中点,∴FM ∥DC ,且FM =12DC =1.又∵EB ∥DC ,EB =1, ∴FM 綊EB ,∴四边形FMBE 是平行四边形. ∴EF ∥BM ,又BC =AB =AC , ∴△ABC 是等边三角形,∴BM ⊥AC , ∵EB ⊥平面ABC ,EB ∥DC , ∴CD ⊥平面ABC ,∴CD ⊥BM . 又CD ∩AC =C ,∴BM ⊥平面ACD ,∴EF ⊥平面ACD .(2)取BC 中点N ,连接AN ,则AN ⊥BC ⇒AN ⊥平面BCD .以N 为原点建立如图所示的空间直角坐标系.则各点坐标为A (0,0,3),B (0,-1,0),C (0,1,0),D (2,1,0),E (1,-1,0). 可得BA →=(0,1,3),BE →=(1,0,0),EA →=(-1,1,3),ED →=(1,2,0), 设平面ABE 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1·BA →=0,n 1·BE →=0,得⎩⎨⎧y 1+3z 1=0,x 1=0,可取n 1=(0,-3,1),设平面ADE 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·EA →=0,n 2·ED →=0,得⎩⎨⎧-x 2+y 2+3z 2=0,x 2+2y 2=0,可取n 2=(-2,1,-3),于是cos 〈n 1,n 2〉=-3-32×8=-64,注意到二面角B -AE -D 是钝二面角, 因此,所求二面角的余弦值就是-64. 19.(2018·湖北重点中学联考二)(本小题满分12分)如图1,等腰直角三角形ABC 的底边AB =2,点D 在线段AC 上,DE ⊥AB 于点E ,现将△ADE 沿DE 折起到△PDE 的位置(如图2).(1)求证:PB ⊥DE ;(2)若PE ⊥BE ,直线PD 与平面PBC 所成的角为30°,求平面PDE 与平面PBC 所成的锐二面角的正弦值.解 (1)证明:由图1,图2可知,DE ⊥PE ,DE ⊥BE ,PE ∩BE =E , ∴DE ⊥平面PBE ,又PB ⊂平面PBE ,∴PB ⊥DE .(2)由(1)及PE ⊥BE 可知,DE ,BE ,PE 两两互相垂直.分别以ED →,EB →,EP →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系Exyz .设|PE |=a (0<a <1),则B (0,2-a ,0),D (a ,0,0),C (1,1-a ,0),P (0,0,a ), ∴PB →=(0,2-a ,-a ),BC →=(1,-1,0). 设平面PBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧PB →·n =0,BC →·n =0,∴⎩⎪⎨⎪⎧(2-a )y -az =0,x -y =0,∴平面PBC 的一个法向量为n =(a ,a ,2-a ), ∵直线PD 与平面PBC 所成的角为30°, 且PD →=(a ,0,-a ), ∴sin30°=|a 2-a (2-a )|2a 2·a 2+a 2+(2-a )2,∴a =2(舍去)或a =25.∴平面PBC 的一个法向量为n =25,25,85.易知平面PDE 的一个法向量为m =(0,1,0),设所求的锐二面角为θ,则cos θ=m ·n |m ||n |=26,所以sin θ=346, 即平面PDE 与平面PBC 所成的锐二面角的正弦值为346.20.(2018·山东青岛统一质检)(本小题满分12分)如图,圆柱H 横放在底面边长为1的正六棱锥P -ABCDEF 的顶点P 上,O 1和O 2分别是圆柱左和右两个底面的圆心,正六棱锥P-ABCDEF 的底面中心为O ,PO =1,M ,N 分别是圆柱H 的底面圆O 1的最高点和最低点,G 是圆柱H 的底面圆O 2的最低点,P 为NG 的中点,点M ,O 1,N ,A ,O ,D ,G ,P 共面,O 1,P ,D 共线,四边形ADGN 为矩形.(1)证明:MG ∥平面PCD ; (2)求二面角M -CD -A 的大小.注:正棱锥就是底面是一个正多边形,顶点在底面上的正投影为底面的中心的棱锥. 解 (1)证明:连接PO 1(图略),∵P 为NG 的中点,O 1为MN 的中点,∴PO 1∥MG , 又点O 1,P ,D 共线,∴PD ∥MG , ∵PD ⊂平面PCD ,MG ⊄平面PCD , ∴MG ∥平面PCD .(2)∵O 为正六棱锥P -ABCDEF 的底面中心, ∴PO ⊥底面ABCDEF ,取BC 的中点W (图略),连接OW ,AD , 则点O 在AD 上,OW ⊥AD .分别以OA ,OW ,OP 为x 轴、y 轴、z 轴建立空间直角坐标系Oxyz . ∵P 为NG 的中点,四边形ADGN 为矩形,O 为AD 的中点,PO =1, ∴NA ∥PO ,NA =PO =1,从而NA ⊥底面ABCDEF , ∵M ,N 分别是圆柱H 的底面圆O 1的最高点和最低点, ∴O 1N ⊥底面ABCDEF ,从而M ,O 1,N ,A 四点共线, ∵正六棱锥P -ABCDEF 的底面边长为1,∴AD =2, ∵四边形ADGN 为矩形,NG ∥AD ,且NG =AD =2, 又P 为NG 的中点,NP ∥AD ,且NP =12AD =1,∴在△O 1AD 中,NP 为△O 1AD 的中位线, 从而N 为O 1A 的中点,∴O 1N =AN =1,故M (1,0,3),C -12,32,0,D (-1,0,0),DC →=12,32,0,DM →=(2,0,3). 