电力电子器件概述

合集下载

电力电子器件概述

电力电子器件概述
4. 最高工作结温 TJM:125~175℃
5. 反向恢复时间trr 6. 浪涌电流IFSM
1.2.4 主要类型
1. 普通二极管——又称整流二极管 1KHZ以下 数千安和数千伏以上
2. 快恢复二极管 5μs以下 3. 肖特二极管
1.3 半控型器件——晶闸管(SCR)
常用晶闸管的结构
螺栓型晶闸管
晶闸管模块
Id
1
2
3
Im
sin td
t
3
4
Im
0.24Im
I
1
2
Im
sin t
2
d
t
0.46Im
3
Kf
I Id
0.46 0.24
1.92
IT ( AV )
100 2
50
Id
1.57 50 1.92
41 A
Im
Id 0.24
41 0.24
171
A
⑵ 维持电流IH 使晶闸管维持通态所必需的最小主电流。 ⑶ 擎住电流IL ⑷ 浪涌电流ITSM
4. 光控晶闸管LTT
⑴又称光触发晶闸 管,是利用一定 波长的光照信号 触发导通的晶闸 管。
⑵光触发保证了主 电路与控制电路 之间的绝缘,且 可避免电磁干扰 的影响。
⑶在高压大功率的 场合占有重要地位。
1.4 典型全控型器件
门极可关断晶闸管——在晶闸管问世后不久出现。 20世纪80年代以来,电力电子技术进入了一个崭新时代。
不可控器件:电力二极管
半控型器件:晶闸管及其派生器件 全控型器件:功率场效应管、绝缘栅双极性晶体管、
门极可关断晶闸管
⑵ 按照控制信号性质可分为: 电流控制型 电压控制型:控制功率小

《电力电子器件概述》课件

《电力电子器件概述》课件

主要器件分类和特点

基础器件
二极管、三极管和电 容器是电力电子器件 家族的基础,它们分 别具有导通和截止、 放大和切换、储能等 特点。
控制器件
可控硅、晶闸管和场 效应管能够在电路中 实现控制和变换电流 的功能,并具有方便 使用、可靠性高等特 点。
开关器件
IGBT和MOSFET是现代 电力电子技术中应用 最广泛的开关器件之 一,它们能够快速地 控制电流,拥有高速 度和低损耗的特点。
核电岛供电系统中的应用
核电岛是核电站中最关键的一部分,核 电岛供电系统中的电力电子器件起到了 重要作用,例如:可控硅直流电源、晶 闸管逆变器以及IGBT变频器等。
电力电子器件的发展历程与趋势
初创时期
重大进展
20世纪30年代初,电力电子器件 的初衷是用于照明和飞机无线电 通信设备,当时的器件非常原始。
快速器件
快恢复二极管和快速 开关器件是一类性能 优异、应用广泛的快 速器件,能够满足复 杂电路和高速电路的 需求。
器件工作原理与应用案例
1
输入输出特性与参数
2
电力电子器件一般具有输入端和输出端,
其特点表现在电路中的传导特性、阻抗
和输出功率等方面。
3
什么是电力电子器件?
电力电子器件是指能够在电力电路中实 现功率控制和转换的电气元件,是现代 电力电子技术的基础。
电力电子器件的作用
通过对电源电路的控制,电力电子器件实现了电力变换和供应的精确控制,同时能够提高电力系统的效率,减 少电力损耗。
- 电力电子器件的分类和应用领域
电力电子器件按照主要功能可以分为基础器件、控制器件、开关器件和快速器件四类,并应用于现代电力电子 技术的众多领域,如可再生能源、工业自动化、电动汽车等。

电力电子器件的概念和特征

电力电子器件的概念和特征
(3)实际应用中,电力电子器件往往需要由信息电子电路来控制。主电路和控制电路之间,需要一定的中间电路对控制电路的信号进行放大,这就是电力电子器件的驱动电路。
(4)为保证损耗产生的热量不致使器件温度过高而损坏,不仅要考虑器件封装上的散热设计,在其工作时一般也要安装散热器。这是因为导通时器件上有一定的通态压降,形成通态损耗,阻断时器件上有微小的断态漏电流流过,形成断态损耗,而在器件开通或关断过程中会产生开通损耗和关断损耗,总称开关损耗。对某些器件来讲,驱动电路向其注入的功率也是造成器件发热的原因之一。通常电力电子器件的断态漏电流极小,因而通态损耗是器件功率损耗的主要成因。器件开关频率较高时,开关损耗会随之增大而可能成为器件功率损耗的主要因素。
在电气设备或电力系统中,直接承担电能的变换或控制任务的电路,称为主电路( MainPower Circuit),其中的电子器件就是电力电子器件(Power Electronic Device)。广义上电力电子器件可分为电真空器件和半导体器件两类。自20世纪50年代以来,真空管仅还在频率很高(如微波)的大功率高频电源中在使用,而电力半导体器件已取代了汞弧整流器( MercuryArc-Rectifier)、闸流管(Thyratron)等电真空器件,成为绝对主力。因此,电力电子器件往往专指电力半导体器件,采用的主要材料仍然是硅。
同处理信息的电子器件相比,电力电子器件有如下一般特征:
(1)处理电功率的远大于处理信息的电子器件。
(2) -般都工作在开关状态,即导通时(通态)阻抗很小,接近于短路,管压降接近于零,而电流由外电路决定;阻断时(断态)阻抗很大,接近于断路,电流几乎为零,而管子两端电压由外电路决定。这些升关特性和参数,也是电力电子器件的重要特性。

