高中数学经典解题技巧和方法:平面向量
高中向量方法和解题技巧
高中向量方法和解题技巧向量的定义和表示方法向量是有方向和大小的量。
在数学中,通常用箭头表示一个向量,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
向量通常用两个点表示,一个点表示向量的起点,另一个点表示向量的终点。
向量的起点通常都是原点,所以我们可以用终点的坐标来表示一个向量。
以二维平面为例,一个向量可以表示为 (x, y),其中 x 和 y 分别表示向量在 x 轴和 y 轴上的分量。
同样地,在三维空间中,一个向量可以表示为 (x, y, z)。
向量的运算向量的加法向量的加法是指将两个向量相加得到一个新的向量。
具体来说,对于两个向量 A 和 B,其加法运算的结果是一个新的向量 C,表示为 C = A + B。
向量加法的运算规则如下:- 如果两个向量的方向相同,那么它们的加法结果是两个向量大小的和,并且方向与原来的向量相同。
- 如果两个向量的方向相反,那么它们的加法结果是两个向量大小的差,并且方向与绝对值较大的向量相同。
向量的数量乘法向量的数量乘法是指将一个向量乘以一个标量得到一个新的向量。
具体来说,对于一个向量 A 和一个标量 k,它们的数量乘法运算的结果是一个新的向量 B,表示为 B = kA。
向量数量乘法的运算规则如下:- 如果标量 k 大于 1,那么新向量 B 的大小是向量 A 大小的 k 倍,方向与原向量相同。
- 如果标量 k 等于 1,那么新向量 B 与原向量 A 相等。
- 如果标量 k 在 0 和 1 之间,那么新向量 B 的大小是原向量 A大小的 k 倍,方向与原向量相反。
- 如果标量 k 等于 0,那么新向量 B 的大小为 0,方向没有定义。
向量的解题技巧利用向量相等解方程在解方程的过程中,我们可以利用向量的性质来简化计算。
具体来说,如果两个向量相等,那么它们的分量也相等。
因此,我们可以将方程表示为两个向量相等的形式,然后比较各个分量,从而求解方程。
利用向量平行解问题在解决一些几何问题时,我们可以利用向量的平行性质。
高中数学平面向量中的常见问题解析
高中数学平面向量中的常见问题解析在高中数学中,平面向量是一个重要的概念,也是许多学生在学习中遇到的难题。
本文将对高中数学平面向量中的常见问题进行解析,帮助学生更好地理解和应用该知识点。
一、向量的表示和运算在解析几何中,向量可以用有序数对表示。
例如,向量AB可以表示为向量→AB或者向量a,其中→AB=(x,y)或者a=(x,y)。
向量的运算包括加法、减法、数乘等。
向量的加法满足交换律和结合律,即若→AB+(→CD+→EF)=→AB+→CD+→EF。
二、向量的数量积向量的数量积也叫点积,用符号·表示。
数量积满足交换律和分配律,即→AB·→CD=→CD·→AB。
数量积的计算方法为:→AB·→CD=|→AB||→CD|cosθ,其中|→AB|和|→CD|分别表示向量→AB和→CD的模,θ表示两个向量的夹角。
三、向量的向量积向量的向量积也叫叉积,用符号×表示。
向量积的结果是一个向量,它的模长等于被乘向量的模与夹角的正弦乘积。
向量积的计算方法为:→AB×→CD=|→AB||→CD|sinθn,其中|→AB|和|→CD|分别表示向量→AB和→CD的模,θ表示两个向量的夹角,n为单位法向量。
四、平面向量的应用平面向量在几何中有广泛的应用。
常见的问题包括:向量共线、向量垂直、向量平行和向量的投影等。
1. 向量共线问题若两个向量的方向相同或者相反,则它们是共线的。
可以通过判断两个向量的比例关系来确定它们是否共线。
2. 向量垂直问题若两个向量的数量积为零,则它们是垂直的。
可以通过计算两个向量的数量积来判断它们是否垂直。
3. 向量平行问题若两个向量的方向相同或者相反,则它们是平行的。
可以通过判断两个向量的比例关系来确定它们是否平行。
4. 向量的投影问题向量的投影表示一个向量在另一个向量上的投影长度。
可以通过计算向量的数量积和模长来求解向量的投影。
五、解题技巧和注意事项在解决高中数学平面向量中的问题时,有一些技巧和注意事项可以帮助学生更好地理解和应用知识点。
平面向量重难点题型训练
平面向量重难点题型训练摘要:一、平面向量的基本概念二、平面向量的重难点题型三、平面向量的解题技巧四、总结与展望正文:一、平面向量的基本概念平面向量是平面内的有序线段,可以用来表示平面内的物理量,如速度、加速度、力等。
平面向量具有大小和方向两个属性,通常用有序实数对(a,b) 来表示,其中a 和b 分别表示向量的水平和垂直分量。
平面向量的基本运算包括加法、减法、数乘和向量积等。
二、平面向量的重难点题型1.向量加法与减法向量加法和减法是平面向量的基本运算之一,其难点在于处理不同方向的向量。
解决这类问题时,需要将向量分解为水平和垂直分量,然后进行相应的加减运算。
2.向量数乘向量数乘是平面向量的另一个基本运算,其难点在于理解数乘的物理意义和计算方法。
向量数乘的结果是一个向量,其大小等于原向量的大小与数乘因子的乘积,方向与原向量相同或相反。
3.向量积向量积是平面向量的高级运算,其难点在于理解向量积的物理意义和计算方法。
向量积的结果是一个向量,其大小等于原向量之积与夹角的余弦值的乘积,方向垂直于原向量所在的平面。
三、平面向量的解题技巧1.图形法图形法是解决平面向量问题的一种直观方法,通过画图可以直观地表示向量的大小和方向,以及向量之间的运算关系。
2.分解法分解法是解决平面向量问题的一种常用方法,通过将向量分解为水平和垂直分量,可以简化向量运算,尤其是处理不同方向的向量时。
3.数学建模法数学建模法是解决平面向量问题的一种高级方法,通过将实际问题抽象为数学模型,可以更好地理解向量的物理意义和计算方法。
四、总结与展望平面向量是物理学、工程学等领域中的重要概念,掌握平面向量的基本概念和解题技巧对于解决实际问题具有重要意义。
平面向量的运算
平面向量的运算在数学中,平面向量是由大小和方向确定的量,常用于表示物体在平面上的位移或力的作用方向。
平面向量的运算是指对平面向量进行加法、减法、数乘和点乘等操作。
本文将介绍平面向量的基本概念和运算规则。
一、平面向量的表示方法平面向量通常用有向线段表示,由两个点确定,例如AB表示从点A到点B的平面向量。
可以用字母加箭头(如→)表示平面向量,如:AB →其中A为向量的起点,B为终点。
二、平面向量的加法对于两个平面向量AB → 和CD →,它们的和可以通过平行四边形法则得到。
具体步骤如下:1. 将向量CD → 的起点与向量AB → 的终点相重合,得到新的向量AC →;2. 连接向量AB → 的起点和向量CD → 的终点,得到新的向量AD →;3. 新的向量AD → 就是原始向量AB → 和CD → 的和,即AD → = AB → + CD →。
