薄圆筒、柱 弹塑性力学详解

合集下载

弹塑性力学讲义-本构关系2

弹塑性力学讲义-本构关系2

( n n
2C 2来自22( n n
2
C
2
1
1
n= 2 (1 +3)+ 2 (1 3)sin
n=
1 2
(1 3)cos
屈服条件用主应力表示
1 2
(1
3)
+
1 2
(1 + 3)sin Ccos = 0
22xs6 inyCco s0sin
C ctan
当123时,Mohr-Coulomb屈服条件可写成
31 h 2 z 3 2 s(1 3 zd z) z 1 h z sa
r c z tsa s n 1 s0 h 4
p z0 s
31 h 2 s 3 2 s( zd z) 3 s 23shlnx22 s
s
0
3s ln 2 2h
路径(3):在加载中z = 3z,z=s/2材料屈服,且dz = 3dz,
sz= 2 3
z,sx= sy =
1 3
z,sz= sz=z,
J2
132z 2z
2s 3
fijd ij23 J2(3 2zdz2zdz)
由于z、dz同号,、dz同号,因此,
f ij
dij
0
(3)使用流动法则求塑性变形
d z p 1 h fid j i j fz 1 h 2 3 J 2 ( 3 2 z d z 2 z d z ) 2 3 J 2 3 2 z 1 hJ12(1 3zdzzdz)z
Mohr-Coulomb屈服条件
考察一任意剪切面,该面上的剪应力为n,正应力为n,
• 推动剪切滑移的有效剪切力是n • 阻止剪切滑动力:内摩擦力(n) tan,粘结力C

弹塑性力学部分讲义(PDF)

弹塑性力学部分讲义(PDF)

