高中数学必修4-平面向量的数量积
必修4平面向量数量积考点归纳
“平面向量”误区警示“平而向呈:”概念繁多容易混淆,对于初学者更是一头雾水.现将与平而向量基本概念相关的误区整理如下.①向量此是育向线段解析:向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.有向线段是向量的一种表示方法,不能说向疑就是有向线段.⑵若向童砸与CD相普,则有向找段AB与CD *含解析:长度相等且方向相同的向疑叫做相等向量.因此,若A B = CD,则有向线段AB与CD 长度相等且方向相同,但它们可以不重合.⑶若AB II CD ,则筑段AB//CD解析:方向相同或相反的非零向量叫做平行向量.故由忑与Cb平行,只能得到线段AB与CD方向相同或相反,它们可能平行也可能共线.购若向爻血与CD共线,则线段AB与CD共线解析:」行向量也叫做共线向量,共线向量就是方向相同或相反的非零向量.故由应与C&共线,只能得到线段AB与CD方向相同或相反,它们可能平行也可能共线.(5)若 a // b, b II 6, flja II c解析:由尹零色量与任一向量平行,故当b = 0时,向量d、2不一定平行.当且仅当亍、6、5都为非零向量时,才有丘II c.⑹若|a| = |6|,则a=6无a=-b解析:也131=1 bl,只能㊇定向的长度相等,不能确定其方向有何关系.当孑与B不共线时,a = b或d=—6都不能成立.⑺草住向董都相等解析:长度等于一个长度单位的向量叫做单位向量,由于单位向量的方向不一左相同,故单位向量也不一定相等.⑻若I 3 | =0,则3 =0解析:向量和实数是两个截然不同的概念,向量组成的集合与实数集合的交集是空集.故若la 1=0,则a = 0 ,不能够说a =0.平面向量数量积四大考点解析考点一.考査概念型问题例1.已知7、I、7是三个非零向量,则下列命题中真命题的个数( )(1)a ・ b = a - b o a lib ; (2)a,b反向o "・b = — a - bf —> f —> f —> f f f⑶么丄b o a + b = u — b ;(4) a = b <=>"・/? = b-cA. 1B.2C. 3D. 4评注:两向量同向时,夹角为0(或(T ):而反向时,夹角为n (或180°):两向量垂直时,夹角为90° ,因此当两向量共线时,夹角为0或几,反过来若两向量的夹角为0或兀,则两向量共线.考点二、考査求模问题例2•已知向虽:方=(一2,2加=(5,小,若a + b不超过5,则k的取值范用是_____________评注:本题是已知模的逆向题,运用左义即可求参数的取值范1刊。
北师大版高中数学必修4第二章《平面向量》平面向量的数量积
r r o 1.已知a, b均为单位向量,它们的夹角为60 , r r 求|a + 3b |= r r r r r r 2.已知a, b满足:a |= 1,b |= 2,| a − b |= 2, | | r r 求|a + b |= uuu r 3.已知平面上三点A, B, C满足:AB |= 2, | uuu r uuu r | BC |= 1,| CA |= 3, uuu uuu uuu uuu uuu uuu r r r r r r 求 AB ⋅ BC + BC ⋅ CA + CA ⋅ AB = r r r r r 4.已知非零向量a, b满足 : (a − 2b) ⊥ a, r r r r r (b − 2a ) ⊥ b, 求a, b的夹角 =
重要性质: 重要性质
设a,b都是非零向量,e是与b方向相同的单 , 位向量,θ是a与e的夹角,则 (1)e·a=a·e = |a| cosθ (2)a⊥b a·b=0 (3)当a与b同向时,a·b=|a||b| 当a与b反向时,a·b=-|a| |b| 特别地,a·a =|a|2或|a|=√a·a 。 (4)cosθ= a·b |a||b|
a·b=|a| |b| cosθ
规定:零向量与任一向量的数量积为0。
r r 即: 0 = 0 a⋅
复 习 引 入 新课讲解 例题讲解 性质讲解 课堂练习 小结回顾
例1.已知|a|=5,|b|=4,a与b的夹角 θ=120°,求a·b.
解:a·b=|a||b|cosθ
=5×4×cos120° =5×4×(-1/2)= -10.
数量积a·b等于a的长度|a|与b在a 的方向上的投影|b|cosθ的乘积.
复 习 引 入 新课讲解 例题讲解 性质讲解 课堂练习 小结回顾 例1.已知|a|=5,|b|=4,a与b的夹角 θ=120°, r r 则, b上的投影为 a在 r r b在a上的投影为
平面向量数量积公式
平面向量数量积公式介绍平面向量是二维空间中具有大小和方向的量。
数量积(又称点积或内积)是平面向量运算的一种形式,用于确定两个向量的相关性以及它们之间的夹角。
数量积公式平面向量数量积公式表示为:A ·B = |A| * |B| * cos(θ)其中,A和B是平面向量,|A|和|B|分别代表向量A和B的模(长度),θ则表示向量A和B之间的夹角。
公式解释平面向量数量积公式的等式左边A · B表示向量A和B之间的数量积。
数量积可以通过两个向量的模和它们之间的夹角来计算。
公式右边的|A|和|B|分别代表向量A和B的模(长度)。
向量的模可以通过求平方根来得到,即|A| = √(A1^2 + A2^2)和|B| = √(B1^2 + B2^2),其中A1和A2分别为向量A在x轴和y轴上的分量,B1和B2类似地代表向量B在x轴和y轴上的分量。
公式右边的cos(θ)表示向量A和B之间的夹角的余弦值。
夹角的余弦可以通过向量的数量积和向量模之间的关系来计算,即cos(θ) = (A · B) / (|A| * |B|)。
综上所述,平面向量数量积公式说明了如何通过向量的模和夹角来计算两个向量之间的数量积。
数量积应用平面向量数量积在多个数学和物理应用中都有重要作用,例如:1.计算向量的模:通过平面向量数量积公式,可以计算向量的模。
向量的模用于衡量向量的长度和大小。
2.计算向量之间的夹角:通过平面向量数量积公式,可以计算两个向量之间的夹角。
夹角的大小和方向可以帮助我们理解向量之间的关系。
3.判断向量的正交性:如果两个向量的数量积为零,即A · B = 0,则称这两个向量为正交向量。
正交向量的特点是它们之间的夹角为90度。
4.判断向量的平行性:如果两个向量的夹角为0度或180度,即θ =0或θ = π,则称这两个向量为平行向量。
平行向量的特点是它们之间的数量积等于两个向量的模的乘积。
5.导出向量的投影:通过平面向量数量积公式,可以导出向量在另一个向量上的投影。
2.4《平面向量的数量积》教案(新人教必修4)
§2.4平面向量的数量积第7课时一、 平面向量的数量积的物理背景及其含义教学目的:1.掌握平面向量的数量积及其几何意义;2.掌握平面向量数量积的重要性质及运算律;3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4.掌握向量垂直的条件. 教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用 授课类型:新授课教 具:多媒体、实物投影仪 内容分析:本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积的运算律. 教学过程: 一、复习引入:1. 向量共线定理 向量b 与非零向量a共线的充要条件是:有且只有一个非零实数λ,使b =λa .2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e 3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a 4.平面向量的坐标运算若),(11y x a ,),(22y x b ,则b a ),(2121y y x x ,b a ),(2121y y x x ,),(y x a .若),(11y x A ,),(22y x B ,则 1212,y y x x AB5.a ∥b (b0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P P 1=λ2PP,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7. 定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(1,12121y y x x ),我们称λ为点P 分21P P 所成的比.8. 点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点. ②当λ<0(1 )时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点. 9.线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b, 可得OP =b a b a1111.10.力做的功:W = |F | |s |cos ,是F 与s 的夹角.二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向; (3)当θ=2时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的.范围0 ≤ ≤1802.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 探究:两个向量的数量积与向量同实数积有很大区别 (1)两个向量的数量积是一个实数,不是向量,符号由cos的符号所决定.(2)两个向量的数量积称为内积,写成a b ;今后要学到两个向量的外积a ×b ,而a b 是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替. (3)在实数中,若a 0,且a b =0,则b =0;但是在数量积中,若a 0,且a b =0,不能推出b =0.因为其中cos有可能为0.(4)已知实数a 、b 、c (b 0),则ab=bc a=c .但是a b = b c a = c如右图:a b = |a ||b |cos= |b ||OA|,b c = |b ||c |cos = |b ||OA|a b = b c 但ac(5)在实数中,有(a b )c = a (b c ),但是(a b )ca (bc )显然,这是因为左端是与c共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3.“投影”的概念:作图定义:|b |cos叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当C为直角时投影为0;当 = 0时投影为 |b |;当 = 180时投影为 |b |.4.向量的数量积的几何意义:数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos2 aba b = 03当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ||4 cos =||||b a ba5|a b | ≤ |a ||b |三、讲解范例:例1 已知|a |=5, |b |=4, a 与b 的夹角θ=120o ,求a ·b . 例2 已知|a |=6, |b |=4, a 与b 的夹角为60o 求(a+2b)·(a-3b).例3 已知|a |=3, |b |=4, 且a 与b 不共线,k 为何值时,向量a+kb 与a-kb 互相垂直. 例4 判断正误,并简要说明理由.①a·0=0;②0·a=0;③0-AB =BA ;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,с都有(a·b)с=a(b·с);⑧a与b是两个单位向量,则a2=b2. 解:上述8个命题中只有③⑧正确;对于①:两个向量的数量积是一个实数,应有0·a=0;对于②:应有0·a=0; 对于④:由数量积定义有|a·b|=|a|·|b|·|cos θ|≤|a||b|,这里θ是a与b的夹角,只有θ=0或θ=π时,才有|a·b|=|a|·|b|;对于⑤:若非零向量a、b垂直,有a·b=0; 对于⑥:由a·b=0可知a⊥b可以都非零; 对于⑦:若a与с共线,记a=λс.则a·b=(λс)·b=λ(с·b)=λ(b·с), ∴(a·b)·с=λ(b·с)с=(b·с)λс=(b·с)a 若a与с不共线,则(a·b)с≠(b·с)a.评述:这一类型题,要求学生确实把握好数量积的定义、性质、运算律.例6 已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b.解:①当a∥b时,若a与b同向,则它们的夹角θ=0°,∴a·b=|a|·|b|cos0°=3×6×1=18; 若a与b反向,则它们的夹角θ=180°,∴a·b=|a||b|cos180°=3×6×(-1)=-18; ②当a⊥b时,它们的夹角θ=90°, ∴a·b=0;③当a与b的夹角是60°时,有a·b=|a||b|cos60°=3×6×21=9评述:两个向量的数量积与它们的夹角有关,其范围是[0°,180°],因此,当a∥b时,有0°或180°两种可能. 四、课堂练习:1.已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是( ) A.60° B .30° C.135° D.45°2.已知|a |=2,|b |=1,a 与b 之间的夹角为3,那么向量m =a -4b 的模为( ) A.2 B .23 C.6 D.12 3.已知a 、b 是非零向量,则|a |=|b |是(a +b )与(a -b )垂直的( ) A.充分但不必要条件 B .必要但不充分条件 C.充要条件 D.既不充分也不必要条件 4.已知向量a 、b 的夹角为3,|a |=2,|b |=1,则|a +b |·|a -b |= . 5.