三、平面向量的减法向量的减法可以通过向量加法的逆运算得到。
对于向量AB → 和CD →,它们的差可以表示为AB → - CD →,具体步骤如下:1. 取向量CD → 的终点B为新向量的起点,向量AB → 的起点A为新向量的终点,得到新的向量BA →;2. 新的向量BA → 就是原始向量AB → 和CD → 的差,即BA → = AB → - CD →。
四、平面向量的数乘平面向量的数乘是指将向量的长度乘以一个实数,从而改变向量的大小。
设有向量AB → 和实数k,它们的数乘表示为kAB →,其具体步骤如下:1. 将向量AB → 的长度乘以实数k,得到新向量AC →;2. 新的向量AC → 的方向与原来向量AB → 相同,而长度为原来的k倍,即AC → = kAB →。
五、平面向量的点乘平面向量的点乘(内积)运算可以得到两个向量的乘积,结果为一个实数。
设有向量AB → 和CD →,它们的点乘表示为AB → · CD →,具体计算方法如下:1. 将向量AB → 和CD → 的长度相乘,得到实数AC;2. 计算向量AB → 与向量CD → 之间夹角的余弦值,得到实数cosθ;3. 点乘的结果为AB → · CD → = ACcosθ。
平面向量几何法解题技巧
平面向量几何法解题技巧平面向量几何法是高中数学中的一项重要内容,它可以解决各种几何问题,包括线的垂直、平行、中点、角平分线等等。
本文将介绍平面向量几何法的基本概念、解题技巧以及应用实例,希望对读者有所帮助。
一、平面向量的基本概念平面向量是代表平面上的一定方向和大小的量,由一个有向线段和箭头来表示。
它可以表示为一个有序数对(a,b),其中a和b分别表示向量在x方向和y方向上的分量。
向量的大小表示为模长,一般用||AB||表示,其中AB 为向量的有向线段。
模长可以使用勾股定理计算:||AB||=√(a²+b²).向量的方向表示为方向角,它与x轴正方向的夹角记为α(0°≤α<360°或0≤α<2π),可以使用以下公式计算:α=arctan(b/a) (a>0)α=π+arctan(b/a) (a<0, b≥0)α=-π+arctan(b/a) (a<0, b<0)α=π/2 (a=0, b>0)α=-π/2 (a=0, b<0)二、平面向量几何法的解题技巧1. 向量的加减两个向量的加法表示以一个向量为起点,以另一个向量为终点的有向线段,公式为:AB+BC=AC。
两个向量的减法则表示从一个向量的终点到另一个向量的起点的有向线段,例如:AC-AB=BC。
2. 向量的数量积向量的数量积是一个纯量(一个数),记作a·b,它定义为a和b的模长的乘积与它们夹角的余弦值的积,也就是a·b=||a||·||b||·cosα。
向量的数量积还可以用来求两个向量之间的夹角,公式为cosα=a·b/||a||·||b||。
3. 向量的叉积向量的叉积是一个向量,它表示的是由两个向量围成的平行四边形的面积和方向。
公式为:a×b=||a||·||b||·sinα·n,其中n为满足右手定则的单位向量,其方向与两个向量所在平面垂直,且a、b、n 组成一个右手系。
高中数学平面向量模长解题技巧
高中数学平面向量模长解题技巧引言:在高中数学中,平面向量是一个重要的概念,涉及到平面几何、解析几何以及物理等多个领域。
而平面向量的模长是其中一个基本的概念,它代表了向量的长度或大小。
本文将介绍一些高中数学中常见的平面向量模长解题技巧,帮助学生更好地理解和应用这一概念。
一、模长的定义和性质模长是平面向量的一个重要性质,它可以通过向量的坐标表示或几何方法求解。
对于一个平面向量$\vec{AB}$,其模长记作$|\vec{AB}|$或$AB$,表示向量的长度或大小。
模长的计算公式为:$$|\vec{AB}|=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}$$其中$(x_A,y_A)$和$(x_B,y_B)$分别是向量起点$A$和终点$B$的坐标。
模长具有以下性质:1. 非负性:模长始终大于等于零,即$|\vec{AB}|\geq 0$。
2. 零向量的模长为零:对于零向量$\vec{0}$,其模长为$|\vec{0}|=0$。
3. 向量的模长与方向无关:向量的模长与其方向无关,只与向量的起点和终点有关。
二、模长解题技巧1. 利用坐标计算模长当向量的起点和终点的坐标已知时,可以直接利用模长的计算公式求解。
例如,已知向量$\vec{AB}$的起点$A(2,3)$和终点$B(5,7)$,求向量$\vec{AB}$的模长。
解答:根据模长的计算公式,可得:$$|\vec{AB}|=\sqrt{(5-2)^2+(7-3)^2}=\sqrt{9+16}=\sqrt{25}=5$$因此,向量$\vec{AB}$的模长为5。
2. 利用几何性质计算模长在某些情况下,可以利用几何性质来计算向量的模长。
例如,已知三角形$ABC$的顶点$A(1,2)$、$B(4,6)$和$C(7,2)$,求向量$\vec{AB}$和$\vec{AC}$的模长。
解答:根据模长的定义,可以利用两点之间的距离公式求解。
首先计算向量$\vec{AB}$的模长:$$|\vec{AB}|=\sqrt{(4-1)^2+(6-2)^2}=\sqrt{9+16}=\sqrt{25}=5$$然后计算向量$\vec{AC}$的模长:$$|\vec{AC}|=\sqrt{(7-1)^2+(2-2)^2}=\sqrt{36}=6$$因此,向量$\vec{AB}$的模长为5,向量$\vec{AC}$的模长为6。
高中数学向量题型和解题方法
高中数学向量题型和解题方法由于向量集数形于一体,是沟通代数、几何与三角函数的桥梁,因此关于向量问题的解题方法自然也就多彩多样,解决向量问题时我们应该从多个维度去思考,哪种方法简单,我们就选择哪种方法。
今天我们就从五个方面:利用基本定义求解、利用基底求解、利用坐标或建立坐标系求解、利用几何法求解、利用代数法求解等分别介绍平面向量的解题方法和策略。
只有掌握了所有的这些方法,对于向量的学习才会真正做到融会贯通。
一、利用基本定义求解为了提高和培养孩子的数学学习兴趣,可让孩子读读这本书:二、利用基底求解基底法就是指利用平面向量基本定理,将所求向量转化为已知的两个不共线向量来求解问题。
注意:如果图形中有向量垂直,我们就以互相垂直的向量作为基底。
三、利用坐标或建立坐标系求解利用坐标或建立坐标系求解就是建立适当的直角坐标系,将向量用坐标的形式表示出来,用函数与方程的思想求解。
