人教版八年级数学下册第十六章《二次根式》单元过关测试卷(含答案)

合集下载

人教版数学八年级下册《第十六章二次根式》单元测试题(含答案)

人教版数学八年级下册《第十六章二次根式》单元测试题(含答案)

【人教版八年级数学(下)单元测试】第十六章二次根式单元测试(题数:20道测试时间:45分钟 总分:100分)、单选题(每小题 3分,共24 分)5x要使式子有意义,则X 的取值范围是()J x +2F 列各式计算正确的是( )把上45化成最简二次根式的结果是2.20计算(.3+2) 2018 ( .3⑵2019的结果是6 .若a • ■ b 与'、a 八b 互为倒数,则A. a=b-1B. a=b+1C. a+b=1D. a+ b=-17•若3, m , 5为三角形三边,化简: \ (2-m)2-m-82 得(A. -10B. — 2m+6C. -2 m-6D. 2m-108.若 x 2 —X -2 =0,贝U 2 - (X 2 _x )十虫 的值等于( ) 2、3 A. 3 • 3 B. 3 C. .3 二、填空题(每小题 4分,共28 分) 9 .当x 时,式子 1x -3有意义 班级:姓名:得分:A.B. X-2A.F 列二次根式: D. X = -24 .27.能与.3合并的是()B. 2 和 3C. 1 和 2D.A.一3 B .G=6C.3、5 = 3.5D.A.3 B.-4C.D. 2、. 5A. 2+ \3B. —C. 2 — 3D.1 12 ; 2、22 ;10. _____________________________________ 若y= •. x - 3 + .3 -x + 2,则x y= •11 •若最简二次根式S3a +b与丁二b是同类根式,则2a-b=_________________________ .12 .当x=2+ , 3 时,式子x2- 4x+2017= _________ .13. 已知三角形三边的长分别为__________________________ J27cm, JT2 cm, J48 cm,则它的周长为cm.14. 如果一个直角三角形的面积为 _____________________________ 8,其中一条直角边为J10,求它的另一条直角边 __________________________________________________ .15. 如图,将1,,Q, d3,寸6按下列方式排列.若规定(m, n)表示第m排从左向右第n个数,则(5 , 4)与(15 , 2)表示的两数之积是 _________ .第I対第2排第I HI-三、解答题(共48 分)(2)18. (8分)先化简,再求值:已知a = 8, b = 2,试求a I兀」:E 的值.17. (8 分)计算:、5、5-、,15 2、3 .15-2.319. (10分)已知长方形的长a= 1 .32,宽b= 1、、花.2 3(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.5 ~1 , y= 5 1,求- -的值;20. ( 12分)⑴已知x=2 2 x y⑵已知x, y 是实数,且满足y< x - 2 + •、. 2 - X + 1 ,化简:、..y2-4y 4 —(x—2+ 2 )2.参考答案【解析】依题意得:x+2 > 0,解得x> -2.故选B.2. A【解析】(1) 12=2 -. 3 ; (2) ZF =2;(3):弓;(4),27 = 3. 3 .•••( 1) (4)能与,3合并,故选A.3. B【解析】A选项中,••• 、、6、3不是同类二次根式,不能合并,•本选项错误;B选项中,T 12 ::』3= .36=6,•本选项正确;C选项中,••• 3.5=3,而不是等于3+-、5,•本选项错误;D选项中,•••、、祜“2=二°「5,•本选项错误;2故选B.故选B.5. B【解析】(.3+2)2018( -、3 T2)2018(、、3 T2)=[(,3 +2) r- 3 -2)]2018(-3 -2)=(-1)2018(.3 -2)=3 2故选B.6. B【解析】根据倒数的定义得:i\ b a 7b 二a -b =1.即a =b 1.故选B.【解析】根据题意,得:2<m<8,/• 2- m<0, m- 8<0 ,•••原式=m- 2+m- 8=2m- 10.故选D.8. A【解析】••• X2 -x -2 = 0 ,•x2_x =2 ,2 2、3 _2+2、3_ 2+2 3 3 - 3 4.3 2、3••原式= _ = _ = ------------------------- = ------- =--------22-1+巧3+73 (3+73)(3-73) 6 3 '故选A.9. x>0且x^9【解析】由题意得,x _ 0且、,x -3 = 0,解得X _ 0且x = 9.10. 9「X—3K0【解析】根据题意得:解得:x=3.3-^0,当x=3时,y=2,.x y=32=9.故答案为:9.11. 9【解析】••• 2a f 3a b是最简二次根式,•2a —4 二2 ,•a = 3a -b =3a b2b = -2ab - -a - -3,•2a -b =2 3 - -31=6 3 = 9.故答案为:9.12. 2016【解析】把所求的式子化成(X-2) 2+2013然后代入式子计算,即可得到:x2-4x+2017= (x -2) 2+2013 = ( 3 ) 2+2013=3+2013=2016 .故答案是:2016.【解析】三角形的周长为:,2^ ,4^ = 2、、3 4.3 =9、_3.故本题应填9... 3 .14. 1.6 10【解析】根据三角形的面积公式可直角求出另一条直角边解:设直角三角形的另一直角边为x ,•••一个直角三角形的面积为8,其中一条直角边为,10 ,_ x .10 =8,216 16/10■ X = -= -----------------即它的另一条直角边是8 - 10515. 6【解析】根据数的排列方法可知,第一排:1个数,第二排2个数•第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1 )排共有:1+2+3+4+••+ (m-1)个数((m -1)m),根据数的排列方法,每四个数一个轮回,根据题目意思找出第2m排第n个数到底是哪个数后再计算•因此可由(5,4)可知是第5排第4个数,是2,然后由(15,2)可知是第15排第2个数,因此可知2(m」)m-14严。

