中考数学直线的公式定理总结
新浙教版中考数学必背公式大全
新浙教版中考数学必背公式大全中考数学中所用到的公式非常多,下面列举一些常见的公式和定理,供参考:1.二次方程求根公式:对于二次方程ax²+bx+c=0,其根的公式为:x₁ = (-b+√(b²-4ac))/(2a)x₂ = (-b-√(b²-4ac))/(2a)2.直角三角形中的勾股定理:直角三角形中,直角边的平方等于两个直角边的平方和,即a²+b²=c²。
3.三角函数的基本关系式:在任意三角形ABC中,有以下关系式:sinA=a/c,cosA=b/c,tanA=a/b4.同余定理:对于整数a、b、m,如果a-b能被m整除,则称a与b关于模m同余,记作a≡b(mod m)。
5.回文数求和公式:对于回文数n,其各位数字之和公式为:S=n%10+(n/10)%10+(n/100)%10+...6.平行线相交定理:平行线l₁和l₂被直线a相交,那么对于a上的任意两个相交角有以下关系:1)对顶角相等:∠1=∠2,∠3=∠42)同位角相等:∠1=∠3,∠2=∠43)内错角相等:∠1=∠4,∠2=∠37.直线垂直的判定定理:斜率为k₁和k₂的两条直线互为垂直,当且仅当k₁k₂=-18.长方形面积公式:长方形的面积等于长乘以宽,即A=长×宽。
9.圆周长公式:圆的周长等于2πr,其中r为半径,π取近似值3.1410.三角形面积公式:已知三角形的底和高,面积等于底乘以高的一半,即A=1/2×底×高。
11.牛顿第二定律:物体的加速度与作用力成正比,与物体质量成反比,可以表示为F=ma,其中F为作用力,m为质量,a为加速度。
12.梯形面积公式:已知梯形的上底、下底和高,面积等于上底和下底的和乘以高的一半,即A=1/2×(上底+下底)×高。
13.投影运动的位移和时间关系式:对于竖直上抛运动和自由下落运动,位移与时间之间的关系可以表示为:h=v₀t+1/2gt²,其中h为位移,v₀为初速度,g为重力加速度,t为时间。
中考数学必备公式大全
中考数学必备公式大全整数和分数都属于有理数,而无限不循环小数则是无理数,它们统称为实数。
绝对值的定义是:对于任意实数a,当a≥0时,|a|=a;当a<0时,|a|=-a。
例如,|3|=3,|π-3.14|=π-3.14.有效数字是指一个近似数中从左边第一个非零数字到最后一个数字之间的所有数字。
例如,将0.精确到0.001得到0.060,这个结果有两个有效数字6和0.科学记数法是一种表示数值的方法,它将一个数写成±a×10^n的形式,其中1≤a<10,n是整数。
例如,-可以表示为-4.07×10^5,而0.可以表示为4.3×10^-5.乘法公式是数学中常用的公式之一,其中最基本的是(a+b)(a-b)=a^2-b^2.此外,还有其他的乘法公式,例如(a±b)^2=a^2±2ab+b^2,(a+b)(a^2-ab+b^2)=a^3+b^3,(a-b)(a^2+ab+b^2)=a^3-b^3,以及(a+b+c)^3=x^3+y^3+z^3+3(xy+xz+yz)。
这些公式在数学中有着广泛的应用。
幂的运算有一些特殊的性质,例如am×an=am+n,am÷an=am-n,(am)n=amn,以及(ab)n=anbn。
此外,还有一个重要的公式,即(a/b)^n=a^n/b^n。
这些公式在解决数学问题时非常有用。
1、幂的概念:如果a是一个数,n是一个自然数,则a的n次幂是a自乘n次的积,记作a^n。
特别地,a^1=a,a^0=1(a≠0时),0^0未定义。
2、指数的运算法则:①a^m*a^n=a^(m+n);②(a^m)^n=a^(mn);③(a*b)^n=a^n*b^n;④(a/b)^n=a^n/b^n (b≠0);⑤a^-n=1/a^n,(a≠0);⑥a^m/n=(a^(1/n))^m,(a≥0,n>0,m∈Z);⑦a=1(a≠0)。
数学知识点总结
数学知识点总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作计划、工作总结、演讲稿、合同范本、心得体会、条据文书、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical sample essays for everyone, such as work plans, work summaries, speech drafts, contract templates, personal experiences, policy documents, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!数学知识点总结数学知识点总结(精选25篇)数学知识点总结篇1一、垂直与平行1、认识平行和垂直①同一平面内的两条直线的位置关系只有两种:相交和不相交。
初中数学中考必考的公式定理
初中数学中考必考的公式定理初中几何公式定理:线1.同角或等角的余角相等2.过一点有且只有一条直线和已知直线垂直3.过两点有且只有一条直线4.两点之间线段最短5.同角或等角的补角相等6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.定理线段垂直平分线上的点和这条线段两个端点的距离相等10.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合12.定理1:关于某条直线对称的两个图形是全等形13.定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线14.定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上15.逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称初中几何公式定理:角16.同位角相等,两直线平行17.内错角相等,两直线平行18.同旁内角互补,两直线平行19.两直线平行,同位角相等20.两直线平行,内错角相等21.两直线平行,同旁内角互补22.定理1:在角的平分线上的点到这个角的两边的距离相等23.定理2:到一个角的两边的距离相同的点,在这个角的平分线上24.角的平分线是到角的两边距离相等的所有点的集合初中几何公式定理:三角形25.定理:三角形两边的和大于第三边26.推论:三角形两边的差小于第三边27.三角形内角和定理三角形三个内角的和等于180°28.推论1:直角三角形的两个锐角互余29.推论2:三角形的一个外角等于和它不相邻的两个内角的和30.推论3:三角形的一个外角大于任何一个和它不相邻的内角31.勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c32.勾股定理的逆定理:如果三角形的三边长a、b、c 有关系a+b=c,那么这个三角形是直角三角形初中几何公式定理:等腰、直角三角形33.等腰三角形的性质定理等腰三角形的两个底角相等34.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边35.等腰三角形的顶角平分线、底边上的中线和高互相重合36.推论3:等边三角形的各角都相等,并且每一个角都等于60°37.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)38.推论1:三个角都相等的三角形是等边三角形39.推论2:有一个角等于60°的等腰三角形是等边三角形40.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半41.直角三角形斜边上的中线等于斜边上的一半初中几何公式定理:相似、全等三角形42.定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似43.相似三角形判定定理1:两角对应相等,两三角形相似(ASA)44.