实际上,坐标法具有天然的优势,有时能轻松解决较为复杂的问题,特别是后面我们要学习的向量在立体几何中的应用。
四、利用几何法求解几何法就是把向量问题利用平面几何的思想和方法,转化为几何问题。
这就需要我们对所学习的平面几何基本图形性质十分清楚。
我们学习到的基本平面图形主要有三角形、四边形、圆、椭圆、双曲线、抛物线等。
每种图形的基本定义、定理、性质甚至推论我们都要了如指掌,转化使用时才会得心应手。
五、利用代数法求解所谓代数法就是将题目中的已知条件和所求结论,利用代数的方法,通过代数运算解决问题。
比如我们学过的完全平方、基本不等式、函数解析式等,通过转化,在这里都会有很巧妙的应用。
以上就是高中数学向量题型和解题方法。
平面向量基本定理解题思路
平面向量基本定理解题思路
平面向量基本定理的解题思路主要基于该定理的实质,即利用平行四边形法则或三角形法则进行向量的加、减或数乘运算。
具体来说,解题时可以按照以下步骤进行:
1. 选择一组基底:首先,根据题目条件和所求结论,选择一组合适的基底。
这组基底通常是两个不共线的向量,它们可以表示平面内的任意向量。
2. 将条件和结论表示成向量的形式:接下来,利用这组基底,将题目中的条件和结论都表示成向量的形式。
这通常涉及到向量的线性组合、数乘、点积等运算。
3. 通过向量的运算解决问题:最后,利用向量的运算性质,如向量的加法、减法、数乘、点积等,对表示成向量形式的条件和结论进行运算,从而求得问题的解。
在解题过程中,还可以结合图形进行辅助分析,特别是对于涉及动态变化的问题,数形结合法是非常有效的。
此外,如果题目中给出了向量之间的夹角,也可以考虑使用坐标法来处理向量问题,通过建立平面直角坐标系,将向量问题转化为向量坐标运算问题。
总的来说,平面向量基本定理的解题思路是灵活多样的,需要根据具体问题的特点和条件来选择合适的解题方法。
通过不断练习和总结,可以逐渐掌握平面向量问题的解题技巧和方法。
平面向量最值问题解题方法
平面向量最值问题解题方法平面向量最值问题是高中数学中的重要知识点,涉及面广,难度较大。
下面介绍一些平面向量最值问题的解题方法。
一、向量模长的最值问题1、向量模长最大值设向量a的模长为|a|,则向量a的模长最大值为|a|=√(a_x+a_y),其中a_x和a_y分别代表向量a在x轴和y轴上的分量。
求出向量a的模长后,可以采用以下两种方法求出向量a的模长最大值:(1)对于a的分量a_x和a_y,分别求出它们的绝对值,即|a_x|和|a_y|,然后将它们代入|a|=√(a_x+a_y)中,求出|a|的最大值。
(2)根据勾股定理,可以得出|a|的最大值为向量a在x轴和y 轴上的分量的平方和的平方根,即|a|=√((a_x+a_y))。
2、向量模长最小值同样设向量a的模长为|a|,则向量a的模长最小值为|a|=√(a_x+a_y),其中a_x和a_y分别代表向量a在x轴和y轴上的分量。
求出向量a的模长后,可以采用以下两种方法求出向量a的模长最小值:(1)对于a的分量a_x和a_y,分别求出它们的绝对值,即|a_x|和|a_y|,然后将它们代入|a|=√(a_x+a_y)中,求出|a|的最小值。
(2)根据勾股定理,可以得出|a|的最小值为向量a在x轴和y 轴上的分量的平方差的平方根,即|a|=√((a_x-a_y))。
二、向量夹角的最值问题设向量a和向量b的夹角为θ,则向量a和向量b的夹角的最值为:1、夹角最大值当向量a和向量b的方向相反时,它们的夹角最大,此时θ=π。
2、夹角最小值当向量a和向量b的方向相同时,它们的夹角最小,此时θ=0。
三、向量和的模长的最值问题对于两个向量a和b,它们的和向量c=a+b。
则向量c的模长最值为:1、模长最大值当向量a和向量b的方向相同,且它们的模长相等时,它们的和向量c的模长最大,此时|c|=2|a|。
2、模长最小值当向量a和向量b的方向相反,且它们的模长相等时,它们的和向量c的模长最小,此时|c|=0。
高中数学平面向量知识及注意事项
高中数学平面向量知识及注意事项一、向量基础知识1、实数与向量的积的运算律:设λ、μ为实数,那么(1)结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b)=λa +λb .2、向量的数量积的运算律:(1) a ·b = b ·a(交换律);注:c b a c b a )()(∙≠∙(2)(λa )·b = λ(a ·b )=λa ·b = a ·(λb );(3)(a +b )·c = a ·c +b ·c .3、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e .不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底.4、投影:向量b 在向量a方向上的投影为|b |cos θ。
5、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ.6、a ·b 的几何意义:数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积.7、平面向量的坐标运算:(1)设a =11(,)x y ,b =22(,)x y ,则a +b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +.8、两向量的夹角公式:121222221122cos x x y y x y x y θ+=+⋅+(a=11(,)x y ,b =22(,)x y ).9、向量的模与平面两点间的距离公式:|a |22x y =+,A B d =||AB AB AB =⋅ 222121()()x x y y =-+-(A 11(,)x y ,B 22(,)x y ).10、两个非零向量的共线与垂直的充要条件:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a ∥b ⇔b =λa12210x y x y ⇔-=.a ⊥b (a ≠0 )⇔a ·b=012120x x y y ⇔+=.11、三角形的重心坐标公式:△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC的重心的坐标是123123(,)33x x x y y y G ++++.G G GC 0A B++= 二、向量中需要注意的问题1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.2、几个概念:零向量、单位向量(与AB 共线的单位向量是||ABAB ± ,平行(共线)向量(无传递性,是因为有0 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(a 在b上的投影是cos ,a ba ab b⋅=<>=∈R).3、两非零向量....