已知a +b =2i -8j ,a -b =-8i +16j ,其中i 、j 是直角坐标系中x 轴、y 轴正方向上的单位向量,那么a ·b = . 6.已知a ⊥b 、c 与a 、b 的夹角均为60°,且|a |=1,|b |=2,|c |=3,则(a +2b -c )2=______. 7.已知|a |=1,|b |=2,(1)若a ∥b ,求a ·b ;(2)若a 、b 的夹角为60°,求|a +b |;(3)若a -b 与a 垂直,求a 与b 的夹角.8.设m 、n 是两个单位向量,其夹角为60°,求向量a =2m +n 与b =2n -3m 的夹角. 9.对于两个非零向量a 、b ,求使|a +tb |最小时的t 值,并求此时b 与a +tb 的夹角. 五、小结(略) 六、课后作业(略) 七、教学后记:第8课时二、平面向量数量积的运算律教学目的:1.掌握平面向量数量积运算规律;2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题. 教学重点:平面向量数量积及运算规律.教学难点:平面向量数量积的应用授课类型:新授课教具:多媒体、实物投影仪内容分析:启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质.教学过程:一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA=a,OB=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b |cos叫a与b的数量积,记作a b ,即有a b = |a||b|cos,(0≤θ≤π).并规定0与任何向量的数量积为0.3.“投影”的概念:作图C定义:|b|cos叫做向量b在a方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当= 0时投影为|b|;当= 180时投影为|b|.4.向量的数量积的几何意义:数量积a b等于a的长度与b在a方向上投影|b|cos的乘积.5.两个向量的数量积的性质:设a、b为两个非零向量,e是与b同向的单位向量.1 e a = a e =|a |cos ;2 a b a b = 03当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b =|a ||b |. 特别的a a = |a |2或a a a ||4cos =||||b a ba ;5|a b | ≤ |a ||b |二、讲解新课: 平面向量数量积的运算律 1.交换律:a b = b a证:设a ,b 夹角为,则a b = |a ||b |cos ,b a = |b ||a |cos∴a b = b a2.数乘结合律:( a ) b = (a b ) = a ( b ) 证:若 > 0,( a ) b = |a ||b |cos , (a b ) = |a ||b |cos,a ( b ) = |a ||b |cos , 若 < 0,( a ) b =| a ||b |cos() =|a ||b |(cos) = |a ||b |cos, (a b )= |a ||b |cos ,a (b ) =|a || b |cos() =|a ||b |(cos) = |a ||b |cos.3.分配律:(a + b ) c = a c + b c在平面内取一点O ,作OA = a , AB = b ,OC = c , ∵a + b (即OB )在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos = |a | cos 1 + |b | cos 2∴| c | |a + b | cos =|c | |a | cos1 + |c | |b | cos2,∴c (a + b ) = c a + c b 即:(a + b ) c= a c + b c说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d (a+b)2=a2+2a·b+b2三、讲解范例:例1 已知a 、b 都是非零向量,且a + 3b 与7a 5b 垂直,a 4b 与7a2b 垂直,求a 与b 的夹角. 解:由(a + 3b )(7a 5b ) = 0 7a 2 + 16a b 15b 2 = 0 ①(a4b )(7a2b ) = 0 7a 230a b + 8b 2 = 0 ②两式相减:2a b = b 2 代入①或②得:a 2 = b 2设a 、b 的夹角为,则cos=21222 ||||||b b b a b a ∴ = 60例2 求证:平行四边形两条对角线平方和等于四条边的平方和.解:如图:平行四边形ABCD 中,DC AB ,BC AD ,AC =AD AB ∴|AC|2=AD AB AD AB AD AB 2||222而BD =AD AB , ∴|BD|2=AD AB AD AB AD AB 2||222∴|AC |2 + |BD |2 = 2222AD AB = 2222||||||||AD DC BC AB例3 四边形ABCD 中,AB =a,BC =b,CD =с,DA =d,且a·b=b·с=с·d=d·a,试问四边形ABCD 是什么图形?分析:四边形的形状由边角关系确定,关键是由题设条件演变、推算该四边形的边角量. 解:四边形ABCD 是矩形,这是因为:一方面:∵a+b+с+d=0,∴a+b=-(с+d),∴(a+b)2=(с+d)2即|a|2+2a·b+|b|2=|с|2+2с·d+|d|2由于a·b=с·d,∴|a|2+|b|2=|с|2+|d|2① 同理有|a|2+|d|2=|с|2+|b|2②由①②可得|a|=|с|,且|b|=|d|即四边形ABCD 两组对边分别相等. ∴四边形ABCD 是平行四边形另一方面,由a·b=b·с,有b(a-с)=0,而由平行四边形ABCD 可得a=-с,代入上式得b·(2a)=0,即a·b=0,∴a⊥b也即AB ⊥BC .综上所述,四边形ABCD 是矩形.评述:(1)在四边形中,AB ,BC ,CD ,DA 是顺次首尾相接向量,则其和向量是零向量,即a+b+с+d=0,应注意这一隐含条件应用;(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系. 四、课堂练习:1.下列叙述不正确的是( )A.向量的数量积满足交换律 B .向量的数量积满足分配律 C.向量的数量积满足结合律 D.a ·b 是一个实数2.已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( ) A.72 B .-72 C.36 D.-363.|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A.平行 B .垂直 C.夹角为3D.不平行也不垂直 4.已知|a |=3,|b |=4,且a 与b 的夹角为150°,则(a +b )2= . 5.已知|a |=2,|b |=5,a ·b =-3,则|a +b |=______,|a -b |= . 6.设|a |=3,|b |=5,且a +λb 与a -λb 垂直,则λ= . 五、小结(略) 六、课后作业(略) 七、板书设计(略) 八、课后记:第9课时三、平面向量数量积的坐标表示、模、夹角教学目的:⑴要求学生掌握平面向量数量积的坐标表示⑵掌握向量垂直的坐标表示的充要条件,及平面内两点间的距离公式. ⑶能用所学知识解决有关综合问题. 教学重点:平面向量数量积的坐标表示教学难点:平面向量数量积的坐标表示的综合运用 授课类型:新授课教 具:多媒体、实物投影仪 教学过程: 一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 3.向量的数量积的几何意义:C数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积.4.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos; 2aba b = 03当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ||4 cos =||||b a ba ;5|a b | ≤ |a ||b |5.平面向量数量积的运算律 交换律:a b = b a数乘结合律:( a ) b = (a b ) = a ( b ) 分配律:(a + b ) c = a c + b c 二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a ,),(22y x b ,试用a 和b 的坐标表示b a .设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11 ,j y i x b 22 所以))((2211j y i x j y i x b a 2211221221j y y j i y x j i y x i x x 又1 i i ,1 j j ,0 i j j i ,所以b a 2121y y x x这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a 2121y y x x 2. 平面内两点间的距离公式一、 设),(y x a ,则222||y x a 或22||y x a.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a (平面内两点间的距离公式)二、 向量垂直的判定设),(11y x a ,),(22y x b ,则b a 02121 y y x x 三、 两向量夹角的余弦( 0)co s =||||b a ba 222221212121y x y x y y x x四、 讲解范例:五、 设a = (5, 7),b = ( 6, 4),求a ·b 及a 、b 间的夹角θ(精确到1o ) 例2 已知A (1, 2),B (2, 3),C ( 2, 5),试判断△ABC 的形状,并给出证明. 例3 已知a = (3, 1),b = (1, 2),求满足x a = 9与x b = 4的向量x . 解:设x = (t , s ), 由429349s t s t b x a x32s t ∴x = (2, 3) 例4 已知a =(1,3),b =(3+1,3-1),则a 与b 的夹角是多少? 分析:为求a 与b 夹角,需先求a ·b 及|a |·|b |,再结合夹角θ的范围确定其值. 解:由a =(1,3),b =(3+1,3-1)有a ·b =3+1+3(3-1)=4,|a |=2,|b |=22.记a 与b 的夹角为θ,则cosθ=22b a b a 又∵0≤θ≤π,∴θ=4评述:已知三角形函数值求角时,应注重角的范围的确定.例5 如图,以原点和A (5, 2)为顶点作等腰直角△OAB ,使 B = 90 ,求点B 和向量AB 的坐标.解:设B 点坐标(x , y ),则OB = (x , y ),AB = (x 5, y 2) ∵OB AB ∴x (x 5) + y (y 2) = 0即:x 2 + y 2 5x 2y = 0 又∵|OB | = |AB | ∴x 2 + y 2 = (x 5)2 + (y 2)2即:10x + 4y = 29由2723232729410025221122y x y x y x y x y x 或∴B 点坐标)23,27( 或)27,23(;AB =)27,23( 或)23,27(例6 在△ABC 中,AB =(2, 3),AC =(1, k ),且△ABC 的一个内角为直角,求k 值.解:当A = 90 时,AB AC = 0,∴2×1 +3×k = 0 ∴k =23当B = 90 时,AB BC = 0,BC =AC AB = (1 2, k 3) = ( 1, k 3) ∴2×( 1) +3×(k 3) = 0 ∴k =311 当C = 90 时,AC BC = 0,∴ 1 + k (k 3) = 0 ∴k =2133 六、 课堂练习:1.若a =(-4,3),b =(5,6),则3|a |2-4a ·b =( ) A.23 B .57 C.63 D.83 2.已知A (1,2),B (2,3),C (-2,5),则△ABC 为( )A.直角三角形 B .锐角三角形 C.钝角三角形 D.不等边三角形 3.已知a =(4,3),向量b 是垂直a 的单位向量,则b 等于( ) A.)54,53(或)53,54( B .)54,53(或)54,53( C.)54,53( 或)53,54(D.)54,53( 或)54,53(4.a =(2,3),b =(-2,4),则(a +b )·(a -b )= .5.已知A (3,2),B (-1,-1),若点P (x ,-21)在线段AB 的中垂线上,则x = . 6.已知A (1,0),B (3,1),C (2,0),且a =,b =,则a 与b 的夹角为 . 七、 小结(略) 八、 课后作业(略) 九、 板书设计(略) 十、 课后记:。
北师大版高中数学必修4第二章《平面向量》从力做的功到平面向量的数量积
a b 4
2
2
1 2
2 1 当且仅当a b 2时, S有最大值, 此时 cos a b 2 2 2
0 180 60 注意两个向量夹角的取值范围
a b 1 4 16 4 2 2
2
进行向量数量积 计算时,既要考 2 虑向量的模,又 或 AB CD AB 16 要根据两个向量 3. AB与AD的夹角是60 , AB与DA的夹角是120 方向确定其夹角。 1 AB DA AB DA cos120 4 3 6 2
特别地, a a a 或 a a a
2
设非零向量a x1 , y1 , b x2 , y2 , 则a b x1 x2 y1 y2 0
内积为零是判定两向量垂直的充要条件
用于计算向量的模 如果表示向量a的有向线段的起点和终点的坐标分别为x1 , y1 , x2 , y2 , 那么
PM PN
1点P的轨迹是什么曲线? 2若点P坐标为x0 , y0 , 记为PM与PN的夹角, 求 tan .