人教版八年级数学下《第16章二次根式》单元测试含答案解析

人教版八年级数学下《第16章二次根式》单元测试含答案解析

人教版八年级下册《第16章二次根式》单元测试一、选择题1.下列的式子一定是二次根式的是()A.B.C.D.2.若,则()A.b>3 B.b<3 C.b≥3 D.b≤33.若有意义,则m能取的最小整数值是()A.m=0 B.m=1 C.m=2 D.m=34.若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.25.下列二次根式中属于最简二次根式的是()A. B. C.D.6.若,则()A.x≥6 B.x≥0 C.0≤x≤6 D.x为一切实数7.小明的作业本上有以下四题:做错的题是()A. B.C.D.8.能够使二次根式有意义的实数x的值有()A.0个 B.1个 C.2个 D.3个9.最简二次根式的被开方数相同,则a的值为()A.B.C.a=1 D.a=﹣110.化简得()A.﹣2 B.C.2 D.二、填空题11.(4分)①=;②=.12.二次根式有意义的条件是.13.若m<0,则=.14.成立的条件是.15.比较大小:.(填“>”、“=”、“<”).16.若三角形的三边长分别为a,b,c,其中a和b满足﹣6b=﹣9,则c的取值范围是.17.计算=.18.与的关系是.19.若x=﹣3,则的值为.20.计算:( +)2008•(﹣)2009=.三、解答题21.求使下列各式有意义的字母的取值范围:(1)(2)(3)(4).22.把根号外的因式移到根号内:(1)(2).23.(24分)计算:(1)(﹣)2(2)×(﹣9)(3)4(4)6﹣2﹣3(5)(6)2.四、综合题24.已知:a+=1+,求的值.25.计算:.26.若x,y是实数,且y=++,求的值.27.已知:x,y为实数,且,化简:.28.当x=时,求x2﹣x+1的值.人教版八年级下册《第16章二次根式》单元测试参考答案与试题解析一、选择题1.下列的式子一定是二次根式的是()A.B.C.D.【考点】二次根式的定义.【专题】应用题.【分析】根据二次根式的被开方数是非负数对每个选项做判断即可.【解答】解:A、当x=0时,﹣x﹣2<0,无意义,故本选项错误;B、当x=﹣1时,无意义;故本选项错误;C、∵x2+2≥2,∴符合二次根式的定义;故本选项正确;D、当x=±1时,x2﹣2=﹣1<0,无意义;故本选项错误;故选:C.【点评】本题考查了二次根式的定义.一般形如(a≥0)的代数式叫做二次根式.当a≥0时,表示a的算术平方根;当a小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根).2.若,则()A.b>3 B.b<3 C.b≥3 D.b≤3【考点】二次根式的性质与化简.【分析】等式左边为非负数,说明右边3﹣b≥0,由此可得b的取值范围.【解答】解:∵,∴3﹣b≥0,解得b≤3.故选D.【点评】本题考查了二次根式的性质:≥0(a≥0),=a(a≥0).3.若有意义,则m能取的最小整数值是()A.m=0 B.m=1 C.m=2 D.m=3【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,即可求解.【解答】解:由有意义,则满足3m﹣1≥0,解得m≥,即m≥时,二次根式有意义.则m能取的最小整数值是m=1.故选B.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.2【考点】二次根式的性质与化简.【分析】根据二次根式的意义化简.【解答】解:若x<0,则=﹣x,∴===2,故选D.【点评】本题考查了根据二次根式的意义化简.二次根式规律总结:当a≥0时,=a,当a≤0时,=﹣a.5.下列二次根式中属于最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.6.若,则()A.x≥6 B.x≥0 C.0≤x≤6 D.x为一切实数【考点】二次根式的乘除法.【分析】本题需注意的是二次根式的被开方数为非负数,由此可求出x的取值范围.【解答】解:若成立,则,解之得x≥6;故选:A.【点评】本题需要注意二次根式的双重非负性:≥0,a≥0.7.小明的作业本上有以下四题:做错的题是()A. B.C.D.【考点】二次根式的混合运算.【分析】利用二次根式的运算方法,逐一计算对比答案得出结论即可.【解答】解:A、=4a2,计算正确;B、×=5a,计算正确;C、a==,计算正确;D、﹣=(﹣),此选项错误.故选:D.【点评】此题考查二次根式的混合运算,注意运算结果的化简和运算过程中的化简.8.能够使二次根式有意义的实数x的值有()A.0个 B.1个 C.2个 D.3个【考点】二次根式有意义的条件.【分析】根据二次根式有意义:被开方数为非负数,可得出x的值.【解答】解:∵二次根式有意义,∴﹣(x﹣4)2≥0,解得:x=4,即符合题意的只有一个值.故选B.【点评】此题考查了二次根式有意义的条件,掌握二次根式有意义:被开方数为非负数是解答本题的关键.9.最简二次根式的被开方数相同,则a的值为()A.B.C.a=1 D.a=﹣1【考点】最简二次根式.【分析】最简二次根式是被开方数中不含开得尽方的因数或因式,被开方数相同,令被开方数相等,列方程求a.【解答】解:∵最简二次根式的被开方数相同,∴1+a=4﹣2a,解得a=1,故选C.【点评】本题主要考查最简二次根式的知识点,关键是理解概念,比较简单.10.化简得()A.﹣2 B.C.2 D.【考点】二次根式的混合运算.【专题】计算题.【分析】首先利用根式的乘法法则打开括号,然后把所有根式化为最简二次根式,最后合并即可求解.【解答】解:=2﹣2+2=4﹣2.故选D.【点评】此题主要考查了二次根式的混合运算,其中熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.二、填空题11.①=0.3;②=.【考点】二次根式的性质与化简.【分析】①先对根式下的数进行变形,(﹣0.3)2=(0.3)2,直接开方即得;,所以开方后||=.【解答】解:①原式=0.3;②原式=||=.【点评】本题考查的是对二次根式的化简和求值.12.二次根式有意义的条件是x≥0,且x≠9.【考点】二次根式有意义的条件;分式有意义的条件.【专题】计算题.【分析】二次根式的被开方数x是非负数,同时分式的分母﹣3≠0,据此求得x的取值范围并填空.【解答】解:根据题意,得,解得,x≥0,且x≠9;故答案是:x≥0,且x≠9.【点评】本题考查了二次根式有意义的条件、分式有意义的条件.在求二次根式的被开方数是非负数时,不要漏掉分式的分母不为零这一条件.13.若m<0,则=﹣m.【考点】二次根式的性质与化简.【分析】当m<0时,去绝对值和二次根式开方的结果都是正数﹣m,而=m.【解答】解:∵m<0,∴=﹣m﹣m+m=﹣m.【点评】本题考查了去绝对值,二次根式,三次根式的化简方法,应明确去绝对值,开方结果的符号.14.成立的条件是x≥1.【考点】二次根式的乘除法.【分析】根据二次根式的乘法法则:•=(a≥0,b≥0)的条件,列不等式组求解.【解答】解:若成立,那么,解之得,x≥﹣1,x≥1,所以x≥1.【点评】此题的隐含条件是:被开方数是非负数.15.比较大小:<.(填“>”、“=”、“<”).【考点】实数大小比较.【分析】本题需先把进行整理,再与进行比较,即可得出结果.【解答】解:∵=∴∴故答案为:<.【点评】本题主要考查了实数大小关系,在解题时要化成同一形式是解题的关键.16.若三角形的三边长分别为a,b,c,其中a和b满足﹣6b=﹣9,则c的取值范围是1<c<5.【考点】非负数的性质:算术平方根;非负数的性质:偶次方;因式分解﹣运用公式法;三角形三边关系.【分析】利用完全平方公式配方,再根据非负数的性质列式求出a、b,然后根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求解即可.【解答】解:原方程可化为+(b﹣3)2=0,所以,a﹣2=0,b﹣3=0,解得a=2,b=3,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,三角形的三边关系.17.计算=.【考点】二次根式的加减法.【分析】根据二次根式的加减法运算法则,先将各个二次根式化简为最简二次根式,然后将被开方数相同的二次根式合并.【解答】解:原式==3.【点评】二次根式的加减法运算一般可以分三步进行:①将每一个二次根式化成最简二次根式;②找出其中的同类二次根式;③合并同类二次根式.18.与的关系是相等.【考点】分母有理化.【分析】把分母有理化,即分子、分母都乘以,化简再比较与的关系.【解答】解:∵=,∴的关系是相等.【点评】正确理解分母有理化的概念是解决本题的关键.19.若x=﹣3,则的值为1.【考点】二次根式的性质与化简.【分析】先将被开方数分解因式,再把x代入二次根式,运用平方差公式进行计算.【解答】解:∵x=﹣3,∴====1.【点评】主要考查了二次根式的化简和因式分解以及平方差公式的运用.注意最简二次根式的条件是:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数因式.上述两个条件同时具备的二次根式叫最简二次根式.20.计算:( +)2008•(﹣)2009=﹣.【考点】二次根式的混合运算.【专题】计算题.【分析】先根据积的乘方得到原式=[(+)(﹣)]2008•(﹣),然后利用平方差公式计算.【解答】解:原式=[(+)(﹣)]2008•(﹣)=(2﹣3)2008•(﹣)=﹣.故答案为﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.三、解答题21.求使下列各式有意义的字母的取值范围:(1)(2)(3)(4).【考点】二次根式有意义的条件.【分析】分别根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:(1)3x﹣4≥0,解得x≥;(2)2x+1≥0且1﹣|x|≠0,解得x≥﹣且x≠±1,所以,x≥﹣且x≠1;(3)∵m2+4≥4,∴m取全体实数;(4)﹣>0,解得x<0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.22.把根号外的因式移到根号内:(1)(2).【考点】二次根式的性质与化简.【专题】计算题.【分析】(1)先变形得到原式=﹣5×,然后利用二次根式的性质化简后约分即可;(2)先变形得到原式=(1﹣x)•,然后利用二次根式的性质化简后约分即可.【解答】解:(1)原式=﹣5×=﹣5×=﹣;(2)原式=(1﹣x)•=(1﹣x)•=﹣.【点评】本题考查了二次根式的性质与化简:=|a|.23.计算:(1)(﹣)2(2)×(﹣9)(3)4(4)6﹣2﹣3(5)(6)2.【考点】二次根式的混合运算.【分析】(1)利用二次根式的性质化简;(2)根据二次根式的乘法法则运算;(3)先把各二次根式化为最简二次根式,然后合并即可;(4)先把各二次根式化为最简二次根式,然后合并即可;(5)利用多项式乘法展开即可;(6)根据二次根式的乘除法则运算.【解答】解:(1)原式=1﹣=;(2)原式=×(﹣9)×=﹣45;(3)原式=4+3﹣2+4=7+2;(4)原式=6﹣﹣=6﹣;(5)原式=6﹣4+﹣4;(6)原式=2××=.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.四、综合题24.已知:a+=1+,求的值.【考点】二次根式的化简求值.【专题】计算题.【分析】把a+=1+的两边分别平方,进一步整理得出的值即可.【解答】解:∵a+=1+,∴(a+)2=(1+)2,∴+2=11+2,∴=9+2.【点评】此题考查二次根式的混合运算和代数式求值,注意式子特点,灵活计算.25.计算:.【考点】二次根式的混合运算.【专题】计算题.【分析】由于分母有理化后变为﹣1,其他的也可以分母有理化,然后一起相加,最后做乘法即可求解.【解答】解:=(﹣1+﹣+…+﹣)(+1)=()()=2009﹣1=2008.【点评】此题主要考查了二次根式的混合运算,解题的关键是首先把所有的根式分母有理化达到化简的目的,然后利用平方差公式计算即可求解.26.若x,y是实数,且y=++,求的值.【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式求出x,再求出y,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣1≥0且1﹣x≥0,解得x≥1且x≤1,所以,x=1,y=,所以,==﹣1.【点评】本题考查的知识点为:二次根式的被开方数是非负数.27.已知:x,y为实数,且,化简:.【考点】二次根式的性质与化简;二次根式有意义的条件.【专题】计算题.【分析】应用二次根式的化简,注意被开方数的范围,再进行加减运算,得出结果.【解答】解:依题意,得∴x﹣1=0,解得:x=1∴y<3∴y﹣3<0,y﹣4<0∴=3﹣y﹣=3﹣y﹣(4﹣y)=﹣1.【点评】本题主要考查二次根式的化简方法与运用:a>0时,=a;a<0时,=﹣a;a=0时,=0.28.当x=时,求x2﹣x+1的值.【考点】二次根式的化简求值.【分析】先根据x=,整理成x=+1,再把要求的式子进行配方,然后把x的值代入,即可得出答案.【解答】解:∵x=∴x=+1,∴x2﹣x+1=(x﹣)2+=(+1﹣)2+=3.【点评】本题考查的是二次根式的化简求值,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.。

人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)

人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)