共线的充要条件://a b a b λ⇔= cos ,1a b ⇔<>=± 12210x y x y ⇔-=. 两个非零向量....垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=. 特别:零向量和任何向量共线和垂直. b a λ=是向量平行的充分不必要条件!4、三点A B C 、、共线⇔ AB AC 、共线;向量 PA PB PC、、中三终点A B C 、、共线⇔存在实数αβ、使得:PA PB PC αβ=+且1αβ+=.5、向量的数量积:22||()a a a a ==⋅ ,1212||||cos a b a b x x y y θ⋅==+,121222221122cos ||||x x y y a b a b x y x y θ+⋅==++ ,12122222||cos ,||x x y y a b a b a a b b x y +⋅=<>==+在上的投影. 注意:,a b <> 为锐角⇔0a b ⋅> 且 a b 、不同向;,a b <>为直角⇔0a b ⋅= 且 0a b ≠ 、; ,a b <> 为钝角⇔0a b ⋅< 且 a b 、不反向,0a b ⋅< 是,a b <> 为钝角的必要非充分条件.6、一个重要的不等式:||||||||||||a b a b a b -≤±≤+注意: a b 、同向或有0⇔||||||a b a b +=+ ≥||||||||a b a b -=- ; a b 、反向或有0 ⇔||||||a b a b -=+ ≥||||||||a b a b -=+; a b、不共线⇔||||||||||||a b a b a b -<±<+ .(这些和实数集中类似)7、中点坐标公式1212,22x x y y x y ++==,122MP MP MP P +=⇔为12PP 的中点.。
平面向量5类解题技巧(“爪子定理”、系数和等和线、极化恒等式、奔驰定理与三角形四心问题)试题含答案
平面向量5类解题技巧(“爪子定理”、系数和(等和线)、极化恒等式、奔驰定理与三角形四心问题、范围与最值问题)技法01“爪子定理”的应用及解题技巧“爪子定理”是平面向量基本定理的拓展,用“爪子定理”能更快速求解,需同学们重点学习掌握知识迁移形如AD =xAB +yAC 条件的应用(“爪子定理”)“爪”字型图及性质:(1)已知AB ,AC 为不共线的两个向量,则对于向量AD ,必存在x ,y ,使得AD =xAB +yAC 。
则B ,C ,D 三点共线⇔x +y =1当0<x +y <1,则D 与A 位于BC 同侧,且D 位于A 与BC 之间当x +y >1,则D 与A 位于BC 两侧x +y =1时,当x >0,y >0,则D 在线段BC 上;当xy <0,则D 在线段BC 延长线上(2)已知D 在线段BC 上,且BD :CD =m :n ,则AD =n m +n AB +m m +nAC1(全国·高考真题)设D 为△ABC 所在平面内一点,且BC =3CD ,则()A.AD =-13AB +43ACB.AD =13AB -43ACC.AD =43AB +13ACD.AD =43AB -13AC 2(2023江苏模拟)如图,在△ABC 中,AN =13NC ,P 是BN 上的一点,若AP =mAB +211AC ,则实数m 的值为()A.911 B.511 C.311 D.2111(2022·全国·统考高考真题)在△ABC 中,点D 在边AB 上,BD =2DA .记CA =m ,CD =n ,则CB =()A.3m -2nB.-2m +3nC.3m +2nD.2m +3n2(全国·高考真题)在△ABC 中,AB =c ,AC =b .若点D 满足BD =2DC ,则AD =()A.23b +13c B.53c -23b C.23b -13c D.13b +23c 3(2020·新高考全国1卷·统考高考真题)已知平行四边形ABCD ,点E ,F 分别是AB ,BC 的中点(如图所示),设AB =a ,AD =b ,则EF 等于()A.12a +bB.12a -bC.12b -aD.12a +b 4(全国·高考真题)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =()A.34AB -14AC B.14AB -34AC C.34AB +14AC D.14AB +34AC 5(江苏·高考真题)设D 、E 分别是ΔABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC . 若DE =λ1AB +λ2AC (λ1,λ2为实数),则λ1+λ2的值是技法02系数和(等和线)的应用及解题技巧近年,高考、模考中有关“系数和(等和线)定理”背景的试题层出不穷,学生在解决此类问题时,往往要通过建系或利用角度与数量积处理,结果因思路不清、解题繁琐,导致得分率不高,而向量三点共线定理与等和线巧妙地将代数问题转化为图形关系问题,将系数和的代数运算转化为距离的比例运算,数形结合思想得到了有效体现,同时也为相关问题的解决提供了新的思路,大家可以学以致用知识迁移如图,P 为ΔAOB 所在平面上一点,过O 作直线l ⎳AB ,由平面向量基本定理知:存在x ,y ∈R ,使得OP =xOA +yOB下面根据点P 的位置分几种情况来考虑系数和x +y 的值①若P ∈l 时,则射线OP 与l 无交点,由l ⎳AB 知,存在实数λ,使得OP =λAB 而AB =OB -OA ,所以OP =λOB -λOA ,于是x +y =λ-λ=0②若P ∉l 时,(i )如图1,当P 在l 右侧时,过P 作CD ⎳AB ,交射线OA ,OB 于C ,D 两点,则ΔOCD ∼ΔOAB ,不妨设ΔOCD 与ΔOAB 的相似比为k由P ,C ,D 三点共线可知:存在λ∈R 使得:OP =λOC +(1-λ)OD =kλOA +k (1-λ)OB所以x +y =kλ+k (1-λ)=k(ii )当P 在l 左侧时,射线OP 的反向延长线与AB 有交点,如图1作P 关于O 的对称点P ,由(i )的分析知:存在存在λ∈R 使得:OP =λOC +(1-λ)OD =kλOA +(1-λ)OB 所以OP =-kλOA +-(1-λ)OB于是x +y =-kλ+-k (1-λ)=-k 综合上面的讨论可知:图中OP 用OA ,OB 线性表示时,其系数和x +y 只与两三角形的相似比有关。