1 x0 2 y02 1 x0 2 y02
1
2 4 x0
0
0
2 2 2 2 2 2 x0 y0 2 x0 1 x0 y0 2 x0 1 16 4 x0 2 4 x0
cos
PM PN PM PN
2
0
tan sin cos 1 1 2 4 x0
2 3 x0 y 0
1 sin 1 cos 1 2 4 x0
1 2 4 x0
高中数学必修4平面向量复习4平面向量的数量积
5.4 平面向量的数量积要点透视: 1.两个向量的夹角:两个非零向量a 和b ,作 OA =a ,OB =b ,则∠AOB =θ (0°≤θ≤180°),叫做两向量a 与b 的夹角。
如果a 与b 的夹角是90°,则说a 与b 垂直,记作a ⊥b 2.两向量的数量积:已知两个非零向量a 和b ,它们的夹角为θ,则把数量|a |·|b |·cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a |·|b |·cos θ,规定:零向量与任一向量的数量积为0.向量的数量积满足下列运算律: (1)a ·b =b ·a ; (2)(λa )·b =λ(a ·b )=a ·(λb ); (3)(a +b )·c =a ·c +b ·c . 3.向量数量积的坐标运算:记a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2. 4定理:两个向量a ,b 垂直的充要条件是a ·b =0.活题精析: 例1.(2001年上海卷)若非零向量以α ,β 满足|α +β |=|α -β |,则α 与β 所成角的大小是 . 要点精析:由作向量和与差的平行四边形法则可知:|α +β |,|α -β |正好是以α ,β 为邻边的平行四边形的两对角线的长度,∵ |α +β |=|α -β |.∴ 平行四边形是矩形,∴ α 与β 所成角是90°.思维延伸:作平面向量的某些题目时,应注意与平面几何知识相结合.本例还可采用两边平方,得α ·β =0. 例2.( 2003年天津卷)设a ,b ,c 是任意的非零向量,且相互不共线. (1)(a ·b )c -(c ·a )b =0 ;(2)|a |-|b |<|a -b |;(3)(b ·c )a -(c ·a )b 不与c 垂直;(4)(3a +2b )· (3a -2b )=9|a |2-4|b }2.其中是真命题的有( )A .(1)(2)B .(2)(3)C .(3)(4)D .(2)(4) 要点解析:(a ·b )c 是与向量c 平行的向量(c ·a )b 是与向量b 平行的向量,因此(a ·b )c 与(c ·a )b 不一定相等,因此(1)不正确. 因为a ,b ,c 是任意的非零向量,是相互不共线,则根据三角形两边之差小于第三边可知(2)正确. [(b ·c )a -(c ·a )b ]·c =(b ·c )(a ·c )-(c ·a )(b ·c )=0,因此(b ·c )a -(c ·a )b 与c 垂直,答案(3)不正确. (3a +2b )·(3a -2b )=9a 2-4b 2=9|a |2-4|b |2,答案(4)正确,应选D 。
平面向量的数量积
平面向量的数量积可以用于判 断两条直线是否平行或垂直
平面向量的数量积可以用于计 算平面上点的坐标和轨迹
04
平面向量的数量积 与向量的模的关系
数量积与向量模的关系
数量积的定义:两个向量的模的乘积与两个向量夹角的余弦值的乘积之和 的平方根
数量积的性质:两个向量的数量积等于它们的模的乘积与它们夹角的余弦 值的乘积
值
投影:向量a 在向量b上的 投影长度等于 向量a的数量 积除以向量b
的长度
方向:向量a 与向量b的数 量积的正负号 表示两向量的 夹角是锐角还
是钝角
数量积的性质
非零向量的数量积为实数
向量的数量积满足交换律和分配律
向量的数量积为0的充分必要条件是两个向量垂直 向量的数量积与向量的模长和夹角有关,可以用来描述两个向量的 相似程度
05
平面向量的数量积 的运算技巧
代数法计算数量积
定义:两个向量的数量积定义为它们的对应坐标的乘积之和 性质:数量积满足交换律和分配律 坐标法:利用向量的坐标进行计算,公式为:a·b=x1x2+y1y2 几何意义:数量积表示两个向量在垂直方向上的投影长度之积
几何法计算数量积
定义:两个非零向量的夹角余弦值乘以两个向量模的乘积
数量积的运算方法
定义:两个向量的数量积定义为 它们的模长和夹角的余弦值的乘 积
几何意义:表示两个向量在垂直 方向上的投影长度
添加标题
添加标题
添加标题
添加标题
性质:数量积满足交换律和分配 律
计算公式:a · b = |a||b|cosθ, 其中θ为两向量的夹角
03
平面向量的数量积 的应用
在三角形中的应用
平面向量的数量积
平面向量数量积说课稿
平面向量数量积说课稿平面向量数量积说课稿1一、教材分析1.本课的地位及作用:平面向量数量积的坐标表示,就是运用坐标这一量化工具表达向量的数量积运算,为研究平面中的距离、垂直、角度等问题提供了全新的手段。
它把向量的数量积与坐标运算两个知识点紧密联系起来,是全章重点之一。
2学生情况分析:在此之前学生已学习了平面向量的坐标表示和平面向量数量积概念及运算,但数量积是用长度和夹角这两个概念来表示的,应用起来不太方便,如何用坐标这一最基本、最常用的工具来表示数量积,使之应用更方便,就是摆在学生面前的一个亟待解决的问题。
因此,本节内容的学习是学生认知发展和知识构建的一个合情、合理的“生长点”。
所以,本节课采取以学生自主完成为主,教师查漏补缺的教学方法。
因此结合中学生的认知结构特点和学生实际。
我将本节教学目标确定为:1、理解掌握平面向量数量积的坐标表达式,会进行数量积的运算。
理解掌握向量的模、夹角等公式。
能根据公式解决两个向量的夹角、垂直等问题2、经历根据平面向量数量积的意义探究其坐标表示的过程,体验在此基础上探究发现向量的模、夹角等重要的度量公式的成功乐趣,培养学生的探究能力、创新精神。
教学重点平面向量数量积的坐标表示及应用教学难点探究发现公式二、教学方法和手段1教学方法:结合本节教材浅显易懂,又有前面平面向量的数量积和向量的坐标表示等知识作铺垫的内容特点,兼顾高一学生已具备一定的数学思维能力和处理向量问题的方法的现状,我主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是“教师为主导,学生为主体,训练为主线的原则,为此,我通过精心设置的一个个问题,激发学生的求知欲,积极的鼓励学生的参与,给学生独立思考的空间,鼓励学生自主探索,最终在教师的指导下去探索发现问题,解决问题。
在教学中,我适时的对学生学习过程给予评价,适当的评价,可以培养学生的自信心,合作交流的意识,更进一步地激发了学生的学习兴趣,让他们体验成功的喜悦。
人教版高一数学必修四第二章平面向量数量积的坐标表示、模、夹角
2.4.2平面向量数量积的坐标表示、模、夹角考点学习目标核心素养向量数量积的坐标表示掌握平面向量数量积的坐标表示,会用向量的坐标形式求数量积数学运算平面向量的模与夹角的坐标表示能根据向量的坐标计算向量的模、夹角及判定两个向量垂直数学运算、逻辑推理问题导学预习教材P106-P107,并思考下列问题:1.平面向量数量积的坐标表示是什么?2.如何用坐标表示向量的模、夹角和垂直?1.两向量的数量积与两向量垂直的坐标表示设两个非零向量a=(x1,y1),b=(x2,y2).数量积两个向量的数量积等于它们对应坐标的乘积的和,即a·b=x1x2+y1y2两个向量垂直a⊥b⇔x1x2+y1y2=0公式a·b=|a||b|cos〈a,b〉与a·b=x1x2+y1y2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.2.三个重要公式判断(正确的打“√”,错误的打“×”) (1)向量的模等于向量坐标的平方和.( )(2)|AB →|的计算公式与A ,B 两点间的距离公式是一致的.( ) 答案:(1)× (2)√已知a =(-3,4),b =(5,2),则a ·b 的值是( ) A .23 B .7 C .-23 D .-7 答案:D已知向量a =(1,-2),b =(x ,2),若a ⊥b ,则x =( ) A .1 B .2 C .4 D .-4答案:C已知a =(3,1),b =(-3,1),则向量a ,b 的夹角θ=______. 答案:120°数量积的坐标运算向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1D .2 【解析】 因为a =(1,-1),b =(-1,2), 所以(2a +b )·a =(1,0)·(1,-1)=1. 【答案】 C数量积坐标运算的两个途径一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再依据已知计算.1.设向量a =(1,-2),向量b =(-3,4),向量c =(3,2),则向量(a +2b )·c =( ) A .(-15,12) B .0 C .-3 D .-11 解析:选C.依题意可知,a +2b =(1,-2)+2(-3,4)=(-5,6),所以(a +2b )·c =(-5,6)·(3,2)=-5×3+6×2=-3.2.已知正方形ABCD 的边长为2,E 为CD 的中点,点F 在AD 上,AF →=2FD →,则BE →·CF →=________.解析:建立平面直角坐标系如图所示,则A (0,2),E (2,1),D (2,2),B (0,0),C (2,0),因为AF →=2FD →,所以F (43,2).所以BE →=(2,1),CF →=(43,2)-(2,0)=(-23,2),所以BE →·CF →=(2,1)·(-23,2)=2×(-23)+1×2=23.