人教版数学八年级下册第十六章二次根式单元测试卷(含答案解析)一、单选题(共12小题,每小题4分,共计48分)1A.4b B.CD2.下列各数中,与的积不含二次根式的是A.B.CD3m为()A.-10B.-40C.-90D.-1604.若a,b-5,则a,b的关系为A.互为相反数B.互为倒数C.积为-1D.绝对值相等5.下列计算正确的是3==6=3=;a b=-.A.1个B.2个C.3个D.4个6合并的是()A B C D7.若6的整数部分为x,小数部分为y,则(2x)y的值是() A.5-B.3C.-5D.-38.如图,a,b,c的结果是()a c+A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b9.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间 D.8和9之间10有意义,那么直角坐标系中点A(a,b)在() A .第一象限 B .第二象限 C .第三象限D .第四象限11.下列计算正确的是AB . CD12.如果,,那么各式:,,,其中正确的是()A .①②③B .①③C .②③D .①②二、填空题(共5小题,每小题4分,共计20分)13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a﹣的结果是_____.14.已知a 、b满足(a ﹣1)2=0,则a+b=_____.15有意义,则实数x 的取值范围是_____.16.若a ,b 都是实数,b﹣2,则a b 的值为_____. 17.已知实数,互为倒数,其中__________. ()=3=2==0ab > 0a b +<=1=b =-a b a 2=+三、解答题(共4小题,每小题8分,共计32分)18=b+8.(1)求a 的值;(2)求a 2-b 2的平方根.19.已知实数a 满足|300﹣a =a ,求a ﹣3002的值.20.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为求(1)的值。

人教版八年级下册《第16章二次根式》单元测试(有答案)-(数学)

人教版八年级下册《第16章二次根式》单元测试(有答案)-(数学)

第十六章 《二次根式》单元测试题一、 选择题(本大题共10小题,每小题2分,共20分) 1. 下列式子一定是二次根式的是( ) A.2--xB.xC.22+xD.22-x2. 二次根式13)3(2++m m 的值是( )A. 23B. 32C.22D. 03. 若13-m 有意义,则m 能取的最小整数值是( )A. m =0B. m =1C. m =2D. m =34. 若x < 0,则xx x 2-的结果是( )A. 0B. -2C. 0或-2D. 2 5. 下列二次根式中属于最简二次根式的是( ) A.14B.48C.ba D.44+a6. 如果)6(6-=-•x x x x ,那么( )A. 0≥xB. 6≥xC. 60≤≤xD. x 为一切实数7. 小明的作业本上有以下四题:①24416a a =;②a a a 25105=⨯;③a aa a a =•=112;④a a a =-23。

做错的题是( )A. ①B. ②C. ③D. ④8. 化简6151+的结果是( ) A.3011B. 33030C.30330D. 11309. 若最简二次根式a +1与a 24-的被开方数相同,则a 的值为( )A. 43-=aB. 34=a C. 1=a D. 1-=a 10. 若n 75是整数,则正整数n 的最小值是( )A. 2B. 3C. 4D. 5二、 填空题(本大题共10小题,每小题3分,共30分)11. 若b b -=-332)(,则b 的取值范围是___________。

12.2)52(-=__________。

13. 若m < 0,则332m m m ++=_______________。

14.231-与23+的关系是____________。

15. 若35-=x ,则562++x x 的值为___________________。

16. 若一个长方体的长为62c m ,宽为3c m ,高为2c m ,则它的体积为_______c m 3。

人教版八年级数学下册第十六章二次根式单元测试题(含答案)

人教版八年级数学下册第十六章二次根式单元测试题(含答案)

人教版八年级数学下册 第十六章 二次根式 单元测试题时间:100分钟 满分:120分一、选择题(共10小题,每小题3分,共30分) 1.下列的式子一定是二次根式的是( ) A .B .C .D .2.当x 分别取-3,-1,0,2时,使二次根式值为有理数的是( )A . -3B . -1C . 0D . 2 3.实数x 取任何值,下列代数式都有意义的是( ) A . B . C .D .4.式子y =中x 的取值范围是( )A .x ≥0B .x ≥0且x ≠1C . 0≤x <1D .x >1 5.化简得( )A . ±4B . ±2C . 4D . -4 6.下列计算正确的是( ) A . 3×4=12B .=×=(-3)×(-5)=15 C . -3==6 D .==57.计算÷÷的结果是( )A .B .72C .D .8.下列式子中,属于最简二次根式的是( ) A . B .C .D .9.计算-9的结果是( )A .B . -C . -D .10.对于任意的正数m 、n 定义运算※为:m ⊗n =计算(3⊗2)+(8⊗12)的结果为()A .+B. 2C.+3D.-二、填空题(共8小题,每小题3分,共24分)11.在,,,,中是二次根式的个数有________个.12.若实数a满足=2,则a的值为________.13.若二次根式有意义,则x的取值范围是________.14.已知实数a在数轴上的位置如图,则化简|1-a|+的结果为________.15.计算×结果是______________.16.已知x=3,y=4,z=5,那么÷的最后结果是____________.17.若二次根式是最简二次根式,则最小的正整数a=__________.18.设的整数部分为a,小数部分为b,则的值等于________.三、解答题(共8小题,每小题8分,共66分)19.(6分)判断下列各式,哪些是二次根式,哪些不是,为什么?,-,,,(a≥0),.20. (8分)计算(1)(2+)(2-);(2)(-)-(+).21. (8分)先化简,再求值: (a -)(a +)-a (a -6),其中a =+21.22. (8分)已知a ,b 为等腰三角形的两条边长,且a ,b 满足b =++4,求此三角形的周长.23. (8分)若实数a 、b 、c 在数轴上的对应点如图所示,试化简:-+|b +c |+|a -c |.24. (8分)有这样一道题: 计算+-x 2(x >2)的值,其中x =1 005,某同学把“x =1 005”错抄成“x =1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.25. (10分)观察下列各式及其验证过程2=.验证:2=×====;3=.验证:3====.按照上述两个等式及其验证过程的基本思路,猜想4的变形结果并进行验证.26. (10分)在进行二次根式化简时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:==(一)==(二)===-1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====-1.(四)(1)请用不同的方法化简.①参照(三)式得=__________;②参照(四)式得=__________.(2)化简:+++…+答案解析1.【答案】C【解析】A.当x=0时,-x-2<0,无意义,错误;B.当x=-1时,无意义;故本选项错误;C.∵x2+2≥2,∴符合二次根式的定义;正确;D.当x=±1时,x2-2=-1<0,无意义;错误;故选C.2.【答案】D【解析】当x=-3时,=,故此数据不合题意;当x=-1时,=,故此数据不合题意;当x=0时,=,故此数据不合题意;当x=2时,=0,故此数据符合题意;故选D.3.【答案】C【解析】A.由6+2x≥0,得x≥-3,所以,x<-3时二次根式无意义,错误;B.由2-x≥0,得x≤2,所以,x>2时二次根式无意义,错误;C.∵(x-1)2≥0,∴实数x取任何值二次根式都有意义,正确;D.由x+1≥0,得x≥-1,所以,x<-1二次根式无意义,又x=0时分母等于0,无意义,错误.4.【答案】B【解析】要使y=有意义,必须x≥0且x-1≠0,解得x≥0且x≠1,故选B.5.【答案】C【解析】=4.故选C.6.【答案】D【解析】3×4=24,A错误;==3×5=15,B错误;-3=-=-,C错误;==5,D正确.故选D.7.【答案】A【解析】原式==.故选A.8.【答案】A【解析】是最简二次根式,A正确;=3,不是最简二次根式,B不正确;=2,不是最简二次根式,C不正确;被开方数含分母,不是最简二次根式,D不正确,故选A.9.【答案】B【解析】-9=2-9×=2-3=-.故选B.10.【答案】C【解析】(3⊗2)+(8⊗12)=-++=-+2+2=+3.故选C.11.【答案】2【解析】当a<0时,不是二次根式;当a≠0,b<0时,a2b<0,不是二次根式;当x<-1即x+1<0时,不是二次根式;∵x2≥0,∴1+x2>0,∴是二次根式;∵3>0,∴是二次根式.故二次根式有2个.12.【答案】5【解析】平方,得a-1=4.解得a=5.13.【答案】x≥1【解析】根据二次根式有意义的条件,x-1≥0,∴x≥1.14.【答案】1-2a【解析】由数轴可得出:-1<a<0,∴|1-a|+=1-a-a=1-2a.15.【答案】2【解析】原式===2.16.【答案】【解析】当x=3,y=4,z=5时,原式=÷===.17.【答案】2【解析】二次根式是最简二次根式,则最小的正整数a=2.18.【答案】7-12【解析】∵3<<4,∴a=3,b=-3,∴===7-12.19.【答案】解,-,(a≥0),符合二次根式的形式,故是二次根式;,是三次根式,故不是二次根式;,被开方数小于0,无意义,故不是二次根式.【解析】根据形如(a ≥0)的式子是二次根式,可得答案.20.【答案】解 (1)原式=(2)2-()2=20-3 =17; (2)原式=2---=-.【解析】(1)利用平方差公式计算;(2)先把各二次根式化为最简二次根式,然后合并即可. 21.【答案】解原式=a 2-3-a 2+6a =6a -3,当a =+21时,原式=6+3-3=6.【解析】先理由平方差公式,再化简.22.【答案】解 ∵,有意义,∴∴a =3, ∴b =4,当a 为腰时,三角形的周长为3+3+4=10; 当b 为腰时,三角形的周长为4+4+3=11.【解析】根据二次根式有意义:被开方数为非负数可得a 的值,继而得出b 的值,然后代入运算即可.23.【答案】解 根据题意,得a <b <0<c ,且|c |<|b |<|a |, ∴a +b <0,b +c <0,a -c <0,则原式=|a |-|a +b |+|b +c |+|a -c |=-a +a +b -b -c -a +c =-a .【解析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,合并即可得到结果.24.【答案】解原式=+-x2=+-x2=-x2=-2因为化简结果与x的值无关,所以该同学虽然抄错了x的值,计算结果却是正确的.【解析】将二次根式进行分母有理化,根据题中给出的条件准确计算,计算结果是正确的,因为通过根式化简结果与x的值无关.25.【答案】解4=;理由:4====.【解析】观察上面各式,可发现规律如下规律:n=,按照规律计算即可26.【答案】解(1)===-,===-.(2)原式=+++…+=+…+=.【解析】仿照题中的方法将原式分母有理化即可.。