电力电子器件及其应用

电力电子器件及其应用

宽禁带半导体材料的应用
总结词
宽禁带半导体材料(如硅碳化物和氮化 镓)在电力电子器件中的应用越来越广 泛。
VS
详细描述
宽禁带半导体材料具有高临界场强和高电 子饱和速度等优点,使得电力电子器件能 够承受更高的工作电压和更大的工作电流 ,同时减小器件的体积和重量,提高系统 的能效和可靠性。
电力电子系统集成化与模块化
压保护、过电流保护和过热保护等。
驱动电路与控制电路设计
总结词
驱动电路和控制电路是电力电子系统中的重要组成部 分,其设计的好坏直接影响到整个系统的性能。
详细描述
驱动电路负责提供足够的驱动信号,使电力电子器件 能够正常工作。在设计驱动电路时,需要考虑信号的 幅度、相位、波形等参数,以确保器件能够得到合适 的驱动信号。控制电路则负责对整个电力电子系统进 行控制和调节,以确保系统能够按照预设的方式运行 。控制电路的设计需要充分考虑系统的动态特性和稳 态特性,并能够根据实际情况进行实时调节。
要点一
总结词
要点二
详细描述
在选择电力电子器件时,电压和电流容量是关键参数。
需要根据电路的工作电压和电流来选择合适的器件,以确 保器件能够安全、有效地运行。选择电压和电流容量过小 的器件可能导致器件过载,影响其性能和寿命;而选择电 压和电流容量过大的器件则可能造成浪费,增加成本。
工作频率与散热设计
总结词
总结词
电力电子系统正朝着集成化和模块化的方向 发展。
详细描述
集成化和模块化可以提高电力电子系统的可 靠性和可维护性,减小系统的体积和重量, 降低制造成本。同时,集成化和模块化还有 利于实现电力电子系统的标准化和系列化, 方便不同系统之间的互连和互操作。
电力电子在分布式发电和微电网中的应用

电力电子器件

电力电子器件

新型电力电子器件电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控制电路中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。

又称功率电子器件。

20世纪50年代,电力电子器件主要是汞弧闸流管和大功率电子管。

60年代发展起来的晶闸管,因其工作可靠、寿命长、体积小、开关速度快,而在电力电子电路中得到广泛应用。

70年代初期,已逐步取代了汞弧闸流管。

80年代,普通晶闸管的开关电流已达数千安,能承受的正、反向工作电压达数千伏。

在此基础上,为适应电力电子技术发展的需要,又开发出门极可关断晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管等一系列派生器件,以及单极型MOS功率场效应晶体管、双极型功率晶体管、静电感应晶闸管、功能组合模块和功率集成电路等新型电力电子器件。

各种电力电子器件均具有导通和阻断两种工作特性。

功率二极管是二端(阴极和阳极)器件,其器件电流由伏安特性决定,除了改变加在二端间的电压外,无法控制其阳极电流,故称不可控器件。

普通晶闸管是三端器件,其门极信号能控制元件的导通,但不能控制其关断,称半控型器件。

可关断晶闸管、功率晶体管等器件,其门极信号既能控制器件的导通,又能控制其关断,称全控型器件。

后两类器件控制灵活,电路简单,开关速度快,广泛应用于整流、逆变、斩波电路中,是电动机调速、发电机励磁、感应加热、电镀、电解电源、直接输电等电力电子装置中的核心部件。

