三年级奥数精品第六讲 周期问题

合集下载

三年级奥数-周期问题练习题

三年级奥数-周期问题练习题

三年级周期问题例1:小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○ ⋯你知道它们所排列的这些小球中,第90 个是什么球?第 100 个又是什么球呢?【巩固】美美有黑珠、白珠共 102 个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○⋯⋯那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【例 1】小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.⑴第 73 颗是什么颜色的?⑵第 10 颗黄珠子是从头起第几颗?⑶第 8 颗红珠子与第11 颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?【巩固】奥运会就要到了,京京特意做了一些“北京欢迎你”的条幅,这些条幅连起来就成了:“北京欢迎你北京欢迎你北京欢迎你⋯⋯”依次排列,第28 个字是什么字?【巩固】节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有 3 盏彩灯.那么第 73 盏灯是什么颜色的灯?【例 2】节日的夜景真漂亮,街上的彩灯按照 5 盏红灯、再接 4 盏蓝灯、再接 1 盏黄灯,然后又是5盏红灯、 4 盏蓝灯、 1 盏黄灯、⋯⋯这样排下去.问:⑴第 150 盏灯是什么颜色?⑵前 200 盏彩灯中有多少盏蓝灯?【巩固】在一根绳子上依次穿 2 个红珠、 2 个白珠、 5 个黑珠,并按此方式反复,如果从头开始数,直到第50 颗,那么其中白珠有多少颗?【巩固】小莉把平时积存下来的200枚硬币按3个1分,2个2分,1个5分的顺序排列起来.⑴最后 1 枚是几分硬币⑵这 200 枚硬币一共价值多少钱?【巩固】桌子上摆了很多硬币,按一个一角,两个五角,三个一元的次序排列,一共19 枚硬币.问:最后一个是多少钱的?第十四个是多少钱的?【巩固】有249朵花,按 5 朵红花, 9 朵黄花, 13 朵绿花的顺序轮流排列,最后一朵是什么颜色的花?这 249 朵花中,什么花最多,什么花最少?最少的花比最多的花少几朵?【例 3】如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我, A ”,第二组是“们,B”⋯⋯我们爱科学我们爱科学我⋯⋯A B C D E F G A B C D⋯⋯⑴写出第62 组是什么?⑵如果“爱, C ”代表 1991 年,那么“科, D ”代表1992年⋯⋯问2008年对应怎样的组?【巩固】在图所示的表中,将每列上、下两个字组成一组,例如第一组为(新奥),第二组为(北林),那么第 50 组是什么?新北京新奥运新北京新奥运新北京新奥运⋯⋯奥林匹克运动会奥林匹克运动会奥林匹克运动会⋯⋯【例 4】如右图,是一片刚刚收割过的稻田,每个小正方形的边长是 1 米, A、 B、 C 三点周围的阴影部分是圆形的水洼。

奥数周期问题(可编辑修改word版)

奥数周期问题(可编辑修改word版)

六年级数学讲义周期问题一、教学衔接上次作业检查及讲解二、教学内容(一)知识介绍周期问题是指事物在运动变化的发展过程中,某些特征循环往复出现,其连续两次出现所经过的时间叫做周期。

在数学上,不仅有专门研究周期现象的分支,而且平时解题时也常常碰到与周期现象有关的问题。

这些数学问题只要我们发展某种周期现象,并充分加以利用,把要求的问题和某一周期的等式相对应,就能找到解题关键。

(二)例题精讲例题 1:2001 年 10 月 1 日是星期一,问 10 月 25 日是星期几?分析:我们知道,每个星期有 7 天,也就是说以 7 天为一个周期不断地重复。

那么从 10 月1 日到10 月25日经过了 25—1=24(天)。

因此用除法算式解答。

解:(1)、从 10 月1 日到10 月25 日有:25—1=24(天)(2)、24 天里有多少个星期余多少天?24÷7=3(个星期)……3(天)(说明 24 天中包含 3 个星期还多 3 天,最后一天起,再过 3 天就应是星期四)答:10 月25 日是星期四。

巩固练习:1、2001 年5 月3 日是星期四,问 5 月20 日是星期几?2、2008 年8 月1 日是星期三,问 8 月28 日是星期几?例题 2:100 个 3 相乘,积的个位数字是几?分析:我们只需考虑积的个位数的排列规律就可以了。

解:(1)、1×3=3……1个3 相乘积的个位数字是:3(2)、3×3=9……2个3 相乘积的个位数字是:9(3)、3×3×3=27……3个3 相乘积的个位数字是:7(4)、3×3×3×3=81……4个3 相乘积的个位数字是:1(5)、3×3×3×3×3=243……5个3 相乘积的个位数字是:3(已经重复出现)(说明:可以发现积的个位数分别以 3、9、7、1 不断出重复出现的。

三年级奥数-周期问题练习题

三年级奥数-周期问题练习题

例1:小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○ ⋯你知道它们所排列的这些小球中,第90 个是什么球?第 100 个又是什么球呢?【巩固】美美有黑珠、白珠共 102 个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○⋯⋯那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【例 1】小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.⑴第 73 颗是什么颜色的?⑵第 10 颗黄珠子是从头起第几颗?⑶第 8 颗红珠子与第11 颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?【巩固】奥运会就要到了,京京特意做了一些“北京欢迎你”的条幅,这些条幅连起来就成了:“北京欢迎你北京欢迎你北京欢迎你⋯⋯”依次排列,第28 个字是什么字?【巩固】节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3 盏彩灯.那么第 73 盏灯是什么颜色的灯?【例 2】节日的夜景真漂亮,街上的彩灯按照 5 盏红灯、再接4 盏蓝灯、再接 1 盏黄灯,然后又是 5盏红灯、 4 盏蓝灯、 1 盏黄灯、⋯⋯这样排下去.问:⑴第 150 盏灯是什么颜色?⑵前 200 盏彩灯中有多少盏蓝灯?【巩固】在一根绳子上依次穿 2 个红珠、 2 个白珠、 5 个黑珠,并按此方式反复,如果从头开始数,直到第 50 颗,那么其中白珠有多少颗?【巩固】小莉把平时积存下来的200枚硬币按3个1分,2个2分,1个5分的顺序排列起来.⑴最后 1 枚是几分硬币⑵这 200 枚硬币一共价值多少钱?【巩固】桌子上摆了很多硬币,按一个一角,两个五角,三个一元的次序排列,一共19 枚硬币.问:最后一个是多少钱的?第十四个是多少钱的?【巩固】有 249 朵花,按5 朵红花, 9 朵黄花, 13 朵绿花的顺序轮流排列,最后一朵是什么颜色的花?这 249 朵花中,什么花最多,什么花最少?最少的花比最多的花少几朵?【例 3】如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我, A ”,第二组是“们,B”⋯⋯我们爱科学我们爱科学我⋯⋯A B C D E F G A B C D ⋯⋯⑴写出第 62 组是什么?⑵如果“爱, C ”代表 1991 年,那么“科, D ”代表 1992 年⋯⋯问 2008 年对应怎样的组?【巩固】在图所示的表中,将每列上、下两个字组成一组,例如第一组为(新奥),第二组为(北林),那么第 50 组是什么?新北京新奥运新北京新奥运新北京新奥运⋯⋯奥林匹克运动会奥林匹克运动会奥林匹克运动会⋯⋯【例 4】如右图,是一片刚刚收割过的稻田,每个小正方形的边长是 1 米, A、 B、 C 三点周围的阴影部分是圆形的水洼。