人教版八年级数学下册第十六章二次根式单元测试卷(含答案)

人教版八年级数学下册第十六章二次根式单元测试卷(含答案)

⼈教版⼋年级数学下册第⼗六章⼆次根式单元测试卷(含答案)第⼗六章⼆次根式单元测试卷题号⼀⼆三总分得分⼀、选择题(每题3分,共30分)1.要使⼆次根式错误!未找到引⽤源。

有意义,x必须满⾜()A.x≤2B.x≥2C.x>2D.x<22.下列⼆次根式中,不能与错误!未找到引⽤源。

合并的是()A.错误!未找到引⽤源。

B.错误!未找到引⽤源。

C.错误!未找到引⽤源。

D.错误!未找到引⽤源。

3.下列⼆次根式中,最简⼆次根式是()A.错误!未找到引⽤源。

B.错误!未找到引⽤源。

C.错误!未找到引⽤源。

D.错误!未找到引⽤源。

4.下列各式计算正确的是()A.错误!未找到引⽤源。

+错误!未找到引⽤源。

=错误!未找到引⽤源。

B.4错误!未找到引⽤源。

-3错误!未找到引⽤源。

=1C.2错误!未找到引⽤源。

×3错误!未找到引⽤源。

=6错误!未找到引⽤源。

D.错误!未找到引⽤源。

÷错误!未找到引⽤源。

=35.下列各式中,⼀定成⽴的是()A.错误!未找到引⽤源。

=(错误!未找到引⽤源。

)2B.错误!未找到引⽤源。

=(错误!未找到引⽤源。

)2C.错误!未找到引⽤源。

=x-1D.错误!未找到引⽤源。

=错误!未找到引⽤源。

·错误!未找到引⽤源。

6.已知a=错误!未找到引⽤源。

+1,b=错误!未找到引⽤源。

,则a与b的关系为()A.a=bB.ab=1C.a=-bD.ab=-17.计算错误!未找到引⽤源。

÷错误!未找到引⽤源。

×错误!未找到引⽤源。

的结果为()A.错误!未找到引⽤源。

B.错误!未找到引⽤源。

C.错误!未找到引⽤源。

D.错误!未找到引⽤源。

8.已知a,b,c为△ABC的三边长,且错误!未找到引⽤源。

+|b-c|=0,则△ABC的形状是()A.等腰三⾓形B.等边三⾓形C.直⾓三⾓形D.等腰直⾓三⾓形9.已知a-b=2错误!未找到引⽤源。

-1,ab=错误!未找到引⽤源。

人教版八年级下《第16章二次根式》单元测试题(含答案解析)

人教版八年级下《第16章二次根式》单元测试题(含答案解析)

2019年春人教版八年级下册数学《第16章二次根式》单元测试题.选择题(共10小题)1 .下列各式中,是二次根式的是()片,则原长方形纸片的面积为( ).填空题(共8小题) A . x+yB .2 .若无意义,贝U x 的取值范围是(A . x > 0B . x < 33 .化简J 亍石J 的结果是()A .」,门B . “ ] i4. 下列二次根式,最简二次根式是(A •上B .C .1aD .)C .x> 3D .x > 3 C.士 St)D .± (1"V2) )C .D . <275.下列式子一定成立的是()A . V : J -2:—- 2C . . ■ -nf _ - .d 二's1 W _B . ■! 匚 +2D . 丁三j + 、b = ' - \,则 a 和 b 互为( )A .倒数B .相反数7.下列各式中,与 —是同类二次根式的是(A.7B .—)&计算仁子打的值等于( A. CB . 4 79.下列计算正确的是( )A .可/ +"•「:=匚 C .二 2 = T10 .现将某一长方形纸片的长增加C .负倒数 ) C . —1C . 5 7B . D . 3 . cm ,宽增加3 ■■- c = 3 %4)22)=6 : cm ,就成为一 D .有理化因式D . 2 7+2 二个面积为128cm 2的正方形纸A . 18cm 2B . 20cm 2C . 36cm 2D . 48cm 211.若a 、b 为实数,且7 a 2-1+71-a 2a+7+4,贝y a+b =12 •若 亠二有意义,则a 的取值范围为a+2 ---------13•已知,化简I - -'I |_・:■」的结果是 ________________ •114•计算:3 _-(1)「+1 = _______ •15 .化简(二-1) 2017 (三+1) 2018 的结果为 ____________ • 16.如果最简二次根式'■. . I 和u.-r 是同类二次根式,贝U a = _______ , b= _______18•如图,长方形内有两个相邻的正方形,面积分别为 3和9,那么阴影部分的面积为 __________三•解答题(共7小题) 19•计算:T-3 —+2 •— • 20•计算:4 •— X 2「十匚21.已知:a = 三+1,求代数式a 2 - 2a - 1的值.22•已知实数a ,b ,c 在数轴上的位置如图,且|a|=|b|,化简|a|+|b|+|c|- ;- '- 2 .:,—• - « ----- 4 ---- • --- >c a。

【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)

【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)

人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C.9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c )A. 2a -2cB. -2cC. 2bD.2a11、已知a ,b a 、b ,则下列表示正确的是( )A. 0.3abB. 3abC. 0.1abD.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是()C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)aa b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式: 121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+ 同理可得:32321-=+ 从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1;18、±3三、解答题19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+; 四、解答题21、22、;23、2017;24、-a五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0.(3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版初中数学八年级下册第十六章《二次根式》单元基础卷一、选择题(每小题3分,共30分)1x 的取值范围是( ).A. 1x >B. 1x ≥C. 1x <D. 1x ≤ 2.若a -1+b 2-4b +4=0,则ab 的值等于( )A .-2B .0C .1D .23.=x 的取值范围是( ) A. 2x ≠B. 0x ≥C. 2x >D. 2x ≥4.是同类二次根式的是( )。

八年级下册数学《第16章 二次根式》单元测试卷及答案详解(PDF可打印)

八年级下册数学《第16章 二次根式》单元测试卷及答案详解(PDF可打印)

人教新版八年级下册《第16章二次根式》单元测试卷(2)一.选择题。

1.下列式子中二次根式有()①;②;③﹣;④;⑤;⑥;⑦;⑧(x>1).A.2个B.3个C.4个D.5个2.已知a为实数,则下列式子一定有意义的是()A.B.C.D.3.小明做了四道题:①(﹣)2=2②=﹣2③=±2④=4,做对的有()A.①②③④B.①②④C.②④D.①④4.若等腰三角形的两边长分别为和,则这个三角形的周长为()A.9B.8或10C.13或14D.145.若x﹣y=,xy=,则代数式(x﹣1)(y+1)的值等于()A.2B.C.D.26.化简:×+的结果是()A.5B.6C.D.57.把化成最简二次根式,结果是()A.B.8C.D.8.下列各数中与2+的积是有理数的是()A.2+B.2C.D.2﹣9.下列计算正确的是()A.+=B.2+=2C.3﹣=2D.=6 10.规定a※b=,则※的值是()A.5﹣2B.3﹣2C.﹣D.二.填空题。

11.若有意义,则m能取的最小整数值是.12.下列二次根式:,,,,.其中最简二次根式有个.13.若x,y都为实数,且y=2020+2021+1,则x2+y=.14.已知a、b满足=a﹣b+1,则ab的值为.15.设a=,且b是a的小数部分,则a﹣的值为.16.如图,将1,,,,…,按下列方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(15,2)表示的两数之积是.三.解答题。

17.计算:(1)(﹣2)×﹣6;(2)(﹣4).18.已知y=,求x2﹣xy+y2的值.19.已知:x=+1,y=﹣1,求下列各式的值.(1)x2﹣y2.(2).20.先化简再求值:,其中a=.21.在一条长为56米的传输带上,有一件物品随传输带在3秒时间内匀速前进了12米,求传输带的速度和该物品在传输带上停留的时间.22.观察、思考、解答:(﹣1)2=()2﹣2×1×+12=2﹣2+1=3﹣2反之3﹣2=2﹣2+1=(﹣1)2∴3﹣2=(﹣1)2∴=﹣1(1)仿上例,化简:;(2)若=+,则m、n与a、b的关系是什么?并说明理由;(3)已知x=,求(+)•的值(结果保留根号)人教新版八年级下册《第16章二次根式》单元测试卷(2)参考答案与试题解析一.选择题。

人教版八年级数学下册第十六章《二次根式》单元测试卷(含答案)

人教版八年级数学下册第十六章《二次根式》单元测试卷(含答案)