高中数学平面向量投影与垂直分解技巧
高中数学平面向量投影与垂直分解技巧在高中数学中,平面向量是一个重要的概念,它不仅在几何中有广泛的应用,还在物理和工程学中扮演着重要的角色。
平面向量的投影和垂直分解是解决问题的常用技巧,本文将介绍这两个技巧的应用和解题方法。
一、平面向量的投影投影是指将一个向量在某个方向上的分量。
在平面向量中,我们可以将一个向量投影到另一个向量上,以求得它在另一个向量上的分量。
举个例子,假设有两个向量a和b,我们想要求向量a在向量b上的投影。
首先,我们需要计算向量b的单位向量,记作u。
单位向量是指长度为1的向量,它的方向与原向量相同。
计算公式为u = b / |b|,其中|b|表示向量b的模。
接下来,我们可以使用向量的点乘来求向量a在向量b上的投影。
投影的计算公式为P = a · u,其中P表示向量a在向量b上的投影。
例如,假设有向量a(3, 4)和向量b(2, 1),我们可以先计算向量b的单位向量u(2/√5, 1/√5),然后计算投影P = a · u = (3, 4) · (2/√5, 1/√5) = (6/√5, 4/√5)。
投影的应用非常广泛,例如在力学中,我们可以将一个力向量分解为平行和垂直于某个方向的分量,以便更好地分析和计算。
二、平面向量的垂直分解垂直分解是指将一个向量分解为与另一个向量垂直的两个分量。
在平面向量中,我们可以将一个向量分解为与另一个向量垂直的两个分量,以求得它在两个方向上的分量。
举个例子,假设有两个向量a和b,我们想要将向量a分解为与向量b垂直的两个分量。
首先,我们需要计算向量b的单位向量,记作u。
接下来,我们可以使用向量的点乘和叉乘来求得两个分量。
垂直分解的计算公式为a = a1 + a2,其中a1表示向量a在向量b上的投影,a2表示向量a在与向量b垂直的方向上的分量。
投影的计算公式为a1 = a · u,分量的计算公式为a2 = a - a1。
平面向量的解题技巧
平面向量的解题技巧
平面向量的解题技巧主要包括以下几个方面:
1. 理解平面向量的性质:平面向量有大小和方向,可以进行加减法、数乘等运算。
理解平面向量的性质是解题的基础。
2. 建立坐标系:建立一个适当的坐标系,可以方便地表示平面向量的位置和方向。
通常可以选择直角坐标系或极坐标系。
3. 平面向量的表示方法:平面向量可以用坐标表示,也可以用向量表示。
在解题时,灵活选择适当的表示方法,使问题变得简化。
4. 平面向量的运算法则:平面向量可以进行向量的加法、减法和数乘运算。
根据运算法则,可以进行组合运算,简化计算过程。
5. 理解平面向量的几何意义:平面向量可以表示平移、旋转和缩放等几何变换。
在解题时,可以把平面向量与几何问题相联系,更好地理解和解决问题。
6. 利用向量的性质解题:平面向量具有一些特殊的性质,如平行、垂直、共线等。
在解题时,可以利用这些性质将问题转化为已知的条件,从而更好地解决问题。
总之,平面向量的解题技巧在于灵活运用向量的定义、表示、
运算法则和几何性质,以及适当选择合适的坐标系和表示方法,从而解决平面向量相关的问题。
高中数学平面向量与立体几何
高中数学平面向量与立体几何引言数学中的平面向量与立体几何是高中数学中的重要内容。
平面向量可以用于表示物体的位移、速度、加速度等物理量,而立体几何则研究了空间中的各种几何体及其性质。
本文将介绍平面向量和立体几何的基本概念、性质和解题方法。
一、平面向量的概念与表示方法平面向量是具有大小和方向的量,常用箭头符号表示。
我们可以用有向线段或坐标表示平面向量。
有向线段表示法中,线段的方向表示向量的方向,线段的长度表示向量的大小。
坐标表示法中,向量的起点为原点,终点的坐标减去起点的坐标即为向量的坐标。
二、平面向量的运算1. 平面向量的加法与减法平面向量的加法满足“三角形法则”,即将两个向量的起点相连,作两个向量的和的终点。
平面向量的减法可以看作加上一个负向量,即求和后的相反数。
2. 平面向量的数量积与向量积平面向量的数量积等于向量的模长相乘再乘以它们的夹角的余弦值。
平面向量的向量积满足“右手法则”,即两个向量的向量积的模长等于两个向量模长的乘积再乘以它们的夹角的正弦值,并且与两个向量垂直。
三、平面向量的应用平面向量的应用非常广泛。
在物理学中,通过平面向量可以描述力的作用、速度和加速度等物理量。
在计算几何中,平面向量可以表示线段、平行线、线段的中点等几何概念。
在几何证明中,平面向量的性质可以帮助解决一些几何问题。
四、立体几何的基本概念与性质立体几何研究了空间中的各种几何体及其性质,如点、线、面、体积等。
以下是立体几何中的一些基本概念和性质的介绍:1. 空间直线和平面的交点在空间中,直线和平面可能相交于一点,也可能平行、重合于一直线。
这取决于直线与平面的位置关系。
2. 空间几何体的投影几何体在空间中的投影是指从该几何体上的点沿垂直于投影面的线段所得到的图形。
这在空间中很常见,例如日常生活中的影子即为投影。
3. 空间角的概念空间中两条线段或两个平面之间的夹角被称为空间角。
空间角的大小可以通过它们之间的夹角的余弦值来确定。
快速解决平面向量题目的技巧
快速解决平面向量题目的技巧解决平面向量题目的技巧在学习平面向量时,很多学生常常觉得题目难以解决,因为涉及到复杂的计算和概念。
然而,只要我们掌握一些解题技巧,就能够快速解决这类问题。
本文将介绍一些快速解决平面向量题目的技巧,帮助读者更好地掌握这一知识点。
一、向量的加减运算在解决平面向量题目时,向量的加减运算是非常基础也是重要的一步。
我们可以使用三角形法则或平行四边形法则来进行运算。
1. 三角形法则三角形法则适用于解决两个向量相加的问题。
即将两个向量的起点和终点相连接,构成一个三角形,那么连接起点和三角形的终点的向量就是所要求的向量。
例如,已知向量A的坐标为(Ax, Ay),向量B的坐标为(Bx, By),我们可以得到向量C的坐标为(Cx, Cy)。
其中,Cx = Ax + Bx,Cy = Ay + By。
2. 平行四边形法则平行四边形法则适用于解决两个向量相减的问题。
即将两个向量的起点相连,形成一个平行四边形,那么连接起点和平行四边形的对角线的向量就是所要求的向量。
例如,已知向量A的坐标为(Ax, Ay),向量B的坐标为(Bx, By),我们可以得到向量C的坐标为(Cx, Cy)。
其中,Cx = Ax - Bx,Cy = Ay - By。
二、向量的数量积和向量积除了向量的加减运算外,向量的数量积和向量积也是平面向量题目中常见的计算方法。
这两个概念在解决平面向量问题时非常重要。
1. 向量的数量积向量的数量积又称点积,表示为A·B。