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似45.判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)46.判定定理3:三边对应成比例,两三角形相似(SSS)47.定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似48.性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比49.性质定理2:相似三角形周长的比等于相似比50.性质定理3:相似三角形面积的比等于相似比的平方51.边角边公理:有两边和它们的夹角对应相等的两个三角形全等52.角边角公理:有两角和它们的夹边对应相等的两个三角形全等53.推论:有两角和其中一角的对边对应相等的两个三角形全等54.边边边公理:有三边对应相等的两个三角形全等55.斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等56.全等三角形的对应边、对应角相等初中几何公式定理:四边形57.定理:四边形的内角和等于360°58.四边形的外角和等于360°59.多边形内角和定理:n边形的内角的和等于(n-2)×180°60.推论:任意多边的外角和等于360°61.平行四边形性质定理1:平行四边形的对角相等62.平行四边形性质定理2:平行四边形的对边相等63.推论:夹在两条平行线间的平行线段相等64.平行四边形性质定理3:平行四边形的对角线互相平分65.平行四边形判定定理1:两组对角分别相等的四边形是平行四边形66.平行四边形判定定理2:两组对边分别相等的四边形是平行四边形67.平行四边形判定定理3:对角线互相平分的四边形是平行四边形68.平行四边形判定定理4:一组对边平行相等的四边形是平行四边形初中几何公式定理:矩形69.矩形性质定理1:矩形的四个角都是直角70.矩形性质定理2:矩形的对角线相等71.矩形判定定理1:有三个角是直角的四边形是矩形72.矩形判定定理2:对角线相等的平行四边形是矩形初中几何公式:菱形73.菱形性质定理1:菱形的四条边都相等74.菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角75.菱形面积=对角线乘积的一半,即S=(a×b)÷276.菱形判定定理1:四边都相等的四边形是菱形77.菱形判定定理2:对角线互相垂直的平行四边形是菱形初中几何公式定理:正方形78.正方形性质定理1:正方形的四个角都是直角,四条边都相等79.正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角80.定理1:关于中心对称的两个图形是全等的81.定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分82.逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式定理:等腰梯形83.等腰梯形性质定理:等腰梯形在同一底上的两个角相等84.等腰梯形的两条对角线相等85.等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形86.对角线相等的梯形是等腰梯形初中几何公式:等分87.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等88.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰89.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边90.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半91.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h92.比例的基本性质:如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d93.合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d94.等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b95.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例96.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例97.定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边98.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101.圆是定点的距离等于定长的点的集合。
中考数学公式定理汇总
中考数学公式定理汇总1. 两点间距离公式:设两点坐标分别为(x1,y1)和(x2,y2),则两点间距离公式为d=√[(x2-x1)²+(y2-y1)²]。
2. 勾股定理:直角三角形斜边的平方等于两直角边长度的平方和。
即a²+b²=c²(其中c为斜边,a、b为两直角边)。
3. 相似三角形定理:若两个三角形的对应角相等,那么它们的对应边成比例。
4. 正弦定理:在任意三角形ABC中,有a/sinA=b/sinB=c/sinC,其中a、b、c分别为三角形的三个边长。
5. 余弦定理:在任意三角形ABC中,有c²=a²+b²-2abcosC。
6. 集合论基本公式:①并集公式:A∪B表示A和B的并集,其中A、B为两个集合,则A∪B={x|x∈A∨x∈B};②交集公式:A∩B表示A和B的交集,其中A、B为两个集合,则A∩B={x|x∈A∧x∈B};③差集公式:A-B表示A与B的差集,其中A、B为两个集合,则A-B={x|x∈A∧x∉B}。
7. 均值不等式:对于任意非负实数a1、a2、……、an,则有(a1+a2+……+an)/n≥√(a1a2……an),即算术平均数大于等于几何平均数。
8. 对数基本公式:①a^m*a^n=a^(m+n);②(a^m)^n=a^(mn);③a^(m-n)=a^m/a^n;④loga(m*n)=logam+logan;⑤loga(m/n)=logam-logan;⑥loga(m^n)=n*logam。
9. 斯涅尔定理:(1)光线从光疏介质到光密介质中以一定角度射入后,会向法线方向弯曲;(2)入射角和折射角之比是一个定值,称为折射率n,即n=sin(i)/sin(r)。
10. 三角函数基本公式:sin(-x)=-sinx,cos(-x)=cosx,tan(-x)=-tanx,cot(-x)=-cotx。
11. 欧拉公式:e^(ix)=cosx+i*sinx。
沪教版数学中考考点总结
沪教版数学中考考点总结现时数学已包括多个分支.创建于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论。
结构,就是以初始概念和公理动身的演绎系统。
今天作者在这给大家整理了一些沪教版数学中考考点总结,我们一起来看看吧!沪教版数学中考考点总结一、平行线分线段成比例定理及其推论:1.定理:三条平行线截两条直线,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条线段平行于三角形的第三边。
二、类似预备定理:平行于三角形的一边,并且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。
三、类似三角形:1.定义:对应角相等,对应边成比例的三角形叫做类似三角形。
2.性质:(1)类似三角形的对应角相等;(2)类似三角形的对应线段(边、高、中线、角平分线)成比例;(3)类似三角形的周长比等于类似比,面积比等于类似比的平方。