这些器件构成装置不仅体积小、工作可靠,而且节能效果十分明显(一般可节电10%~40%)。

单个电力电子器件能承受的正、反向电压是一定的,能通过的电流大小也是一定的。

因此,由单个电力电子器件组成的电力电子装置容量受到限制。

所以,在实用中多用几个电力电子器件串联或并联形成组件,其耐压和通流的能力可以成倍地提高,从而可极大地增加电力电子装置的容量。

器件串联时,希望各元件能承受同样的正、反向电压;并联时则希望各元件能分担同样的电流。

电子行业电力电子器件综合概述

电子行业电力电子器件综合概述

电子行业电力电子器件综合概述1. 引言电力电子器件是电子行业中的重要组成部分,用于控制和转换电能。

随着电力需求的不断增长,电力电子器件的应用范围也在不断扩大。

本文将对电力电子器件进行综合概述,包括其定义、分类、应用以及未来发展趋势等内容。

2. 电力电子器件的定义电力电子器件是指用于控制和转换电能的电子元件。

它可以将交流电转换为直流电,也可以将电能转换成其他形式,如机械能、光能等。

电力电子器件具有变流、变压、变频等功能,广泛应用于电力系统、工业控制、交通运输等领域。

3. 电力电子器件的分类电力电子器件根据其功能和工作原理的不同,可以分为以下几类:3.1 整流器整流器是一种将交流电转换为直流电的电力电子器件。

它使用半导体器件(如二极管、晶闸管等)将交流电的负半周或正半周去除,使输出电流呈现单向流动的特点。

整流器广泛应用于电力系统、工业设备以及电子产品中。

3.2 逆变器逆变器是一种将直流电转换为交流电的电力电子器件。

它通过控制半导体开关器件(如晶闸管、IGBT等)的开关状态,使直流电通过电路产生交流电输出。

逆变器广泛应用于可再生能源发电系统、电动车充电桩、家用电器等领域。

3.3 变频器变频器是一种可控制交流电频率的电力电子器件。

它通过调节半导体开关器件的开关频率,可以实现对交流电输出频率的调节。

变频器广泛应用于交通运输、工业生产等领域,如交流电机调速控制、电动车驱动系统等。

3.4 开关电源开关电源是一种通过开关器件在输入端和输出端之间进行快速切换来实现电能转换的电力电子器件。

开关电源具有高效率、小体积、稳定性好的特点,广泛应用于电子产品、通信设备等领域。

4. 电力电子器件的应用电力电子器件在电力系统、工业生产、交通运输、家用电器等领域都有广泛的应用。

在电力系统中,电力电子器件被用作电网稳定器、无功补偿装置、电力质量调节器等,提高电力系统的稳定性和效率。

在工业生产中,电力电子器件被用于电机调速、电力负荷控制、短路电流限制等,提高生产效率和质量。

电力电子器件与系统

电力电子器件与系统

电力电子器件与系统电力电子器件与系统是电力工程领域的一个重要分支,涉及到电力转换、控制和保护等方面的技术研究与应用。

本文将从电力电子器件和系统的概念、应用领域、工作原理以及发展趋势等方面进行论述,以帮助读者全面理解和掌握电力电子技术的基本知识。

一、电力电子器件的基本概念电力电子器件是指能够实现电能的整流、变换、控制和保护等功能的电子器件。

常见的电力电子器件包括晶闸管、可控硅、MOSFET、IGBT等。

这些器件通过控制电压或电流的开关状态,将电能从一种形式转换成另一种形式,以满足不同的电力需求。

电力电子器件具有高效、可靠、灵活等特点,在工业、农业、交通、通信等领域得到了广泛的应用。

二、电力电子器件的应用领域1. 电力系统电力电子器件在电力系统中的应用十分广泛。

它们可以用于电力输配电、电力负荷控制、电力变换和调节等方面。

比如,柔性交流输电技术就是利用大功率晶闸管和换流变换技术实现的,能够提高输电效率,降低线路损耗。

另外,电力电子器件还能实现对电力系统的稳定控制和保护,提高系统的可靠性和安全性。

2. 新能源随着新能源的快速发展,电力电子器件在风电、太阳能等新能源发电系统中的应用也越来越广泛。

电力电子器件可以将不稳定的新能源输出电能转换为稳定的交流电能,并通过逆变器等设备实现对新能源发电系统的功率调节和并网运行控制。

这种技术不仅可以提高新能源发电系统的利用率和可靠性,还可以减少对传统能源的依赖,具有重要意义。

3. 电动汽车电力电子器件在电动汽车领域的应用也十分重要。

电力电子器件可以实现电动汽车电池充电、电能变换和电机控制等功能。

