表面粗糙度的测量方法及参数的正确应用

合集下载

国标t26760-2011

国标t26760-2011

国标t26760-2011国标T26760-2011是我国制定的一项技术标准,它是关于金属材料表面粗糙度测量的规范。

本标准是针对金属材料表面粗糙度的相关参数、测量方法、仪器与设备、数据处理等方面进行的规范性标准化工作。

下面从标准的几个方面进行介绍。

1、标准目的及适用范围标准T26760-2011是为了保证在检测及评估金属材料表面粗糙度时,能够遵循规范、统一的标准进行,从而保证测量数据的准确性、可靠性和可比性。

同时,标准也适用于不同形状、不同材料的金属材料表面粗糙度测量。

2、术语和定义在本标准中,提及了大量的术语和定义,这些术语和定义的准确理解是正确运用本标准进行金属表面粗糙度测量的前提。

例如,“表面粗糙度”是指材料表面上不规则起伏的高度差的统计特性,可以用来表示表面平整程度的指标,而“光洁度”是指材料表面上光滑度的程度。

3、测量方法及仪器与设备在标准T26760-2011中,对金属材料表面粗糙度测量的方法进行了详尽的说明,包括了光学测量、机械测量和计算机测量等方法,并提出了适用于不同测量方法的相关仪器和设备。

例如,对光学方法的测量,可以采用计算机数字处理系统处理得到三维图像。

4、数据处理和结果分析标准T26760-2011还对测量后的数据处理和结果分析进行了详细的规定,包括要求将测量结果报告中,标明测量方法、仪器与设备的型号和精度等信息。

此外,还提出了如何选择合适的数据处理方法、如何进行结果分析的具体步骤和原则等等。

5、应用示例标准T26760-2011还提供了一些应用示例,以帮助用户更深入地理解和学习该标准内容。

例如,在示例1中,介绍了用计算机测量法测量钢板表面粗糙度的具体步骤和结果解析。

总的来说,国标T26760-2011的内容十分详尽,涵盖了金属材料表面粗糙度测量的各个方面,让用户能够按照标准进行规范的测量,从而保证了测量结果的准确性、可靠性和可比性。

粗糙度检测方法及评定【干货技巧】

粗糙度检测方法及评定【干货技巧】

以下为表面粗糙度的评定及测量方法:一、表面粗糙度的概念表面粗糙度是指加工表面具有的较小间距和微小峰谷的不平度。

其两波峰或两波谷之间的距离(波距)很小(在1mm以下),它属于微观几何形状误差。

具体指微小峰谷Z高低程度和间距S状况。

一般按S分:S<1mm 为表面粗糙度;1≤S≤10mm为波纹度;S>10mm为f 形状。

•二、VDI3400、Ra、Rmax对照表国家标准规定常用三个指标来评定表面粗糙度(单位为μm):轮廓的平均算术偏差Ra、不平度平均高度Rz和最大高度Ry。

在实际生产中多用Ra指标。

轮廓的最大微观高度偏差Ry在日本等国常用Rmax符号来表示,欧美常用VDI指标。

下面为VDI3400、Ra、Rmax 对照表。

三、表面粗糙度形成因素表面粗糙度一般是由所采用的加工方法和其他因素所形成的,例如加工过程中刀具与零件表面间的摩擦、切屑分离时表面层金属的塑性变形以及工艺系统中的高频振动、电加工的放电凹坑等。