说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。
3.判定定理:(1)两角对应相等,两三角形类似;(2)两边对应成比例,且夹角相等,两三角形类似;(3)三边对应成比例,两三角形类似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形类似。
数学中考考点分析一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.“三点定圆”定理4.垂径定理及其推论5.“等对等”定理及其推论6.与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.切线的性质(重点)2.切线的判定定理(重点)3.切线长定理三、圆换圆的位置关系1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及运算中心角:初中数学复习提纲内角的一半:初中数学复习提纲(右图)(解Rt△OAM可求出相干元素,初中数学复习提纲、初中数学复习提纲等)六、一组运算公式1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长公式5.弓形面积的运算方法6.圆柱、圆锥的侧面展开图及相干运算七、点的轨迹六条基本轨迹八、有关作图1.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、重要辅助线1.作半径2.见弦常常作弦心距3.见直径常常作直径上的圆周角4.切点圆心莫忘连5.两圆相切公切线(连心线)6.两圆相交公共弦数学中考考点知识点1.概念把形状相同的图形叫做类似图形。
初中数学-中考数学必背公式大全
中考数学必背公式大全(1)1 同角或等角的补角相等2 同角或等角的余角相等3 过两点有且只有一条直线4 两点之间线段最短5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS)有三边对应相等的两个三角形全等26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 定理线段垂直平分线上的点和这条线段两个端点的距离相等38 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上39 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半40 直角三角形斜边上的中线等于斜边上的一半41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形69 正方形性质定理1 正方形的四个角都是直角,四条边都相等70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 对角线相等的梯形是等腰梯形75 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等76 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰77 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边78 等腰梯形性质定理等腰梯形在同一底上的两个角相等79 等腰梯形的两条对角线相等80 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形81 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d82 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d83 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b84 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半85 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。
中考数学全套公式整理
中考数学全套公式整理1.整数运算公式-加法:a+b=c-减法:a-b=c-乘法:a×b=c-除法:a÷b=c-绝对值:,a,=c,当a≥0时,a,=a;当a<0时,a,=-a2.分数运算公式- 分数相加:a/b + c/d = (ad + bc)/bd- 分数相减:a/b - c/d = (ad - bc)/bd- 分数相乘:a/b × c/d = ac/bd- 分数相除:a/b ÷ c/d = ad/bc-分数的倒数:1/(a/b)=b/a3.方程与不等式公式- 一元一次方程:ax + b = 0,解为x = -b/a- 一元二次方程:ax² + bx + c = 0,解为x = (-b±√(b²-4ac))/(2a)- 一元一次不等式:ax + b < 0 或 ax + b > 0,解为x < -b/a 或x > -b/a- 一元二次不等式:ax² + bx + c < 0 或ax² + bx + c > 0,解为x > (-b±√(b²-4ac))/(2a)4.几何公式-周长公式:矩形周长=2(长+宽),正方形周长=4×边长,圆周长=2πr-面积公式:矩形面积=长×宽,正方形面积=边长²,圆面积=πr²-三角形面积公式:底边长×高÷2-相似三角形定理:对应的角相等,则对应的边成比例-同位角定理:平行线被截取的两条直线上同位角相等-圆内接四边形定理:圆内接四边形的对角和相等5.百分数与角度-百分数与小数的转化:百分数=小数×100%,小数=百分数÷100%-百分数与分数的转化:百分数=分子÷分母×100%,分数=百分数×分母÷100%-角度与弧度的转化:角度=弧度×180°/π,弧度=角度×π/180°6.平方与立方- 平方公式:(a + b)² = a² + 2ab + b²,(a - b)² = a² - 2ab + b²- 立方公式:(a + b)³ = a³ + 3a²b + 3ab² + b³,(a - b)³ = a³ - 3a²b + 3ab² - b³7.线性函数和比例函数-直线的斜率公式:k=Δy/Δx-平行线的斜率关系:两条平行线的斜率相等-垂直线的斜率关系:两条垂直线的斜率之积为-1- 比例函数:y = kx,其中k为常数,表示y与x成比例关系8.统计学相关公式-平均数公式:平均数=总和÷数据个数-中位数公式:将数据按从小到大排列,如果数据个数为奇数,则中位数为中间的数;如果数据个数为偶数,则中位数为中间两个数的平均数-众数公式:出现频次最多的数-极差公式:极差=最大值-最小值-方差公式:方差=((数据1-平均数)²+(数据2-平均数)²+...+(数据n-平均数)²)÷n-标准差公式:标准差=√方差。
初中中考数学的29个性质、定理、公式和解题方式