通过电力电子器件的控制,可以实现对电动汽车电池的快速充电和有效管理,提高电动汽车的运行效率和续航里程。

此外,电力电子器件还可以控制电动汽车电机的转速和扭矩,提高汽车的操控性能。

三、电力电子系统的工作原理电力电子系统是由多个电力电子器件和控制电路组成的复杂系统。

这些器件和电路通过合理的连接和控制方式,实现对电能的转换和控制。

电力电子器件概述PPT

电力电子器件概述PPT

2.3 半控型器件—晶闸管·引言
晶闸管(Thyristor):晶体闸流管,可控硅整 流器(Silicon Controlled Rectifier——SCR)
1956年美国贝尔实验室发明了晶闸管。 1957年美国通用电气公司开发出第一只晶闸管产品。 1958年商业化。 开辟了电力电子技术迅速发展和广泛应用的崭新时代 。 20世纪80年代以来,开始被全控型器件取代。 能承受的电压和电流容量最高,工作可靠,在大容量 的场合具有重要地位。
增大以致1+2趋近于1的话,流过晶闸管的电流IA,将趋
近于无穷大,实现饱和导通。IA实际由外电路决定。
2.3.1 晶闸管的结构与工作原理
其他几种可能导通的情况:
阳极电压升高至相当高的数值造成雪崩效应 阳极电压上升率du/dt过高 结温较高 光触发
光触发可以保证控制电路与主电路之间的良好绝缘而应用于高压电 力设备中,称为光控晶闸管(Light Triggered Thyristor——LTT)。
结温是指管芯PN结的平均温度,用TJ表示。 TJM是指在PN结不致损坏的前提下所能承受的最高 平均温度。 TJM通常在125~175C续一个或几个工频 周期的过电流。
2.2.4 电力二极管的主要类型
按照正向压降、反向耐压、反向漏电流等性能, 特别是反向恢复特性的不同介绍。
2 I G I CBO1 I CBO2
IA
1 ( 1 2 )
(2-10)
在低发射极电流下 是很小的,而当发射极电流建立起来
之后, 迅速增大。(形成强烈正反馈,维持器件自锁导通
,不再需要触发电流)
阻断状态:IG=0,1+2很小。流过晶闸管的漏电流稍大于
两个晶体管漏电流之和。

修改稿 第1章 电力电子器件

修改稿  第1章  电力电子器件

三 、晶闸管
晶闸管及其工作原理 2 晶闸管的特性与主要参数 3 晶闸管的派生器件
1
晶闸管
晶闸管(Thirsted)包括:普通晶闸管(SCR)、快速晶 闸管(FST)、双向晶闸管(TRIAC)、逆导晶闸管(RCT) 、 可关断晶闸管(GTO) 和光控晶闸管等。 由于普通晶闸管面世早,应用极为广泛, 因此在无特别 说明的情况下,本书所说的晶闸管都为普通晶闸管。 普通晶闸管:也称可控硅整流管(Silicon Controlled Rectifier), 简称SCR。 由于它电流容量大,电压耐量高以及开通的可控性 (目前生产水平:4500A/8000V)已被广泛应用于相控整 流、逆变、交流调压、直流变换等领域, 成为特大功率 低频(200Hz以下)装置中的主要器件。
图1.2.2
电力二极管的伏安特性曲线

PN结的电容效应:
PN结的电荷量随外加电压而变化,呈现电容效应,称为结电容CJ, 又称为微分电容。
二、 电力二极管
1 2
电力二极管及其工作原理 电力二极管的特性与参数
2
电力二极管的特性与参数
(1)电力二极管的伏安特性 (2)电力二极管的开关特性 (3)电力二极管的主要参数

电力二极管的主要类型:
(1)普通二极管:普通二极管又称整流管(Rectifier Diode),多用于开关频率在1KHZ以下的整流电路中, 其反向恢复时间在5us以上,额定电流达数千安,额定 电压达数千伏以上。 (2)快恢复二极管:反向恢复时间在5us以下的称为快恢复 二极管(Fast Recovery Diode简称FDR)。快恢复二极 管从性能上可分为快速恢复和超快速恢复二极管。前者 反向恢复时间为数百纳秒以上,后者则在100ns以下,其 容量可达1200V/200A的水平, 多用于高频整流和逆变电 路中。 (3)肖特基二极管:肖特基二极管是一种金属同半导体相接 触形成整流特性的单极型器件,其导通压降的典型值为 0.4~0.6V,而且它的反向恢复时间短,为几十纳秒。但 反向耐压在200V以下。它常被用于高频低压开关电路或 高频低压整流电路中。