三年级奥数.应用题.周期问题(A级).学生版

三年级奥数.应用题.周期问题(A级).学生版

流星雨(Meteor Shower)的产生一般认为是由于与地球相摩擦的结果(流星体可以是小行星带上的小行星),流星群往往是由分裂的碎片产生,因此,流星群的轨道常常与彗星的轨道相关。

成群的流星就形成了流星雨。

流星雨看起来像是流星从夜空中的一点迸发并坠落下来。

这一点或这一小块天区叫作流星雨的点。

通常以流星雨辐射点所在天区的给流星雨命名,以区别来自不同方向的流星雨。

例如每年11月1 7 日前后出现的流星雨辐射点在中,就被命名为狮子座流星雨。

流星雨、流星雨、也是这样命名的。

单个出现的流星,在方向和时间上都很随机,也无任何辐射点可言,这种流星称为偶发流星。

与偶发流星有着本质不同的流星雨的重要特征之一,是所有流星的反向延长线都相交于辐射点。

世界上最早的关于流星雨的记载是在687年,关于的记载:“夜中星陨如雨”。

同学们你们知道科学家是如何知道什么时间出现美丽而又神秘的流星雨吗? 这就用到了我们今天的学习内容,周期问题。

周期问题:知识框架课前预习周期问题时间叫周期;解决有关周期性问题的关键是确定循环周期.分类: 1.图形中的周期问题;2.数列中的周期问题;3.年月日中的周期问题.周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。

主要方法有观察法、逆推法、经验法等。

主要问题有年月日、星期几问题等。

⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829÷=,所以第18个数是2.⑵如果比整数个周期多n个,那么为下个周期里的第n个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351÷=⋅⋅⋅,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(161)271-÷=⋅⋅⋅,所以第16个数是2.1.找准变化的规律2.确定解题的突破3. 同余知识的应用(杯赛考试涉及)【例1】小丁把同样大小的红、白、黑珠子按先2个红的、后1个白的、再3个黑的的规律排列(如下图),请你算一算,第32个珠子是什么颜色?......重难点例题精讲【巩固】★○○○★★○○○★★○○○……这样的一排图形中第87个是什么图形,在87个图形中一共有多少个五角星?【例 2】植树节那天,同学们按1棵松树,2棵柏树,3棵香樟树的顺序植树,第15棵是什么树?第150棵又是什么树?【巩固】在一根绳子上依次穿2个红珠、2个白珠、5个黑珠,并按此方式反复,如果从头开始数,直到第50颗,那么其中白珠有多少颗?【例 3】小莉把平时积存下来的200枚硬币按3个1分,2个2分,1个5分的顺序排列起来.⑴最后1枚是几分硬币⑵这200枚硬币一共价值多少钱?【巩固】桌子上摆了很多硬币,按一个一角,两个五角,三个一元的次序排列,一共19枚硬币.问:最后一个是多少钱的?第十四个是多少钱的?【例 4】如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,A,第二组是“们,B……⑵如果“爱,C”代表1991年,那么“科,D”代表1992年……问2008年对应怎样的组?【巩固】如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“赵,甲,第二组是“钱,乙……第66组是什么?模块二、数列中的周期问题【例 5】哈利波特在地上写了一列数:7,8,4,5,3,3,7,8,4,5…你知道他写的第81个数是多少吗?你能求出这81个数相加的和是多少吗?【巩固】根据下面一组数列的规律求出51是第几个数?1、2、3、4、6、7、8、9、11、12、13、14、16、17……【例 6】100个13相乘,积的个位数字是几?【巩固】93个18相乘,积的个位数字是几?【例 7】如图,电子跳蚤每跳一步,可从一个圆圈跳到相邻的圆圈,现在,一只红跳蚤从标有数“1”的圆圈按顺时针方向跳了100步,落在一个圆圈里。