答案:23平面向量的模(1)已知点A (0,1),B (1,-2),向量AC →=(4,-1),则|BC →|=________. (2)(2019·山东枣庄三中期中检测)已知平面向量a =(2m -1,2),b =(-2,3m -2),且|a +b |=|a -b |,则5a -3b 在向量a 方向上的投影为________.【解析】 (1)设C (x ,y ),因为点A (0,1),向量AC →=(4,-1),所以AC →=(x ,y -1)=(4,-1),所以{x =4,y -1=-1,解得x =4,y =0,所以C (4,0),所以BC →=(3,2),|BC →|=9+4=13.(2)由|a +b |=|a -b |得a ·b =0,所以-2(2m -1)+2(3m -2)=0,解得m =1,所以a =(1,2),b =(-2,1),5a -3b =(11,7),由投影公式可得所求投影为a ·(5a -3b )|a |=255=5 5.【答案】 (1)13 (2)55求向量的模的两种基本策略(1)字母表示下的运算利用|a|2=a2,将向量的模的运算转化为向量与向量的数量积的问题.(2)坐标表示下的运算若a=(x,y),则a·a=a2=|a|2=x2+y2,于是有|a|=x2+y2.已知向量a=(cos θ,sin θ),向量b=(3,0),则|2a-b|的最大值和最小值分别是()A.42,0 B.4,2 2C.25,1 D.5,1解析:选D.因为2a-b=2(cos θ,sin θ)-(3,0)=(2cos θ-3,2sin θ),所以|2a-b|2=(2cos θ-3)2+(2sin θ)2=13-12cos θ,又cos θ∈[-1,1],所以|2a-b|2∈[1,25],所以|2a-b|∈[1,5],故|2a-b|的最大值和最小值分别是5,1,故选D.平面向量的夹角(垂直)已知a=(4,3),b=(-1,2).(1)求a与b夹角的余弦值;(2)若(a-λb)⊥(2a+b),求实数λ的值.【解】(1)因为a·b=4×(-1)+3×2=2,|a|=42+32=5,|b|=(-1)2+22=5,设a与b的夹角为θ,所以cos θ=a·b|a||b|=255=2525.(2)因为a-λb=(4+λ,3-2λ),2a+b=(7,8),又(a-λb)⊥(2a+b),所以7(4+λ)+8(3-2λ)=0,所以λ=529.利用数量积求两向量夹角的步骤1.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m =( )A .23 B. 3 C .0D .- 3解析:选B.因为a =(1,3),b =(3,m ).所以|a |=2,|b |=9+m 2,a ·b =3+3m ,又a ,b 的夹角为π6,所以a ·b |a |·|b |=cos π6,即3+3m 29+m 2=32,所以3+m =9+m 2,解得m = 3.2.已知A (-2,1),B (6,-3),C (0,5),则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .等边三角形解析:选A.由题设知AB →=(8,-4),AC →=(2,4),BC →=(-6,8),所以AB →·AC →=2×8+(-4)×4=0,即AB →⊥AC →.所以∠BAC =90°,故△ABC 是直角三角形.规范解答平面向量的夹角和垂直问题(本题满分12分)已知三个点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标,并求矩形ABCD 两条对角线所夹的锐角的余弦值.【解】 (1)证明:因为A (2,1),B (3,2),D (-1,4),所以AB →=(1,1),AD →=(-3,3).(2分)AB →·AD →=1×(-3)+1×3=0,利用数量积为0,证明向量垂直所以AB →⊥AD →,所以AB ⊥AD . (4分)(2)因为AB →⊥AD →,四边形ABCD 为矩形, 所以AB →=DC →.(5分)设点C 的坐标为(x ,y ),则DC →=(x +1,y -4).又因为AB →=(1,1),所以⎩⎪⎨⎪⎧x +1=1,y -4=1,解得⎩⎪⎨⎪⎧x =0,y =5.(7分)所以点C 的坐标为(0,5).所以AC →=(-2,4). 又BD →=(-4,2),所以|AC →|=25,|BD →|=25, AC →·BD →=8+8=16.(9分)正确求出这三个量是求两向量夹角的关键设AC →与BD →的夹角为θ,则cos θ=AC →·BD →|AC →||BD →|=1625×25=45.(11分)故矩形ABCD 的两条对角线所夹的锐角的余弦值为45.(12分)(1)解答两向量的夹角的步骤:求数量积、求模、求余弦值、求角.(2)利用cos θ=a ·b|a ||b |判断θ的值时,要注意cos θ<0时,有两种情况:一是θ是钝角,二是θ为180°;cos θ>0时,也有两种情况:一是θ是锐角,二是θ为0°.1.已知向量a =(2,0),a -b =(3,1),则下列结论正确的是( ) A .a ·b =2 B .a ∥b C .b ⊥(a +b ) D .|a |=|b |解析:选C.因为向量a =(2,0),a -b =(3,1),设b =(x ,y ),则⎩⎪⎨⎪⎧2-x =3,0-y =1,解得⎩⎪⎨⎪⎧x =-1,y =-1,所以b =(-1,-1),a +b =(1,-1),b ·(a +b )=-1×1+(-1)×(-1)=0,所以b ⊥(a +b ).2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →=________.解析:由四边形ABCD 为平行四边形,知AC →=AB →+AD →=(3,-1),故AD →·AC →=(2,1)·(3,-1)=5.答案:53.已知a =(1,3),b =(2,m ). (1)当3a -2b 与a 垂直时,求m 的值; (2)当a 与b 的夹角为120°时,求m 的值. 解:(1)由题意得3a -2b =(-1,33-2m ), 由3a -2b 与a 垂直,得-1+9-23m =0, 所以m =433.(2)由题意得|a |=2,|b |=m 2+4,a ·b =2+3m ,所以cos 120°=a ·b |a |·|b |=2+3m 2m 2+4=-12,整理得2+3m +m 2+4=0,化简得m 2+23m =0, 解得m =-23或m =0(舍去). 所以m =-2 3.[A 基础达标]1.已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k =( ) A .-12 B .-6 C .6D .12解析:选D.2a -b =(4,2)-(-1,k )=(5,2-k ),由a ·(2a -b )=0,得(2,1)·(5,2-k )=0,所以10+2-k =0,解得k =12.2.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A .0 B .1 C .-2D .2解析:选D.2a -b =(3,n ),由2a -b 与b 垂直可得(3,n )·(-1,n )=-3+n 2=0,所以n 2=3,所以|a |=2.3.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |等于( ) A .4 2 B .2 5 C .8D .8 2解析:选D.易得a ·b =2×(-1)+4×2=6,所以c =(2,4)-6(-1,2)=(8,-8),所以|c |=82+(-8)2=8 2.4.(2019·河北衡水中学检测)设向量a =(3,1),b =(x ,-3),c =(1,-3),若b ∥c ,则a -b 与b 的夹角为( )A .30°B .60°C .120°D .150°解析:选D.因为b ∥c ,所以-3x =(-3)×1,所以x =3,所以b =(3,-3),a -b =(0,4).所以a -b 与b 的夹角的余弦值为b ·(a -b )|a -b ||b |=-124×23=-32,所以a -b 与b的夹角为150°.5.已知O 为坐标原点,向量OA →=(2,2),OB →=(4,1),在x 轴上有一点P 使得AP →·BP →有最小值,则点P 的坐标是( )A .(-3,0)B .(2,0)C .(3,0)D .(4,0)解析:选C.设点P 的坐标为(x ,0),则AP →=(x -2,-2),BP →=(x -4,-1). AP →·BP →=(x -2)(x -4)+(-2)×(-1) =x 2-6x +10=(x -3)2+1, 所以当x =3时,AP →·BP →有最小值1. 此时点P 的坐标为(3,0).6.设a =(m +1,-3),b =(1,m -1),若(a +b )⊥(a -b ),则m =________. 解析:a +b =(m +1,-3)+(1,m -1)=(m +2,m -4), a -b =(m +1,-3)-(1,m -1)=(m ,-2-m ), 因为(a +b )⊥(a -b ),所以(a +b )·(a -b )=0, 即(m +2,m -4)·(m ,-m -2)=0, 所以m 2+2m -m 2+2m +8=0,解得m =-2. 答案:-27.(2019·陕西咸阳检测)已知向量a =(-2,1),b =(λ,12),且|λa +b |=132,则λ=________.解析:由已知易得λa +b =⎝⎛⎭⎫-λ,λ+12,则(-λ)2+⎝⎛⎭⎫λ+122=134,解得λ=1或λ=-32. 