电力电子技术2.1-2.2

电力电子技术2.1-2.2
转换为可以被主电路所接收的信息。
5)保护电路:用于保证电力电子器件和整个电力电子系 统正常可靠工作。 因为主电路中有电压和电流的冲击,而电力电子器 件一般比主电路中的普通器件昂贵,但承受过电压和过 电流的能力却要差一些,所以保护电路的存在是非常必 要的。 6)电气隔离:将主电路和控制电路等进行安全隔离,而 通过光、磁等来传递信号。 因为主电路中电流和电压较大,而控制电路中的元 器件只能承受较小的电压和电流,因此在主电路和控制 电路连接的路径上需要进行电气隔离。例如:驱动电路 与主电路的连接处、与控制信号的连接处,主电路与检 测电路的连接处。
④PN结的电容效应 PN结的电荷量随外加电压的变化而变化,呈现电容效应,称 为结电容CJ,又称为微分电容。 结电容按其产生的机制和作用的差别分为以下两类: A—势垒电容CB: 它只在外加电压变化时才起作用,外加电压频率越高,其作 用越明显。 它的大小与PN结的截面积成正比,与阻挡层厚度成反比。 B—扩散电容CD: 它仅在正向偏置时起作用。 在正向偏置时,当正向电压较低时,势垒电容为结电容的主 要成份,正向电压较高时,扩散电容为结电容的主要成份。 注意:结电容影响PN结的工作频率,特别是在高速开关的状态 下,可使其单向导电性变差,甚至不能工作,应用时要注意。
4 电力电子器件的分类
(1)按照器件的开关控制特性分类:分为三类 ①不可控器件:器件本身没有导通、关断控制功能,而是需要根据 电路条件决定其导通、关断状态的器件称为不可控器件。 如:电力二极管。 ②半控型器件:通过控制信号只能控制其导通,不能控制其关断的 电力电子器件称为半控型器件。 如:晶闸管及其大部分派生器件。 ③全控型器件:通过控制信号既可控制其导通又可控制其关断的器 件,称为全控型器件。 如:门极可关断晶闸管(GTO)、功率晶体管GTR、功率场效应晶 体管(MOSFET)、绝缘栅双极型晶体管(IGBT)等。

电力电子器件

电力电子器件
◆从关断时间来看,普通晶闸管一般为数百微秒,快速
晶闸管为数十微秒,而高频晶闸管则为10s左右。
◆高频晶闸管的不足在于其电压和电流定额都不易做高。
◆由于工作频率较高,选择快速晶闸管和高频晶闸管的 通态平均电流时不能忽略其开关损耗的发热效应。
2.3.4 晶闸管的派生器件
I
■双向晶闸管(Triode AC
2.3.3 晶闸管的主要参数
■电压定额 ◆断态重复峰值电压UDRM ☞是在门极断路而结温为额定值时,允许重复加在器 件上的正向峰值电压。 ☞国标规定断态重复峰值电压UDRM为断态不重复峰值 电压(即断态最大瞬时电压)UDSM的90%。 ☞断态不重复峰值电压应低于正向转折电压Ubo。 ◆反向重复峰值电压URRM ☞是在门极断路而结温为额定值时,允许重复加在器 件上的反向峰值电压。 ☞规定反向重复峰值电压URRM为反向不重复峰值电压 (即反向最大瞬态电压)URSM的90%。 ☞反向不重复峰值电压应低于反向击穿电压。
电子器件
2.6 功率集成电路与集成电力电子模块
■基本概念 ◆ 20世纪80年代中后期开始,模块化趋势,将多
个器件封装在一个模块中,称为功率模块。 ◆可缩小装置体积,降低成本,提高可靠性。 ◆对工作频率高的电路,可大大减小线路电感,
从而简化对保护和缓冲电路的要求。 ◆将器件与逻辑、控制、保护、传感、检测、自
时间短、高温特性好、额 定结温高等优点,可用于 不需要阻断反向电压的电 路中。
K G
A
I O
IG=0 U
a)
b)
图2-12 逆导晶闸管的电气图形符号 和伏安特性
a) 电气图形符号 b) 伏安特性
2.3.4 晶闸管的派生器件
■光控晶闸管(Light