计算公式为A·B=|A||B|cosθ,其中|A|和|B|分别表示向量A和向量B的模长,θ表示两个向量的夹角。
在解决平面向量问题时,我们可以通过计算两个向量的数量积来判断它们的关系,例如判断是否正交、平行或夹角大小等。
2. 向量的向量积向量的向量积又称叉积,表示为A×B。
计算公式为A×B=|A||B|sinθn,其中|A|和|B|分别表示向量A和向量B的模长,θ表示两个向量的夹角,n表示单位法向量。
高中数学平面向量的模长与方向计算
高中数学平面向量的模长与方向计算在高中数学中,平面向量是一个重要的概念。
平面向量既有大小(模长),又有方向。
计算平面向量的模长和方向是我们常见的问题之一。
本文将以具体的题目为例,分析和说明如何计算平面向量的模长和方向,并给出解题技巧和指导。
一、平面向量的模长计算平面向量的模长表示向量的长度或大小,通常用两点之间的距离来计算。
考虑以下例题:例题1:已知向量AB的坐标表示为(3, 4),求向量AB的模长。
解析:根据平面向量的定义,向量AB的模长等于点A到点B的距离。
根据坐标表示,点A的坐标为(0, 0),点B的坐标为(3, 4)。
我们可以利用勾股定理来计算距离:AB的模长= √((3-0)² + (4-0)²) = √(9 + 16) = √25 = 5因此,向量AB的模长为5。
解题技巧:对于已知两点坐标的向量,可以利用勾股定理计算模长。
根据坐标表示,点A的坐标为(x₁, y₁),点B的坐标为(x₂, y₂),则向量AB的模长为√((x₂-x₁)² + (y₂-y₁)²)。
例题2:已知向量CD的模长为6,且向量CD的方向与x轴正方向的夹角为30°,求向量CD的坐标表示。
解析:根据已知条件,我们可以得到向量CD的模长和方向。
向量CD的模长为6,方向与x轴正方向的夹角为30°。
根据三角函数的定义,我们可以计算出向量CD在x轴和y轴上的分量:CD在x轴上的分量= 6 * cos30° = 6 * √3 / 2 = 3√3CD在y轴上的分量 = 6 * sin30° = 6 * 1 / 2 = 3因此,向量CD的坐标表示为(3√3, 3)。
解题技巧:对于已知模长和方向的向量,可以利用三角函数计算向量在x轴和y轴上的分量。
向量在x轴上的分量等于模长乘以cosθ,向量在y轴上的分量等于模长乘以sinθ,其中θ为向量与x轴正方向的夹角。
解题技巧如何巧妙解决平面向量的模长与夹角问题
解题技巧如何巧妙解决平面向量的模长与夹角问题在数学学科中,平面向量的模长与夹角是一个经常出现的问题。
解决这类问题,需要掌握一些巧妙的技巧和方法。
本文将介绍一些解题技巧,以帮助读者更好地解决平面向量的模长与夹角问题。
一、平面向量的模长计算技巧在计算平面向量的模长时,一些特殊的技巧可以大大简化计算过程。
首先,对于平面上的向量A(x1, y1)和B(x2, y2),其模长可以通过勾股定理来进行计算。
即模长|AB| = √((x2-x1)² + (y2-y1)²)。
通过这个公式,我们可以将平面上两点的坐标代入,得到向量的模长。
其次,如果两个向量的坐标给定为A(x1, y1)和B(x2, y2),我们要计算它们之间的距离,可以将两个向量相减,得到新的向量C(x2-x1, y2-y1),然后计算向量C的模长。
即|AB| = |C| = √((x2-x1)² + (y2-y1)²)。
另外,如果两个向量的坐标给定为A(x1, y1)和B(x2, y2),我们要计算它们的模长平方和,可以使用平方差公式进行计算。
即|AB|² = (x2-x1)² + (y2-y1)²。
通过掌握这些计算技巧,我们可以更快速、准确地计算平面向量的模长。
二、平面向量的夹角计算技巧在计算平面向量的夹角时,可以运用一些几何和代数的技巧来解决。
首先,对于两个非零向量A和B,它们的夹角θ可以通过内积公式来计算。
即cosθ = (A·B) / (|A| |B|),其中(A·B)表示向量A和B的内积,|A|和|B|分别表示向量A和B的模长。
通过这个公式,我们可以得到夹角θ的值。
其次,如果两个向量A和B的坐标分别为A(x1, y1)和B(x2, y2),我们要计算它们之间的夹角θ,可以通过求解方程来进行计算。
具体来说,在平面上建立两个以A和B为起点,长度分别为|A|和|B|的向量。
高中数学中的平面向量及其应用
平面向量是高中数学中的一个重要概念,它是一种既有大小又有方向的量。
在数学中,我们可以用向量来表示物体的位置、方向、速度等物理量,因此向量被广泛应用于物理学、工程学、计算机科学等许多领域。
本文将介绍高中数学中的平面向量及其应用。
一、平面向量的定义平面向量可以表示为坐标形式,其中坐标包含大小和方向。
例如,向量(3,4)表示一个大小为3,方向为x轴正方向的向量。
在数学中,我们可以用向量来表示物体的位置、方向、速度等物理量。
二、平面向量的基本运算1. 加法:两个向量相加,等于它们的起点重合,然后同时顺时针或逆时针旋转,并分别沿着两个向量的方向移动相同的距离。
2. 减法:两个向量相减,等于它们的起点重合,然后同时逆时针或顺时针旋转,并分别沿着两个向量的方向移动相同的距离。
3. 数量积:两个向量相乘一个实数,等于向量本身乘以这个实数的绝对值,再乘以它们之间的夹角。
4. 向量积:两个向量相乘一个实数,等于它们垂直的乘积,再乘以它们之间的夹角。
三、平面向量的应用1. 物理:在物理学中,向量被广泛应用于力学、电磁学等领域。
例如,在力学中,我们可以使用向量来表示物体的速度、加速度等物理量;在电磁学中,我们可以使用向量来表示电磁波的传播方向等物理量。
2. 工程学:在工程学中,向量被广泛应用于土木工程、机械工程等领域。
例如,在土木工程中,我们可以使用向量来表示结构的形变、位移等物理量;在机械工程中,我们可以使用向量来表示机器的运动轨迹等物理量。
3. 计算机科学:在计算机科学中,向量被广泛应用于图像处理、信号处理等领域。
例如,在图像处理中,我们可以使用向量来表示像素的颜色、亮度等物理量;在信号处理中,我们可以使用向量来表示信号的频率、振幅等物理量。
高中数学必备技巧平面向量的共线与垂直性质
高中数学必备技巧平面向量的共线与垂直性质高中数学必备技巧:平面向量的共线与垂直性质在高中数学学习中,平面向量是一个重要的概念,它能够帮助我们更好地理解空间中的几何问题。
平面向量不仅有方向和大小,还有一些特殊的性质,其中包括共线与垂直性质。
本文将重点介绍平面向量的共线与垂直性质,并提供一些解题技巧。
一、共线性质1. 定义:设有两个非零向量a和b,如果存在实数k,使得a=kb,那么我们称向量a和b共线。