由于加工方法和工件材料的不同,被加工表面留下痕迹的深浅、疏密、形状和纹理都有差别。

四、表面粗糙度对零件的影响主要表现影响耐磨性。

表面越粗糙,配合表面间的有效接触面积越小,压强越大,摩擦阻力越大,磨损就越快。

影响配合的稳定性。

对间隙配合来说,表面越粗糙,就越易磨损,使工作过程中间隙逐渐增大;对过盈配合来说,由于装配时将微观凸峰挤平,减小了实际有效过盈,降低了连接强度。

影响疲劳强度。

粗糙零件的表面存在较大的波谷,它们像尖角缺口和裂纹一样,对应力集中很敏感,从而影响零件的疲劳强度。

影响耐腐蚀性。

粗糙的零件表面,易使腐蚀性气体或液体通过表面的微观凹谷渗入到金属内层,造成表面腐蚀。

影响密封性。

粗糙的表面之间无法严密地贴合,气体或液体通过接触面间的缝隙渗漏。

影响接触刚度。

接触刚度是零件结合面在外力作用下,抵抗接触变形的能力。

机器的刚度在很大程度上取决于各零件之间的接触刚度。

影响测量精度。

零件被测表面和测量工具测量面的表面粗糙度都会直接影响测量的精度,尤其是在精密测量时。

表面粗糙度的测量

表面粗糙度的测量

表面粗糙度的测量目录一、表面粗糙度的检测 (2)二、表面粗糙度的测量 (3)三、参考标准 (4)四、参考文献 (5)一、表面粗糙度的检测表面粗糙度是指加工表面具有的较小间距和微小峰谷不平度。

其两波峰或两波谷之间的距离(波距)很小(在1mm以下),用肉眼是难以区别的,因此它属于微观几何形状误差。

表面粗糙度越小,则表面越光滑。

表面粗糙度的大小,对机械零件的使用性能有很大的影响,主要表现在以下几个方面:1)表面粗糙度影响零件的耐磨性。

表面越粗糙,配合表面间的有效接触面积越小,压强越大,磨损就越快。

2)表面粗糙度影响配合性质的稳定性。

对间隙配合来说,表面越粗糙,就越易磨损,使工作过程中间隙逐渐增大;对过盈配合来说,由于装配时将微观凸峰挤平,减小了实际有效过盈,降低了联结强度。

3)表面粗糙度影响零件的疲劳强度。

粗糙零件的表面存在较大的波谷,它们像尖角缺口和裂纹一样,对应力集中很敏感,从而影响零件的疲劳强度。

4)表面粗糙度影响零件的抗腐蚀性。

粗糙的表面,易使腐蚀性气体或液体通过表面的微观凹谷渗入到金属内层,造成表面腐蚀。

5)表面粗糙度影响零件的密封性。

粗糙的表面之间无法严密地贴合,气体或液体通过接触面间的缝隙渗漏。

6)表面粗糙度影响零件的接触刚度。

接触刚度是零件结合面在外力作用下,抵抗接触变形的能力。

机器的刚度在很大程度上取决于各零件之间的接触刚度。

7)影响零件的测量精度。

零件被测表面和测量工具测量面的表面粗糙度都会直接影响测量的精度,尤其是在精密测量时。

此外,表面粗糙度对零件的镀涂层、导热性和接触电阻、反射能力和辐射性能、液体和气体流动的阻力、导体表面电流的流通等都会有不同程度的影响。

表面粗糙度基本术语:取样长度:评定表面粗糙度所规定的一段基准线长度。

应与表面粗糙度的大小相适应。

规定取样长度是为了限制和减弱表面波纹度对表面粗糙测量结果的影响,一般在一个取样长度内应包含5个以上的波峰和波谷。

评定长度:为了全面、充分地反映被测表面的特性,在评定或测量表面轮廓时所必需的一段长度。

表面粗糙度测量实验报告

表面粗糙度测量实验报告

表面粗糙度测量实验报告表面粗糙度测量实验报告实验目的与意义实验目的与意义了解表面粗糙度的测量原理、常用方法以及需要测定的参量了解表面粗糙度的测量原理、常用方法以及需要测定的参量学习掌握TR240手持式粗糙仪的使用方法手持式粗糙仪的使用方法测定待测物件的轮廓算数平均偏差Ra ,微观不平度十点平均高度Rz ,轮廓最大高度Ry 等参量实验设备实验设备本实验用到的实验设备有千分表,表面粗糙度仪本实验用到的实验设备有千分表,表面粗糙度仪实验内容简述实验内容简述表面粗糙度的参数的定义:表面粗糙度的参数的定义:金属、木材,塑料等加工部件,由于在加工过程中受到机床的状态、切削刀具的几何精度、树种、木材含水率等因素的影响,在加工表面上形成的由较小间距和峰谷组成的微观几何形状特性,称为表面粗糙度。

状特性,称为表面粗糙度。

木材表面粗糙度的表面形式有锯痕与波纹;木材表面粗糙度的表面形式有锯痕与波纹;弹性回复不平度;弹性回复不平度;弹性回复不平度;破坏性不平度;破坏性不平度;破坏性不平度;木材与毛刺表木材与毛刺表现出来的不平度;木材结构等。