三年级奥数-周期问题练习题

三年级奥数-周期问题练习题

三年级周期问题例1:小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○ ⋯你知道它们所排列的这些小球中,第90 个是什么球?第 100 个又是什么球呢?【巩固】美美有黑珠、白珠共 102 个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○⋯⋯那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【例 1】小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.⑴第 73 颗是什么颜色的?⑵第 10 颗黄珠子是从头起第几颗?⑶第 8 颗红珠子与第11 颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?【巩固】奥运会就要到了,京京特意做了一些“北京欢迎你”的条幅,这些条幅连起来就成了:“北京欢迎你北京欢迎你北京欢迎你⋯⋯”依次排列,第28 个字是什么字?【巩固】节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有 3 盏彩灯.那么第 73 盏灯是什么颜色的灯?【例 2】节日的夜景真漂亮,街上的彩灯按照 5 盏红灯、再接 4 盏蓝灯、再接 1 盏黄灯,然后又是5盏红灯、 4 盏蓝灯、 1 盏黄灯、⋯⋯这样排下去.问:⑴第 150 盏灯是什么颜色?⑵前 200 盏彩灯中有多少盏蓝灯?【巩固】在一根绳子上依次穿 2 个红珠、 2 个白珠、 5 个黑珠,并按此方式反复,如果从头开始数,直到第50 颗,那么其中白珠有多少颗?【巩固】小莉把平时积存下来的200枚硬币按3个1分,2个2分,1个5分的顺序排列起来.⑴最后 1 枚是几分硬币⑵这 200 枚硬币一共价值多少钱?【巩固】桌子上摆了很多硬币,按一个一角,两个五角,三个一元的次序排列,一共19 枚硬币.问:最后一个是多少钱的?第十四个是多少钱的?【巩固】有249朵花,按 5 朵红花, 9 朵黄花, 13 朵绿花的顺序轮流排列,最后一朵是什么颜色的花?这 249 朵花中,什么花最多,什么花最少?最少的花比最多的花少几朵?【例 3】如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我, A ”,第二组是“们,B”⋯⋯我们爱科学我们爱科学我⋯⋯A B C D E F G A B C D⋯⋯⑴写出第62 组是什么?⑵如果“爱, C ”代表 1991 年,那么“科, D ”代表1992年⋯⋯问2008年对应怎样的组?【巩固】在图所示的表中,将每列上、下两个字组成一组,例如第一组为(新奥),第二组为(北林),那么第 50 组是什么?新北京新奥运新北京新奥运新北京新奥运⋯⋯奥林匹克运动会奥林匹克运动会奥林匹克运动会⋯⋯【例 4】如右图,是一片刚刚收割过的稻田,每个小正方形的边长是 1 米, A、 B、 C 三点周围的阴影部分是圆形的水洼。