弹塑性力学引言一、固体力学在工程中的作用工程中的各种机械都是用固体材料制造而成的、各种结构物也都是用固体材料建造的。

为了使机械结构正常使用、实现其设计的功能,首先要保证它们在工作载荷与环境作用下不发生材料的破坏或影响使用的过大的变形,即保证它们具有足够的强度、刚度和稳定性。

在设计阶段,要根据要求实现的功能,对于设计的机械结构的形式按强度要求确定其各部分的形状和尺寸,以及所需选择的材料。

要完成这样的任务,首先要解决如下基本问题:在给定形状尺寸与材料的机械结构在设计规定载荷与环境(如温度)作用下所产生的变形与应力。

对于柔性结构,如细长梁、薄板、薄壳,以及它们的组合结构,还要分析其是否会丧失稳定性。

这些都是固体力学的基本问题。

如果机械结构所受载荷或环境的作用是随时间变化的,那么,它们的振动特性也对其性能有重要的影响。

在设计时往往要对其进行模态分析,求出影响最大的各个低阶固有频率与相应的振型,以确保不会与主要的激振载荷产生共振,导致过大的交变应力与变形,影响强度和舒适性。

有些情况下还要考虑它们在瞬态或冲击载荷作用下的瞬态响应。

这些也是固体力学的基本问题。

此外、许多机械零件和结构元件在制造工程中,采用各种成型工艺,材料要产生很大的塑性变形。

如何保证加工质量,提高形状准确性、减少残余应力、避免产生裂纹、皱曲等缺陷?如何设计加工用的各种模具,加工的压力,以及整个工艺流程,这里也都有固体力学问题。

正因为工程中提出了各种各样的固体力学问题,有时还有流体力学问题,在19世纪产生了弹性力学和流体力学,才导致力学逐渐从物理学中独立出来。

工程技术发展的要求是工程力学,包括固体力学、流体力学等发展的最重要的推动力。

而工程力学的发展则大大推动了许多工程技术的飞速发展。

因此,力学是许多工程部门设计研究人员的基本素质之一。

二、力学发展概况力学曾经是物理学的一个部分,最初也是物理学中最重要的组成部分。

力学知识最早起源于人们对自然现象的观察和在生产劳动中积累的经验。

弹塑性力学讲义 第一章绪论

弹塑性力学讲义 第一章绪论
i 1 j 1



3

每个分量用一个标量(具有两个下标)与两个并在一起基矢量(并矢) ,称为二阶 张量。矢量可称为一阶张量,标量为零阶张量。 5.2 求和约定 在张量表示说明中,看到张量分量表示是一组符号之和,很长,特别是高阶张量, 为了书写简捷,采用求和约定。 求和约定:当在同一项中,有一个下标字母出现两次时,则表示该项在该指标的取 值范围内遍历求和,且称此种在同一项重复出现一次的下标为哑标。如:
e1 e2 a2 b2 e3
a b ai ei b j e j ai b j eijk ek ai b j ekij ek , 则
c c k eijk ai b j ekij ai b j , a b a1 b1
ij
自动消失。ij 也称为换标符号。
eijk ( i,j,k =1,2,3)
定义: eijk
共有 27 个元素。
1 若(i , j , k ) (1,2,3)或 ( 2,3,1)或 (3,1,2)时 正排列顺序 -1 若(i , j , k ) ( 2,1,3)或(1, 3, 2)或(3, 2, 1)时 逆排列顺序 0 若 i , j , k中任意两指标相同时
(i=1,2,3),用 ri 表示矢径;
同样位移矢量 u,用 ui 表示位移,ij 表示应力

张量。
xi aij y j
i

x1 a11 y1 a12 y2 a13 y3 x2 a21 y1 a22 y2 a23 y3 x a y a y a y 31 1 32 2 33 3 3
矢量场的拉普拉斯算子定义为矢量场的梯度的散度:是一个向量

塑性力学第五章(2)-简单的弹塑性问题(二)

塑性力学第五章(2)-简单的弹塑性问题(二)

σs
E
不变, ,保持 ε s不变,再加扭矩至 γ s =
τs
G
γ 同时拉扭进入塑性状态, 不变, (3)同时拉扭进入塑性状态,保持 ε 不变,到
ε s ,γ s
求应力分量
σ ,τ = ?
τ σ
Mises条件: 条件: 条件
σ 2 + 3τ 2 = σ s2
τ
σ
3
s
B
C A
O
σ
σ
s
γ
ε = σs
E =
应变分量(体积不可压缩): 应变分量(体积不可压缩):
σ
1 de z = d ε , de r = deθ = − d ε 2
d γ zθ = d γ
γ θr = γ rz = 0
塑性功增量: 塑性功增量:
dW d = sij deij
= s z de z + s r de r + sθ deθ + τ θz d γ θz + τ θr d γ θr + τ rz d γ rz
th
σs
σs
σ =
ch
σs
3G γ
σs
γ =
σs
3G

σ = 0 .648 σ s , τ = 0 .439 σ s
(2)先扭后拉 )
γ
σs
3G
τ
B C
σ
3
A
s
B
C A
O
σs
3G
ε
O
σ
σ
s
dγ = 0
dW d = σ d ε + τd γ = σ d ε
3Gd ε = dσ 1−

弹塑性力学第1,2章

弹塑性力学第1,2章

2.2 张量的计算
①张量的下标记号法: A点坐标x,y,z : F矢量力 Fx,Fy,Fz:
xi
i 1,2,3
fi
i 1,2,3
二阶张量应力可以表示为: ij ( i , j 1,2,3 ) x xy xz 11 12 13 yx y yz 22 23 21 31 32 33 zx zy z 二阶张量应变可以表示为:
ij ij i1 i1 i2 i2 i3 i3
11 11 21 21 31 31
12 12 22 22 32 32 13 13 23 23 33 33
ai, i
a1 a2 a3 ai x1 x2 x3 xi
张量的内积
A ai i i 张量A与张量B内积:
1 2 m
B bj1 j2 jn
A B
从张量A中和张量B中各取1个下标,约定求和一次成
为一个(m+N-2)阶的张量的运算称之为张量内积。 两个一阶张量的内积
A ai B bi
A B= A B cos A B
A B=ai bi a1b1 a2b2 a3b3
弹塑性力学的分析方法和体系
求解的基本方程: ①力的平衡方程式 ②几何方程或称之为变形协调方程 ③物理方程 弹塑性力学问题最后归结为在给定边界条件下求解这 三大基本方程的问题。 弹性力学与塑性力学的最大区别,本构关系不同。
弹塑性力学的主要内容
1.弹塑性本构关系 本构关系是材料本身固有的一种物理关系,指材 料内任一点的应力和应变之间的关系 弹性本构关系 塑性本构关系 广义虎克定律 增量理论和全量理论