初中中考的29个性质、定理、公式和解题方式1.科学记数法对科学记数法的考查一般有三种形式:1.大数的科学记数法;2.小数的科学记数法;3.结合有效数字的科学记数法.无论是哪种考查形式,其关键点是要确定将原数表示成为a×10n时的a、n值.列表如下:2.3.实数的运算题中,常涉及到以下的运算,在解答此类题时,应先计算每一小项的值,再进行实数的四则混合运算.加减;②有括号时先计算括号里面的;③同级运算按照从左到右的顺序进行计算.4.幂的运算5.6.7.根式估值时,一般先对根式平方,找出与平方后所得数字相邻的两个开得尽方的整数,然后再对这两个整数进行开方,就可以确定这个根式在哪两个整数之间.例如,估算7在哪两个整数之间时,先对7平方即为7,找出与7相邻的两个开得尽方的整数4和9,因为4<7<9,所以,4<7<9,即2<7<3.8.一元二次方程的解法及适用情形9.分式方程的解题步骤10.11.12.k<0b>0 b<0 b>0 b<0图象经图象经图象经图象经13.k>0第一、三象限而减小而增大S△AOP=|k|2S矩形OAPB=|k|S△APP′=2|k|(P′为P关于原点的对称点)14.a>0 a<0增15.16.17.18.①)②)③)④)⑤) 19.特殊角三角函数值记忆法3(2)图形记忆法如图①、图②所示图①)20.解直角三角形实际应用的常考类型及解题方法在视线与水平线所成的锐角中,视线在水平线上方的角叫做仰角,视线在水平线下方的角叫做俯角坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比),用字母i 表示;坡面与水平线的夹角α叫做坡角.i =tanα=h l一般指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角)通常表达成北(南)偏东(西)×度,如图,A 点位于O 点的北偏东30°方向,B 点位于O 点的南偏东60°方向,C 点位于O 点的北偏西45°方向(或西北方向) 1.解直角三角形时,当所求元素不在直角三角形中时,21.平行四边形性质22.矩形性质23.菱形性质24.性质25.圆周角定理及其推论定理圆O的直径垂径定理及其推论定理26.圆切线的性质与判定性质27.图形扇形求弧长扇形求面积28.阴影部分面积的计算29.(1)由正方块组成几何体的三视图的判断步骤(2)几何体主视图俯视图正方体圆柱圆锥球体。
数学常用公式性质
中考数学常用公式及性质1. 乘法与因式分解①a +ba -b =a 2-b 2;②a ±b 2=a 2±2ab +b 2;③a +ba 2-ab +b 2=a 3+b 3;④a -ba 2+ab +b 2=a 3-b 3;a 2+b 2=a +b 2-2ab ;a -b 2=a +b 2-4ab ; 2. 幂的运算性质①a m×a n=a m +n;②a m÷a n=a m -n;③a mn=a mn;④ab n=a n b n;⑤a b n =nn a b;⑥a -n =1na ,特别:-n=n ;⑦a 0=1a ≠0;3. 二次根式 ①2=aa ≥0;②=丨a 丨;③=×;④=a >0,b ≥0;4. 三角不等式|a|-|b|≤|a±b|≤|a|+|b|定理;加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式其中a,b 分别为向量a 和向量b|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b ; |a-b|≥|a|-|b|; -|a|≤a≤|a|; 5. 某些数列前n 项之和1+2+3+4+5+6+7+8+9+…+n=nn+1/2; 1+3+5+7+9+11+13+15+…+2n -1=n 2 ; 2+4+6+8+10+12+14+…+2n=nn+1;12+22+32+42+52+62+72+82+…+n 2=nn+12n+1/6; 13+23+33+43+53+63+…n 3=n 2n+12/4;12+23+34+45+56+67+…+nn+1=nn+1n+2/3;6. 一元二次方程对于方程:ax 2+bx +c =0:①求根公式是x =242b b aca-±-,其中△=b 2-4ac 叫做根的判别式;当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根;②若方程有两个实数根x 1和x 2,则二次三项式ax 2+bx +c 可分解为ax -x 1x -x 2; ③以a 和b 为根的一元二次方程是x 2-a +bx +ab =0; 7. 一次函数一次函数y =kx +bk ≠0的图象是一条直线b 是直线与y 轴的交点的纵坐标,称为截距; ①当k >0时,y 随x 的增大而增大直线从左向右上升; ②当k <0时,y 随x 的增大而减小直线从左向右下降;③特别地:当b =0时,y =kxk ≠0又叫做正比例函数y 与x 成正比例,图象必过原点; 8. 反比例函数反比例函数y =k ≠0的图象叫做双曲线;①当k >0时,双曲线在一、三象限在每一象限内,从左向右降; ②当k <0时,双曲线在二、四象限在每一象限内,从左向右上升; 9. 二次函数1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数; 2.抛物线的三要素:开口方向、对称轴、顶点;①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同;②平行于y 轴或重合的直线记作h x =.特别地,y 轴记作直线0=x ; 函数解析式开口方向对称轴顶点坐标 2ax y = 当0>a 时 开口向上 当0<a 时 开口向下0=x y 轴0,0 k ax y +=2 0=x y 轴0, k()2h x a y -=h x = h ,0 ()k h x a y +-=2h x =h ,kc bx ax y ++=2ab x 2-=ab ac a b 4422--, 4.求抛物线的顶点、对称轴的方法①公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=; ②配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为h ,k ,对称轴是直线h x =;③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点;若已知抛物线上两点12(,)(,)、x y x y 及y 值相同,则对称轴方程可以表示为:122x x x += 5.抛物线c bx ax y ++=2中,c b a ,,的作用①a 决定开口方向及开口大小,这与2ax y =中的a 完全一样;②b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线;a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>a b即a 、b 同号时,对称轴在y 轴左侧;③0<a b即a 、b 异号时,对称轴在y 轴右侧;③c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置;当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点0,c : ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab; 6.用待定系数法求二次函数的解析式①一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. ②顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式;③交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=; 7.直线与抛物线的交点①y 轴与抛物线c bx ax y ++=2得交点为0, c ; ②抛物线与x 轴的交点;二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:a 有两个交点⇔0>∆⇔抛物线与x 轴相交;b 有一个交点顶点在x 轴上⇔0=∆⇔抛物线与x 轴相切;c 没有交点⇔0<∆⇔抛物线与x 轴相离; ③平行于x 轴的直线与抛物线的交点同②一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根;④一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:a 方程组有两组不同的解时⇔l 与G 有两个交点;b 方程组只有一组解时⇔l 与G 只有一个交点;c 方程组无解时⇔l 与G 没有交点;⑤抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,则12AB x x =-10. 