三年级上奥数精品讲义周期问题

三年级上奥数精品讲义周期问题

穿手链(周期问题)知识图谱穿手链知识精讲一.简单周期问题1.一些数、图像或事物,按照周而复始的规律循环出现,这种特殊的规律问题称为周期问题.2.在解决周期问题时,关键在于找到周期的长度.只要找到周期的长度,再用总数除以周期长度,得到的商就是完整的周期的个数,余数就是除去完整周期的部分后剩下的个数;若没有余数,则是周期中的最后一个.注意在有余数的除法中,余数要比除数小.3.对于开头比较特殊的周期问题,我们可以先把特殊部分去掉.二.多重周期解题思路1.分别根据各自的周期计算结果,最后加以组合.2.找到公共周期,并归纳出公共周期内的具体情况,再进行计算.由于公共周期必须同时是两个规律甚至更多规律的周期,所以公共周期的长度必须是这些周期长度的公同倍数.一般的,要找最小的那个,称之为最小公倍数.三.对于报数问题一般有两种:1.第一种是两次报数都是同向的.2.第二种是第一次报数是从左向右,第二次报数却是从右到左,这时可以将反向的周期转化为同向的周期问题.三点剖析本讲主要培养学生的实践应用能力,其次培养学生的观察推理能力.本讲内容是在数列和找规律的基础上,进一步学习周期问题.从常见的数字规律入手,了解周期,学习周期长度等的计算和应用.后续课程还会进一步学习复杂周期问题.课堂引入例题1、今天,唐小果和艾小莎在手工课上学习了穿手链.下面是她们穿好的一些手链.你能看出来她们穿出来的手链有什么特点吗?第三个手链中共用了22颗珠子,其中白色的珠子有多少颗呢?例题2、如图,要穿出来这样的一串手链,颜色分别是黑、白、蓝、绿、粉.总共用了25颗珠子,其中共有多少颗蓝色的珠子?如果总共用了23颗,其中有几颗可能是蓝色的?写出所有可能.简单周期问题例题1、元宵节这天艾小莎去看花灯,发现彩灯按着红、蓝、黄、绿、红、蓝黄、绿……的顺序依次排列,那么第12盏灯是什么颜色?是按照“红蓝黄绿”的顺序重复的.例题2、有249朵花,按照5朵红花,9朵黄花,13朵绿花的顺序循环排列,则这249朵花中绿花有多少朵?例题3、“A、B、C、D、E、D、C、B、A、B、C、D、E、D、C、B、A、B……”前80个字母有多少个“C”?好像不是按照“A、B、C、D、E”的顺序重复的,那周期是什么呢?例题4、在从1开始的自然数中,第100个不能被3除尽的数是多少?除以3的余数可能是1、2或者没有余数,其中有两种是除不尽的.例题5、一些学生站成一排,从左向右1~3循环报数.第10个报1的学生是第几人?例题6、“胡萝卜熟啦熟啦……”,“熟啦”两个汉字不断重复,这句话中第30个汉字是什么?“胡萝卜”只出现在开始.随练1、一些图形按照下面的规律排成一行,那么前99个图形中共多少个三角形?随练2、三天打鱼,两天晒网,按照这样的方式,80天内有_______天在打鱼.随练3、“A、B、C、D、C、B、A、B、C、D、C、B、A、B、……”前30个字母有多少个“A”?随练4、有268朵花,按照4朵红花,10朵黄花,16朵绿花的顺序循环排列,则这268朵花种绿花有________朵.多重周期问题例题1、如图所示,表格中每行的文字都是循环出现的:第一行是“哥伦比亚”4个汉字不断重复,第二行则是“阿尔及利亚”5个汉字不断重复.那么这两行的公共周期长度是多少?哥伦比亚哥伦比亚哥…阿尔及利亚阿尔及利…公共周期,既是“哥伦比亚”的周期,也是“阿尔及利亚”的周期.例题2、如图所示,表格中每行文字都是循环出现的:第一行是“高思杯”三个汉字不断重复,第二行是“重磅来袭”四个汉字不断重复.那么,第2020列从上到下依次写出的两个汉字是什么?高思杯高思杯高思杯……重磅来袭重磅来袭重……例题3、 如图所示,表格中每行的文字都是循环出现的:第一行是“小鸡炖蘑菇”5个汉字不断重复,第二行是“宫保鸡丁”4个汉字不断重复,第三行则是“回锅肉”3个汉字不断重复.那么,第121列中从上到下依次是哪3个字?例题4、 如图,用“原、始、人”3个字,在一张方格纸中自左上到右下的斜行里按顺序循环填入.那么第88行18列交叉处填入的字是什么?例题5、 66名士兵排成一列横队,第一次从左到右1至5循环报数,第二次从左到右1至2循环报数,那么,两次都报2的有多少名?既报1又报2的士兵有多少名?例题6、 100名士兵排成一横排,第一次从左到右1至3循环报数,第二次从右到左1至4循环报数.请问:既报2又报3的士兵有多少名?小 鸡 炖 蘑 菇 小 鸡 炖 蘑 … 宫 保 鸡 丁 宫 保 鸡 丁 宫 … 回锅肉回锅肉回锅肉…三重周期问题与两重周期有什么区别和联系吗?原 始 人 … 始 人 … 人 … …每行每列都是规律的哦~这个就是双重周期问题.这个跟上一题好像有些不一样呐~你发现了吗?例题7、 如图,电子跳蚤每跳一步,可从一个圆圈跳到相邻的圆圈.现在,一只红跳蚤从标有数“1”的圆圈按顺时针方向跳了100步,落在一个圆圈里.一只黑跳蚤也从标有数“1”的圆圈起跳,但它是沿着逆时针方向跳了200步,落在另一个圆圈里.这两个圆圈里的数的乘积是多少?随练1、 40个人站成一排排队报数,第一次从左到右1至3循环报数,第二次从左到右1至4循环报数,两次报相同数的人有________个.随练2、 如图所示,表格中每行的文字都是循环出现的:第一行是“天才眼镜狗”5个汉字不断重复,第二行是“大灰狼”3个汉字不断重复,第三行则是“坏人”2个汉字不断重复.那么第16列从上到下依次是哪3个汉字?易错纠改例题1、 下面的解题过程是否正确,若不正确,写出正确答案.拓展1、 有一个数列如下:1、2、3、4、3、2、1、2、3、4、3、2、1、2、…… 这个数列的第40个数是__________. 2、 在学校运动会的开幕式上,46名同学组成仪仗队站成一排.如图所示,每人手里都举着一面彩旗,从左到右颜色依次是红、黄、蓝、绿四种颜色依次循环.最右侧的同学手里的彩旗是__________色.3、 一些学生按照男生(1号)、男生(2号)、女生(3号)、男生(4号)、男生(5号)、女生(6号)……的顺序从左至右站成一排.那么,第20个女生的编号是__________.4、 温老师参加一次10分钟的知识竞赛,他每分钟能做15道题,但做3道错一道,而且他做2分钟要休息1分钟,那么温老师这次竞赛做对了____________道题.1 2 3 4 567 天 才 眼 镜 狗 天 才 眼 镜 … 大 灰 狼 大 灰 狼 大 灰 狼 … 坏 人坏人坏人坏人坏…【题目】徐老师决定实施自己的健康饮食计划表,第1天吃1个蛋糕,第2天吃1根胡萝卜,第3天吃1根胡萝卜,第4天吃1个蛋糕,第5天吃1根胡萝卜,第6天吃1根胡萝卜,第7天吃1个蛋糕,……,如此不断重复,那么胡老师吃到第50个蛋糕时,她已经吃了多少根胡萝卜?【答案】吃1根胡萝卜,吃1个蛋糕,所以吃50个蛋糕,就吃50根胡萝卜.☺黄 ☺蓝 ☺绿 ☺红 ☺黄 ☺蓝 …☺红5、 如图所示,表格中每行的文字都是循环出现的:第一行是“红烧鲫鱼”4个汉字不断重复,第二行是“土豆泥”3个汉字不断重复,第三行则是“豆腐白菜汤”5个汉字不断重复.那么第45列从上到下依次是哪3个汉字?__________A.烧土豆B.鱼泥汤C.红豆豆D.红泥汤6、 在一根绳子上依次穿2颗红珠、3颗白珠、5颗黑珠,并按此方式重复.如果从头开始一共穿了77颗珠子,那么这77颗珠子中白珠比黑珠少__________颗.7、 500名士兵排成一排,第一次从左到右1~3循环报数,第二次从左到右1~4循环报数.请问:既报过1又报过4的士兵有多少名?8、 如图所示,7个小朋友围成一圈,沿顺时针方向依次编号为1~7.然后,按如下方法给他们发糖:先给1号小朋友1块糖;然后沿顺时针方向隔过一个人后,给3号小朋友1块糖;再沿顺时针方向隔过两个人后,给6号小朋友1块糖;接着又沿顺时针方向隔过一个人后,给1号小朋友1块糖……如此反复地间隔一个人、两个人,直到1997块糖全部分完.那么最先发到糖的那位小朋友一共得到了多少块糖?9、 分析并口述题目的做题思路及方法.如图所示,表格中每行的文字都是循环出现的:第一行是“火龙果”3个汉字不断重复,第二行是“冰镇西瓜”4个汉字不断重复.那么第3次出现“火瓜”在第几列?红 烧 鲫 鱼 红 烧 鲫 鱼 红 … 土 豆 泥 土 豆 泥 土 豆 泥 … 豆 腐白菜汤豆腐白菜…57 64 32 1 火 龙 果 火 龙 果 火 龙 果 … 冰 镇西瓜冰镇西瓜冰…。