答案:1或-328.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB →在CD →方向上的投影为________.解析:由题意得AB →=(2,1),CD →=(5,5),所以AB →·CD →=15,所以向量AB →在CD →方向上的投影为|AB →|cos 〈AB →,CD →〉=AB →·CD →|CD →|=1552=322.答案:3229.已知a =(1,2),b =(-3,2). (1)求a -b 及|a -b |;(2)若k a +b 与a -b 垂直,求实数k 的值. 解:(1)a -b =(4,0),|a -b |=42+02=4.(2)k a +b =(k -3,2k +2),a -b =(4,0), 因为k a +b 与a -b 垂直,所以(k a +b )·(a -b )=4(k -3)+(2k +2)·0=0, 解得k =3.10.(2019·重庆第一中学第一次月考)已知向量a ,b ,c 是同一平面内的三个向量,其中a =(1,-1).(1)若|c |=32,且c ∥a ,求向量c 的坐标;(2)若b 是单位向量,且a ⊥(a -2b ),求a 与b 的夹角θ.解:(1)设c =(x ,y ),由|c |=32,c ∥a 可得⎩⎪⎨⎪⎧y +x =0,x 2+y 2=18,所以⎩⎪⎨⎪⎧x =-3,y =3,或⎩⎪⎨⎪⎧x =3,y =-3,故c =(-3,3)或c =(3,-3).(2)因为|a |=2,且a ⊥(a -2b ),所以a ·(a -2b )=0,即a 2-2a ·b =0,所以a ·b =1,故cos θ=a ·b |a |·|b |=22,所以θ=π4.[B 能力提升]11.已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =52,则a 与c 的夹角大小为( )A .30°B .60°C .120°D .150°解析:选C.设a 与c 的夹角为θ,依题意,得 a +b =(-1,-2),|a |= 5.设c =(x ,y ),因为(a +b )·c =52, 所以x +2y =-52.又a ·c =x +2y , 所以cos θ=a ·c |a ||c |=x +2y 5×5=-525=-12, 所以a 与c 的夹角为120°.12.在边长为1的正方形ABCD 中,M 为BC 的中点,点E 在线段AB 上运动,则EM →·EC→的取值范围是( ) A.⎣⎡⎦⎤12,2 B.⎣⎡⎦⎤0,32 C.⎣⎡⎦⎤12,32D.[]0,1解析:选C.以A 为坐标原点建立如图所示的平面直角坐标系,设E (x ,0),0≤x ≤1.因为M ⎝⎛⎭⎫1,12,C (1,1),所以EM →=⎝⎛⎭⎫1-x ,12,EC →=(1-x ,1),所以EM →·EC →=⎝⎛⎭⎫1-x ,12·(1-x ,1) =(1-x )2+12.因为0≤x ≤1,所以12≤(1-x )2+12≤32,即EM →·EC →的取值范围是⎣⎡⎦⎤12,32. 13.已知向量a =(1,3),b =(-2,0).(1)求a -b 的坐标以及a -b 与a 之间的夹角;(2)当t ∈[-1,1]时,求|a -t b |的取值范围.解:(1)因为向量a =(1,3),b =(-2,0),所以a -b =(1,3)-(-2,0)=(3,3),所以cos 〈a -b ,a 〉=(a -b )·a |a -b |·|a |=643=32. 因为〈a -b ,a 〉∈[0,π],所以向量a -b 与a 的夹角为π6.(2)|a -t b |2=a 2-2t a ·b +t 2b 2=4t 2+4t +4=4⎝⎛⎭⎫t +122+3.易知当t ∈[-1,1]时,|a -t b |2∈[3,12],所以|a -t b |的取值范围是[3,2 3 ].14.(选做题)已知OA →=(4,0),OB →=(2,23),OC →=(1-λ)·OA →+λOB →(λ2≠λ).(1)求OA →·OB →及OA →在OB →上的投影;(2)证明A ,B ,C 三点共线,并在AB →=BC →时,求λ的值;(3)求|OC →|的最小值.解:(1)OA →·OB →=8,设OA →与OB →的夹角为θ,则cos θ=OA →·OB →|OA →||OB →|=84×4=12, 所以OA →在OB →上的投影为|OA →|cos θ=4×12=2. (2)AB →=OB →-OA →=(-2,23),BC →=OC →-OB →=(1-λ)OA →-(1-λ)OB →=(λ-1)AB →,因为AB →与BC →有公共点B ,所以A ,B ,C 三点共线.当AB →=BC →时,λ-1=1,所以λ=2.(3)|OC →|2=(1-λ)2OA →2+2λ(1-λ)OA →·OB →+λ2OB →2=16λ2-16λ+16=16⎝⎛⎭⎫λ-122+12. 所以当λ=12时,|OC →|取到最小值2 3.。
高中数学必修4第二章第六节《平面向量数量积的坐标表示》
2b
2
2 2 x2 y2 , 3a b x1 x2 y1 y2 , 4a b x1 x2 y1 y2 0
其中假命题序号是:
(2)
4.若a 0,1, b 1,1且 a b a, 则实数的值是
A.-1 B.0 C.1 D.2
3、 cos
x1 x2 y1 y2 x1 y1
2 2
x2 y2
2
2
4、 a // b x1y2 x2 y1 0 5、 a b x1 x2 y1 y2 0
6、已知:A(x1,x2),B(x1,x2)则
AB ( x2 x1 ) 2 ( y2 y1 ) 2 ,
学习目标:
1、理解掌握平面向量数量积的坐标表示、 向量的 夹角、模的 公式. 2、掌握两个向量垂直的坐标表示 3、能初步运用向量数量积的坐标表示 解决处理有关长度、垂直及夹角 的几 个问题.
基础训练题
1.有四个式子: 10 a 0, 20 a 0, 3a b a c b c,
a // b x1y2 x2 y1 0
a b x1 x2 y1 y2 0
例3:已知向量a=(-2,-1),b=(λ,1)若a与b 的夹角为钝角,则λ取值范围是多少? 解:由题意可知: -1< cos
a b ab
<0
∴λ∈(—
1 ,2)∪(2,+∞) 2
例4:已知A(1, 2),B(2,3),C(-2,5)试判 定△ABC的形状,并给出证明。
cos
x1 x2 y1 y2 x1 y1
2 2
x2 y2
2
2
例2:设a=(2,1),b=(1,3),求a· b及a 与b的夹角
平面向量的数量积
平面向量的数量积平面向量的数量积,也叫点积或内积,是向量运算中的一种重要操作。
它与向量的夹角以及向量的长度有着密切的关系。
在本文中,我们将详细介绍平面向量的数量积的概念、计算方法以及一些应用。
一、概念平面向量的数量积是指将两个向量的对应分量相乘,并将所得乘积相加而得到的数值。
设有两个平面向量A和A,它们的数量积记作A·A,计算公式为:A·A = AAAA + AAAA其中,AA和AA分别是向量A在A轴和A轴上的分量,AA和AA分别是向量A在A轴和A轴上的分量。
二、计算方法要计算平面向量的数量积,需要先求出两个向量在A轴和A轴上的分量,然后按照数量积的计算公式进行计算。
假设有两个向量A = (A, A)和A = (A, A),它们的数量积为A·A,计算步骤如下:1. 计算A和A在A轴上的分量AA和AA,分别为A和A;2. 计算A和A在A轴上的分量AA和AA,分别为A和A;3. 将AA和AA、AA和AA进行相乘得到AA和AA;4. 将AA和AA相加,得到平面向量的数量积A·A。
三、性质平面向量的数量积具有以下性质:1. 交换律:A·A = A·A2. 数乘结合律:(AA)·A = A(A·A) = A·(AA)3. 分配律:(A + A)·A = A·A + A·A其中,A为任意实数,A、A和A为任意向量。
四、夹角与数量积的关系两个非零向量A和A的数量积A·A与它们夹角A的余弦函数之间存在着如下关系:A·A = ‖A‖‖A‖cosA其中,‖A‖和‖A‖分别为向量A和A的长度。
五、应用平面向量的数量积在几何和物理学中有着广泛的应用。
以下是一些常见的应用:1. 判断两个向量是否垂直:如果两个向量的数量积为零,即A·A = 0,那么它们是垂直的。
2. 计算向量的模:根据数量积的性质,向量的模可以通过向量与自身的数量积来计算。
2020版高考数学总复习第四篇平面向量必修4第3节平面向量的数量积及平面向量的应用课件理
综上可知,实数λ的取值范围为(- 5 ,0)∪(0,+∞).
答案:(- 5 ,0)∪(0,+∞)
3
3
考查角度3:平面向量的垂直
【例4】 (2016·全国Ⅱ卷)已知向量a=(1,m),b=(3,-2),且(a+b)⊥b,则m等于
()
(A)-8 (B)-6
(C)6
(D)8
解析:a+b=(4,m-2),由(a+b)⊥b得(a+b)·b=(4,m-2)·(3,-2)=122m+4=0,m=8.故选D.
_x_1_x_2_+_y_1_y_2=__0__
|x1x2+y1y2|≤___x_12__y_12__x_22__y_22___
5.向量在平面几何中的应用 平面向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几 何中的平行、垂直、全等、相似、长度、夹角等问题. 6.平面向量在物理中的应用 (1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的加 法和减法相似,可以用向量的知识来解决. (2)物理学中的功是一个标量,这是力F与位移s的数量积.即W=F·s=|F||s|cos θ(θ为F与s的夹角).