设平面MCD 的法向量为m =(x ,y ,z ), 由⎩⎪⎨⎪⎧m ·DC →=0,m ·DM →=0⇒⎩⎪⎨⎪⎧x 2+3y 2=0,2x +3z =0.令x =1,则y =-33,z =-23, ∴m =1,-33,-23. 取平面ABCDEF 的一个法向量为n =OP →=(0,0,1). 设二面角M -CD -A 的大小为锐角θ, 则cos θ=|m ·n ||m ||n |=12,因此θ=π3,即二面角M -CD -A 的大小为π3.21.(2018·河北衡水中学九模)(本小题满分12分)已知正三棱柱ABC -A 1B 1C 1中,E ,F 分别为BB 1,AB 的中点,设AA 1AB=λ.(1)求证:平面A 1CF ⊥平面A 1EF ;(2)若二面角F -EA 1-C 的平面角为π3,求实数λ的值,并判断此时二面角E -CF -A 1是否为直二面角,请说明理由.解 (1)证明:因为三棱柱ABC -A 1B 1C 1是正三棱柱, 所以AA 1⊥平面ABC ,所以AA 1⊥CF . 又△ABC 是正三角形,F 为AB 的中点, 所以CF ⊥AB ,又AB ∩AA 1=A ,故CF ⊥平面A 1EF ,又CF ⊂平面A 1CF ,所以平面A 1CF ⊥平面A 1EF .(2)如图,以F 为坐标原点,FB →,FC →方向分别为x 轴、y 轴的正方向建立如图所示的空间直角坐标系,不妨设底边长AB =2,由题意AA 1=2λ,则F (0,0,0),A 1(-1,0,2λ),E (1,0,λ),C (0,3,0). EC →=(-1,3,-λ),FC →=(0,3,0),A 1E →=(2,0,-λ),设平面EA 1C 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·EC →=-x +3y -λz =0,n ·A 1E →=2x -λz =0,令z =2,则平面EA 1C 的一个法向量为n =(λ,3λ,2), 由(1)可知FC →=(0,3,0)为平面A 1EF 的一个法向量, 故cos π3=FC →·n |FC →||n |=3λ4λ2+4×3,解得λ=22, 由(1)可知EF ⊥CF ,A 1F ⊥CF ,由定义可知∠EFA 1为二面角E -CF -A 1的平面角.EF =12+222=62,A 1F =12+(2)2=3, A 1E =22+222=322, 满足EF 2+A 1F 2=A 1E 2,则∠EFA 1=π2,此时二面角E -CF -A 1为直二面角.22.(2018·江西南昌二模)(本小题满分12分)如图,四棱锥P -ABCD 中,底面ABCD 是直角梯形,AB ∥CD ,AB ⊥AD ,AB =2CD =2AD =4,侧面PAB 是等腰直角三角形,PA =PB ,平面PAB ⊥平面ABCD ,点E ,F 分别是棱AB ,PB 上的点,平面CEF ∥平面PAD .(1)确定点E ,F 的位置,并说明理由; (2)求二面角D -EF -C 的余弦值. 解 (1)因为平面CEF ∥平面PAD , 平面CEF ∩平面ABCD =CE , 平面PAD ∩平面ABCD =AD , 所以CE ∥AD ,又因为AB ∥DC , 所以四边形AECD 是平行四边形, 所以DC =AE =12AB ,即点E 是AB 的中点. 因为平面CEF ∥平面PAD , 平面CEF ∩平面PAB =EF , 平面PAD ∩平面PAB =PA ,所以EF ∥PA ,因为点E 是AB 的中点, 所以点F 是PB 的中点,综上,E ,F 分别是AB ,PB 的中点. (2)连接PE ,因为PA =PB ,AE =EB , 所以PE ⊥AB ,又因为平面PAB ⊥平面ABCD , 平面PAB ∩平面ABCD =AB , 所以PE ⊥平面ABCD , 又因为AB ⊥AD , 所以CE ⊥AB .如图,以点E 为坐标原点,EC ,EB ,EP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则B (0,2,0),C (2,0,0),D (2,-2,0),E (0,0,0),P (0,0,2), 由中点公式得到F (0,1,1),则EC →=(2,0,0),EF →=(0,1,1),ED →=(2,-2,0), 设平面CEF 、平面DEF 的法向量分别为m =(x 1,y 1,z 1),n =(x 2,y 2,z 2),由m ⊥EC →,m ⊥EF →,得⎩⎪⎨⎪⎧2x 1+0·y 1+0·z 1=0,0·x 1+y 1+z 1=0,令y 1=1,得m =(0,1,-1), 由n ⊥ED →,n ⊥EF →,得⎩⎪⎨⎪⎧2x 2-2y 2+0·z 2=0,0·x 2+y 2+z 2=0,令y 2=1,得n =(1,1,-1),所以cos 〈m ·n 〉=m ·n |m ||n |=22×3=63,因为二面角D -EF -C 是锐角,所以二面角D -EF -C 的余弦值是63.。

相关文档
最新文档