1-4函数的奇偶性与周期性

合集下载

函数单调性奇偶性周期性

函数单调性奇偶性周期性

函数单调性、奇偶性、周期性◆知识点梳理 一函数的奇偶性:1、定义域关于原点对称 奇函数)(x f 在原点有定义,则0)0(=f ;2、)(x f 是奇函数⇔)()(x f x f -=-⇔)(x f 图像关于原点对称;3、)(x f 是偶函数)()(x f x f =-⇔⇔)(x f 图像关于y 轴对称;4、一些判断奇偶性的规律: ①奇±奇=奇,偶±偶=偶②奇×/÷奇=偶,奇×/÷偶=奇,偶×/÷偶=偶二函数的单调性 方法:①导数法; ②规律判断法;③图像法; 1、单调性的定义:)(x f 在区间M 上是增减函数,,21M x x ∈∀⇔当21x x <时)0(0)()(21><-x f x f2、采用单调性的定义判定法应注意:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断正负; 3、对于已知单调区间求参数范围,一般有以下两种方法: ①转化为恒成立问题,接着用求最值的视角去解决;②先求出该函数的完整单调区间,根据此区间比已知单调区间大去求解; 4、一些判断单调性的规律: ①减 + 减 =减,增 + 增 = 增;②1()()()f x f x f x -与、的单调性相反;三复合函数单调性的判定:定义域优先考虑1、首先将原函数)]([x g f y =分解为基本初等函数: )(x g u =与)(u f y =;2、分别研究两个函数在各自定义域内的单调性;3、根据“同增异减”来判断原函数在其定义域内的单调性; 四函数的周期性1、周期性的定义:若有)()(x f T x f =+,则称函数)(x f 为周期函数,T 为它的一个周期;如没有特别说明,遇到的周期都指最小正周期;2、三角函数的周期①π==T x y :tan ,||:tan ωπω==T x y ②||2:)cos(),sin(ωπϕωϕω=+=+=T x A y x A y 3、与周期有关的结论:①)()(a x f a x f -=+或(2)()f x a f x += ⇒)(x f 的周期为a 2; ②)()(x f a x f -=+⇒)(x f 的周期为a 2;③1()()f x a f x +=⇒)(x f 的周期为a 2;◆考点剖析一考查一般函数的奇偶性例1、 设函数fx 是定义在R 上的奇函数,若当x ∈0,+∞时,fx =lg x ,则满足fx >0的x 的取值范围是 .变式1、 若函数(1)()y x x a =+-为偶函数,则a = A .2- B .1- C .1 D .2变式2、 函数1()f x x x=-的图像关于A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称二考查函数奇偶性的判别例2、判断下下列函数的奇偶性122(1),0()(1),0x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩ 224()|3|3x f x x -=--变式3、已知函数0()(2≠+=x xax x f ,常数)a ∈R . 1讨论函数)(x f 的奇偶性,并说明理由; 变式4、判断下下列函数的奇偶性121()log 1x f x x -=+ 21,0()1,0x x f x x x ->⎧=⎨--≤⎩三考查抽象函数的奇偶性例3、已知函数fx,当x,y ∈R 时,恒有fx+y=fx+fy.求证:fx 是奇函数;变式5A 、若定义在R 上的函数fx 满足:对任意12,x x ∈R 有1212()()()1f x x f x f x +=++,则下列说法一定正确的是Afx 为奇函数 Bfx 为偶函数 C fx+1为奇函数 Dfx+1为偶函数变式5B 、已知函数()f x ,当,x y R ∈时,恒有()()()f x y xf y yf x +=+,求证()f x 是偶函数;三考查一般函数的单调区间暂不讲例4、 设函数1()(01)ln f x x x x x =>≠且,求函数()f x 的单调区间;变式6、函数x e x x f )3()(-=的单调递增区间是 A. )2,(-∞ B.0,3 C.1,4 D. ),2(+∞四考查复合函数的单调区间 例5、判断函数fx=12-x 在定义域上的单调性.变式7、求函数y=21log 4x-x 2的单调区间.五考查函数单调性的运用例6A 、定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x -<-.则A (3)(2)(1)f f f <-<B (1)(2)(3)f f f <-<C (2)(1)(3)f f f -<<D (3)(1)(2)f f f <<-变式8、2008全国设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,例6B 、已知函数32()f x x ax ax =+-在区间(1,)+∞上递增,求a 的取值范围;变式9、已知函数0()(2≠+=x xa x x f ,常数)a ∈R . 1略 2若函数)(x f 在[2)x ∈+∞,上为增函数,求a 的取值范围.六考查函数周期性的应用例7、函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________;变式10、已知函数()f x 满足:()114f =,()()()()()4,f x f y f x y f x y x y R =++-∈,则()2010f =_____________.变式11、已知定义在R 上的奇函数fx 满足fx+2=-fx ,则,f 6的值为A -1B 0C 1 D2◆方法小结1、注意:单调区间一定要在定义域内,且不可以有“”,只能用“和”,“,”.2、含有参量的函数的单调性问题,可分为两类:一类是由参数的范围判定其单调性;一类是给定单调性求参数范围,其解法是由定义或导数法得到恒成立的不等式,结合定义域求出参数的取值范围.3、判断函数的奇偶性应首先检验函数的定义域是否关于原点对称,然后根据奇偶性的定义判断或证明函数是否具有奇偶性. 如果要证明一个函数不具有奇偶性,可以在定义域内找到一对非零实数a 与-a ,验证fa ±f -a ≠0.4、函数的周期性:第一应从定义入手,第二应结合图象理解.