【三年级】巧算周期问题

【三年级】巧算周期问题

【三年级】巧算周期问题周期是指事物按照一定的时间间隔重复出现的规律性现象。

在日常生活中,很多事物都存在着周期性,比如天有白天和黑夜的交替,季节有春、夏、秋、冬的循环,人体有每天的作息规律等等。

周期性的现象有很多,而巧算周期问题就是通过运算找出这些周期的规律。

巧算周期问题是一种有趣又有挑战性的数学问题,通过巧妙的计算方法和观察力,我们可以找出一些数字之间的规律。

这些规律就是周期现象的重复模式,只要找到了这个模式,我们就可以用简单的方法来计算周期内的各个数字。

我们用整数从1开始连写,1 2 3 4 5 6 7 8 9 10 11 12 ……一直写下去。

那么,我们可以观察到,这些数字在个位数上的个位数是按1 2 3 4 5 6 7 8 9 0的顺序不断重复的。

这个重复的模式就是周期,而这个周期的长度是10个数字。

巧算周期问题可以应用到加减乘除等各种运算中。

我们来看一个例子:计算6的100次方。

我们可以观察到,当我们计算6的每一个次方时,个位数都是按照6 6 6 6 6 6 6 6 6 6……这样的规律来重复的。

而周期的长度是4个数字。

那么,我们只需要找到这个周期的第100个数字,也就是100除以4的余数为0。

所以,6的100次方的个位数是6。

巧算周期问题需要我们用观察力和逻辑思维来找出重复的数字模式,从而简化计算的步骤。

通过巧妙地掌握巧算周期问题,我们可以在数学运算中节省时间和精力。

巧算周期问题还可以培养我们的观察力和思维能力。

在寻找周期的过程中,我们需要细心观察数字之间的规律,并用逻辑推理来找出重复的模式。

这种训练可以提高我们的逻辑思维和问题解决能力,培养我们的数学思维。

三年级奥数-周期问题

三年级奥数-周期问题

5、国庆节学校按“红、黄、蓝、紫”的 顺序挂彩灯,一共挂了50个彩灯,问第 50个彩灯是什么颜色?红灯有多少个?
举一反三2
我国农历用鼠、牛、虎、兔、龙、蛇、马、羊、 猴、鸡、狗、猪这12种动物按顺序轮流代表年号。
(1)如果公元3年属猪年,那么公元2000年属什 么年?
(2)如果公元6年属虎年,那么公元2010年属什 组,如第 一组“A万”,第二组“B事” ……问 第20组是什么?
2、班上开联欢会,同学们布置教室,要求按照 下面的顺序挂气球。3红1黄2蓝,一共买了48 个气球,还要买多少个黄气球呢?多少个蓝气 球?
3、有一列数1、4、2、8、5、7、1、4、 2、8、5、7……
(1)第58个数是多少? (2)这58个数相加的和是多少?
4、老师把1-40号卡片依次发给小明、小 江、小军、小宁、小燕,问第27张卡片 发给了谁?
AB C AB C AB … …
万事如意万事如意… …
举一反三3
1、 a b c d a b c d ……
1 2 3 1 2 3 1 2 …… ……
上表中每一列两个符号为一组,如第一组为“a1”, 第2组为“b2” …问第25组是什么?
2、把同样大小的红珠、白珠、黑珠子共120个, 按先3个红的、后2个白的、再1个黑的的规律排 列。 (1)白珠共有多少个? (2)第68个珠子是什么颜色?
例1:
有一列数5、6、2、4、5、6、2、4…… (1)第129个数是多少? (2)这129个数相加的和是多少?
举一反三1
有一列数1、4、2、8、5、7、1、4、2、8、5、 7……
(1)第58个数是多少?
(2)这58个数相加的和是多少?
2.小青把积存下来的硬币按面值先四个1分,再 三个2分,最后两个5分这样的顺序一直往下 排。

第六讲周期问题

第六讲周期问题

第六讲周期问题一、知识要点和基本方法1.周期问题客观世界中,存在着一些数、图形和事物的变化是周而复始循环出现的,我们把具有这种规律性的问题称为周期问题.例如,每隔7天是一周,周周如此;每隔12个月是一年,年年一样;每隔24小时是一昼夜,天天相同;……,这些问题都属于周期问题.2.周期问题中的周期周期是一个数,由于我们所学的知识有限,还不能给出周期的明确定义,只能具体问题具体分析.例如,由于每个星期有7天,即时间是7天一循环,则说周期是7;由于每年有12个月,即时间是12个月一循环测说周期是12;每个昼夜24个小时,即时间是24个小时一循环,则说周期是24;在循环小数中,“循环节数字的位数”即为循环的“周期”.研究周期问题,就是要发现问题的周期性和确定周期,从而解决有关问题.3.利用余数处理离散序列周期性问题的一般模式.余数反映了自然数的某种周期变化。

它可以帮助我们确定具有周期规律的离散量在某个序号上的性质.解决这种问题的一般模式是:(1)序列:123456789···,a a a a a a a a a ,,,,,,,,,↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓性质: 123451234···P P P P P P P P P ,,,,,,,,,. 其中,12345p p p p p ,,,,是以5为周期循环的数字12a a ,,…所对应的性质.(2)若问k a 对应什么性质?我们只要用5去除k ,看余数是几就可以了.比如1998a ,因为1998 ÷ 5=399……3,立即可判定1998a 具有性质3p .4.自然数乘方的个位数所呈现的周期现象.一个数码a 自乘后,积的个位数是有周期现象的,我们把数码a 自乘m 次后记作=m m a a a a a ⨯⨯⨯⋅⋅⋅⨯个,记作a 的m 次方则易知数码0,1,5,6的任何次方的个位数仍是它本身.数码2,3,4,7,8,9的m 次方的个位数有如下周期现象。

小学三年级奥数教学课件:周期问题

小学三年级奥数教学课件:周期问题
•三 四 五 六 日 一 二 三 四 五 六 日 一 二 ……
• 所以9月最后一天应该是星期二.
牛刀小试
2.2008年6月1日是星期日,那么2008 年10月1日是星期几呢?
• 6月 7 月 8月 9月 10月1日 • 30天 31天 31天 30天 1天 • 一共是多少天呢? • 30+31+31+30+1=123(天) • 123天包括几个星期,零几天呢? • 123÷7=17(个)……4(天)
•五六 日 一 二 三 四 • 8 9 10 11 12 13 14 •五 六 日 一 二 三 四 • 15 16 17 18 19 20 21 • 五 六 日 …… • 22 23 24 ……
例1:北京奥运会2008年8月8日星期 五召开,2008年8月24日闭幕,闭幕这 天星期几?
24-8+1=17(天)
• 3 9 7 1 3 9 7 1…… • 发现3,9,7,1四个数是一个周期, • 23里面包含几个周期呢? • 23÷4=5(个)……3(个) • 这个周期里第三个数字是7,也就是积的个位
数字是7.
小提示
• 第一步: 算一算,找出积的个位数字的周期规律 • 第二步: 包含了几个周期. • 第三步: 通过余数确定末位数字是几.
1.7×7×…... ×7,50个7相乘,积的末
位数字是几?
• 7 7 7 7 7 7 7 7 ……
• 7 9 3 1 7 9 3 1…… • 发现7,9,3,1四个数是一个周期, • 50里面包含几个周期呢? • 50÷4=12(个)……2(个) • 这个周期里第二个数字是9,也就是积的个位
数字是9.
日 一 二 三 四 五六 所以10月1日应该是星期三.