统计初步1概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数有时不止一个,叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数或两个数的平均数叫做这组数据的中位数. 2公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x xn;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值; ③方差:数据1x 、2x ……, n x 的方差为2s ,则2s =222121.....nx xx xx xn④标准差:方差的算术平方根; 数据1x 、2x ……, n x 的标准差s ,则s =222121.....nx xx xx xn一组数据的方差越大,这组数据的波动越大,越不稳定; 11. 频率与概率 1频率频率=总数频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率; 2概率①如果用P 表示一个事件A 发生的概率,则0≤PA≤1; P 必然事件=1;P 不可能事件=0;②在具体情境中了解概率的意义,运用列举法包括列表、画树状图计算简单事件发生的概率; ③大量的重复实验时频率可视为事件发生概率的估计值; 12. 锐角三角形①设∠A 是△ABC的任一锐角,则∠A 的正弦:sin A =,∠A 的余弦:cos A =,∠AO PBCA的正切:tan A =.并且sin 2A +cos 2A =1;0<sin A <1,0<cos A <1,tan A >0.∠A 越大,∠A 的正弦和正切值越大,余弦值反而越小; ②余角公式:sin90º-A =cos A ,cos90º-A =sin A ;③特殊角的三角函数值:sin30º=cos60º=,sin45º=cos45º=,sin60º=cos30º=,tan30º=,tan45º=1,tan60º=;④斜坡的坡度:i =铅垂高度水平宽度=.设坡角为α,则i =tanα=;13. 正余弦定理1正弦定理 a/sinA=b/sinB=c/sinC=2R ;注:其中 R 表示三角形的外接圆半径;正弦定理的变形公式:1 a=2RsinA, b=2RsinB, c=2RsinC ;2 sinA : sinB : sinC = a : b : c2余弦定理 b 2=a 2+c 2-2accosB ;a 2=b 2+c 2-2bccosA ;c 2=a 2+b 2-2abcosC ;注:∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 14. 三角函数公式 (1) 两角和公式sinA+B=sinAcosB+cosAsinB sinA-B=sinAcosB-sinBcosA cosA+B=cosAcosB-sinAsinB cosA-B=cosAcosB+sinAsinBtanA+B=tanA+tanB/1-tanAtanB tanA-B=tanA-tanB/1+tanAtanB ctgA+B=ctgActgB-1/ctgB+ctgA ctgA-B=ctgActgB+1/ctgB-ctgA (2) 倍角公式tan2A=2tanA/1-tan2A ctg2A=ctg2A-1/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a (3) 半角公式sinA/2=√1-cosA/2 sinA/2=-√1-cosA/2 cosA/2=√1+cosA/2 cosA/2=-√1+cosA/2tanA/2=√1-cosA/1+cosA tanA/2=-√1-cosA/1+cosA ctgA/2=√1+cosA/1-cosA ctgA/2=-√1+cosA/1-cosA (4) 和差化积sinA+sinB=2sinA+B/2cosA-B/2 cosA+cosB=2cosA+B/2sinA-B/2 tanA+tanB=sinA+B/cosAcosB tanA-tanB=sinA-B/cosAcosB ctgA+ctgBsinA+B/sinAsinB -ctgA+ctgBsinA+B/sinAsinB (5) 积化和差2sinAcosB=sinA+B+sinA-B 2cosAsinB=sinA+B-sinA-B 2cosAcosB=cosA+B-sinA-B -2sinAsinB=cosA+B-cosA-B 15. 平面直角坐标系中的有关知识 1对称性:若直角坐标系内一点P a,b ,则P 关于x 轴对称的点为P 1a,-b ,P 关于y 轴对称的点为P 2-a,b ,关于原点对称的点为P 3-a,-b ;2坐标平移:若直角坐标系内一点P a,b 向左平移h 个单位,坐标变为P a -h,b ,向右平移h 个单位,坐标变为P a +h,b ;向上平移h 个单位,坐标变为P a,b +h ,向下平移h 个单位,坐标变为P a,b -h .如:点A2,-1向上平移2个单位,再向右平移5个单位,则坐标变为A7,1; 16. 多边形内角和公式多边形内角和公式:n 边形的内角和等于n -2180ºn ≥3,n 是正整数,外角和等于360º 17. 平行线段成比例定理1平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例;如图:a ∥b ∥c ,直线l 1与l 2分别与直线a 、b 、c 相交与点A 、B 、C 和D 、E 、F ,则有,,AB DE AB DE BC EFBC EF AC DF AC DF===; 2推论:平行于三角形一边的直线截其他两边或两边的延长线,所得的对应线段成比例;如图:△ABC 中,DE ∥BC ,DE 与AB 、AC 相交与点D 、E ,则有:,,AD AE AD AE DE DB ECDB EC AB AC BC AB AC====18. 直角三角形中的射影定理直角三角形中的射影定理:如图:Rt△ABC 中,∠ACB =90o,CD ⊥AB 于D ,则有:12CD AD BD =⋅22AC AD AB =⋅32BC BD AB =⋅19. 圆的有关性质 1垂径定理:如果一条直线具备以下五个性质中的任意两个性质:①经过圆心;②垂直弦;③平分弦;④平分弦所对的劣弧;⑤平分弦所对的优弧,那么这条直线就具有另外三个性质.注:具备①,③时,弦不能是直径; 2两条平行弦所夹的弧相等;3圆心角的度数等于它所对的弧的度数;4一条弧所对的圆周角等于它所对的圆心角的一半; 5圆周角等于它所对的弧的度数的一半; 6同弧或等弧所对的圆周角相等;7在同圆或等圆中,相等的圆周角所对的弧相等;890º的圆周角所对的弦是直径,反之,直径所对的圆周角是90º,直径是最长的弦;、 9圆内接四边形的对角互补; 20. 三角形的内心与外心1三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角角平分线的交点; 2三角形的外接圆的圆心叫做三角形的外心.三角形的外心就是三边中垂线的交点.常见结论:①Rt△ABC 的三条边分别为:a 、b 、cc 为斜边,则它的内切圆的半径2a b cr +-=; ②△ABC 的周长为l ,面积为S,其内切圆的半径为r,则12S lr= 21. 弦切角定理及其推论 1弦切角:顶点在圆上,并且一边和圆相交,另一边和圆相切的角叫做弦切角;lαCc A B C D E Fl 1l 2A D E CEAB D如图:∠PAC 为弦切角;2弦切角定理:弦切角度数等于它所夹的弧的度数的一半; 如果AC 是⊙O 的弦,PA 是⊙O 的切线,A 为切点,则1122PAC AC AOC ∠==∠ 推论:弦切角等于所夹弧所对的圆周角作用证明角相等如果AC 是⊙O 的弦,PA 是⊙O 的切线,A 为切点,则PAC ABC ∠=∠ 22. 相交弦定理、割线定理和切割线定理1相交弦定理:圆内的两条弦相交,被交点分成的两条线段长的积相等;如图①,即:PA·PB = PC·PD2割线定理:从圆外一点引圆的两条割线,这点到每条割线与圆交点的两条线段长的积相等;如图②,即:PA·PB = PC·PD 3切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项;如图③,即:PC 2 = PA·PB① ② ③23. 面积公式①S正△=×边长2.②S平行四边形=底×高.③S菱形=底×高=×对角线的积,④1()2S=+⨯=⨯梯形上底下底高中位线高⑤S圆=πR2.⑥l圆周长=2πR.⑦弧长L=.⑧213602n rS lrπ==扇形⑨S圆柱侧=底面周长×高=2πrh,S全面积=S侧+S底=2πrh+2πr2⑩S圆锥侧=×底面周长×母线=πrb, S全面积=S侧+S底=πrb+πr2。