现出来的不平度;木材结构等。

木材表面粗糙度影响加工精度;胶接强度;涂饰质量;产品的外观等。

木材表面粗糙度影响加工精度;胶接强度;涂饰质量;产品的外观等。

粗糙度仪的测量原理粗糙度仪的测量原理将传感器放在工件被测表面上,由仪器内部的驱动机构带动传感器沿被测表面做等速滑行,传感器通过内置的锐利触针感受表面的粗糙度,此时工件被测表面的粗糙度引起触针产生位移,该位移使传感器电感线圈电感量发生变化,从而在相敏整流器的输出产生与被测表面粗糙度成正比例的模拟信号经过放大及电平转换之后进入数据采集系统,DSP 芯片将采集的数据进行数字滤波和参数计算,据进行数字滤波和参数计算,测量结果在液晶显示器上读出,测量结果在液晶显示器上读出,测量结果在液晶显示器上读出,也可在打印机上输出,也可在打印机上输出,还可以与PC 机进行通讯。

表面粗糙度的检测及选择

表面粗糙度的检测及选择
由于Rmr(c)能直观反映实际接触面积的大小,它综合反映了峰高和间距的影响, 而摩擦、磨损、接触变形都与实际接触面积有关,故此时适宜选用参数Rmr(c)。
表面粗糙度的选用
二、表面粗糙度参数值的选用
(1)同一零件上,工作表面的粗糙度应比非工作表面要求严格,Rmr(c)值 应大,其余评定参数值应小。
(2)对于摩擦表面,速度愈高,单位面积压力愈大,则表面粗糙度值应越 小,尤其是对滚动摩擦表面应更小。
印模法是利用一些无流动性和弹性的塑性材料,贴合在被测表面上,将被测表 面的轮廓复制成模,然后测量印模,从而来评定被测表面的粗糙度。适用于对 某些既不能使用仪器直接测量,也不便于用样板相对比的表面。如深孔、盲孔、 凹槽、内螺纹等。
表面粗糙度的选用
一、表面粗糙度的选用原则
1. 表面粗糙度高度参数的选择
确定表面粗糙度时,应首先在高度特性方面的参数(Ra、Rz)中选取,只有当 高度参数不能满足表面的功能要求时,才选取附加参数作为附加项目。
在评定参数中,最常用的是Ra,因为它是最完整、最全面地表征了零件表面的 轮廓特征。通常采用电动轮廓仪测量零件表面的Ra,电动轮廓仪的测量范围为 0.02~8μm。
2. 轮廓单元的平均宽度参数Rsm的选用
由于Ra、Rz高度参数为主要评定参数,而轮廓单元的平均宽度参数和形状特 征参数为附加评定参数,所以,零件所有表面都应选择高度参数,只有少数零 件的重要表面,有特殊使用要求时,才附加选择轮廓单元的平均宽度参数等附 加参数。
3. 轮廓的支承长度率Rmr(c)的选用
表面粗糙度的检测
常用的表面粗糙度的检测方法有:光切法、比较法、干涉法、针描法和印模法等。 四、比较法 比较法是将被测零件表面与标有一定评定参数值的表面粗糙度样板直接进行比 较,从而估计出被测表面粗糙度的一种测量方法。