小学数学三年级周期问题

小学数学三年级周期问题

周期问题〖知识要点〗1、什么是周期问题?在日常生活中有一些按照一定的规律不断重复的现象,如人的十二生肖、一年有春夏秋冬四个季节、一个星期七天等等。

像这样常碰到的有一定循环出现的问题,我们称为周期问题。

2、解题步骤:(1)观察、分析数、图形或事物的变化是否重复循环出现并具有周期性。

(2)每几个数循环一次,谁开始谁结束,周期长度是多少。

(3)每个循环节按什么次序排列。

(4)利用除法算式求出余数,根据余数得出正确的结果。

〖例题精讲〗例1、两个小朋友比赛智力,一位小朋友画出了一组图形(排列如下),根据排列的规律。

请算出第60个图形是(),第121个图形是()。

〔分析与解答〕:每3个图形为一组,称为一个周期。

60÷3=30(组),没有余数,说明30个图形里刚好有30个周期。

(即为)121÷3=40(组)……1(个),说明121个图形中含有40个周期多1个,所以第121个图形就是重复40个周期后的第1个图形。

〖我真行1〗按照“数学奥林匹克比赛数学奥林匹克比赛数学奥林匹克比赛……”依次排列,第100个字是()。

例2、黑珠、白珠共202个,穿成一串(如下图所示),在这串珠子中,最后一个珠子是(黑)颜色的,这种颜色的珠子共有(26)个。

……202÷4=50……2(黑色)50+1=51(个)〖我真行2〗有一些灯泡按照“一黄三红四白”的顺序排列,第30个灯泡是()色,第260个灯泡是()色。

例3、一个小朋友写了这样一列数“4、1、3、2、4、1、3、2、4、1、3、2……”,你能很快算出这列前54个数字之和是多少吗?〔分析与解答〕:上面一列数中,从第一个数字开始重复出现的部分是“4132”,周期数是4。

要求这列数字的和,就要先求出这列数里一共有多少组“4132”。

54÷4=13(组)……2(个),因此前13组数字之和是(4+1+3+2)×13=130;余下两个数的和是4+1=5。

三年级奥数周期问题

三年级奥数周期问题

周期问题[知识引领与方法]1、基本周期问题2、双周期问题3、日期中的周期问题【方法总结】1、通过观察规律,找出周期,确定周期。

2、用总量除以周期,总量÷周期=商......余数,然后看余数,余数是几,结果就是周期里的第几个;余数是零,结果为周期里的最后一个。

注意:如果不是从第一个开始循环,那么要从总量里减掉不是循环的个数后,再继续算。

[例题精选及训练]【例1】田田和丁丁做游戏,他们把两种形状的小石子按下面的规律排列:⚪★⚪★★⚪★★★⚪★⚪★★⚪★★★⚪★⚪★★⚪★★★......你知道他们所排列的这些小石子中,第100个是什么图形吗?第182个又是什么图形呢?【练习】一天早上,牛牛一起床就大喊:“我要吃包子我要吃包子我要吃包子......”请问,牛牛喊得第28个字是什么字?第33个字又是什么字?【例2】A B C A B C A B ......万事如意万事如意......上表中每一列的两个符号组成一组,如第1组“A万”,第2组“B事”......,那么第20组是什么?【练习】如下图所示的表中,将每列上、下两个字组成一组,例如第一组为“数真”,第二组为“学有”,那么第50组是什么字?数学数学数学数学......真有趣真有趣真有......【例3】图中是2013年5月份的日历表,根据表请回答:(1)该年6月1日是星期几?(2)该年10月1日是星期几?(3)2015年5月1日是星期几?【练习】2017年6月1日是星期四,算一算2017年9月1日是星期几?【极限思考一】100个3相乘,积的个位数字是几?【极限思考二】小红买了一本童话书,每两页文字之间有3页插图,也就是说3页插图前后各有1页文字。

如果这本书有128页,而第1页是文字,这本童话书共有插图多少页?[ 当堂练习与作业]1、在一根绳子上依次串4颗红珠、2颗白珠、1颗黑珠,并按此顺序依次重复。

如果从头开始一共穿了75颗珠子,那么这75颗珠子中红珠比白珠多多少颗?2、2014年3月3日是星期一,算一算2014年8月8日是星期几?3、算一算:80个7相乘的积的个位数字是几?。

三年级奥数简单的周期问题

三年级奥数简单的周期问题

周期问题练习题
姓名:
1、小明问小刚:“今天是星期五,再过31天是星期几?”
2、一个星期7天,小朋友上学5天,星期六、日都休息。

而每年1月都是31天。

如果这个月的5号是星期天,问1月31号是上学还是在家休息?
3、有一堆棋子按二黑三白的规律往下排,第47个是什么颜色的棋子?
4、按下面的方法摆60个三角形,最后一个三角形是什么颜色?
5、小明放学回家准备开灯做作业,他拉了开关,灯没有亮,连续拉了10次,灯都没有亮。

原来电线被刮断了。

你知道电线修好时,小明家的电灯亮不亮?
6、有同样大小的红白黑珠共96个,按先5个红,再4个白,再3个黑的顺序排列着,问黑珠共有多少个?
7、刘老师把54张牌依次发给甲、乙、丙、丁4个同学,最后一张牌发给了谁?
8、国庆期间,公园挂彩灯按“红、黄、白、绿”的顺序,挂了32盏彩灯,第32盏是什么颜色?有几盏黄色彩灯?。

小学三年级奥数周期问题

小学三年级奥数周期问题

小学三年级奥数周期问题1、(归一问题)工程队计划用60人5天修好一条长米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天?2、(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车距中点40千米处相遇。

东西两地相距多少千米?3、(赴援问题)大客车和小轿车同地、同方向送出,大客车每小时行60千米,小轿车每小时行84千米,大客车启程2小时后小轿车才启程,几小时后小轿车冲上大客车?4、(过桥问题)列车通过一座长米的大桥,从车头上桥到车尾离桥共用了3分钟。