2. 共线判定:有两种判定方式可以确定向量的共线性:a) 坐标判定法:设向量a的坐标表示为(a₁, a₂),向量b的坐标表示为(b₁, b₂),则向量a和b共线的充要条件是a₁/b₁ = a₂/b₂。
b) 分向量判定法:设向量a的两个分向量为a₁和a₂,向量b的两个分向量为b₁和b₂,则向量a和b共线的充要条件是a₁/b₁ =a₂/b₂。
3. 共线向量的性质:如果向量a和b共线,则存在实数k,使得a=k(b₁, b₂)。
这意味着共线的向量具有相同的方向(平行或反平行)。
解题技巧:a) 确定向量的坐标或分向量,并利用坐标判定法或分向量判定法来判断是否共线。
b) 如果两向量的坐标或分向量比例相等,则可直接判断它们共线。
二、垂直性质1. 定义:设有两个非零向量a和b,如果a·b = 0,即它们的数量积为零,那么我们称向量a和b垂直。
2. 垂直判定:有两种判定方式可以确定向量的垂直性:a) 坐标判定法:设向量a的坐标表示为(a₁, a₂),向量b的坐标表示为(b₁, b₂),则向量a和b垂直的充要条件是a₁b₁ + a₂b₂ = 0。
b) 分向量判定法:设向量a的两个分向量为a₁和a₂,向量b的两个分向量为b₁和b₂,则向量a和b垂直的充要条件是a₁b₁ +a₂b₂ = 0。
3. 垂直向量的性质:如果向量a和b垂直,则它们的夹角为90°。
具体而言,如果向量a的坐标表示为(a₁, a₂),向量b的坐标表示为(b₁, b₂),则向量a和b垂直的充要条件是a₁b₁ + a₂b₂ = 0。
高考向量题型和解题方法
高考向量题型和解题方法
高考向量题型主要涉及向量的基本概念、运算、共线、垂直、平行、共面向量以及它们的线性运算、数量积等。
下面是向量的一些基本解题方法:
1.正确理解向量概念及运算,掌握向量加减法、数乘、数量积的
运算及性质,能用向量语言表述直线间的位置关系,并解决一些简单的实际问题。
2.理解两个向量的共线与共面向量定理,会用它们解题。
3.掌握两个向量的垂直的条件,会用它们解题。
4.掌握用平面向量数量积的坐标运算解决线性运算问题的方法。
5.理解平面向量的线性运算是平面向量背景深厚的概念之一,掌
握它所蕴涵的代数与几何的桥梁作用。
6.掌握平面向量数量积的坐标运算及几个结论:两个向量的数量
积等于它们对应坐标的乘积的和,即运用解决垂直、平行、共线等问题的工具。
通过以上方法,可以更好地解决高考向量题型。
但需要注意的是,这些方法只是一些基本的解题技巧,具体情况还需要具体分析,灵活运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学经典解题技巧:平面向量【编者按】平面向量是高中数学考试的必考内容,而且是这几年考试解答题的必选,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。
因此,马博士教育网数学频道编辑部特意针对这部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。
好了,下面就请同学们跟我们一起来探讨下平面向量的经典解题技巧。
首先,解答平面向量这方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.平面向量的实际背景及基本概念(1)了解向量的实际背景。
(2)理解平面向量的概念,理解两个向量相等的含义。
(3)理解向量的几何意义。
2.向量的线性运算(1)掌握向量加法、减法的运算,并理解其几何意义。
(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。
(3)了解向量线性运算的性质及其几何意义。
3.平面向量的基本定理及坐标表示(1)了解平面向量的基本定理及其意义。
(2)掌握平面向量的正交分解及其坐标表示。
(3)会用坐标表示平面向量的加法、减法与数乘运算。
(4)理解用坐标表示的平面向量共线的条件。
4.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义。
(2)了解平面向量的数量积与向量投影的关系。
(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算。
(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
5. 向量的应用(1)会用向量方法解决某些简单的平面几何问题。
(2)会用向量方法解决简单的力学问题与其他一些实际问题。
好了,搞清楚平面向量的上述内容之后,下面我们就看下针对这方面内容的具体的解题技巧。
一、向量的有关概念及运算考情聚焦:1.向量的有关概念及运算,在近几年的高考中年年都会出现。
2.该类问题多数是单独命题,考查有关概念及其基本运算;有时作为一种数学工具,在解答题中与其他知识点交汇在一起考查。
3.多以选择、填空题的形式出现,有关会渗透在解答题中。
解题技巧:向量的有关概念及运算要注意以下几点:(1)正确理解相等向量、共线向量、相反向量、单位向量、零向量等基本概念,如有遗漏,则会出现错误。
(2)正确理解平面向量的运算律,一定要牢固掌握、理解深刻(3)用已知向量表示另外一些向量,是用向量解题的基础,除了用向量的加减法、实数与向量乘积外,还要充分利用平面几何的一些定理,充分联系其他知识。
例1:(2010·山东高考理科·T12)定义平面向量之间的一种运算“⊙”如下,对任意的a=(m,n)r ,b p,q)=r (,令a r ⊙b r mq np =-,下面说法错误的是( )A.若a r 与b r 共线,则a r ⊙b r 0=B. a r ⊙b r = b r ⊙a rC.对任意的R λ∈,有()a λr ⊙b r = (a λr ⊙)b rD. (a r ⊙b r )2222()a b a b +⋅=v v v v【命题立意】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力.【思路点拨】根据所给定义逐个验证.【规范解答】选B ,若a r 与b r 共线,则有a r ⊙b r 0mq np =-=,故A 正确;因为b r ⊙a r pn qm =-,,而a r ⊙b r mq np =-,所以有a r ⊙b r ≠ b r ⊙a r ,故选项B 错误,故选B.【方法技巧】自定义型信息题1、基本特点:该类问题的特点是背景新颖,信息量大,是近几年高考的热点题型.2、基本对策:解答这类问题时,要通过联想类比,仔细分析题目中所提供的命题,找出其中的相似性和一致性二、与平面向量数量积有关的问题考情聚焦:1.与平面向量数量积有关的问题(如向量共线、垂直及夹角等问题)是高考考查的重点。