电力电子器件的概念

电力电子器件的概念

电力电子器件的概念:直接承担电能的变换或控制的电路称为主电路。

可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件称为电力电子器件。

电力电子器件的特征:(1)、电力电子器件所能处理电功率的大小,所能承受的电压、电流的能力是其重要参数,一般都大于信息电子器件。

(2)、电力电子器件为减小自身损耗,提高效率,一般都工作在开关状态,通态阻搞接近于短路,电流由外电路决定;断态阻搞接近于断路,电流几乎为零,电压决定于外电路。

(3)、电力电子器件往往需要由信息电子电路来控制。

(4)、自由功率损耗远大于信息电子电路,需要良好的散热导热设计。

电力电子器件的系统组成:一般由控制电路、驱动电路和以电力电子器件为核心的主电路组成。

电力电子器件的分类:1、按能够被控制信号所控制的程度来分类:全控型:既可控制其导通,又可控制其关断(绝缘栅双极晶体管,电力MOSFET)半控型:可以控制其导通,不能控制其关断(晶闸管、其大部分派生器件)不可控型:导通与关断取决于所承受的电流、电压(电力二极管)2、按照驱动电路加在器件控制端的信号性质分类:电压驱动型、电流驱动型3、根据驱动电路加在器件控制端有效信号的波形分类:脉冲触发型、电平控制型4、按照器件内部电子的空穴参与导电的情况:单极型、双极型、复合型电力二极管特征:能承受高电压和大电流(垂直导电结构、低掺杂N 区)静态特征:伏安特征动态特征:零偏、正偏、反偏时的过滤过程(图)主要参数:1、正向平均电流I F(AV),正向压降VF,反向重复峰值电压V RRM,最高工作结温T JM,反向恢复时间,浪涌电流。

主要类型:普通二极管(整流二极管)、快恢复二极管、有特基二极管电导调制效应:PN结通过大电流,大量空穴被注入基区,它们来不及和基区中的电子中和就到达负极,使基区电子浓度大幅增加。

——使原始基片的电阻率下降。

晶闸管:正常导通条件:晶闸管承受正向阳极电压,向门极施加触发电流。

关断条件:。

电力电子器件

电力电子器件

电力电子器件电力电子器件是电力系统中的重要组成部分,它们在电能转换、调节和控制等方面发挥着关键作用。

本文将介绍电力电子器件的分类、工作原理以及在电力系统中的应用。

一、分类根据其功能和特性,电力电子器件可以分为不同类型。

常见的电力电子器件主要包括晶闸管、可控硅、晶闸二极管、IGBT、MOSFET等。

这些器件具有不同的工作原理和特性,适用于不同的电力应用。

二、工作原理1. 晶闸管:晶闸管是一种具有双向导通能力的半导体器件。

它由四个不同极性的层连接而成,通过控制极的激励信号,可以控制晶闸管的导通和截止状态,实现电流的控制和转换。

2. 可控硅:可控硅是一种双向可控的半导体开关。

它可以通过加在控制极上的电流脉冲或电压来控制其导通和截止状态,用于实现交流电的调节和控制。

3. 晶闸二极管:晶闸二极管是一种具有可控导通特性的二极管。

它与普通二极管相比,在导通状态下具有较低的压降和较高的导通电流能力,可以用于实现电流的控制和反向电压的保护。

4. IGBT:IGBT是绝缘栅双极型晶体管的简称。

它结合了晶闸管和MOSFET的优点,既能承受高电压,又具有低导通压降和高开关速度的特性,广泛应用于电力电子和工业控制领域。

5. MOSFET:MOSFET是一种常用的场效应管。

它具有高输入阻抗、低开关损耗和快速响应速度等优点,适用于低功率应用和高频切换。

三、应用电力电子器件在电力系统中的应用广泛。

以下是几个常见的应用领域:1. 逆变器:电力电子器件可以将直流电转换为交流电,实现电能的逆变。

这在再生能源发电系统中尤为重要,可以将太阳能电池板或风力发电机输出的直流电转换为交流电,供电给家庭或工业用电。

2. 变频器:电力电子器件的调节特性使其非常适合用于变频器。

变频器可以根据需要调整电机的转速和运行模式,实现对电机的精确控制,广泛应用于工业和交通领域。

3. 电能质量改善器:电力电子器件可以修复和改善电力系统中的电能质量问题,如电压波动、谐波污染等。

电力电子器件概述55500

电力电子器件概述55500

1.2.4 电力二极管的主要类型
2) 快恢复二极管 (Fast Recovery Diode——FRD)
简称快速二极管
快恢复外延二极管 (Fast Recovery Epitaxial Diodes——FRED), 其trr更短(可低于50ns), UF也很低(0.9V左 右),但其反向耐压多在1200V以下。
电真空器件 (汞弧整流器、闸流管)
半导体器件 (采用的主要材料硅)仍然
1.1.1 电力电子器件的概念和特征
3)同处理信息的电子器件相比的一般特征:
能处理电功率的能力,一般远大于处理信息的电子 器件。 电力电子器件一般都工作在开关状态。 电力电子器件往往需要由信息电子电路来控制。 电力电子器件自身的功率损耗远大于信息电子器件, 一般都要安装散热器。
1.3.2 晶闸管的基本特性
晶闸管正常工作时的特性总结如下:
承受反向电压时,不论门极是否有触发电流,晶闸 管都不会导通。 承受正向电压时,仅在门极有触发电流的情况下晶 闸管才能开通。 晶闸管一旦导通,门极就失去控制作用。 要使晶闸管关断,只能使晶闸管的电流降到接近于 零的某一数值以下 。 DATASHEET
1.3 半控器件—晶闸管
1.3.1 晶闸管的结构与工作原理 1.3.2 晶闸管的基本特性 1.3.3 晶闸管的主要参数 1.3.4 晶闸管的派生器件
1.3 半控器件—晶闸管·引言
晶闸管(Thyristor):晶体闸流管,可控硅整流 器(Silicon Controlled Rectifier——SCR)
从性能上可分为快速恢复和超快速恢复两个等级。 前者trr为数百纳秒或更长,后者则在100ns以下, 甚至达到20~30ns。 DATASHEET 1 2 3