湖南中考数学考点知识点
湖南中考数学考点知识点1.平行线的性质1、平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.2、两条平行线之间的距离处处相等.2.三角形的面积(1)三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.(2)三角形的中线将三角形分成面积相等的两部分.3.全等三角形的性质(1)性质1:全等三角形的对应边相等性质2:全等三角形的对应角相等说明:①全等三角形的对应边上的高、中线以及对应角的平分线相等②全等三角形的周长相等,面积相等③平移、翻折、旋转前后的图形全等(2)关于全等三角形的性质应注意①全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.②要正确区分对应边与对边,对应角与对角的概念,一般地:对应边、对应角是对两个三角形而言,而对边、对角是对同一个三角形的边和角而言的,对边是指角的对边,对角是指边的对角.4.线段垂直平分线的性质(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.(2)性质:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.5.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.6.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a=,b=及c=.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.7.等腰直角三角形(1)两条直角边相等的直角三角形叫做等腰直角三角形.(2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);(3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=+1,所以r:R=1:+1.8.平行四边形的性质(1)平行四边形的概念:有两组对边分别平行的四边形叫做平行四边形.(2)平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分.(3)平行线间的距离处处相等.(4)平行四边形的面积:①平行四边形的面积等于它的底和这个底上的高的积.②同底(等底)同高(等高)的平行四边形面积相等.9.菱形的判定与性质(1)依次连接四边形各边中点所得的四边形称为中点四边形.不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形.(2)菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为矩形,对角线相等的四边形的中点四边形定为菱形.)(3)菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.(4)正方形是特殊的菱形,菱形不一定是正方形,所以,在同一平面上四边相等的图形不只是正方形.10.矩形的性质(1)矩形的定义:有一个角是直角的平行四边形是矩形.(2)矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.11.正方形的性质(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2)正方形的性质①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.12.圆周角定理(1)圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.注意:圆周角必须满足两个条件:①顶点在圆上.②角的两条边都与圆相交,二者缺一不可.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.(3)在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角,这种基本技能技巧一定要掌握.(4)注意:①圆周角和圆心角的转化可通过作圆的半径构造等腰三角形.利用等腰三角形的顶点和底角的关系进行转化.②圆周角和圆周角的转化可利用其“桥梁”﹣﹣﹣圆心角转化.③定理成立的条件是“同一条弧所对的”两种角,在运用定理时不要忽略了这个条件,把不同弧所对的圆周角与圆心角错当成同一条弧所对的圆周角和圆心角.13.切线的性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的性质可总结如下:如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(3)切线性质的运用由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.14.弧长的计算(1)圆周长公式:C=2πR(2)弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R)①在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.②若圆心角的单位不全是度,则需要先化为度后再计算弧长.③题设未标明精确度的,可以将弧长用π表示.④正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.15.轴对称的性质(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.16.轴对称图形(1)轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.(2)轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.(3)常见的轴对称图形:等腰三角形,矩形,正方形,等腰梯形,圆等等.17.翻折变换(折叠问题)1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.18.胡不归问题著名的几何最值问题19.生活中的平移现象1、平移的概念在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.2、平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.3、确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离.20.