表面粗糙度的检测

表面粗糙度的检测

课题三表面粗糙度的检测表面粗糙度的检测方法主要有比较法、针触法、光切法、光波干涉法。

1.比较法用比较法检验表面粗糙度是生产车间常用的方法。

它是将被测表面与粗糙度样块进行比较来评定表面粗糙度。

如图3-1所示。

比较法可用目测直接判断或借助于放大镜、显微镜比较或凭触觉、来判断表面粗糙度。

缺点是精度较差,只能作定性分析比较。

图3-1表面粗糙度比较样板2.针触法针触法是通过针尖感触被测表面微观不平度的截面轮廓的方法,它实际是一种接触式电量方法。

所用测量仪器为轮廓仪,它可以测定Ra为0.025~5um。

该方法测量范围广,速度可靠、操作简便并易于实现自动测量和微机数据处理。

但被测表面易被触针划伤。

如图3-2所示。

图3-2针触法测量原理图3.光切法光切法就是利用“光切原理”来测量被测零件表面的粗糙度,采用仪器是光切显微镜又称双管显微镜。

该仪器适宜测量车、铣、刨或其它类似的方法加工的金属零件的平面或外圆表面。

光切法通常用于测量Ra=0.5~80µm的表面。

4.光波干涉法干涉显微镜是利用光波干涉原理测量表面粗糙度。

干涉显微镜测量的范围一般为0.03~1µm。

也可作Rz、Ry参数评定。

本课题结合课堂讲授的典型零件的标注,分析并检测表面粗糙度,根据国家标准评定表面粗糙度。

选用方法为光切法和光波干涉法。

实验3-1 用光切显微镜检测表面粗糙度一、实验目的1.了解用光切显微镜测量表面粗糙度的原理和方法2.正确理解表面粗糙度的评定参数,加深对微观不平度十点高度Rz的理解二、测量原理及仪器说明双管显微镜又撑光切显微镜,它是利用被测表面能反射光的特性,根据“光切法原理”制成的光学仪器,R=0.8-80um的表面粗糙度。

其测量范围取决于选用的物镜的放大倍数,一般用于测量Z图3-3光切显微镜1—底座;2—立柱;3—升降螺母;4—微调手轮;5—支臂;6—支臂锁紧螺钉;7—工作台;8—物镜组;9—物镜锁紧机构;10—遮光板手轮;11—壳体;12—目镜测微器;13—目镜仪器外型如图3-3所示,它由底座6,支柱5,横臂2,测微目镜13,可换物镜8及工作台7等部分组成。

表面粗糙度几种测量方法和注意事项

表面粗糙度几种测量方法和注意事项

表面粗糙度几种测量方法和注意事项作者:付小华来源:《中国科技博览》2012年第35期[摘要]:微观几何形状误差即微小的波谷的高低程度和间距状况称为表面粗糙度。

主要由加工过程中刀具和零件表面间的摩擦、切屑分离时表面金属层的塑性变形以及工艺系统的高频振动等原因形成的。

表面粗糙度有多种测量方法,下面简述几种常用的测量方法。

[关键词]:表面粗糙度测量参数中图分类号:TV221.1 文献标识码:TV 文章编号:1009-914X(2012)35- 0362-01一、表面粗糙度对机器零件使用性能的影响:1、对摩擦和磨损的影响,零件实际表面越粗糙,摩擦系数就越大,两相互运动的表面磨损就越快。

2、对配合性质的影响,表面粗糙度会影响到配合性质的稳定性。

对间隙配合,会因表面微观不平度的峰尖在工作过程中很快磨损而使间隙增大。

对过盈配合,粗糙表面轮廓的峰顶在装配时被挤平,实际有效过盈减小,降低了联接强度。

3、对疲劳强度的影响,表面越粗糙,表面微观不平度的凹谷一般就越深,应力集中就会越严重,零件在交变应力作用下,零件疲劳损坏的可能性就越大,疲劳强度就降低。

4、对接触刚度的影响,表面越粗糙,表面间的实际接触面积就越小,单位面积受力就越大,这就会使峰顶处的局部塑性变形加剧,接触刚度降低,影响机器的工作精度和抗振性。

5、对耐腐蚀性的影响,粗糙的表面易使腐蚀性物质附着于表面的微观凹谷,并渗入到金属内层,造成表面锈蚀。

还影响零件结合面的密封性能、测量精度、零件外形的美观等。

二、表面粗糙度几种测量方法1、比较法测量在技术测量中,用粗糙度样板对比最简单,利用各种机床加工后的样板通过人的视觉或触觉与工件相比较,可得出加工出来的零件表面粗糙度。