《弹塑性力学》课件

《弹塑性力学》课件
结构弹塑性分析的方法包括有限元法、有限差分法、边界元法等数值计算 方法。
材料的弹塑性行为模拟
材料的弹塑性行为模拟是研究材料在 不同应力状态下表现出的弹塑性性质 ,对于理解材料的力学行为和优化材 料设计具有重要意义。
材料弹塑性行为模拟的方法包括分子 动力学模拟、有限元分析等。
通过实验和数值模拟相结合的方法, 可以研究材料的微观结构和宏观性能 之间的关系,预测材料的弹塑性行为 。
THANKS
感谢观看
弹塑性力学在工程实践中的挑战与解决方案
工程实践中,由于材料和结 构的复杂性,弹塑性力学应 用面临诸多挑战,如非线性 行为、边界条件和初始条件
的确定等。
为了解决这些挑战,需要采 用先进的数值计算方法和实 验技术,提高模拟精度和可
靠性。
此外,加强跨学科合作,将 弹塑性力学与计算机科学、 物理学等学科相结合,可以 推动工程实践中的弹塑性力 学应用不断发展。
《弹塑性力学》课件
目录
• 弹塑性力学概述 • 弹性力学基础 • 塑性力学基础 • 材料弹塑性性质 • 弹塑性力学在工程中的应用
01
弹塑性力学概述
弹塑性力学的定义

弹塑性力学是一门研究材料在弹性和 塑性范围内行为的学科。它主要关注 材料在外力作用下发生的变形行为, 以及这种行为与材料内部应力、应变 的关系。
塑性
材料在应力超过屈服极限后发生的不可逆变形。
屈服准则
描述材料开始进入塑性状态的应力条件。
塑性力学的基本方程
应力平衡方程
01
描述受力物体内部应力分布的平衡关系。
几何方程
02
描述材料在塑性变形过程中应变与位移的关系。
屈服准则
03
确定材料进入塑性状态的条件。

弹塑性力学总结

弹塑性力学总结

弹塑性力学总结弹塑性力学是研究材料在受力后既有一部分弹性变形又有一部分塑性变形的力学学科。

它是力学学科的分支之一,因为它研究的对象是材料,所以也可以看作是材料力学的一个方向。

它的研究对象包括各种传统或新型材料——金属、高分子、陶瓷等。

本文将对弹塑性力学进行总结。

一、弹性力学与塑性力学的区别弹性力学和塑性力学都是力学学科的重要分支。

它们各自关注的是物体在受力后不同的反应。

(1)弹性力学弹性力学研究的是物体在受到力的作用下,发生弹性变形而迅速恢复原状的力学原理。

简单来说,就是物体在受力后可以发生弹性变形,如压缩变形或拉伸变形,但是在撤离力的影响之后能够回复原来的状态。

弹性力学理论主要依赖于胡克定律,胡克定律可以表示为应力与应变之比等于恒定的常数。

(2)塑性力学塑性力学研究的是物体在受到力的作用下,发生塑性变形而无法迅速完全恢复原状的力学原理。

简单来说,就是物体在受力后可以发生塑性变形,但是在恢复撤离力的影响之后,不能完全返回原来的状态,仍有残余塑性变形。

塑性力学理论主要依赖于流动理论,流动理论可以用应变率表示材料变形时受到的应力。

二、弹塑性力学的基本概念(1)应力应力是单位面积上的力,通常用σ表示。

应力有三种类型:拉应力、压应力和剪应力。

(2)应变应变是材料的形变量,通常表示为ε。

应变有三种类型:拉伸应变、压缩应变和剪切应变。

(3)黏塑性黏塑性是材料表现出的一种变形特性,它描述了物质在应力作用下的变形表现。

(4)弹性模量弹性模量是材料在受力作用下相对于其初始长度相应变形程度的比率。

弹性模量是一种力学参数,通常用E表示,单位是帕斯卡(Pa)。

材料的弹性模量越大,其刚度就越高。

(5)屈服点在达到一定的应力时,材料就会开始发生塑性变形。

材料开始发生塑性变形的应力点称为屈服点。

三、弹塑性力学的应用弹塑性力学广泛应用于工程、物理、材料科学和冶金工业等领域。

弹塑性力学理论的应用使我们在实际情况下更好地理解和处理材料的力学性质。

塑性力学第五章(2)-简单的弹塑性问题(二)