坐标与图形变化-平移(1)平移变换与坐标变化①向右平移a个单位,坐标P(x,y)⇒P(x+a,y)①向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y)①向上平移b个单位,坐标P(x,y)⇒P(x,y+b)①向下平移b个单位,坐标P(x,y)⇒P(x,y﹣b)(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)21.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.22.中心对称图形(1)定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.23.坐标与图形变化-旋转(1)关于原点对称的点的坐标P(x,y)⇒P(﹣x,﹣y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.24.几何变换综合题几何变换综合题.25.平行线分线段成比例(1)定理1:三条平行线截两条直线,所得的对应线段成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.(2)推论1:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(3)推论2:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.26.相似三角形的判定(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;这是判定三角形相似的一种基本方法.相似的基本图形可分别记为“A”型和“X”型,如图所示在应用时要善于从复杂的图形中抽象出这些基本图形.(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.27.相似三角形的判定与性质(1)相似三角形相似多边形的特殊情形,它沿袭相似多边形的定义,从对应边的比相等和对应角相等两方面下定义;反过来,两个三角形相似也有对应角相等,对应边的比相等.(2)三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有事可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.28.相似形综合题相似形综合题.29.特殊角的三角函数值(1)特指30°、45°、60°角的各种三角函数值.sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=;tan60°=;(2)应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.(3)特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.30.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A==,cos A==,tan A==.(a,b,c分别是∠A、∠B、∠C的对边)31.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.32.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.33.解直角三角形的应用-仰角俯角问题(1)概念:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.34.简单组合体的三视图(1)画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.(2)视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.(3)画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.。
2020年中考数学平面几何60个定理
【导语】当你真正想完成⼀件事时,根本不会在意别⼈是否看到。
备考漫漫长路,和你⼀起默默地⾛下去。
以下是2020年中考数学平⾯⼏何60个定理,⼀起来看看吧! 1、勾股定理(毕达哥拉斯定理) 2、射影定理(欧⼏⾥得定理) 3、三⾓形的三条中线交于⼀点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中⼼的连线的两条对⾓线中⼼的连线交于⼀点 5、间隔的连接六边形的边的中⼼所作出的两个三⾓形的重⼼是重合的。
6、三⾓形各边的垂直⼀平分线交于⼀点。
7、三⾓形的三条⾼线交于⼀点 8、设三⾓形ABC的外⼼为O,垂⼼为H,从O向BC边引垂线,设垂⾜为L,则AH=2OL 9、三⾓形的外⼼,垂⼼,重⼼在同⼀条直线(欧拉线)上。
10、(九点圆或欧拉圆或费尔*圆)三⾓形中,三边中⼼、从各顶点向其对边所引垂线的垂⾜,以及垂⼼与各顶点连线的中点,这九个点在同⼀个圆上, 11、欧拉定理:三⾓形的外⼼、重⼼、九点圆圆⼼、垂⼼依次位于同⼀直线(欧拉线)上 12、库⽴奇*⼤上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三⾓形,这四个三⾓形的九点圆圆⼼都在同⼀圆周上,我们把过这四个九点圆圆⼼的圆叫做圆内接四边形的九点圆。
13、(内⼼)三⾓形的三条内⾓平分线交于⼀点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三⾓形周长的⼀半 14、(旁⼼)三⾓形的⼀个内⾓平分线和另外两个顶点处的外⾓平分线交于⼀点 15、中线定理:(巴布斯定理)设三⾓形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三⾓形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2 17、波罗摩及多定理:圆内接四边形ABCD的对⾓线互相垂直时,连接AB中点M和对⾓线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之⽐为定⽐m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD 20、以任意三⾓形ABC的边BC、CA、AB为底边,分别向外作底⾓都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三⾓形 21、爱尔可斯定理1:若△ABC和△DEF都是正三⾓形,则由线段AD、BE、CF的中⼼构成的三⾓形也是正三⾓形。
初中数学知识点总结中考重点
中考数学重难点知识点归纳1、知识网络结构2、知识要点(1)在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。
(2)在同一平面内,不相交的两条直线叫平行线。
如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。
(3)两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角的性质:邻补角互补。
如图1所示,与互为邻补角,与互为邻补角。
+=180°;+=180°;+=180°;+=180°。
3、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。
对顶角的性质:对顶角相等。
如图1所示,与互为对顶角。
=; =。
4、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,其中一条叫做另一条的垂线。
如图2所示,当=90°时,⊥。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
性质3:如图2所示,当a⊥b时,====90°。
点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。