第十六章《二次根式》单元测试卷(共23题,满分120分,考试用时90分钟)一、选择题(共10小题,每小题3分,共30分)1.下列式子是二次根式的是()A.2B.√2C.√23D.√−22.二次根式√x−2有意义的条件是()A.x>2B.x<2C.x≥2D.x≤23.下列式子中,属于最简二次根式的是()A.√12B.√23C.√0.3D.√74.化简√(−2)2得()A.2B.-2C.±2D.45.下列二次根式中,不能与√2合并的是()A.√12B.√8C.√12D.√186.下列计算正确的是()A.√2+√3=√5B.2+√2=2√2C.3√2−√2=3D.3√2−√2=2√27.下列计算错误的是()A.√5×√6=√30B.√18÷√2=9C.3√3÷3√3=1D.3√2×2=6√28.计算(2+√5)(2-√5)的结果是()A.-1B.-3C.9-4 √5D.9+4 √59.若二次根式√1+a与√4−a的被开方数相同,则a的值为()A.1B.2C.23D.3210.(创新题)如图,数轴上表示1,√2的对应点分别为A,B,则以点A为圆心,以AB为半径的圆交数轴于点C,则点C表示的数是()A.√2-1B.1-√2C.2-√2D.√2-2二、填空题(共5小题,每小题3分,共15分)11.计算√8−√2的结果等于.12.计算:3√5×2√5=.13.若√12n是正整数,则最小的整数n是.14.已知实数x,y满足|x-4|+√y−8=0,则分别以x,y的值为两边长的等腰三角形的周长是.15.(跨学科融合)某小区要在面积为128平方米的正方形空地上建造一个休闲园地,并进行规划(如图1),在休闲园地内建一个面积为72平方米的正方形儿童游乐场,游乐场两边铺设健身道,剩下的区域作为休息区.现计划在休息区摆放占地面积为3×1.5平方米的“背靠背”休闲椅(如图2),并要求休闲椅摆放在东西方向或南北方向上,请通过计算说明休息区内最多能摆放张这样的休闲椅.三、解答题(一)(共3小题,每小题8分,共24分)−√20.16.计算:3√5+2√1217.计算:√24÷√3−√6×2√3.18.求代数式2xx2−2x+1÷(1+1x−1)的值,其中x=√2+1.四、解答题(二)(共3小题,每小题9分,共27分)19.已知x=2+√3,求代数式x2-2√3x+3的值.20.若x,y都是实数,且y=√x−3+√3−x+8,求x+y的值.21.如图,已知实数a,b,c在数轴上的位置,化简:√a2-|a-b|+√(b+c)2.五、解答题(三)(共2小题,每小题12分,共24分)22.(跨学科融合)高空抛物严重威胁着人们的“头顶安全”,即便是常见小物件,一旦高空落下,也威力惊人,而且用时很短,常常避让不及.据研究,高空抛物下落的时间t(单位:s)和高(不考虑风速的影响,g≈10 m/s2).度h(单位:m)近似满足公式t=√2ℎg(1)求从40 m高空抛物到落地的时间(结果保留根号);(2)小明说从80 m高空抛物到落地的时间是(1)中所求时间的2倍,他的说法正确吗?请说明理由;(3)已知高空坠物动能(单位:J)=10×物体质量(单位:kg)×高度(单位:m).某质量为0.05 kg 的鸡蛋经过6 s 后落在地上,这个鸡蛋产生的动能是多少(单位:J)?这个鸡蛋会伤害到楼下的行人吗?(注:杀伤无防护的人体只需要65 J 的动能)23.阅读下列材料,然后解答问题: √5=√5√5×√5=3√55.(一) √23=√2×3√3×3=√63.(二) √3+1=√3−1)(√3+1)(√3−1)=√3−1)(√3)2−1=√3-1.(三)以上这种化简的步骤叫做分母有理化. √3+1还可以用以下方法化简:√3+1=√3+1=√3)2√3+1=√3+1)(√3−1)√3+1=√3-1.(四)(1)请用不同的方法化简√5+√3.(在横线上写出步骤) ①参照(三)式得√5+√3= ; ②参照(四)式得√5+√3= ; (2)化简:√3+1√5+√3+√7+√5;(保留过程)(3)猜想:√3+1√5+√3+√7+√5+…+√2n+1+√2n−1的值为.(n是正整数,直接写出结论)第十六章《二次根式》单元测试卷1.B 2.C 3.D 4.A 5.C 6.D 7.B 8.A 9.D 10.C 11.√212.3013.314.2015.216.解:原式=3√5+√2-2√5=√5+√2.17.解:原式=2√2-6√2=-4√2.18.解:原式=2x(x−1)2÷x−1+1x−1=2x(x−1)2·x−1x=2x−1,当x=√2+1时,原式=√2+1−1=√2. 19.解:当x=2+√3时,原式=(2+√3)2-2√3(2+√3)+3=7+4√3-4√3-6+3=4.20.解:由题意得x-3≥0且3-x≥0,解得x≥3且x≤3,∴x=3,∴y=8,∴x+y=3+8=11.21.解:由实数a,b,c在数轴上的位置可得a<-1,-1<c<0,b>1,∴a<0,a-b<0,b+c>0,∴√a2-|a-b|+√(b+c)2=-a-(b-a)+b+c=c.22.解:(1)由题意知h=40 m,t=√2ℎg =√2×4010=√8=2√2(s),故从40 m高空抛物到落地的时间为2√2 s.(2)他的说法不正确,理由如下:当h=80 m时,t=√2ℎg =√2×8010=√16=4(s),∵4≠2×2√2,∴他的说法不正确.(3)当t=6 s时,6=√2ℎ10,解得h=180(m),∴这个鸡蛋产生的动能是10×0.05×180=90(J)>65 J,∴这个鸡蛋会伤害到楼下的行人.23.解:(1)①√5−√3)(√5+√3)(√5−√3)=√5−√3)(√5)2−(√3)2=√5-√3 ②√5+√3=√5)2√3)2√5+√3=√5+√3)(√5−√3)√5+√3=√5-√3 (2)原式=√3-1+√5-√3+√7-√5=√7-1. (3)12(√2n +1-1)。

人教版八年级数学下册-第十六章《二次根式》单元测试(含答案)

人教版八年级数学下册-第十六章《二次根式》单元测试(含答案)

八年级下册第十六章《二次根式》单元测试姓名:班级:座号:一、单选题(共8题;共32分)1.化简二次根式√−x3的结果是()A. x √−xB. ﹣x √xC. x √xD. ﹣x √−x2.若√(2a−12)=1−2a,则( ).A. a<12B. a≤12C. a>12D. a≥123.计算:√ab ÷√ab⋅√1ab等于()A. 1ab2√ab B. 1ab√ab C. 1b√ab D. b√ab4.下列计算正确的是A. B. C. D.5.下列二次根式中属于最简二次根式的是( )A. √12B. √32C. √7D. √816.计算√45+√20的结果是( )A. 65B. √65C. 5 √5D. 5 √107.若x=√m−√n,y=√m+√n,则xy的值是( ).A. 2√mB. m−nC. m+nD. 2√n8.下列计算中,正确的是( ).A. 2√3+3√2=5√5B. (√3+√7)⋅√10=√10⋅√10=10C. (3+2√3)(3−2√3)=−3D. (√2a+√b)(√2a+b)=2a+b二、填空题(共24分)1.用一组a , b 的值说明式√4a4b2=2a2b是错误的,这组值可以是a=________,b=________2.已知实数a、b在数轴上的位置如图所示,则化简√a2+√b2−√(b−a)2的结果为________.3.三角形的三边长分别为√20cm, √40cm, √45cm,则这个三角形的周长为________cm.4.若√2m+n−2和√33m−2n+2都是最简二次根式,则m=________,n=________。

5.若x−y=√2−1,xy=√2,则代数式12(x−1)(y+1)的值等于________.6.对于任意不相等的两个实数a、b,定义运算如下:a⊗b=√ab(a−b),如3⊗2=√3×2×(3−2)=√6,那么812的运算结果为________.三、计算题(共15分)(1)√32−√8(2)√6÷√3√2(3)3√48−9√123+3√12、四、解答题(共15分)1.若最简二次根式√2a+5a+1与√4a+3b是同类二次根式,求a、b的值.2.三角形三边长分别为√12cm、√27cm和√48cm,求这个三角形的周长.3.求值(1)已知a、b满足√2x+8+|b−√3|=0,解关于x的方程(a+2)x+b2=a﹣1.(2)已知x、y都是实数,且y=√x−3+√3−x+4,求y x的平方根.五、阅读下列材料,然后回答问题(共14分)在进行二次根式的化简与运算时,我们有时会碰上如3,√23,√3+1一样的式子,其实我们还可以将其进一步化简:√3=√3√3×√3=5√33(一)√2 3=√2×33×3=√63(二)√3+1=√3−1)(√3+1)(√3−1)=√3−1)(√3)2−12=√3−1(三)以上这种化简的步骤叫做分母有理化. √3+1还可以用以下方法化简:√3+1=√3+1=√3)22√3+1=√3+1)(√3−1)√3+1=√3−1 (四)(1)直接写出化简结果①√2+1=________,②√5=________.(2)请选择适当的方法化简√5+√3.(3)化简:√3+1+√5+√3√7+√5⋯+√2n+1+√2n−1.答案一、1. D 2. B 3. A 4. D 5. C 6. C 7. B 8. C 二、1. 1;-12. 03. 5√5+2√104. 1;25. √2−16. −16√6三、(1)解:原式=4 √2 -2 √2 =2 √2(2)解:原式= √2 × √2 =2(3)解:原式=3×4 √3 -9× √33 +3x2 √3=12 √3 -3 √3 +6 √3=15 √3四、1. 解:∵最简二次根式 √2a +5a+1 与 √4a +3b 是同类二次根式 ∴ {a +1=22a +5=4a +3b解得: {a =1b =1即a=1,b=1.2. 解:这个三角形的周长为 √12+√27+√48 =2 √3 +3 √3 +4 √3 =9 √3 (cm )3. 解:(1)根据题意得:{2x +8=0b −√3=0) ,解得:{a =−4b =√3) ,则(a+2)x+b 2=a ﹣1即﹣2x+3=﹣5,解得:x=4;(2)根据题意得:{x −3≥03−x ≥0) ,解得:x=3.则y=4,故原式=43=64,∴y x的平方根为:±8.五、(1)√2﹣1;√55(2)解:原式= √5−√3)(√5+√3)(√5−√3)=√5−√3;(3)解:原式= √3−12+√5−√32+⋯+√2n+1−√2n−12=√2n+1−12.。