塑性力学第五章(2)-简单的弹塑性问题(二)
2
ε = 0.707σ s
1 τ= 3
σs ε2 + γ2
1 3
γ = 0.408σ s
附一: 附一:
理想弹塑性材料的 Prandtl
理想弹塑性力学模型
— Reuss 理论
σ σs
Eε σ = σ s
ε ≤ εs ε > εs
εs εp εe ε
在塑性区, 在塑性区,应变增量由弹性和塑 性两部分组成。 性两部分组成。
简 单 的 弹 塑 性 问 题(二) 二
薄壁圆筒的拉扭联合变形 增量理论 全量理论
不可压缩(v=0.5)理想弹塑性材料的薄壁圆管受轴向拉力和扭矩作用, 不可压缩(v=0.5)理想弹塑性材料的薄壁圆管受轴向拉力和扭矩作用, 使用Mises条件。 使用Mises条件。 条件 应力路径:(1)先拉至 ε s = :(1 应力路径:( (2)先扭后拉。 先扭后拉。
th
σs
σs
σ =
ch
σs
3G γ
σs
γ =
σs
3G

σ = 0 .648 σ s , τ = 0 .439 σ s
(2)先扭后拉 )
γ
σs
3G
τ
B C
σ
3
A
s
B
C A
O
σs
3G
ε
O
σ
σ
s
dγ = 0
dW d = σ d ε + τd γ = σ d ε
3Gd ε = dσ 1−
dσ σ 2 dε dε = + 3G σ s2
σ = 0 .707 σ s τ = 0 .408 σ s
σ 2 + 3τ 2 = σ s2

1-弹塑性力学第一章 绪 论 弹塑性力学讲义 中文版 教学课件

1-弹塑性力学第一章 绪 论 弹塑性力学讲义 中文版 教学课件
第一章 绪 论 (Introduction)
1.1 研究内容
弹塑性力学是研究物体变形规律的一门学科, 是固体力学的一个分支。研究变形体受外界作用 (外载荷、边界强制位移、温度场等)时在变形体 内的反应(应力场、应变场、应变速度场等)。
与其它工程力学(理论力学、材料力学、结构 力学)的区别:研究方法、对象、结果的差异。弹 塑性力学的研究对象是整体(而不是分离体)变形 体内部的应力、应变分布规律(而不是危险端面)。
第一章 绪 论 (Introduction)
第一章 绪 论 (Introduction)
1.4 基本假设
假设的目的:为了简化研究 ✓ 连续性假设(无间隙、无空洞、无堆积) ✓ 均质、各向同性假设 ✓ 弹、塑性体假设
弹性体——满足广义虎克定律; 塑性体——符合体积不可压缩规律
✓ 小变形假设(几何假设。弹性:整个变形体;塑性: 各个变形瞬时)
✓ 无初始应力作用假设

弹塑性力学

弹塑性力学

max p0
2K 2 K 2 1
(a)仅受内压
(b)仅受外压
11
图2-3 厚壁圆筒中各应力分量分布
3.讨论
仅在内压作用下,筒壁中的应力分布规律:
r ①周向应力 及轴向应力 均为拉应力 ,径向应力 为压应力。 z
②在数值上有如下规律: 周向应力 :内壁有最大值,其值为: max

r r rt ,


t ,
z z zt
(2-39)
具体计算公式见表2-3,分布情况见图2-21。
23
表2-3 厚壁圆筒在内压与温差作用下的总应力
筒体内壁处 r Ri p
K2 1 1lnK pPt 2 Pt lnK K 1
解之得
代入式( 2-26)得 。 的通解。将 r r
d 2 r d r r 2 3 0 dr dr
B r A 2 ; r
B A 2 r
(2-9)
边界条件为:当 r Ri 时, r pi ;
当 r R0 时, r p0 。
2 pi Ri2 p0 R0 A 2 R0 Ri2
pi
K 2 1 Pi 2 K 1
2 2K 2 po K 2 R 1 i p o K 2 1 2 2 K 1 r
z
1 pi 2 K 1
K2 po 2 K 1
13
温度变化引起的弹性热应力
1.热应力 因温度变化引起的自由膨胀或收缩受到约束,在弹 性体内所引起的应力,称为热应力。
(a)自由膨胀 图2-18热应变
14 返回