已知列车的速度是每分钟米,列车车身长多少米?5、(错车问题)一列客车车长米,一列货车车长米,在平行的轨道上并肩而行,从两个车头碰面至车尾嗟乎经过20秒。

如果两车同向而行,货车在前,客车在后,从客车头碰到货车尾再至客车尾返回货车头经过秒。

客车的速度和货车的速度分别是多少?6、(行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有6千米。

已知客轮在静水中的速度是每小时30千米,货轮在静水中的速度是每小时24千米。

求水流速度是多少?7、(和倍问题)小李存有邮票30枚,小刘存有邮票15枚,小刘把邮票给小李多少枚后,小李的邮票枚数就是小刘的8倍?8、(差倍问题)同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出元放入二年级,那么六年级的捐款钱数比二年级多40元,两个年级分别捐款多少元?9、(和差问题)一只两层书架共放书72本,若从上层中掏出9本给下层,上层还比下层多4本,上下层各放书多少本?10、(周期问题)20xx年7月1日是星期六,求10月1日是星期几?一、科学知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。

答疑定义新运算,关键就是必须正确地认知崭新定义的算式含义,然后严苛按照崭新定义的排序程序,将数值代入,转变为常规的四则运算算式展开排序。

小学三年级奥数周期问题

小学三年级奥数周期问题

小学三年级奥数周期问题小学三年级的孩子们正开始接触和学习奥数,本文旨在介绍如何利用奥数的周期问题,有助于孩子们学习奥数知识、增强智力和提升思维能力。

首先,孩子们必须熟悉奥数的概念,特别是关于解决奥数问题的基本技能。

特别是当孩子们刚开始学习时,老师需要让他们熟悉概念,以便他们能够领会更复杂的问题。

其次,老师可以通过奥数让孩子们了解并掌握一定数量的解决问题的常用解决方案,以及它们如何有效地应用到其他更具挑战性的奥数问题中。

同时,为了更好地帮助孩子们学习奥数,老师可以通过引入奥数的周期问题来增加孩子们的解决问题的能力。

周期问题的概念是指孩子们需要在完成某一阶段的奥数题目后,再回到原来开始这一阶段的状态,然后重复这一过程。

举个例子,一个简单的周期问题可能是让孩子们在一个6x6的方格中,填入6个数字,使得每一行每一列的和都相同,这样孩子们就能够在不断重复这一过程的同时熟悉这个奥数的概念。

此外,老师也可以通过组织多种类型的奥数周期问题比赛,以及通过设计一些趣味性的奥数游戏来加深孩子们的理解和掌握。

比如,可以让孩子们在完成一系列奥数周期问题后,解密一个谜题,而这一谜题的解决就又需要运用奥数知识来解决。

如此,孩子们就可以在不断完成奥数周期问题的同时,看到自己实现的进步,这会大大增强他们的学习动力。

最后,在孩子们掌握一系列技能后,老师可以让他们尝试解决一些更为复杂的奥数问题,比如利用网格编程,把一个图像复制、翻转和放大,让孩子们通过编程,从而解决这一问题。

这样,孩子们就可以利用他们掌握的一系列奥数技能,来完成更多更有挑战性的问题,从而拓宽了他们的思维和解决问题的能力。

综上所述,老师可以利用奥数学习的周期问题帮助小学三年级的孩子们更好地掌握奥数知识,增强智力,提升思维能力。

当孩子们不断解决奥数周期问题,又有一个目标的时候,会更有动力去学习,有利于他们更好地学习奥数。

小学数学三年级周期问题

小学数学三年级周期问题

周期问题〖知识要点〗1、什么是周期问题?在日常生活中有一些按照一定的规律不断重复的现象,如人的十二生肖、一年有春夏秋冬四个季节、一个星期七天等等。

像这样常碰到的有一定循环出现的问题,我们称为周期问题。

2、解题步骤:(1)观察、分析数、图形或事物的变化是否重复循环出现并具有周期性。

(2)每几个数循环一次,谁开始谁结束,周期长度是多少。

(3)每个循环节按什么次序排列。

(4)利用除法算式求出余数,根据余数得出正确的结果。

〖例题精讲〗例1、两个小朋友比赛智力,一位小朋友画出了一组图形(排列如下),根据排列的规律。

请算出第60个图形是(),第121个图形是()。

〔分析与解答〕:每3个图形为一组,称为一个周期。

60÷3=30(组),没有余数,说明30个图形里刚好有30个周期。

(即为)121÷3=40(组)……1(个),说明121个图形中含有40个周期多1个,所以第121个图形就是重复40个周期后的第1个图形。

〖我真行1〗按照“数学奥林匹克比赛数学奥林匹克比赛数学奥林匹克比赛……”依次排列,第100个字是()。

例2、黑珠、白珠共202个,穿成一串(如下图所示),在这串珠子中,最后一个珠子是(黑)颜色的,这种颜色的珠子共有(26)个。

……202÷4=50……2(黑色)50+1=51(个)〖我真行2〗有一些灯泡按照“一黄三红四白”的顺序排列,第30个灯泡是()色,第260个灯泡是()色。

例3、一个小朋友写了这样一列数“4、1、3、2、4、1、3、2、4、1、3、2……”,你能很快算出这列前54个数字之和是多少吗?〔分析与解答〕:上面一列数中,从第一个数字开始重复出现的部分是“4132”,周期数是4。

要求这列数字的和,就要先求出这列数里一共有多少组“4132”。

54÷4=13(组)……2(个),因此前13组数字之和是(4+1+3+2)×13=130;余下两个数的和是4+1=5。

新编奥数教程三年级“第6讲——简单的周期问题”

新编奥数教程三年级“第6讲——简单的周期问题”