对比时,所用的粗糙度样板的材料、形状和加工方法、纹理方向、应尽可能与被测表面相同,这样较能保证测量结果可靠。

比较法多凭眼看手摸,常用于评定低等和中等的粗糙度值,也可借助放大镜、显微镜或专用的粗糙度比较显微镜进行比较。

表面粗糙度的测量方法

表面粗糙度的测量方法

Ra、Rp、RSm、Rpk Rz、RΔa、RΔq、Rpc RΔa、RΔq、Rzjis、Rp
Rzjis、Rz、RΔa、RΔq、Rlr
Rv、负载曲线、Rmr、Rvk、Rδc、Mr2、RA2 Ra、Rv、Rvk、Rpc Rz
Rzjis、Rz、RΔa、RΔq、Rlr RΔq、Rq、Ra
Rp、负载曲线、Rmr、Rpk、Rsk Rz、Rv、Rvk
相应产品
参数示例
电镀面、虹面加工、雕花加工、各种镜面钢板
RΔq、Rq、Ra、Rku
封装、阀、阀门、气缸 薄膜、缎纹面、雕花评估、滚花
轴 / 轴承、离合器、薄膜、阀 块规、印刷电路板、
黏着面涂层衬底、电镀衬底
齿轮、门窗、孔 印刷用纸 轴承、齿轮 模具
透镜、镜头、棱镜 轴、轴承、活塞环、导轨
粗钢筋、曲轴、螺栓
光干涉法
● 可通过亚纳米的高度分辨率 (0.1 nm)测量大视野(多角) ● 测量时间短。
非接触式
采用焦点移动的图像合成法
● 角度特性佳 ● 测量时间短
共焦法
● 可通过亚纳米的高度分辨率(0.1 nm)进行测量 ● 角度特性佳 ● 高对比度图像的扩大观察
短处
● 样品表面会因测量力而留下瑕疵 ● 无法测量具有粘着性的样品 ● 无法测量比触针尖端半径还小的沟槽
如果凹凸越大,则该部分的手感越粗糙,光线也会发生漫反射现象,呈现出粗 糙的质感。反之,如果凹凸极小,则手感就会非常光滑,也会呈现光泽。
在表面粗糙度的测量中,可对该程度的凹凸进行数值化。因此,可对产品的手 感、质感或功能性等进行数值管理,使品质稳定。
铝切削面 铝磨损面
表面放大 3D 图像
表面放大 3D 图像
在图纸或产品技术信息的要求事项中指示基准长度时,将截断值 λc 设为所指示的基准长度。

表面处理粗糙度检验

表面处理粗糙度检验

表面处理粗糙度检验表面处理粗糙度检验表面处理粗糙度检验(Surface roughness inspection)是一项重要的制造质量控制措施,用于衡量工件表面的粗糙度。