第二章电力电子器件

第二章电力电子器件
或者关断的控制,这类电力电子器件被称为电压控制型电力电子器件或者电 压驱动型电力电子器件。
第4页/共82页
2.1 电力电子器件概述
电力电子器件的使用特点 从使用角度出发,主要可从以下五个方面考察电力电子器件的性能特点。 (1)导通压降。电力电子器件工作在饱和导通状态时仍产生一定的管耗,管耗 与器件导通压降成正比。 (2)运行频率。受到开关损耗和系统控制分辨率的限制,器件的开关时间越短, 器件可运行的频率越高。 (3)器件容量。器件容量包括输出功率、电压及电流等级、功率损耗等参数。 (4)耐冲击能力。这主要是指器件短时间内承受过电流的能力。半控型器件的 耐冲击能力远高于全控型器件。 (5)可靠性。这主要是指器件防止误导通的能力。
普通二极管(Conventional Diode)又称整流二极管(Rectifier Diode), 多用于开关频率不高(1kHz以下)的整流电路中 2. 快速恢复二极管
恢复过程很短,特别是反向恢复过程很短(一般在5ms以下)的二极管被称 为快速恢复二极管(Fast Recovery Diode,FRD),简称快速二极管。 3. 肖特基势垒二极管
2.3 半控型器件—晶闸管及其派生器件
2. 晶闸管的工作原理 按图2.12所示电路 (1) 当晶闸管承受反向阳极电压时,不论门极承受何种电压,晶闸管都处
于关断状态。 (2) 当晶闸管承受正向阳极电压时,若门极不施加电压,晶闸管也处于关
断状态。即晶闸管具有正向阻断能力。 (3) 要使晶闸管由阻断变为导通,必须在晶闸管承受正向阳极电压时,同
第11页/共82页
2.2 电力二极管
电力二极管的工作原理和基本特性
电力二极管的基本结构都是以半导体PN结为基础。电力二极管实际上是 由一个面积较大的PN结和两端引线以及封装组成的。图2.7所示为电力二极 管的外形、结构和电气图形符号。从外形上看,电力二极管主要有螺栓型和 平板型两种封装。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.1 电力电子器件的概念和特征 1.1.2 应用电力电子器件的系统组成 1.1.3 电力电子器件的分类 1.1.4 本章内容和学习要点
1.1.1 电力电子器件的概念和特征
电力电子器件
1)概念: 电力电子器件(Power Electronic Device)
——可直接用于主电路中,实现电能的变换或控制的电 子器件。