②|a±b|= a b2 = a2 2ab b2 .
③若 a=(x,y),则|a|= x2 y2 .
(2)与模有关的最值或范围问题要注意抓住模的几何意义及数形结合思想 的应用.
【跟踪训练 2】 (2018·广东广州珠海区一模)已知向量 a,b 的夹角为 60°,|a|=2, |a-2b|=2,则|b|等于( ) (A)4 (B)2 (C) 2 (D)1
结论
几何表示
坐标表示
模
夹角
平面向量的数量积说课稿
平面向量的数量积说课稿说课内容:普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第四节“平面向量的数量积”的第一课时---平面向量数量积的物理背景及其含义。
下面,我从背景分析、教学目标设计、课堂结构设计、教学过程设计、教学媒体设计及教学评价设计六个方面对本节课的思考进行说明。
一、背景分析1、学习任务分析平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。
本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。
本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。
其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。
同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。
2、学生情况分析学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。
这为学生学习数量积做了很好的铺垫,使学生倍感亲切。
但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。
因而本节课教学的难点数量积的概念。
二、教学目标设计《普通高中数学课程标准(实验)》对本节课的要求有以下三条:(1)通过物理中“功”等事例,理解平面向量数量积的含义及其物理意义。
新人教A版必修4高中数学2.4.1平面向量数量积的含义学案
高中数学 2.4.1平面向量数量积的含义学案新人教A 版必修4【学习目标】1、 理解平面向量数量积的含义,2、 掌握数量积公式,理解几何意义及投影定义;3、 掌握平面向量数量积的重要性质及运算律,并能运用这些性质和运算律解决有关问题。
【重点难点】1、 掌握数量积公式,理解几何意义及投影定义;2、 掌握平面向量数量积的重要性质及运算律,并能运用这些性质和运算律解决有关问题。
【学习内容】问题情境导学一、向量数量积的定义【想一想】(1)你能用文字语言表述“功的计算公式”吗?(2)如果我们把上述公式中的力与位移推广到一般向量,其结果又如何表述?【填一填】(1)已知两个非零向量a 与b ,它们的夹角为θ,则把数量_____叫做a与b 数量积(或内积),记作b a ⋅即b a ⋅=________,(2)规定零向量与任一向量的数量积为______________.【思考】向量的数量积运算与向量的线性运算的结果有什么不同?影响数量积大小的因素有哪些?二、向量数量积的几何意义【想一想】 结合图形,你能作出θcos b 吗?【填一填】数量积的几何意义:数量积b a ⋅等于a 的长度a 与b 在a 的方向上的投影___________的乘积.【思考】b 在a 方向上的投影θcos b 是个什么量?三、向量数量积的性质【想一想】的夹角︒=0θ,︒90,︒180时,b a ⋅的结果怎样?当b a =时,b a ⋅的结果又怎样?【填一填】设a 与b 都是非零向量,θ为a 与b 的夹角.(1)a ⊥b ⇔__________________;(2)当a 与b 同向时,b a ⋅=________,当a 与b 反向时,b a ⋅=________;(3)a a ⋅=________或a a a ⋅=2a =;(4)ba b a ⋅=θcos ; (5) ||b a ⋅b a =.【思考】若b a ⋅0>,a 与b 的夹角是锐角吗?若b a ⋅0<,a 与b 的夹角是钝角吗?返过来呢?四、向量数量积的运算律 【想一想】若c b a ,,,λ是实数,则下列运算律成立:(1)a b b a ⋅=⋅;(2))()()(b a b a b a λλλ⋅=⋅=⋅;(3)c b c a c b a ⋅+⋅=⋅+)(;(4))()(c b a c b a ⋅⋅=⋅⋅. 若以上字母除λ外都是向量,以上运算律还成立吗?【填一填】(1)b a ⋅=________;(2)=⋅b a )(λ________________))((R b a ∈⋅=λλ ;(3)=⋅+c b a )(__________________.【思考】若c a b a ⋅=⋅,b 与c 一定相等吗?为什么?课堂互动探究【类型一】数量积的基本运算例1、已知4=a ,5=b ,当①a //b ;②b a ⊥;③a 与b 的夹角为︒135时,分别求a 与b 的数量积.【类型二】与向量的模有关的问题例2、已知向量a 、b 满足2=a ,3=b ,4=+b a 求 b a -.【类型三】两向量的垂直与夹角问题例3、已知3=a ,2=b ,向量a 、b 的夹角为︒60,=c b a 53+,b a m d 3-=,求当m 为何值时,d c 与垂直?【课后作业与练习】基础达标(1)若2=a ,21=b ,a 与b 的夹角为︒60,则b a ⋅为 (A)21 (B)41(C)1 (D)2(2)已知3=b ,a 在b 方向上的投影是32,则b a⋅为(A)31 (B)34 (C)3 (D)2 (3)已知10=a ,12=b ,且b a ⋅60-=,则a 与b 的夹角(A)︒60 (B)︒120 (C)︒135 (D)︒150(4)设a 与b 的模分别为4或3,夹角为︒60,则b a +等于(A)37 (B)13 (C)37 (D)13(5)已知a 、b 是非零向量,且满足a b a ⊥-)2(,b a b ⊥-)2(,则a 与b的夹角是 (A)6π (B)3π (C)32π (D)65π (6)若两个单位向量1e ,2e 夹角为32π,且向量2112e e b -=,21243e e b +=,则=⋅21b b ___________________.(7)已知向量a 、b 满足b a ⋅,且1=a ,2=b ,则a 与b 的夹角是___________________.(8) 已知非零向量a 与b 的夹角为︒120,若b a c +=,且a c ⊥,则b a的值为___________________. 能力提升(9)已知1=a ,b a ⋅21= ,21)()(=+⋅-b a b a . ①求a 与b 的夹角θ;②求b a +.(10)在边长为1的正三角形ABC 中,设BD BC 2=, CE CA 3=,求BE AD ⋅.(11)已知b a ⊥,且2=a ,1=b ,若对两个不同时为零的实数k ,t ,使得b t a )3(-+与b t a k +-垂直,试求k 的最小值.(12) 已知非零向量a 与b 的夹角为︒120,2=a ,4=b ,设)(R x b a x y ∈+= ,试求y 的最小值,并求出相应的x 值.。
人教版高中数学高一A版必修4 第二章第四节平面向量的数量积(第三课时)
第二章第四节平面向量的数量积第三课时整体设计教学分析平面向量的数量积,教材将其分为两部分.在第一部分向量的数量积中,首先研究平面向量所成的角,其次,介绍了向量数量积的定义,最后研究了向量数量积的基本运算法则和基本结论;在第二部分平面向量数量积的坐标表示中,在平面向量数量积的坐标表示的基础上,利用数量积的坐标表示研讨了平面向量所成角的计算方式,得到了两向量垂直的判定方法,本节是平面向量数量积的第二部分.前面我们学习了平面向量的数量积,以及平面向量的坐标表示.那么在有了平面向量的坐标表示以及坐标运算的经验和引进平面向量的数量积后,就顺其自然地要考虑到平面向量的数量积是否也能用坐标表示的问题.另一方面,由于平面向量数量积涉及了向量的模、夹角,因此在实现向量数量积的坐标表示后,向量的模、夹角也都可以与向量的坐标联系起来.利用平面向量的坐标表示和坐标运算,结合平面向量与平面向量数量积的关系来推导出平面向量数量积以及向量的模、夹角的坐标表示.教师应在坐标基底向量的数量积的基础上,推导向量数量积的坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量的坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其他因素基本题型的求解方法.平面向量数量积的坐标表示是在学生学习了平面向量的坐标表示和平面向量数量积的基础上进一步学习的,这都为数量积的坐标表示奠定了知识和方法基础.三维目标1.通过探究平面向量的数量积的坐标运算,掌握两个向量数量积的坐标表示方法.2.掌握两个向量垂直的坐标条件以及能运用两个向量的数量积的坐标表示解决有关长度、角度、垂直等几何问题.3.通过平面向量数量积的坐标表示,进一步加深学生对平面向量数量积的认识,提高学生的运算速度,培养学生的运算能力和创新能力,提高学生的数学素质.重点难点教学重点:平面向量数量积的坐标表示.教学难点:向量数量积的坐标表示的应用.课时安排1课时教学过程导入新课思路1.平面向量的表示方法有几何法和坐标法,向量的表示形式不同,对其运算的表示方式也会改变.向量的坐标表示为我们解决有关向量的加、减、数乘运算带来了极大的方便.上一节,我们学习了平面向量的数量积,那么向量的坐标表示,对平面向量的数量积的表示方式又会带来哪些变化呢?由此直接进入主题.思路2.在平面直角坐标系中,平面向量可以用有序实数对来表示,两个平面向量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面向量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现呢?平面向量的数量积还会是一个有序实数对吗?同时,平面向量的模、夹角又该如何用坐标来表示呢?通过回顾两个向量的数量积的定义和向量的坐标表示,在此基础上引导学生推导、探索平面向量数量积的坐标表示.推进新课新知探究提出问题①平面向量的数量积能否用坐标表示?②已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),怎样用a 与b 的坐标表示a·b 呢?③怎样用向量的坐标表示两个平面向量垂直的条件?