厚壁圆筒__弹塑性力学知识PPT22页

厚壁圆筒__弹塑性力学知识PPT22页
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
厚壁圆筒__弹塑性力学知识
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
25、学习是劳动,

薄圆筒、柱 弹塑性力学30页PPT

薄圆筒、柱 弹塑性力学30页PPT
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝来自来是苦涩的,回味起来却有 久久不会退去的余香。
薄圆筒、柱 弹塑性力学 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根

弹塑性力学讲义

弹塑性力学讲义

弹塑性力学讲义弹塑性力学1 弹塑性的概念所谓弹塑性指的是物体在外力作用下发生变形而外力除去后变形不能完全恢复的性质。

变形中可回复的部分称为弹性变形,变形中不可回复的部分称为塑性变形。

塑性变形总是在外力的作用超过一定的限度后出现。

2 简单拉压状态下金属材料弹塑性行为及其数学模型(1)理想塑性材料的弹塑性行为σs主要特点:屈服后加载,表现出一种流动变形现象,材料失去进一步承载的能力;屈服后卸载,应力应变增量大致与弹性变形段相同。

卸载至零后再次加载,应力应变关系相当于原应力应变关系曲线在应变轴方向作了一个平移,平移量为残余塑性应变。

数学表达:Eε(0 ε εs)σ σ(ε)σ(ε ε)s s Eε( εs ε 0)σ σ(ε)(ε εs) σs(2)线性强化材料的弹塑性行为σσs主要特点:屈服后加载,材料仍有进一步承载的能力,但应力应变增量的比例较弹性段小;屈服后卸载,应力应变增量大致与弹性变形段相同。

卸载至零后再次加载,屈服应力为卸载前的应力值(较先前的屈服应力大),应力应变关系相当于原应力应变关系曲线在应变轴方向作了一个平移,平移量为残余塑性应变,同时应力轴伸长。

两种常用的强化模型数学表达:Eε(0 ε εs)σ σ(ε)σ E(ε ε)(ε ε)ss sEε( εs ε 0)σ σ(ε)σs E(ε εs)(ε εs)上述描述弹塑性材料应力应变关系的数学模型称为全量型本构关系。

显然不能代表弹塑性变形规律的全貌。

它描述了单调应力-应变过程。

为了描述弹塑性力学行为的“过程相依”,需要建立增量型本构关系。

记当前应力为σ0,应力增量为dσ,应变增量为dε,分析弹塑性行为可以得出相应的增量变形法则。

理想塑性材料的增量型弹塑性关系(1)由dσ决定dε当σs σ0 σs时,dε dσ/E 当σ0 σs时,dεdλσ0ifdσ 0 dσ/Eifdσ 0dλσ0ifdσ 0当σ0 σs时,dεdσ/Eifdσ 0(2)由dε决定dσ当σs σ0 σs时,dσ Edε0ifdε 0当σ0 σs时,dσEdεifdε 0当σ0 σs时,dσ0ifdε 0 Edεifdε 0例:已经测得某理想弹塑性材料的细杆所经受的轴向应变过程如图所示,试求此杆中的应力过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(6 11)
(6 12)
du i d u i ;
vi)弹塑性交界处的连接条件:如果交界面 的法向为ni ,则在 上有: (a)法向位移连续条件 du i (b)应力连续条件
(E)
ni du i ni ;
( p)
( p)
(6 13)
(6 14)
d ij ni d ij ni ;
无量纲化后得到:
(6-19)
d d d , d d 20)
消去 d 得:
(6 21)
简单的弹塑性问题
2 由(6-18)式知 1 及 d d 0,