------------------新编奥数教程(三年级)
-------------------
……
共有100面彩旗哦!
问:100面彩旗中有红色彩旗多少面?黄色彩旗呢?蓝色 的呢?
多少面彩旗为一个周期呢?
问:100面彩旗中有红色彩旗多少面?黄色彩旗呢?蓝色 的呢?
100÷6=16……4(面) 每6面彩旗分为一组,共有16组,还多出4面彩旗,分别 为:3面红色彩旗,1面黄色彩旗。 红色彩旗有: 16×3+3=51(面) 黄色彩旗有: 16×2+1=33(面) 蓝色彩旗有: 16×1=16(面)
2009年4月: 星期一 星期二 星期三 1 6 13 20 7 14 21 8 15 22 星期四 2 9 16 23 星期五 3 10 17 24 星期六 4 11 18 25 星期日 5 12 19 26
从1日开始期二 星期三 星期四 星期五 星期六 星期日
新编奥数教程(三年级)
-------------------
-------------------
……
20个2连乘的积的个位数是几?
• • • • • • • • • 1×2=2 2×2=4 4×2=8 8×2=16 16×2=32 32×2=64 64×2=128 128×2=256 …… • • • • • • • • • 2 4 8 6 2 4 8 6 ……
1
6 13 20 7 14 21 8 15 22
2
9 16 23
3
10 17 24
4
11 18 25
5
12 19 26
从1日之后开始算起,每经过7天,星期就从头开始。 1日之后的25天里,有几个7天呢? (26-1)÷7=3(个)……4(天)

【小学三年级奥数讲义】周期问题

【小学三年级奥数讲义】周期问题

【小学三年级奥数讲义】周期问题一、知重点在平时生活中,有一些依据必定的律不停重复的象,如:人的十二生肖,一年有春夏秋冬四个季,一个礼拜七天等等。

像平时生活中常遇到的有必定周期的,我称周期。

一般要利用余数的知来解答。

在研究些周期,我第一要仔,判断其不停重复出的律,也就是找出循的固定数,而后利用除法算式求出余数,最后依据余数得出正确的果。

二、精精【例 1】小丁把同大小的、白、黑珠子按先2个的、后1个白的、再3个黑的的律摆列(以下),你算一算,第 32 个珠子是什么色?1:1、如,算出第20 个形是什么?○△△ □□□○△△ □□□○△△ ⋯⋯2、“数学兴趣数学兴趣⋯⋯”挨次重复摆列,第2001 个字是什么?【例 2】2001年10月1日是礼拜一,:10月25日是礼拜几?2:1、2001 年 5 月 3 日是礼拜四, 5 月 20 日是礼拜几?2、2001 年 8 月 1 日是礼拜三, 8 月 28 日是礼拜几?【例 3】100个3相乘,的个位数字是几?3:1、23 个 3 相乘,的个位数字是几?2、100 个 2 相乘,的个位数字是几?【例 4】有一列数按“⋯⋯”摆列,那么前54个数字之和是多少?4:1、一列数按“294736294736294⋯⋯”摆列,那么前40 个数字之和是多少?2、有一列数按“9453672945367294⋯⋯”摆列,那么前 50 个数字之和是多少?【例 5】小了一本童,每两文字之有 3 插,也就是 3 插前后各有 1 文字。

假如本有 128 ,而第 1 是文字,本童共有插多少?5:1、校口了一排花,每两盆菊花之 3 盆月季,共了112 盆花。

假如第一盆花是菊花,那么共了多少盆月季花?2、同学做晨操, 36 个同学排成一列,每两个女生中是两个男生,第一个是女生,列伍中男生有多少人?三、课后作业1、把 38 面小三角旗按下列图摆列,此中有多少面白旗?2、2001 年 6 月 1 日是礼拜五, 9 月 1 日是礼拜几?3、50 个 7 相乘,积的个位数字是几?4、有一列数“⋯⋯”,从左起第 2 个数字到第 25 个数字之(含第 2 个与第 25 个数字)全部数字的和是多少?5、一个形花周30 米,沿周每隔 3 米插一面旗,每两面旗中插两面黄旗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六讲周期问题
例题1 小丁把同样大小的红、白、黑珠子按先2个红的、后1个白的、再3个黑的的规律排列请你算一算,第32个珠子是什么颜色?
练习►如图,算出第20个图形是什么?○△△□□□○△△□□□○△△……
例题2 2001年10月1日是星期一,问:10月25日是星期几?
练习►2001年5月3日是星期四,5月20日是星期几?
例题3 100个3相乘,积的个位数字是几?
练习►23个2相乘,积的个位数字是几?
例题4 有一列数按“432791864327918643279186……”排列,那么前54个数字之和是多少?
练习►一列数按“294736294736294……”排列,那么前40个数字之和是多少?
例题5 小红买了一本童话书,每两页文字之间有3页插图,也就是说3页插图前后各有1页文字。

如果这本书有128页,而第1页是文字,这本童话书共有插图多少页?
练习►校门口摆了一排花,每两盆菊花之间摆3盆月季,共摆了112盆花。

如果第一盆花是菊花,那么共摆了多少盆月季花?
例题6下表,每一列两个符号组成
一组,如第一组“A万”,第二组“B
事”,问第20个组是什么
练习►把自然数1,2,3,4,5……如表依次排
列成5列,那么数“1992”在_____列.
例题7某月有31 天,有4 个星期
二和4 个星期五,那么这个月的20
日是星期几?
练习►某月4个星期五、5个星期
六、5个星期日。

这个月的1日是
星期几?
例题8 工厂的仓库里有80 吨货
物,这些货物都由同一辆卡车负责
运输.第一天卡车往仓库里运进50
吨,第二天运出了60 吨,第三天又
运进50 吨,第四天再运出60 吨,⋯⋯如此不停地循环下去,第几天仓库里的货物才会被运完?
练习►工厂的仓库里有80 吨货物,同样是由一辆卡车负责货物的运输.第一天卡车从仓库里运出60 吨,第二天再运进50 吨,第三天又运出60 吨,第四天再运进50 吨,⋯⋯如此不停地循环下去.第几天仓库里的货物才会被运完?
第六讲周期问题练习题
1.“数学趣味题数学趣味题……”依次重复排列,第2001个字是什么?
2.2001年8月1日是星期三,8月28日是星期几?
3.200个2相乘,积的个位数字是几?
4.有一列数按“9453672945367294……”排列,那么前50个数字之和是多少?
5.一个圆形花辅周围长30米,沿周围每隔3米插一面红旗,每两面红旗中间插两面黄旗。

花辅
周围共插了多少面黄旗
6.某年的6月份有4个星期三,5个星期二,这年的6月1日是星期几?
7.小嘉16号下午买回来一盆花。

她从晚上7点开始第1次浇花,然后每隔12小时浇一次。

小嘉
第8次浇花是在几号几点?
8.一页挂历被墨水弄污了(如右图),有些日期看不见,
这个月18日是星期。

相关文档
最新文档