人教版八年级下册数学第十六章《二次根式》单元测试卷(含答案)

人教版八年级下册数学第十六章《二次根式》单元测试卷(含答案)

人教版八年级下册数学第十六章《二次根式》单元测试卷一、选择题(每小题3分,共30分)1.化简后的结果是( ) A . B . C . D .2.下列各式不是最简二次根式的是( ) A. 21a + B. 21x + C. 24b D. 0.1y3.已知x +y =3+2,xy =6,则x 2+y 2的值为( )A .5B .3C .2D .14.下列式子为最简二次根式的是( ) A. 5 B.12 C.a 2 D.1a 5.计算(3+2)2018(3–2)2019的结果是( )A. 2+3B. 3–2C. 2–3D. 3 6.要使二次根式有意义,则下列选择中字母x 可以取的是( )A . 0B . 1C . 2D . 37.按如图1所示的程序计算,若开始输入的n 的值为2,则最后输出的结果是( )图1A .14 B.16 C .8+5 2 D.14+ 28.设a =7-1,则代数式a 2+2a -10的值为( )A .-3B.-4 C .-47 D.-47+19.已知x ,y 是实数,3x -y +y 2-6y +9=0,则y 2x 的值是( )A.13B.9 C .6 D.1610.甲、乙两人对题目“化简并求值:1a+1a 2+a 2-2,其中a =15”有不同的解答.甲的解答是:1a +1a 2+a 2-2=1a +⎝⎛⎭⎫1a -a 2=1a +1a -a =2a -a =495; 乙的解答是:1a +1a 2+a 2-2=1a +⎝⎛⎭⎫1a -a 2=1a +a -1a =a =15. 在两人的解答中( ) A .甲正确 B.乙正确C .都不正确D.无法确定 二、填空题(每小题4分,共24分)11.使得代数式1x -3有意义的x 的取值范围是 . 12.若最简二次根式2x -1能与3合并,则x 的值为 .13.若x -1-231-x 有意义,则23-x = . 14.若x +1+(y -2 019)2=0,则x y = .15.若3-3的整数部分为a ,小数部分为b ,那么b a= . 16.对于任意两个正数m ,n ,定义运算※为:m ※n =⎩⎨⎧m -n (m ≥n ),m +n (m <n ).计算(8※3)×(18※27)的结果为 .三、解答题(共66分)17.(8分)把下列各式化为最简二次根式.(字母均为正数) (1)200;(2)438;(3)24a 3b 2c ;(4)16a 3+32a 2.18.(9分)计算:(1)⎝⎛⎭⎫12-2-|22-3|+38; (2)3(3-π)0-20-155+(-1)2 019;(3)(-3)0-27+|1-2|+13+2.。

八年级数学下册《第十六章 二次根式》单元测试卷含答案(人教版)

八年级数学下册《第十六章 二次根式》单元测试卷含答案(人教版)

八年级数学下册《第十六章 二次根式》单元测试卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.(−√5)2的值为( )A .5B .−5C .√5D .−√52.已知√18n 是整数,正整数n 的最小值为( )A .2B .0C .3D .43.下列式子中,属于最简二次根式的是( )A .√4B .√5C .√12D .√13 4.下列运算正确的是( )A .(13)−2=−19B .2√2×√2=3√2C .(−2x)3=−8x 3D .a 9÷a 3=a 3(a ≠0)5.代数式√x+1有意义时,x 应满足的条件为( )A .x ≠−1B .x >−1C .x <−1D .x ≤−1 6.下列计算正确的是( )A .√6+√2=√8B .√6−√2=2C .√6×√2=3√2D .√6÷√2=√37.已知x +y =√6+√10,xy =√15则x −y 的值为( )A .−4B .4C .±4D .±28.如图,在长方形ABCD 中无重叠放人面积分别为 16cm 2 和 12cm 2 的两张正方形纸片,则图中空白部分的面积为( )A .(−12+8√3)cm 2B .(16−8√3)cm 2C .(8−4√3)cm 2D .(4−2√3)cm 2二、填空题9.式子√x +3有意义,则x 的取值范围是 .10.计算:2√3×(−√6)= .11.把(a −1)√−1a−1中根号外的(a −1)移入根号内得 .12.已知√7.84=2.8,若√m =280,则m = .13.若√x −2023+√y +2023=2,其中x ,y 均为整数,则x +y = .三、解答题14.计算:(1)√−13+√(−2)2−|2−√3|(1)√(−3)33+√3(√3√3)15.已知:a +b =−2,ab =1求:b√b a +a √a b的值. 16.已知:a= √3+√2,b= √3−√2求a 2-ab+b 2的值.17.已知长方形的长是 3√5+2√3 宽是 3√5−2√3 ,求长方形的周长.18.如图,用两个边长为√18cm 的小方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片的长是宽的2倍,且面积为30cm 2?请说明理由.19.在解决数学问题时,我们一般先仔细阅读题干,找出有用信息作为已知条件,然后利用这些信息解决问题,但是有的题目信息比较明显,我们把这样的信息称为显性条件;而有的信息不太明显,需要结合图形、特殊式子成立的条件、实际问题等发现隐含信息作为条件,我们把这样的条件称为隐含条件;所以我们在做题时,要注意发现题目中的隐含条件.阅读下面的解题过程,体会如何发现隐含条件并回答下面的问题.化简:(√1−3x)2−|1−x|.解:隐含条件1−3x ≥0,解得x ≤13∴1−x >0∴原式=1−3x −(1−x)=1−3x −1+x =−2x .(1)试化简:√(x −3)2−(√2−x)2;(2)已知a 、b 满足√(2−a)2=a +3,√a −b +1=a −b +1,求ab 的值.参考答案1.A2.A3.B4.C5.B6.D7.C8.A9.x≥−310.−6√211.−√1−a12.7840013.2或414.(1)解:(1)原式=−1+2−(2−√3)=−1+2−2+√3=√3−1(2)原式=−3+3+1=1 15.解:∵a+b=−2∴a<0,b<0∴b√ba +a√ab=−ba√ab−ab√ab=(−ba−ab)√ab=−(a2+b2ab)√ab=−(a+b)2+2abab⋅√ab当a+b=−2,ab=1时,原式=−(−2)2+2×11×√1=−2.16.解:a2-ab+b2=(a+b)2-3ab∵a+b=2√3,ab=1∴原式=(a+b)2-3ab=(2√3)2-3×1=917.解: 2×[(3√5+2√3)+(3√5−2√3)]=2×(3√5+2√3+3√5−2√3)=2×6√5=12√5 .即长方形的周长是 12√5 .18.解:不能∵大正方形纸片的面积为(√18)2+(√18)2=36(cm 2) ∴大正方形的边长为6cm设截出的长方形的长为2bcm ,宽为bcm∴2b 2=30∴b=√15(取正值)∵2b=2√15=√60>√36=6∴不能截得长宽之比为2:1,且面积为30cm 2的长方形纸片.19.(1)解:∵2−x ≥0,则x ≤2∴x −3<0∴√(x −3)2−(√2−x)2=|x −3|−(2−x)=3−x −2+x=1(2)解:∵√(2−a)2=a +3,√a −b +1=a −b +1 ∴|2−a|=a +3≥0∴a ≥−3,a −b +1≥0∴当−3≤a ≤2时则2−a =a +3,解得:a =−12∵√a −b +1=a −b +1∴a −b +1=0或a −b +1=1解得:b =12或b =−12∴ab =−14或ab =14当a>2时,则a−2=a+3无解,舍去综上:ab=−14或ab=14。

人教版八年级下册《第16章二次根式》单元测试(含答案)

人教版八年级下册《第16章二次根式》单元测试(含答案)

1
D. 5
11. 若 (3 b)2 3 b ,则 b 的取值范围是 ___b≤3____。
12. (2 5)2 = 5 2 。
13. 若 m < 0 ,则 m
m 2 3 m3 = ___﹣ m____。
14.
1 与3
32
2 的关系是 ______ 相等 ______。
15. 若 x 5 3 ,则 x2 6x 5 的值为 _____1_______。 16. 若一个长方体的长为 2 6 cm,宽为 3 cm,高为 2 cm,则它的体积为 ____12_____ cm3。
B. 30 330
C. 330 30
D. 30 11
9. 若最简二次根式 1 a 与 4 2a 的被开方数相同,则 a 的值为( C )
3 A. a
4
4 B. a
3
C. a 1
D. a
10. 若 75n 是整数,则正整数 n 的最小值是( B )
A. 2
B. 3
C. 4
二、 填空题(本大题共 10 小题,每小题 3 分,共 30 分)
第十六章 《二次根式》单元测试题
一、 选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1. 下列式子一定是二次根式的是(