控制电路


检测 电路
保护 电路
驱动 电路
V1 LR
V2 主电路
在主电路 和控制电 路中附加 一些电路 ,以保证 电力电子 器件和整 个系统正 常可靠运 行
电气隔离
图1-1 电力电子器件在实际应用中的系统组成
1.1.3 电力电子器件的分类
按照器件能够被控制的程度,分为以下三类 :
半控型器件(Thyristor) ——通过控制信号可以控制其导通而不能控
dt
并伴随有明显的反向电压过冲。
IRP URP
开通过程:
正向压降先出现一个过冲UFP,经
图1-5(b)关断过程
u
i
UFP
iF
过一段时间才趋于接近稳态压降的
1.1.1 电力电子器件的概念和特征
电力电子器件的损耗 通态损耗
主要损耗 断态损耗 开关损耗
开通损耗 关断损耗
通态损耗是器件功率损耗的主要成因。
器件开关频率较高时,开关损耗可能成为器件功率损 耗的主要因素。
1.1.2 应用电力电子器件系统组成
电力电子系统:由控制电路、驱动电路、保护电路
和以电力电子器件为核心的主电路组成。
电压驱动型
——仅通过在控制端和公共端之间施加一定的电压信 号就可实现导通或者关断的控制。
1.1.4 本章学习内容与学习要点
本章内容:
介绍各种器件的工作原理、基本特性、主要参数以 及选择和使用中应注意的一些问题。 集中讲述电力电子器件的驱动、保护和串、并联使 用这三个问题。
学习要点:
最重要的是掌握其基本特性。 掌握电力电子器件的型号命名法,以及其参数和特 性曲线的使用方法。 可能会主电路的其它电路元件有特殊的要求。
电力电子器件概述
2020年7月8日星期三
第1章 电力电子器件·引言
电子技术的基础
——— 电子器件:晶体管和集成电路
电力电子电路的基础
——— 电力电子器件
本章主要内容:
概述电力电子器件的概念、特点和分类等问题。 介绍常用电力电子器件的工作原理、基本特性、主 要参数以及选择和使用中应注意问题。
1.1 电力电子器件概述
➢二极管的基本原理就在于PN结的单向导电性这一主要 特征。
PN结的反向击穿(两种形式)
雪崩击穿 齐纳击穿 均可能导致热击穿
1.2.1 PN结与电力二极管的工作原理
PN结的电容效应:
PN结的电荷量随外加电压而变化,呈现电容效 应,称为结电容CJ,又称为微分电容。
结电容按其产生机制和作用的差别分为势垒电 容CB和扩散电容CD。 电容影响PN结的工作频率,尤其是高速的开关 状态。
主电路(Main Power Circuit)
——电气设备或电力系统中,直接承担电能的变换或控 制任务的电路。
2)分类:
电真空器件 (汞弧整流器、闸流管)
半导体器件 (采用的主要材料硅)仍然
1.1.1 电力电子器件的概念和特征
3)同处理信息的电子器件相比的一般特征:
能处理电功率的能力,一般远大于处理信息的电子 器件。 电力电子器件一般都工作在开关状态。 电力电子器件往往需要由信息电子电路来控制。 电力电子器件自身的功率损耗远大于信息电子器件 ,一般都要安装散热器。
制其关断。 全控型器件(IGBT,MOSFET)
——通过控制信号既可控制其导通又可控制其 关 断,又称自关断器件。 不可控器件(Power Diode)
——不能用控制信号来控制其通断, 因此也就不 需要驱动电路。
1.1.3 电力电子器件的分类
按照驱动电路信号的性质,分为两类:
电流驱动型
——通过从控制端注入或者抽出电流来实现导通或者 关断的控制。
uF 2V
0
b) tfr
t
图1-5 电力二极管的动态过程波形
a) 正向偏置转换为反向偏置
b) 零偏置转换为正向偏置
1.2.2 电力二极管的基本特性
关断过程
IF
diF
dt
trr
须经过一段短暂的时间才能重新获 UF
td
tf
得反向阻断能力,进入截止状Leabharlann 。tF t0t1 t2
UR
t
diR
关断之前有较大的反向电流出现,
快恢复二极管和肖特基二极管,分别在中、高 频整流和逆变,以及低压高频整流的场合,具 有不可替代的地位。
整流二极管及模块
1.2.1 PN结与电力二极管的工作原理
基本结构和工作 原理与信息电子 电路中的二极管 一样。
由一个面积较大 的PN结和两端引 线以及封装组成 的。
从外形上看,主 要有螺栓型和平 板型两种封装。
2) 动态特性
——二极管的电压-电流特性随时 间变化的
——结电容的存在
延迟时间:td= t1- t0, 电流下降时间:tf= t2- t1
F
diF
dt
trr
UF
td
tf
tF t0
t1 t2
UR
t
diR
dt
u
IRP a)
URP
i
UFP
iF
反向恢复时间:trr= td+ tf
恢复特性的软度:下降时间与 延迟时间 的比值tf /td,或称恢复 系数,用Sr表示。
1.2.2 电力二极管的基本特性
1) 静态特性
主要指其伏安特性
门槛电压UTO,正向电流 IF开始明显增加所对应的 电压。
与IF对应的电力二极管两 端的电压即为其正向电 压降UF 。
承受反向电压时,只有 微小而数值恒定的反向 漏电流。
I IF
O UTO UF
U
图1-4 电力二极管的伏安特性
1.2.2 电力二极管的基本特性
A
K A
a)
K
A
K
PN
I J
b)
A
K
c)
图1-2 电力二极管的外形、结构和电气 图形符号
a) 外形 b) 结构 c) 电气图形符号
1.2.1 PN结与电力二极管的工作原理
PN结的状态
状态 参数
电流 电压 阻态
正向导通
正向大 维持1V 低阻态
反向截止
几乎为零 反向大 高阻态
反向击穿
反向大 反向大 ——
1.2 不可控器件—电力二极管
1.2.1 PN结与电力二极管的工作原理 1.2.2 电力二极管的基本特性 1.2.3 电力二极管的主要参数 1.2.4 电力二极管的主要类型
1.2 不可控器件—电力二极管·引 言
Power Diode结构和原理简单,工作可靠,自 20世纪50年代初期就获得应用。
相关文档
最新文档