d d d / 1 2
塑性力学
第六章 简单的弹塑性问题
§6.1
弹塑性边值问题的提法
§6.2 “薄壁筒”的拉、扭联合变形
§6.5 “柱体”的弹塑性自由扭转
§6.6 受内压的“厚壁圆筒”
简单的弹塑性问题
§6.1 弹塑性边值问题的提法
一、弹塑性全量理论边值问题
设在物体V内给定体力 Fi ,在应力边界 ST 上给定面力Ti ,在位移 边界Su 上给定位移 u i ,要求应力 ij ,应变 ij ,位移 ui ,它们满足 以下方程和边条件:
(E)
上标(E)和(P)分别表示弹性区和塑性区。
简单的弹塑性问题
§6.2 “薄壁筒” 的 拉、扭变形
考察薄壁圆筒承受拉力P 和扭矩T 联合作用的弹塑性变形问题。采用圆柱坐 标,取z 轴与筒轴重合。设壁厚为h ,筒的内外平均半径为R ,则筒内应力 为:
z P / 2Rh , z T / 2R 2 h,
(6-10)
1 2v d kk d kk , E d d ij 0, 0, ij d hd , d d 0, ij ij
简单的弹塑性问题
iv)在ST 上的应力边界条件: d ijl j dTi ; v)在Su 上的位移边界条件:
z / s , z / s ,
在弹性阶段,无量纲化的Hooke定律给出
(6-16)
,
(6 17 )
1 2 2 2 J 进入塑性以后,Mises 屈服条件: 2 z z s 3
可化为:
简单的弹塑性问题
2 2 1
~
关系或
~
关系。
简单的弹塑性问题
例如对于实验中经常采用的阶梯变形路径(图6-1),考虑 保持常数的阶段 ab 上,设在a点有 0, 0,由于在ab上 d 0,
方程(6-22)变为: d d /(1 ),
ij , j Fi 0; i) 在V内的平衡方程: ii) 在V内几何关系(应变-位移关系):
ij
iii) 在V内全量本构关系:
6 1
6 2
1 ui , j u j ,i ; 2
2 sij eij , 3 E kk kk , 1 2
(6-9)
简单的弹塑性问题
(b)对于等向强化材料,后继屈服函数为 ( ij, ha ) ,则 弹性区: ( ij ) 0。 d ij 塑性区: ( ij ) 0,
1 v d ij d kk ij ; 2G E
deij
1 dsij d , 2G ij
d d 1 2 ( 1 2 ) d d (6 22)
(6 23)
从(6-21)式中消去 和 d ,就有:
同样地,
d d 1 2 ( 1 2 ) d d
如果已知某时刻的初始状态(应力状态和应变状态)及从该时刻起的变形路 径 ( ) 则积分(6-22)或(6-23)式就可得到
(6 15)
其余应力分量均为0。因此,不但应力状态是均匀的,而且每一种外载(拉、 扭)只与一个应力分量有关,调整P 和T 之间的比值,即可得到应力分量间的 不同比例。 假设材料是不可压缩的(v =1/2)、理想塑性的Mises材料。采用以下无量纲量:
z / s , z / s ,

(6-3)
简单的弹塑性问题
iv) 在
ST上的应力边界条件: ijl j Ti , ST 外法线的单位向量;
ui u i
(6 4)
其中 l j 是 v) 在
S u上位移边界条件:
(6 5)
由此可见,弹塑性边值问题的全量理论提法同弹性边值问题的提法 基本相同,不同仅在于引入了非线性的应力 -应变关系(6-3)式。
(6 18)
下面按增量理论和全量理论求解这个问题,比较两种结果的异同。 一、按增量理论求解 对理想弹塑性材料,增量本构方程是 Prandtl-Reuses 关系,于是:
1 2 d z d z d z , E 3 1 1 d z d z d z 2 2G
二、弹塑性增量理论的边值问题
i) 在V内的平衡方程
d ij , j dFi 0
1 ( dui , j du j ,i ) 2
(6 7 )
ii) 在V内的几何关系(应变位移的增量关系):
d ij
(6 8)
简单的弹塑性问题
iii) 在V内的增量本构关系:
(a) 对于理想塑性材料,屈服函数为 f ( ij ),则 弹性区: 塑性区:
1 v f ( ij ) 0,d ij d ij d kk ij ; 2G E f ( ij ) 0,
1 f deij dsij d , 2G ij
1 2v d kk d kk , E
f df d ij 0, 0, ij d 0, df f d 0, ij ij
相关文档
最新文档