A.
x2
B. x
C.
m 1
2. 二次根式 3 2(m 3) 的值是(
x2 2 3
C. 2 2
D. 0
3. 若 3m 1 有意义,则 m能取的最小整数值是(
A. x 0
B. x 6
7. 小明的作业本上有以下四题:
C. 0 x 6
D. x 为一切实数
① 16a 4 4a 2 ;② 5a

人教版八年级下数学《第16章二次根式》单元测试(含答案)

 人教版八年级下数学《第16章二次根式》单元测试(含答案)

人教版八年级下数学《第16章二次根式》单元测试(含答案)一、选择题1.下列式子中,属于最简二次根式的是()A. B. C. D.2.下列各式中3 ,,,,,二次根式有()个.A. 1B. 2C. 3D. 43.下列计算结果正确的是()A. + =B. 3 ﹣=3C. ×=D. =54.=()A. ﹣1B. 1C. ﹣D. ﹣5.说法错误的个数是()①只有正数才有平方根;②-8是64的一个平方根③;④与数轴上的点一一对应的数是实数。

A. 1个B. 2个C. 3个D. 4个6.若x≤0,则化简|1﹣x|﹣的结果是()A. 1﹣2xB. 2x﹣1C. ﹣1D. 17.若与化成最简二次根式是可以合并的,则m、n的值为()A. m=0,n=2B. m=1,n=1C. m=0,n=2或m=1,n=1D. m=2,n=08.二次根式中x的取值范围是()A. x>2B. x≥2C. x<2D. x≤29.把m根号外的因式适当变形后移到根号内,得()A. B. - C. - D.10.在实数范围内,有意义,则x的取值范围是()A. x≥0B. x≤0C. x>0D. x<011.如果成立,那么实数a的取值范围是()A. B. C. D.12.一个长方形的长和宽分别是、,则它的面积是()A. B. 2(3 +2 ) C. D.二、填空题13.计算:(2 )2=________.14.计算:-=________15.代数式有意义的条件是________.16.化简 ________.17.当x取________时,的值最小,最小值是________;当x取________时,2-的值最大,最大值是________.18.已知x=+,y=-,则x3y+xy3=________ .19.若x、y都是实数,且y= 则x+y=________20.使式子有意义的x的取值范围是________ .21.填空:﹣1的倒数为________.22.比较大小________.(填“>”,“=”,“<”号)三、解答题23.(1)计算:(﹣)2+(2+)(2﹣)(2)因式分解:9a2(x﹣y)+4b2(y﹣x)(3)先化简,再求值:÷(a﹣1﹣),其中a2﹣a﹣6=0.24.若x、y都是实数,且y=++8,求x+y的值.25.已知y= +9,求代数式的值.参考答案一、选择题B BCD B D C D C A B C二、填空题13.2814.215.x≥﹣316.17.-5;0;5;218.1019.1120.x是实数21.22.>三、解答题23.解:(1)原式=()2﹣2××+()2+(2)2﹣()2 =2﹣2+3+12﹣6=11﹣2;(2)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(3)÷(a﹣1﹣)=÷=÷=•==,∵a2﹣a﹣6=0,∴a2﹣a=6,∴原式=.24.解:由题意得,x﹣3≥0且3﹣x≥0,解得x≥3且x≤3,所以,x=3,y=8,x+y=3+8=11.25.解:由题意可得,x﹣4≥0,4﹣x≥0,解得,x=4,则y=9,则==2﹣3=﹣1。

人教版初中八年级数学下册第十六章《二次根式》测试题(含答案解析)

人教版初中八年级数学下册第十六章《二次根式》测试题(含答案解析)

一、选择题1.下列是最简二次根式的是( )A B CD2.a 的值不可以是( ) A .12 B .8 C .18 D .283.的结果估计在( ) A .10到11之间 B .9到10之间C .8到9之间D .7到8之间4.下列计算正确的是( )A .236a a a +=B .22(3)6a a -=C .-=D .()222x y x y -=- 5.下列运算正确的是 ( )A B C .1)2=3-1 D6. ) A .1个 B .2个 C .3个D .4个 7.下列各式中,错误的是( )A .2(3=B .3=-C .23=D 3=- 8.下列四个数中,是负数的是( )A .2-B .2(2)-C . D9x 的取值范围是( )A .1≥xB .1x >C .1x ≤D .1x = 10.下列各式中,正确的是( )A .2(9=B 3=-C 3=-D 3= 11.下列各式正确的是( ).A .2=10BC .D 212.若0<x<1,则 )A .2xB .- 2xC .-2xD .2x13. )A B .C D .14.下列计算正确的是( )A =B .8-=C =D 4=15.下列运算正确的是( )A =B .=C 3=D =二、填空题16.________________.17.在2y x =-中,x 的取值范围是:______________.18.已知实数x ,y 满足30x -=,则以x ,y 的值为两边长的等腰三角形的周长是_____.19.若4y =,则y x 的平方根是__________.20.3-__.21.中,最简二次根式有__个.22.计算2+________.23.已知a 、b 为有理数,m 、n 分别表示521amn bn +=,则3a b +=_________.24.若最简二次根式132-+b a 与a b -4是同类二次根式,则a+b =___.25.2|11|(12)0b c -++=,则a b c ++的平方根是______.26.()992002011(0.25)2232(2)22-⨯--+--÷-⨯+=∣∣_________ 三、解答题27.计算:(1+(2(÷; (3)52311x y x y +=⎧⎨+=⎩;(4)4(2)153123x yy x+=-⎧⎪+⎨=-⎪⎩.28.阅读下列简化过程:1===;====……解答下列问题:(1)请用n(n为正整数)表示化简过程规律________;(2++⋯+;(3)设a=,b=c=,比较a,b,c的大小关系.29.先化简,再求值:(1)221241442a aa a a a a-+⎛⎫⎛⎫-÷-⎪ ⎪-+-⎝⎭⎝⎭,其中2a=-(2)225525x x xx x x⎛⎫-÷⎪---⎝⎭,从不等式组23,212,xx--≤⎧⎨<⎩的解集中选取一个你认为符合题意的x的值代入求值.30.计算:21)-.。

人教版八年级下册《第16章二次根式》单元测试(含答案)

人教版八年级下册《第16章二次根式》单元测试(含答案)

第十六章 《二次根式》单元测试题一、 选择题(本大题共10小题,每小题2分,共20分) 1. 下列式子一定是二次根式的是( ) A.2--xB.xC.22+xD.22-x2. 二次根式13)3(2++m m 的值是( )A. 23B. 32C.22D. 03. 若13-m 有意义,则m 能取的最小整数值是( ) A. m =0B. m =1C. m =2D. m =34. 若x < 0,则xx x 2-的结果是( )A. 0B. -2C. 0或-2D. 2 5. 下列二次根式中属于最简二次根式的是( ) A.14B.48C.ba D.44+a6. 如果)6(6-=-∙x x x x ,那么( )A. 0≥xB. 6≥xC. 60≤≤xD. x 为一切实数7. 小明的作业本上有以下四题:①24416a a =;②a a a 25105=⨯;③a aa a a =∙=112;④a a a =-23。

做错的题是( ) A. ① B. ② C. ③D. ④8. 化简6151+的结果是( ) A.3011B. 33030C.30330D. 11309. 若最简二次根式a +1与a 24-的被开方数相同,则a 的值为( )A. 43-=a B. 34=aC. 1=aD. 1-=a10. 若n 75是整数,则正整数n 的最小值是( ) A. 2B. 3C. 4D. 5二、 填空题(本大题共10小题,每小题3分,共30分)11. 若b b -=-332)(,则b 的取值范围是___________。

12.2)52(-=__________。

13. 若m < 0,则332m m m ++=_______________。

14.231-与23+的关系是____________。

15. 若35-=x ,则562++x x 的值为___________________。

16. 若一个长方体的长为62c m ,宽为3c m ,高为2c m ,则它的体积为_______c m 3。

人教版八年级下册数学第16章 二次根式 章节综合测试卷(含答案)

人教版八年级下册数学第16章 二次根式   章节综合测试卷(含答案)