它可以帮助制造商确保产品达到预期的质量标准,并满足客户的需求。

下面是一份关于如何进行表面处理粗糙度检验的逐步思考过程。

1. 确定检验标准:首先,需要明确产品的设计要求和相关标准。

这些标准包括表面粗糙度的最大允许值以及检验方法。

2. 选择适当的检测工具:根据产品的尺寸和形状,选择合适的粗糙度检测仪器。

常见的检测工具包括表面粗糙度计、光学仪器和电子显微镜等。

3. 准备测试样品:从生产线中抽取一些产品样品作为检验样本。

确保样本的数量足够代表整个批次的产品。

4. 清洁待测表面:在进行粗糙度检验之前,必须确保待测表面清洁无杂质。

使用适当的清洁剂和工具,彻底清洁样品表面。

5. 校准检测仪器:准备测试前,及时校准检测仪器。

校准过程可以通过使用校准样品来进行,以确保仪器的准确性和可靠性。

6. 进行测试:将样品放置在检测设备上,按照仪器的使用说明进行测试。

通常,需要将仪器探头放置在待测表面上,并记录所得的粗糙度数值。

7. 分析测试结果:将测试结果与产品设计要求和标准进行比较。

如果检测结果符合标准,说明产品表面粗糙度在可接受范围内。

否则,需要查找原因并采取相应的纠正措施。

8. 记录和跟踪结果:对每次的粗糙度检验结果进行记录,并建立一个跟踪系统,以便将来的参考和分析。

这有助于制造商了解产品质量的变化趋势,并采取适当的质量改进措施。

9. 进行必要的调整:根据检验结果和记录的数据,制造商可以评估并调整生产流程以改善产品表面质量。

10. 持续改进:表面处理粗糙度检验是一个持续的过程,制造商应该不断关注产品质量,并根据市场需求和技术发展来更新和改进检验方法。

总之,表面处理粗糙度检验是制造业中至关重要的质量控制步骤。

通过遵循以上逐步思考过程,制造商可以确保产品表面质量符合设计要求,提高产品的市场竞争力。

粗糙度仪设置参数-解释说明

粗糙度仪设置参数-解释说明

粗糙度仪设置参数-概述说明以及解释1.引言1.1 概述概述:粗糙度仪是一种用于测量表面粗糙度的仪器,广泛应用于工业生产和科学研究领域。

粗糙度参数的设置对于测试结果的准确性和可靠性具有重要影响。

本文旨在介绍粗糙度仪的设置参数,并探讨有效设置参数对测试结果的影响,以及展望未来粗糙度测试的发展方向。

通过深入了解和掌握粗糙度仪设置参数的重要性,可以更好地进行表面粗糙度的测试和分析,为工业生产和科学研究提供更加精准和可靠的数据支持。

文章结构部分的内容应该包括对整篇文章的篇章安排和内容布局做出简要介绍。

在这篇长文中,文章结构部分可以介绍整篇文章的主要内容和组织方式,为读者提供一个整体的概览。

1.2 文章结构:本文共分为引言、正文和结论三大部分。

引言部分主要包括对本文所要探讨的主题进行概述,介绍粗糙度仪设置参数的重要性和意义,以及阐述本文的写作背景和动机。

正文部分将分为三个小节。

首先是粗糙度仪简介,介绍该仪器的基本概念和用途;其次是粗糙度仪设置参数,重点讨论不同参数的含义和设置方法;最后是参数调整方法,对如何根据实际需求进行参数的调整和优化进行详细阐述。

结论部分将总结本文的核心内容,强调设置参数的重要性,并探讨有效设置参数对测试结果的影响。

最后,对未来粗糙度测试的发展方向进行展望。

1.3 目的在本文中,我们将详细介绍粗糙度仪设置参数的相关知识,并探讨参数设置对测试结果的影响。

通过本文的学习,读者将了解到正确的参数设置对于粗糙度测试的重要性,以及如何有效地调整参数以获得准确和可靠的测试结果。

我们的目的是让读者对粗糙度仪的参数设置有一个清晰的理解,并能够在实际应用中运用这些知识进行精确的测试。

同时,我们也希望可以为粗糙度测试的发展方向提供一些启发和展望。

通过本文的阅读,读者将能够更加全面地理解粗糙度仪设置参数的重要性,并为粗糙度测试的未来发展做出积极的贡献。

2.正文2.1 粗糙度仪简介粗糙度仪是一种用于测量物体表面粗糙度的仪器。

表面粗糙度与检测(新国标)

表面粗糙度与检测(新国标)
航空航天领域常用的表面粗糙度检测方法包括光干涉法、 触针法、散斑干涉法等。在检测过程中,需要特别注意避 免因温度、压力等环境因素对检测结果的影响。
汽车工业领域
表面粗糙度对汽车零部件的性能和使用寿命具有重要影响,如活塞环、气缸、刹 车片等。通过检测表面粗糙度,可以优化零部件的设计和制造工艺,提高汽车的 性能和安全性。
标准化
随着新国标的实施,表面粗糙度 检测技术正逐步实现标准化,统 一检测方法和标准,提高检测结
果的准确性和可比性。
新材料对表面粗糙度检测的挑战与机遇
挑战
新材料具有不同的物理和化学性质, 对表面粗糙度检测技术提出了更高的 要求,需要不断更新和完善检测方法 和设备。
机遇
新材料的发展为表面粗糙度检测提供 了更多的应用场景和市场需求,推动 了表面粗糙度检测技术的发展和创新 。
与旧国标的对比
增加了表面粗糙度参数 的数值范围和测量精度 要求
01
02
删除了部分过时的内容 ,增加了新技术和新方 法的介绍
03
04
修订了表面粗糙度参数 的测量方法和技术要求
表面粗糙度与检测(新 国标)
04
表面粗糙度检测的应用
机械工业领域
机械零件的表面粗糙度对机械性能和使用寿命具有重要影响 ,如滑动摩擦、耐磨性、疲劳强度等。通过检测表面粗糙度 ,可以控制机械零件的质量,提高设备运行的稳定性和可靠 性。
触针法
总结词
利用触针在待测表面上轻轻划过,测量其峰谷差值的表面粗糙度检测方法。
详细描述
触针法是一种常用的表面粗糙度检测方法,通过将触针悬挂在测量机构上,在待测表面上轻轻划过,利用电学或 光学原理测量触针在峰谷间的位移差值,从而得到表面粗糙度值。该方法具有较高的测量精度和稳定性,适用于 各种材料的表面粗糙度测量。