2.该类问题多数是单独命题,有时与其他知识交汇命题,考查学生分析问题、解决问题的能力。
3.多以选择题、填空题的形式出现,有时会渗透在解答题中。
解题技巧:与平面向量数量积有关的问题1.解决垂直问题:121200,a b a b x x y y a b ⊥⇔=⇔+=r r r r r r g 其中、均为非零向量。
这一条件不能忽视。
2.求长度问题:2||a a a =r r r g ,特别地2211221212(,),(,),||()()A x y B x y AB x x y y =-+-u u u r 则。
3.求夹角问题:求两非零向量夹角的依据121222221122cos(,).||||a b a b a b x y x y ==++r r r r g r r g例2:1.(2010·湖南高考理科·T4)在Rt ABC ∆中,C ∠=90°AC=4,则AB AC ⋅uu u r uuu r 等于( )A 、-16B 、-8C 、8D 、16【命题立意】以直角三角形为依托,考查平面向量的数量积,基底的选择和平面向量基本定理.【思路点拨】由于C ∠=90,因此选向量CA ,CB 为基底.【规范解答】选D .AB AC ⋅uu u r uuu r =(CB-CA)·(-CA)=-CB ·CA+CA 2=16.【方法技巧】平面向量的考查常常有两条路:一是考查加减法,平行四边形法则和三角形法则,平面向量共线定理.二是考查数量积,平面向量基本定理,考查垂直,夹角和距离(长度).2. (2010·广东高考文科·T5)若向量a v =(1,1),b v =(2,5),c v =(3,x)满足条件(8a v —b v )·c v =30,则x=( )A .6B .5C .4D .3【命题立意】本题考察向量的坐标运算及向量的数量积运算.【思路点拨】 先算出8a b -r r ,再由向量的数量积列出方程,从而求出.x【规范解答】选C . 8a b -r r 8(1,1)(2,5)(6,3)=-=,所以(8)(6,3)(3,)a b c x -⋅=⋅r r r30=. 即:18330x +=,解得:4x = ,故选C .三、向量与三角函数的综合考情聚集:1.向量与三角函数相结合是高考的重要考查内容,在近几年的高考中,年年都会出现。
2.这类问题一般比较综合,考查综合应用知识分析问题、解决问题的能力。
一般向量为具,考查三角恒等变换及三角函数的性质等。
3.多以解答题的形式出现。
例3.在直角坐标系)..20)(,sin (),0,8(),2,1(,R a ∈≤≤-=t t k B A xOy πθθ又点已知向量中(I )若求向量且|,|||,=⊥a ; (II )若向量a 与向量共线,当.,4sin ,4OB OA t k ⋅>求时取最大值为且θ【解析】(1)028sin ,),,8sin (=++-∴⊥-=t k AB t k AB θθa Θ …………2分 又22)8sin (64|,|||t k +-=∴=θΘ解得sin sin ,k k t t θθ⎧⎧==⎪⎪⎪⎪⎨⎨⎪⎪==⎪⎪⎩⎩或 ………………4分40(55OB +∴=u u u r或40(55OB -=-u u u r …………6分 (II )16sin 2,+-=∴θk t 共线与向量a Θ ………………8分kk k k t 32)4(sin 2sin )16sin 2(sin 2+--=+-=∴θθθθ kt k k k 32sin ,4sin ,140,4取最大值为时又θθ=∴<<∴> …………10分 )8,4(,6,8,432====OB k k πθ此时得由 (8,0)(4,8)32OA OB ∴⋅=⋅=u u u r u u u r ………………12分注:向量与三角函数的综合,实质上是借助向量的工具性。
(1)解决这类问题的基本思路方法是将向量转化为代数运算;(2)常用到向量的数乘、向量的代数运算,以及数形结合的思路。
例4.(2010·重庆高考理科·T2)已知向量a r ,b r 满足0,1,2a b a b •===r r r r ,则2a b -=r r ( )A .0 B..4 D .8【命题立意】本小题考查向量的基础知识、数量积的运算及性质,考查向量运算的几何意义,考查数形结合的思想方法.【思路点拨】根据公式a =r三角形法则、平行四边形法则求解.【规范解答】选B(方法一)2a b -==r r40422=-+=;(方法二)数形结合法:由条件0a b •=r r 知,以向量a r ,b r 为邻边的平行四边形为矩形,又因为1,2a b ==r r ,所以2=2a r ,则2a b -r r 是边长为2的正方形的一条对角线确定的向量,其长度为22,如图所示. 【方法技巧】方法一:灵活应用公式2a a =r r , 方法二:熟记向量0a b a b ⊥⇔•=r r r r 及向量和的三角形法则例5.(2010·全国高考卷Ⅱ理科·T8)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若CB u u u r = a r ,CA u u u r = b r , 1,2a b ==r r , 则CD uuu r =( ) (A )13a r + 23b r (B )23a r +13b r (C )35a r +45b r (D )45a r +35b r 【命题立意】本题考查了平面向量基本定理及三角形法则的知识。
【思路点拨】运用平面向量三角形法则解决。
由角平分线性质知DB:AD= CB:CA =1:2这样可以用向量a r , b r 表示CD uuu r 。
【规范解答】 选B ,由题意得AD:DB=AC ;CB=2:1,AD=32AB,所以CD uuu r =CA u u u r +=b r +23 =a r +13b r 【方法技巧】角平分线性质、平面向量基本定理及三角形法则例6.(2010·浙江高考文科·T13)已知平面向量,,1,2,(2),αβαβααβ==⊥-u r u r u r u r u r u r u r 则2αβ+u r u r 的值是 。
【命题立意】本题主要考察了平面向量的四则运算及其几何意义,属中档题。
【思路点拨】本题先把垂直关系转化为数量积为0,再利用向量求模公式求解。
【规范解答】由题意可知()-20ααβ⋅=u r u r u r ,结合2214αβ==u r u r ,,解得12αβ⋅=u r u r , 所以2αβ+u r u r 2=224442410ααββ+⋅+=++=u r u r u r u r ,开方可知答案为10. 【答案】10【方法技巧】(1)0a b a b ⊥⇔⋅=r r r r ;(2)||a a a =⋅r r r。