人教版八年级下册数学第16章 二次根式 章节综合测试卷(含答案)(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.在函数y =x +4x 中,自变量x 的取值范围是( )A .x>0B .x≥-4C .x≥-4且x≠0D .x>0且x≠-42.下列式子中属于代数式的有( )①0;②a ;③x +y =2;④x -5;⑤2a ;⑥a 2+1;⑦a≠1;⑧x≤3.A .7个B .6个C .5个D .4个3.与-5可以合并的二次根式的是( )A.10B.15C.20D.254.二次根式45a ,2a 3,8a ,b ,13(其中a ,b 均大于或等于0)中,是最简二次根式的有()A .4个B .3个C .2个D .1个5.化简24的结果是( )A .4 6B .2 6C .6 2D .836.若xy <0,则x 2y 化简后的结果是( )A .x yB .x -yC .-x -yD .-x y7.下列计算正确的是( )A .-(7)2=-7B .(5)2=25C .(9)2=±9D .-⎝⎛⎭⎫-9162=9168. 下列运算正确的是( )A.2+3= 5B .22×32=6 2 C.8÷2=2D .32-2=3 9.实数a 在数轴上对应点的位置如图所示,则(a -4)2+(a -11)2化简后为( )A .7B .-7C .2a -15D .无法确定10.已知x +1x =7,则x -1x的值为( ) A. 3 B .±2C .± 3 D.7二.填空题(共8小题,3*8=24)11.若xy <0,则x 2y 化简后的结果是_______.12.计算5÷5×15所得的结果是_______. 13. .要使(8-x)2=x -8,则x =________.14. 计算:32-82=_______. 15.在实数范围内分解因式:x 4-9=______________________. 16. 如图,数轴上点A 表示的数为a ,化简:a +a 2-4a +4=__________.17.已知x =5-12,则x 2+x +1=________ 18.能使得(3-a )(a +1)=3-a·a +1成立的所有整数a 的和是________.三.解答题(共6小题, 46分)19.(8分) 计算:(1) 2×(1-2)+8; (2)(43+36)÷23;20.(8分)计算:(1)1232-275+0.5-3127; (2)(32-23)(32+23).21.(8分) 两个圆的圆心相同,它们的面积分别是25.12和50.24.求圆环的宽度d.(π取3.14,结果保留小数点后两位)22.(10分) 计算: (1)(3+1)(3-1)-16+(12)-1; (2)(3+2-6)2-(2-3+6)2.23.(10分) 已知x =3+7,y =3-7,试求代数式3x 2-5xy +3y 2的值.24.(10分)已知x +y =-8,xy =8,求y y x +x x y的值.25.(12分) 已知a,b,c满足|a-8|+b-5+(c-18)2=0.(1)求a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,请求出三角形的周长;若不能,请说明理由.参考答案1-5CCCCB 6-10 DACAC11.-x y12. 113. 814. 215. (x 2+3)(x +3)(x -3)16. 217. 218. 519. 解:(1)原式=2-22+22=2.(2)原式=43÷23+36÷23=2+322. 20. 解:(1)原式=22-103+22-33=(2+12)×2+(-10-13)×3 =522-313 3. (2)原式=(32)2-(23)2=9×2-4×3=6.21. 解:d =50.243.14-25.123.14=16-8=4-22≈1.17.答:圆环的宽度d 约为1.17.22. 解:(1)原式=3-1-4+2=0.(2)原式=(3+2-6+2-3+6)×(3+2-6-2+3-6) =22×(23-26)=46-8 3. 23. 解:当x =3+7,y =3-7时,3x 2-5xy +3y 2=3(x 2-2xy +y 2)+xy=3(x -y)2+xy=3(3+7-3+7)2+(3+7)×(3-7)=3×28-4=80.24. 解:∵x +y =-8,xy =8,∴x<0,y<0. ∴-x>0,-y>0. ∴原式=y xy x 2+x xy y 2=y xy (-x )2+x xy (-y )2 =-y x xy -x y xy =-(x +y )2-2xy xy xy =-(-8)2-2×88×8 =-12 2.25. 解:(1)由题意,得a -8=0,b -5=0,c -18=0, 即a =22,b =5,c =3 2.(2)∵22+32=52>5,∴以a ,b ,c 为边能构成三角形.三角形的周长为22+32+5=52+5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学下册第十六章《二次根式》单元过关测试卷
一.选择题(共8小题,满分24分)
1.要使有意义,则实数x的取值范围是()
A.x≥1B.x≥0C.x≥﹣1D.x≤0
2.化简的结果是()
A.2B.﹣2C.2或﹣2D.4
3.下列根式中,不能与合并的是()
A.B.C.D.
4.下列二次根式中最简二次根式是()
A.B.C.D.
5.下列计算正确的是()
A.=2B.=C.=x D.=x 6.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()
A.﹣2a+b B.2a﹣b C.﹣b D.b
7.下列各数中与2+的积是有理数的是()
A.2+B.2C.D.2﹣
8.已知xy<0,则化简后为()
A.B.C.D.
二.填空题(共8小题,满分24分)
9.计算:﹣=.
10.若=3﹣x,则x的取值范围是.
11.已知y=+8x,则的算术平方根为.
12.与最简二次根式5是同类二次根式,则a=.
13.若是整数,则正整数n的最小值为.
14.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么12※4=.
15.已知x=﹣,y=+,则代数式x2﹣2xy+y2的值是.
16.观察下列等式:
第1个等式:a1==﹣1,
第2个等式:a2==﹣,
第3个等式:a3==2﹣,
第4个等式:a4==﹣2,
按上述规律,回答以下问题:
(1)请写出第n个等式:a n=;
(2)a1+a2+a3+…+a n=.
三.解答题(共8小题,满分52分)
17.计算:
(1)++﹣15
(2)(5﹣2)÷(﹣)×(﹣)
18.已知y=++,求的平方根.
19.长方形的长是3+2,宽是3﹣2,求长方形的周长与面积.
20.先化简下式,再求值:(﹣x2+3﹣7x)+(5x﹣7+2x2),其中x=+1.
21.阅读下面一道题的解答过程,判断是否正确,如若不正确,请写出正确的解答过程.化简:﹣a2•+
解:原式=a﹣a2••+a=a﹣a+a=a.
22.已知a=+1,b=﹣1,求下列各式的值:
(1)a2﹣2ab+b2
(2)a2﹣b2
23.阅读与解答:
古希腊的几何学家海伦,在他的著作《度量》一书中,给出了下面一个公式:
如果一个三角形的三边长分别为a,b,c,设p=,则三角形的面积为S=

请你解答:在△ABC中,BC=4,AC=5,AB=6,求△ABC的面积.
24.先化简,再求值:a+,其中a=1010.
如图是小亮和小芳的解答过程.
(1)的解法是错误的,错误的原因在于未能正确地运用二次根式的性质:=(a<0);
(2)先化简,再求值:x+2,其中x=﹣2019.
参考答案
一.选择题(共8小题)
1.【解答】解:依题意得x﹣1≥0,
∴x≥1.
故选:A.
2.【解答】解:=2.
故选:A.
3.【解答】解:A、,本选项不合题意;
B、,本选项不合题意;
C、,本选项合题意;
D、,本选项不合题意;
故选:C.
4.【解答】解:A、=2,故此选项错误;
B、==,故此选项错误;
C、,是最简二次根式,故此选项正确;
D、=|mn|,故此选项错误;
故选:C.
5.【解答】解:A、=2,正确;
B、=,故此选项错误;
C、=﹣x,故此选项错误;
D、=|x|,故此选项错误;
故选:A.
6.【解答】解:由图可知:a<0,a﹣b<0,则|a|+
=﹣a﹣(a﹣b)
=﹣2a+b.
故选:A.
7.【解答】解:∵(2+)(2﹣)=4﹣3=1;
故选:D.
8.【解答】解:有意义,则y>0,
∵xy<0,
∴x<0,
∴原式=﹣x.
故选:B.
二.填空题(共8小题)
9.【解答】解:=2﹣=.
故答案为:.
10.【解答】解:∵=3﹣x,
∴3﹣x≥0,
解得:x≤3,
故答案为:x≤3.
11.【解答】解:由题意得,2x﹣1≥0且1﹣2x≥0,
解得x≥且x≤,
∴x=,
∴y=+8x=0+0+8×=4,
∴==4,
∴的算术平方根是2.
故答案为:2.
12.【解答】解:∵与最简二次根式是同类二次根式,且,∴a+1=3,解得:a=2.
故答案为2.
13.【解答】解:∵20n=22×5n.
∴整数n的最小值为5.
故答案是:5.
14.【解答】解:12※4===.
故答案为:.
15.【解答】解:∵x=﹣,y=+,
∴x2﹣2xy+y2=(x﹣y)2=(﹣﹣﹣)2=(2)2=20.故答案是:20.
16.【解答】解:(1)∵第1个等式:a1==﹣1,
第2个等式:a2==﹣,
第3个等式:a3==2﹣,
第4个等式:a4==﹣2,
∴第n个等式:a n==﹣;
(2)a1+a2+a3+…+a n
=(﹣1)+(﹣)+(2﹣)+(﹣2)+…+(﹣)=﹣1.
故答案为=﹣;﹣1.
三.解答题(共8小题)
17.【解答】解:(1)原式=2+3+﹣5
=;
(2)原式=(﹣6)××
=﹣5×
=﹣.
18.【解答】解:由题意得,2x﹣1≥0且1﹣2x≥0,
解得x≥且x≤,
所以,x=,
y=4,
所以,===3,
所以,的平方根是±.
19.【解答】解:周长:
2[(3+2)+(3﹣2)],
=2(3+2+3﹣2),
=2×6,
=12;
面积:(3+2)×(3﹣2)=45﹣12=33.
20.【解答】解;原式=x2﹣2x﹣4
=(x﹣1)2﹣5,
把x=+1代入原式,
=(+1﹣1)2﹣5
=﹣3.
21.【解答】解:错误,正确的是:
由二次根式的性质可知,a<0,所以,=,,则原式=﹣a﹣a2•(﹣)﹣a=﹣a.
22.【解答】解:(1)∵a=+1,b=﹣1,
∴a﹣b=2,
∴a2﹣2ab+b2
=(a﹣b)2
=22
=4;
(2)∵a=+1,b=﹣1,
∴a﹣b=2,a+b=2,
∴a2﹣b2
=(a﹣b)(a+b)
=2×
=4.
23.【解答】解:由题意,得:a=4,b=5,c=6;
∴p==;
∴S===.
故△ABC的面积是.
24.【解答】解:(1)小亮的解法是错误的,错误的原因在于未能正确地运用二次根式的性质:=﹣a(a<0),
故答案为:小亮;﹣a;
(2)x+2,
=x+2,
=x+2×|x﹣2|,
∵x=﹣2019,
∴原式=x+2(﹣x+2),
=x﹣2x+4,
=﹣x+4,
=2019+4,
=2023.。

相关文档
最新文档