iso1997粗糙度测量标准

iso1997粗糙度测量标准

iso1997粗糙度测量标准ISO 1997是一项用于表面粗糙度测量的标准。

它定义了各种量测参数和度量方法来评估各种材料的表面质量。

ISO 1997标准已被广泛应用于工业、科学和医疗领域。

本文将提供有关ISO 1997的详细信息,包括标准的目的、应用、测量参数、评估方法以及标准化体系的优点和限制。

标准目的ISO 1997标准的主要目的是描述表面粗糙度的测量方法和参数,以及如何在不同应用中使用这些参数来评估表面质量。

标准触及了多种表面特性,包括但不限于轮廓、形状、形态、表面粗糙度和纹理。

应用ISO 1997标准适用于各种材料的表面测量,包括金属、陶瓷、聚合物、玻璃及其他材料。

这些材料可以被用于各种领域,如生产制造、医疗和科学研究等。

标准要求使用一套标准化工具和测量设备,包括表面粗糙度计、显微镜以及计算机软件等。

测量参数ISO 1997标准定义了多种表面粗糙度的测量参数,如Ra、Rq、Rz 等。

下面将介绍这些参数的含义:1. Ra(平均粗糙度)Ra是表面高低之间的平均距离,即表面高度离其平均值的平均值。

通常,Ra被认为是表面粗糙度的最基本参数。

2. Rq(均方根粗糙度)Rq是表面高低之间的均方根值,是表面粗糙度的平均值的平方根,更适合于描述表面高低起伏的分布情况。

3. Rz(区域高度)Rz是在指定的采样长度内,取表面高低最大值和最小值之间的差值做平均,也就是说,Rz是指整个测量长度中,最高峰和最低谷之间的高度差值。

除了上述常见的参数外,ISO 1997标准还定义了其他一些参数用来描述微观和宏观表面特征,如Rp、W、Pc等。

评估方法ISO 1997标准提供了多种评估方法,以便确定表面粗糙度是否符合要求。

主要的评估方法包括比较、逼近和谐度。

比较法是最常用的方法,其基本思想是将实际测量得到的数值与一个参考标准进行比较,对达到一定阈值的表面缺陷进行分类。

逼近法是一种将实际表面特征更精确地描述为一系列几何形状或数学公式的方法,可以得到比比较法更为精确的结果。

最新国家标注:表面粗糙度

最新国家标注:表面粗糙度

电子工业
在电子工业中,表面粗糙度对于电子器件的性能和稳定性具有重要影响。例如, 在集成电路的制造过程中,表面粗糙度会直接影响电路的性能和可靠性。
电子工业中的表面粗糙度控制对于提高电子器件的稳定性、降低噪声和提高信号 传输质量等方面具有重要作用。
其他领域
• 除了上述领域外,表面粗糙度还在建筑、能源、化工、医疗器械等领域得到广泛应用。在这 些领域中,表面粗糙度的控制对于提高产品质量、保证安全性和延长使用寿命等方面都具有 重要意义。
针描法是一种接触式的表面粗糙度测量方法,它通过在表面上移动细针来测量 表面的微观结构。这种方法具有较高的精度和分辨率,但需要特殊的针具和测 量设备,且对针的形状和硬度要求较高。
激光反射法
总结词
利用激光反射原理来测量表面粗糙度的方法。
详细描述
激光反射法是一种非接触式的表面粗糙度测量方法,它利用激光反射原理来测量 表面的微观结构。这种方法具有高精度、高速度和高分辨率的特点,但需要特定 的实验环境和条件,且对激光器和检测器的要求较高。
• · 除了上述领域外,表面粗糙度还在建筑、能源、化工、医疗器械等领域得到广泛应用。在这 些领域中,表面粗糙度的控制对于提高产品质量、保证安全性和延长使用寿命等方面都具有 重要意义。
05
表面粗糙度的最新国家标准
国家标准的制定与修订
制定过程
01
国家标准的制定通常需要经过广泛的调研、实验验证和专家评
审,以确保标准的科学性和实用性。
修订原因
02
随着科技的发展和生产工艺的改进,表面粗糙度的要求也在不
断变化,因此需要定期修订国家标准以适应这些变化。
修订周期
03
国家标准通常会有一定的修订周期,以确保标准能够及时反映