5、同位角、内错角、同旁内角基本特征:在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样的两个角叫同位角。
图3中,共有对同位角:与是同位角;与是同位角;与是同位角;与是同位角。
在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。
图3中,共有对内错角:与是内错角;与是内错角。
在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。
图3中,共有对同旁内角:与是同旁内角;与是同旁内角。
中考数学知识整理及总结1、实数的分类(1)按定义分类:(2)按性质符号分类:注:0既不是正数也不是负数.2、实数的相关概念(1)相反数①代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.②几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.③互为相反数的两个数之和等于0.a、b互为相反数a+b=0.(2)绝对值|a|≥0.(3)倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.(4)平方根①如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.②一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.(5)立方根如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.3、实数与数轴数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.4、实数大小的比较(1)对于数轴上的任意两个点,靠右边的点所表示的数较大.(2)正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.(3)无理数的比较大小:初中数学知识点口诀1、初中数学知识点口诀人说几何很困难,难点就在辅助线。
初中数学:中考数学公式大全
初中数学常用公式定理1、实数⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧数)无理数(无限不循环小负分数正负数分数负整数正整数整数有理数实数02、绝对值:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a ,如:3232-=-;丨3.14-π丨=π-3.14.3、科学记数法:把一个数写成±a ×10n 的形式(其中1≤a <10,n 是整数),这种记数法叫做科学记数法.如:-407000=-4.07×105,0.000043=4.3×10-5.4、乘法公式①(a +b )(a -b )=a 2-b 2.②(a ±b )2=a 2±2ab +b 2.③常用变形:a 2+b 2=(a +b )2-2ab ,(a -b )2=(a +b )2-4ab .5、因式分解①提公因式法.如:)1(2-=-a a a a ②公式法:()()b a b a b a -+=-22,()2222b a b ab a ±=+±.③十字相乘法.如:)6)(1(652-+=--x x x x 6、幂的运算性质①a m ×a n =a m +n ,②a m ÷a n =a m ﹣n ,③(a m )n =a mn ,④(ab )n =a n b n ,⑤a -n =1n a(a ≠0),⑥a 0=1(a ≠0).如:a 3·a 2=a 5,a 6÷a 2=a 4,(a 3)2=a 6,(3a 3)3=27a 9,8)2()21(33-=-=--,(-3.14)0=1.①)0(0≥≥a a ;②)0()(2≥=a a a ;③a a =2;④b a b a ⋅=⋅()0,0≥≥b a ⑤b aba =()00>≥b a ,.8、分式(1)性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.(2)运算:)0(≠⋅⋅=⋅bd db ca d cb a .)0(≠=⨯=÷bcd bc ad c d b a d c b a .)0(≠±=±c cb ac b c a .)0(≠+=±=±bd bdcb da db cb bd ad d c b a .(3)分式的化简求值:注意先化简,再求值.9、一元二次方程对于一元二次方程)(002≠=++a c bx ax ,求根公式是x =2b a-±,其中△=b 2-4ac 叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.(1)思路:把分式方程转化为整式方程.(2)步骤:例:)2)(1(311+-=--x x x x 解:方程两边乘(x -1)(x +2),得x (x +2)-(x -1)(x +2)=3解得x =1检验:当x =1时,(x -1)(x +2)=0,因此x =1不是原分式方程的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年中考数学直线的公式定理总结
直线(Straight line)是几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹。
或者定义为:曲率最小的曲线(以无限长为半径的圆弧)。
从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。
求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。
常用直线与X 轴正向的夹角( 叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。
可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。
直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。
直线在平面上的位置,由它的斜率和一个截距完全确定。
在空间,两个平面相交时,交线为一条直线。
因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。
空间直线的方向用一个与该直线平行的非零向量来表示,该向量称为这条直线的一个方向向量。
直线在空间中的位置,由它经过的空间一点及它的一个方向向量完全确定。
在欧几里得几何学中,直线只是一个直观的几何对象。
在建立欧几
里得几何学的公理体系时,直线与点、平面等都是不加定义的,它们之间的关系则由所给公理刻画。
在非欧几何中直线指连接两点间最短的线,又称短程线。
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
为什么?还是没有彻底“记死”的缘故。
要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。
可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。
方向向量:截取直线l上两点A(l,n,0)和B(k+l,m+n,1)方向向量为:
AB=(k,m,1)
要练说,得练看。
看与说是统一的,看不准就难以说得好。
练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。
在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。
关于直线的公式定理其实总低昂也就是方向向量的截取式
公式,希望大家掌握了。
死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。