④你能否根据所学知识推导出向量的长度、距离和夹角公式?活动:教师引导学生利用前面所学知识对问题进行推导和探究.前面学习了向量的坐标可以用平面直角坐标系中的有序实数对来表示,而且我们也知道了向量的加、减以及实数与向量积的线性运算都可以用坐标来表示.两个向量共线时它们对应的坐标也具备某种关系,那么我们就自然而然地想到既然向量具有数量积的运算关系,这种运算关系能否用向量的坐标来表示呢?教师提示学生在向量坐标表示的基础上结合向量的坐标运算进行推导数量积的坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要的提示和补充.推导过程如下:∵a =x 1i +y 1j ,b =x 2i +y 2j ,∴a·b =(x 1i +y 1j )·(x 2i +y 2j )=x 1x 2i 2+x 1y 2i·j +x 2y 1i·j +y 1y 2j 2.又∵i·i =1,j·j =1,i·j =j·i =0,∴a·b =x 1x 2+y 1y 2.教师给出结论性的总结,由此可归纳如下:1°平面向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和,即a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2.2°向量模的坐标表示若a =(x ,y ),则|a |2=x 2+y 2,或|a |=x 2+y 2. 如果表示向量a 的有向线段的起点和终点的坐标分别为(x 1,y 1)、(x 2,y 2),那么 a =(x 2-x 1,y 2-y 1),|a |=(x 2-x 1)2+(y 2-y 1)2. 3°两向量垂直的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.4°两向量夹角的坐标表示设a 、b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,根据向量数量积的定义及坐标表示,可得cos θ=a·b |a||b|=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.讨论结果:略.应用示例例1已知A (1,2),B (2,3),C (-2,5),试判断△ABC 的形状,并给出证明.活动:教师引导学生利用向量数量积的坐标运算来解决平面图形的形状问题.判断平面图形的形状,特别是三角形的形状时主要看边长是否相等,角是否为直角.可先作出草图,进行直观判定,再去证明.在证明中若平面图形中有两个边所在的向量共线或者模相等,则此平面图形与平行四边形有关;若三角形的两条边所在的向量模相等或者由两边所在向量的数量积为零,则此三角形为等腰三角形或者为直角三角形.教师可以让学生多总结几种判断平面图形形状的方法.解:在平面直角坐标系中标出A (1,2),B (2,3),C (-2,5)三点,我们发现△ABC 是直角三角形.下面给出证明.∵AB →=(2-1,3-2)=(1,1),AC →=(-2-1,5-2)=(-3,3),∴AB →·AC →=1×(-3)+1×3=0.∴AB →⊥AC →.∴△ABC 是直角三角形.点评:本题考查的是向量数量积的应用,利用向量垂直的条件和模长公式来判断三角形的形状.当给出要判定的三角形的顶点坐标时,首先要作出草图,得到直观判定,然后对你例2(1)已知三点A (2,-2),B (5,1),C (1,4),求∠BAC 的余弦值;(2)a =(3,0),b =(-5,5),求a 与b 的夹角.活动:教师让学生利用向量的坐标运算求出两向量a =(x 1,y 1)与b =(x 2,y 2)的数量积a·b =x 1x 2+y 1y 2和模|a |=x 21+y 21,|b |=x 22+y 22的积,其比值就是这两个向量夹角的余弦值,即cos θ=a·b |a||b|=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.当求出两向量夹角的余弦值后再求两向量的夹角大小时,需注意两向量夹角的范围是0≤θ≤π.学生在解这方面的题目时需要把向量的坐标表示清楚,以免出现不必要的错误.解:(1)AB →=(5,1)-(2,-2)=(3,3),AC →=(1,4)-(2,-2)=(-1,6),∴AB →·AC →=3×(-1)+3×6=15.又∵|AB →|=32+32=32,|AC →|=(-1)2+62=37,∴cos ∠BAC =AB →·AC →|AB →||AC →|=1532·37=57474. (2)a·b =3×(-5)+0×5=-15,|a|=3,|b |=5 2.设a 与b 的夹角为θ,则cos θ=a·b |a||b |=-153×52=-22. 又∵0≤θ≤π,∴θ=3π4. 点评:本题考查的是利用向量的坐标表示来求两向量的夹角.利用基本公式进行运算与例3已知|a |=3,b =(2,3),试分别解答下面两个问题:(1)若a ⊥b ,求a ;(2)若a ∥b ,求a .活动:对平面中的两向量a =(x 1,y 1)与b =(x 2,y 2),要让学生在应用中深刻领悟其本质属性,向量垂直的坐标表示x 1x 2+y 1y 2=0与向量共线的坐标表示x 1y 2-x 2y 1=0很容易混淆,应仔细比较并熟记,当难以区分时,要从意义上鉴别,两向量垂直是a·b =0,而共线是方向相同或相反.教师可多加强反例练习,多给出这两种类型的变形训练.解:(1)设a =(x ,y ),由|a |=3且a ⊥b ,得⎩⎪⎨⎪⎧x 2+y 2=|a |2=9,2x +3y =0, 解得⎩⎨⎧ x =-91313,y =61313或⎩⎨⎧ x =91313,y =-61313. ∴a =(-91313,61313)或a =(91313,-61313). (2)设a =(x ,y ),由|a |=3且a ∥b ,得⎩⎪⎨⎪⎧x 2+y 2=|a |2=9,3x -2y =0, 解得⎩⎨⎧ x =61313,y =91313或⎩⎨⎧ x =-61313,y =-91313.∴a =(61313,91313)或a =(-61313,-91313). 点评:本题主要考查学生对公式的掌握情况,学生能熟练运用两向量的坐标运算来判断知能训练课本本节练习.解答:1.|a|=5,|b|=29,a·b =-7.2.a·b =8,(a +b )·(a -b )=-7,a·(a +b )=0,(a +b )2=49.3.a·b =1,|a|=13,|b|=74,θ≈88°.课堂小结1.在知识层面上,先引导学生归纳平面向量数量积的坐标表示,向量的模,两向量的夹角,向量垂直的条件.其次引导学生总结数量积的坐标运算规律,夹角和距离公式、两向量垂直的坐标表示.2.在思想方法上,教师与学生一起回顾探索过程中用到的思维方法和数学思想方法,定义法,待定系数法等.作业课本习题2.4 A组8、9、10.设计感想由于本节课是对平面向量的进一步探究与应用,是对平面向量几何意义的综合研究提高,因此教案设计流程是探究、发现、应用、提高,这符合新课程理念,符合新课标要求.我们知道平面向量的数量积是本章最重要的内容,也是高考中的重点,既有选择题、填空题,也有解答题(大多同立体几何、解析几何综合考查),故学习时要熟练掌握基本概念和性质及其综合运用.而且数量积的坐标表示又是向量运算的一个重要内容,用坐标表示直角坐标平面内点的位置,是解析几何的一个基本特征,从而以坐标为桥梁可以建立向量与解析几何的内在联系.以三角函数表示点的坐标,又可以沟通向量与三角函数的相互关系,由此就产生出一类向量与解析几何及三角函数交汇的综合性问题.平面向量数量积的坐标表示使得向量数量积的应用更为方便,也拓宽了向量应用的途径.通过学习本节的内容,要更加加深对向量数量积概念的理解,同时善于运用坐标形式运算解决数量问题,尤其是有关向量的夹角、长度、垂直等,往往可以使问题简单化.灵活使用坐标形式,综合处理向量的线性运算、数量积、平行等,综合地解决向量综合题,体现数形结合的思想.在本节的学习中可以通过对实际问题的抽象来培养学生分析问题、解决问题和应用知识解决问题的意识与能力.备课资料一、|a·b|≤|a||b|的应用若a=(x1,y1),b=(x2,y2),则平面向量的数量积的性质|a·b|≤|a||b|的坐标表示为x1x2+y1y2≤x21+y21x22+y22⇔(x1x2+y1y2)2≤(x21+y21)(x22+y22).不等式(x1x2+y1y2)2≤(x21+y21)(x22+y22)有着非常广泛的应用,由此还可以推广到一般(柯西不等式):(a1b1+a2b2+…+a n b n)2≤(a21+a22+…+a2n)(b21+b22+…+b2n).例1(1)已知实数x,y满足x+y-4=0,则x2+y2的最小值是________;(2)已知实数x,y满足(x+2)2+y2=1,则2x-y的最大值是________.解析:(1)令m=(x,y),n=(1,1).∵|m·n|≤|m||n|,∴|x+y|≤x2+y2·2,即2(x2+y2)≥(x+y)2=16.∴x2+y2≥8,故x2+y2的最小值是8.(2)令m=(x+2,y),n=(2,-1),2x-y=t.由|m·n|≤|m||n|,得|2(x+2)-y|≤(x+2)2+y2·5=5,即|t+4|≤ 5.解得-4-5≤t≤5-4.故所求的最大值是5-4.答案:(1)8 (2)5-4例2已知a,b∈R,θ∈(0,π2),试比较a2cos2θ+b2sin2θ与(a+b)2的大小.解:构造向量m=(acosθ,bsinθ),n=(cosθ,sinθ),由|m·n|≤|m||n|得(a cos θcos θ+b sin θsin θ)2≤(a 2cos 2θ+b 2sin 2θ)(cos 2θ+sin 2θ), ∴(a +b )2≤a 2cos 2θ+b 2sin 2θ. 同类变式:已知a ,b ∈R ,m ,n ∈R ,且mn ≠0,m 2n 2>a 2m 2+b 2n 2,令M =m 2+n 2,N =a +b ,比较M 、N 的大小.解:构造向量p =(a n ,b m),q =(n ,m ),由|p ·q |≤|p ||q |得 (a n ×n +b m ×m )2≤(a 2n 2+b 2m 2)(m 2+n 2)=a 2m 2+b 2n 2n 2m 2(m 2+n 2)<m 2+n 2, ∴M >N .