表面粗糙度检测方法

表面粗糙度检测方法
测量方向:
①图样或技术文件中规定测量方向时,按规定方向进行测量;
②当图样或技术文件中没有指定方向时,则应在能给出粗糙度参数最大值的方向测量,该方向垂直于被测表面的加工纹理方向;
③对无明显加工纹理的表面,测量方向可以是任意的,一般可选择几个方向进行测量,取其最大值为粗糙度参数的数值
检测表面粗糙度的常用方法
序号
检验方法
适用参数及
范围(μm)
说明
1
样块
比较法
直接目测:
Ra>2.5;
用放大镜:
Ra>
0.32~0.5;
以表面粗糙度比较样块工作面上的粗糙度为标准, 用视觉法或触觉法与被测表面进行比较,以判定被测表面是否符合规定;
用样块进行比较检验时,样块和被测表面的材质、加工方法应尽可能一致;
样块比较法简单易行,适合在生产现场使用
电动轮廓仪系触针式仪器。测量时仪器触针尖端在被测表面上垂直于加工纹理方向的截面上,做水平移动测量,从指示仪表直接得出一个测量行程Ra值。这是Ra值测量最常用的方法。或者用仪器的记录装置,描绘粗糙度轮廓曲线的放大图,再计算Ra或Rz值。此类仪器适用在计量室。但便携式电动轮廓仪可在生产现场使用
4
光切
显微镜
测量法
Rz:
0.8~100
光切显微镜(双管显微镜)是利用光切原理测量表面粗糙度的方法。从目镜观察表面粗糙度轮廓图像,用测微装置测量Rz值和Ry值。也可通过测量描绘出轮廓图像,再计算Ra值,因其方法较繁而不常用。必要时可将粗糙度轮廓图像拍照下来评定。光切显微镜适用于计量室
5
干涉
显微镜
测量法
Rz:
0.032~0.8
①对不均匀表面,在最有可能出现粗糙度参数极限值的部位上进行测量;

表面粗糙度的测量方法

表面粗糙度的测量方法

触针法测量表面粗糙度 触针法的测量原理 触针法又称针描法,它是一种接触式测量方法,是利用仪器的测针与被测表面相接触,并使测针沿其表面轻轻划过以测量表面粗糙度的一种测量法。 将一个很尖的触针(半径可以做到微米量级的金钢石针尖)垂直安置在被测表面上作横向移动,由于工作表面粗糙不平,因而触针将随着被测表面轮廓形状作垂直起伏运动。将这种微小位移通过电路转换成电信号并加以放大和运算处理,即可得到工件表面粗糙度参数值;也可通过记录器描绘出表面轮廓图形,再进行数据处理,进而得出表面粗糙度参数值。这类仪器垂直方向的分辨率最高可达到几纳米。 适宜测量值为5—0.02m范围内的表面粗糙度。
双管显微镜视场图
双管显微镜
光切显微镜读数
令C=5/V,则:h=cn (um) 式中,n为测量峰谷高度时两次读数的差值(格数)。显然,上式使用简便。
C值的物理意义就是测微鼓轮一小格所对应的峰谷方向 的高度值。
(2)定度: 在光切显微镜上,把确定测微目镜的鼓轮上每小格所对应的被测峰谷高度值的过程叫作“定度”。(h= a/2V) 定度首先是求物镜的放大倍率。求物镜放大倍率的方法是用一个标准刻线尺(通常为专用附件,刻度间隔为0.01mm,共101条刻线)来测定各个物镜的实际放大率。如图4-8所示,物镜放大率为: V=
3
2 表面粗糙度测量的基本原则 测量方向 按现行标准所定义的各种粗糙度评定参数,是基于轮廓法确定数值,是在被测表面的法向截面上的实际轮廓上进行测量的结果。由于垂直于被测表面的法向截面存在各种不同的测量方向.试验表明,大多数的切削加工表面,在横向轮廓上测得的粗糙度数值比较大,只是有的该铣加工和个别端铣加工表面,在纵向轮廓上会有较大的数值。 如果在被测表面上难以确定加工纹理方向,以及某些加工纹理紊乱或不存在固定方向的表面,应分别在多个方向上测量,以获取最大参故值为结果.或取其峰谷高度的最大值,计算一个区域的测量结果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档