例3设a ,b ∈R ,A ={(x ,y )|x =n ,y =na +b ,n ∈Z },B ={(x ,y )|x =m ,y =3m 2+15,m ∈Z },C ={(x ,y )|x 2+y 2≤144}是直角坐标平面xOy 内的点集,讨论是否存在a 和b ,使得A ∩B ≠∅与(a ,b )∈C 能同时成立.解:此问题等价于探求a 、b 是否存在的问题,它满足⎩⎪⎨⎪⎧na +b =3n 2+15,①a 2+b 2≤144. ② 设存在a 和b 满足①②两式,构造向量m =(a ,b ),n =(n,1).由|m ·n |2≤|m |2|n |2得(na +b )2≤(n 2+1)(a 2+b 2),∴(3n 2+15)2≤144(n 2+1)⇒n 4-6n 2+9≤0.解得n =±3,这与n ∈Z 矛盾,故不存在a 和b 满足条件.二、备用习题1.若a =(2,-3),b =(x,2x ),且a ·b =43,则x 等于( ) A .3 B.13C .-13D .-3 答案:C2.设a =(1,2),b =(1,m ),若a 与b 的夹角为钝角,则m 的取值范围是( )A .m >12B .m <12C .m >-12D .m <-12答案:D3.若a =(cos α,sin α),b =(cos β,sin β),则( )A .a ⊥bB .a ∥bC .(a +b )⊥(a -b )D .(a +b )∥(a -b )答案:C4.与a =(u ,v )垂直的单位向量是( )A .(-v u 2+v 2,u u 2+v2) B .(v u 2+v 2,-u u 2+v2) C .(v u 2+v 2,u u 2+v 2) D .(-v u 2+v 2,u u 2+v 2)或(v u 2+v 2,-u u 2+v2) 答案:D5.已知向量a =(cos23°,cos67°),b =(cos68°,cos22°),u =a +t b (t ∈R ),求u 的模的最小值.答案:解:|a |=cos 223°+cos 267°=cos 223°+sin 223°=1,同理有|b |=1.又a ·b =cos23°cos68°+cos67°cos22°=cos23°cos68°+sin23°sin68°=cos45°=22, ∴|u |2=(a +t b )2=a 2+2t a·b +t 2b 2=t 2+2t +1=(t +22)2+12≥12. 当t =-22时,|u |min =22. 6.已知△ABC 的三个顶点为A (1,1),B (3,1),C (4,5),求△ABC 的面积.答案:分析:S △ABC =12|AB →||AC →|sin ∠BAC ,而|AB →|,|AC →|易求,要求sin ∠BAC 可先求出cos ∠BAC .解:∵AB →=(2,0),AC →=(3,4),|AB →|=2,|AC →|=5,∴cos ∠BAC =AB →·AC →|AB →||AC →|=2×3+0×42×5=35. ∴sin ∠BAC =45. ∴S △ABC =12|AB →||AC →|sin ∠BAC =12×2×5×45=4. 三、新教材新教法的二十四个“化”字诀新课导入新颖化,揭示概念美丽化;纵横相联过程化,探索讨论热烈化;探究例题多变化,引导思路发散化;学生活动主体化,一石激浪点拨化;大胆猜想多样化,论证应用规律化;变式训练探究化,课堂教学艺术化;学法指导个性化,对待学生情感化;作业抛砖引玉化,选题质量层次化;学生学习研究化,知识方法思想化;抓住闪光激励化,教学相长平等化;教学意识超前化,与时俱进媒体化;灵活创新智慧化,学生素质国际化.。
高中数学 人教A版必修4 第2章 2.4.1平面向量数量积的物理背景及含义(一)
其中 θ 是 a 与 b 的夹角. (2)规定:零向量与任一向量的数量积为 0 . (3)投影:设两个非零向量 a、b 的夹角为 θ,则向量 a 在 b
|a|cos θ , |b|cos θ 方向的投影是_______ 向量 b 在 a 方向上的投影是_______.
3.数量积的几何意义 a· b 的几何意义是数量积 a· b 等于 a 的长度|a|与 b 在 a 的方
|b|cos θ 的乘积. 向上的投影_______
研一研·问题探究、课堂更高效
2.4.1(一)
探究点一
本 课 时 栏 目 开 关
平面向量数量积的含义
已知两个非零向量 a 与 b,我们把数量|a||b|cos θ 叫做 a 与 b 的 数量积(或内积),记作 a· b,即 a· b=|a||b|cos θ,其中 θ 是 a 与 b 的夹角,θ∈[0,π].规定:零向量与任一向量的数量积为 0. 问题 1 如果一个物体在力 F 的作用下产生位移 s,那么力 F 所
∴a· b=|a|· |b|cos 180° =4×5×(-1)=-20. (2)当 a⊥b 时,θ=90° ,∴a· b=|a|· |b|cos 90° =0. (3)当 a 与 b 的夹角为 30° 时,a· b=|a|· |b|cos 30°
2.4.1(一)
【学法指导】 1.向量的数量积是一种新的乘法,和向量的线性运算有着显著的 区别,两个向量的数量积,其结果是数量,而不是向量.学习 本 课 时必须透彻理解数量积概念的内涵. 时 栏 目 2.向量的数量积与实数的乘积既有区别又有联系,概念内涵更丰 开 关 富,计算更复杂,实数乘法中的一些运算律在向量的数量积中 已经不再成立,不宜作简单类比,照搬照抄.书写格式也要严 格区分,a· b 中的“· ”不能省略.
平面向量的数量积
平面向量的数量积在解析几何中,平面向量的数量积是一种常见且重要的运算。
通过求取两个向量的数量积,我们可以得到向量的夹角以及向量的投影等有用信息。
本文将详细介绍平面向量的数量积的概念、计算方式以及其在几何学和物理学中的应用。
一、概念平面向量是具有方向和大小的箭头,一般用有序数对(a, b)表示,其中a表示该向量在x轴上的投影,b表示该向量在y轴上的投影。
为了方便计算,我们可以使用向量与坐标轴形成的三角形,其中向量的起点位于原点,以及向量的终点位于坐标轴上。
平面向量的数量积又称为点积或内积,通常用符号"·"表示。
对于平面向量u和v,它们的数量积定义为u·v = |u||v|cosθ,其中|u|和|v|分别表示向量u和v的模长,θ表示u和v之间的夹角。
二、计算方式计算平面向量的数量积可以使用以下公式:u·v = a₁a₂ + b₁b₂,其中u=(a₁, b₁)、v=(a₂, b₂)。
根据该公式,我们可以很容易地计算出两个向量的数量积。
另外,数量积也可以写成向量形式:u·v =|u||v|cosθ,其中u、v分别表示向量u和v,θ表示夹角。
三、性质平面向量的数量积具有以下几个重要的性质:1. 交换律:u·v = v·u2. 分配律:k(u+v) = ku + kv,其中k为任意实数3. 数量积与夹角的关系:u·v = 0,当且仅当两个向量垂直,即夹角为90度4. 数量积与模长的关系:u·v = |u||v|cosθ5. 数量积为零的性质:若u·v = 0,则u和v线性无关四、应用平面向量的数量积在几何学和物理学中有着广泛的应用,其中包括以下几个方面:1. 判断向量垂直:通过计算两个向量的数量积,若结果为0,则可以判断这两个向量垂直。
2. 计算夹角:通过计算两个向量的数量积,利用cosθ = u·v / (|u||v|),我们可以求得两个向量的夹角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阅读思考 平面向量的数量积的运算律:
(1)a b b a
(2)(a) b (a b ) a (b )
(3)(a b ) c a c b c
其中,a、b、c是任意三个向量, R
(a b ) c a (b c)
10
的夹角。
B
Oθ
特殊情况
θ=0°
θ=180°
A
θ =90°
3
阅读思考
向量数量积的义
已知两个非零向量a与b,它们的 夹角为θ,我们把数量|a| |b|cosθ叫做 a与b的数量积(或内积),记作a·b
a·b=|a| |b| cosθ
规定:零向量与任一向量的数量积为0。
4
例题解析
例1 已知|a|=5,|b|=4,a与b的夹角 θ=120°,求a·b。
例5.已知 | a | 3,| b | 4,当且仅当k为何值时, 向量a kb与a kb互相垂直?
13
课堂小结
1、向量的数量积的定义 2、向量的数量积的几何意义 3、向量的数量积的运算律 4 、必须掌握的五条重要性质
14
课本 P108 1, 2, 3, 6
再见!
15
练习:p106---1,2
5
阅读思考 平面向量的数量积的几何意义
b在a方向 上的投影
B
b
O
B1 a A
OB1 | b | cos | a |
记作a b
即 a b | a || b | cos 叫a与b数量积
(也叫内积)
6
问题思考 向量的数量积是一个数量,那么它
什么时候为正,什么时候为负?
1
问题思考
我们学过功的概念,即一个物体在力F的作用下 产生位移s(如图)
F
θ S
力F所做的功W可用下式计算
W=|F| |S|cosθ
其中θ是F与S的夹角
从力所做的功出发,我们引入向量数量积的 概念。
2
阅读思考
向量的夹角
已知两个非零向量 a 和 b,作OA= a, OB= b,
则∠AOB=θ (0°≤θ ≤180°)叫做向量 a 与 b
(3)(a b ) c a c b c
B b
A
C1
a
ห้องสมุดไป่ตู้
O
A1
c
B1 C
11
例题解析
例 2:求证:
(1)(a+b)2=a2+2a·b+b2;
(2)(a+b)·(a-b)=a2-b2.
12
例题解析
例已知a b a与b的夹角为 =60 ,
求(a 2b) (a 3b).
(3)a
a
|
a
|2
或
|
a
|
aa
a
2
(4)当a与b反向时,a b | a || b |;
(5) cos a b
| a || b |
(6) | a b || a || b |
8
练习2
1.若a=0,则对任一向量b,有a b 0 √ 2.若a 0,则对任一非零向量b,有a b 0 × 3.若a 0, a b 0,则b 0 × 4.若a b 0,则a,b中至少有一个为0 × 5.若a 0,a b b c,则a c × 6.若a b a c,则b c,当且仅当a 0时成立.× 7.对任意向量a有a2 a2 √
a b | a || b | cos (a 0,b 0)
B
A
b
a
O a A B1 O b B
大于零 等于零
A
a
A1 O b B
小于零
7
性质总结
a b | a || b | cos (a 0,b 0)
(1)a b a b 0
(2)当a与b同向时,a b | a || b |;