◆课后强化1.若函数2()()af x x a x=+∈R ,则下列结论正确的是A .a ∀∈R ,()f x 在(0,)+∞上是增函数B .a ∀∈R ,()f x 在(0,)+∞上是减函数C .a ∃∈R ,()f x 是偶函数D .a ∃∈R ,()f x 是奇函数2. 下列函数()f x 中,满足“对任意1x ,2x ∈0,+∞,当1x <2x 时,都有1()f x >2()f x 的是A .()f x =1xB. ()f x =2(1)x - C .()f x =x e D ()ln(1)f x x =+ 3.已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是A 13,23B 13,23C 12,23D 12,234.已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+,则)25(f 的值是A. 0B. 21C. 1D. 255.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间0,2上是增函数,则 .A.(25)(11)(80)f f f -<<B. (80)(11)(25)f f f <<-C. (11)(80)(25)f f f <<-D. (25)(80)(11)f f f -<<6、已知()f x 在R 上是奇函数,且(4)(),f x f x +=2(0,2)()2,(7)x f x x f ∈==当时,则 A.—2 C.—987、设fx 为定义在R 上的奇函数,当x ≥0时,fx=2x +2x+bb 为常数,则f-1= A 3 B 1 C-1 D-38、给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,其中在区间0,1上单调递减的函数序号是A ①②B ②③C ③④D ①④9、若函数fx =3x +3-x 与gx =3x -3-x 的定义域均为R,则A .fx 与gx 均为偶函数 B. fx 为偶函数,gx 为奇函数 C .fx 与gx 均为奇函数 D. fx 为奇函数,gx 为偶函数 10、11、设函数fx=xe x +ae -x x ∈R 是偶函数,则实数a =________________12、以下4个函数: ①12+=x )x (f ; ②11+-=x x )x (f ; ③2211x x )x (f -+=; ④xxlg )x (f +-=11. 其中既不是奇函数, 又不是偶函数的是 A.①② B. ②③ C. ③④ D. ①②③13、已知函数), x x ( lg x )x (f 122+++=若f a =M, 则f -a 等于A. M a -22B. 22a M -C. 22a M -D. M a 22-14、设y =f x 是定义在R 上的奇函数, 当x ≥0时, f x =x 2-2 x, 则在R 上f x 的表达式为A. )x (x 2--B. ) |x | (x 2-C. ) x (|x |2-D. ) |x | (|x |2- 15.函数1)(+-=x a x f )1,0≠>a a 是减函数,则a 的取值范围是 A .()1,0∈a B .(]+∞∈,1a C .R a ∈ D .+∈R a 16.函数)(x f 112+-=x x 的单调增区间是 A .(][)∞+--∞-11, B .(][)∞+--∞-1,1, C .(]1,-∞- D .()()+∞--∞-,11,17.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是A (0,1)B 1(0,)3C 11[,)73D 1[,1)718.若fx=-x 2+2ax 与1)(+=x ax g 在区间1,2上都是减函数,则a 的值范围是A .)1,0()0,1(⋃-B .]1,0()0,1(⋃-C .0,1D .]1,0(19.若函数)1,0( )(log )(3≠>-=a a ax x x f a 在区间)0,21(-内单调递增,则a 的取值范围是A .)1,41[B . )1,43[C .),49(+∞D .)49,1(20.函数)1lg()(2x x x f ++=是A .奇函数B .偶函数C .是奇函数也是偶函数D .非奇非偶函数 21.函数2222)(x x x f -+-=是A .奇函数B .偶函数C .是奇函数也是偶函数D .非奇非偶函数22.函数⎪⎩⎪⎨⎧>+<-=)0(,)0(,)(22x x x x x x x f 是A .奇函数B .偶函数C .是奇函数也是偶函数D .非奇非偶函数23.定义在R 上的偶函数fx 满足fx =fx +2,当x ∈3,5时,fx =2-|x -4|,则A .f sin 6π<f cos 6πB .f sin1>f cos1C .f cos 32π<f sin 32πD .f cos2>f sin224.定义在R 上的函数)(x f 既是偶函数又是周期函数.若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值为A .21-B .21C .23-D .23 25.已知定义在R 上的奇函数fx 满足fx+3=-fx ,则,f 6的值为A -1B 0C 1 D226.)(x f 是定义在R 上的以3为周期的偶函数,且0)2(=f ,则方程)(x f =0在区间0,6内解的个数的最小值是A .5B .4C .3D .227.下列函数既是奇函数,又在区间[]1,1-上单调递减的是 A ()sin f x x =B ()1f x x =-+C ()1()2x x f x a a -=+D 2()ln 2xf x x-=+ 28.若函数fx=121+X , 则该函数在-∞,+∞上是A 单调递减无最小值B 单调递减有最小值C 单调递增无最大值D 单调递增有最大值 29.下列函数中,在其定义域内既是奇函数又是减函数的是A. R x x y ∈-=,3B. R x x y ∈=,sinC. R x x y ∈=,D. R x x y ∈=,)21(30.已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =A0 B1 C -1 D ±131.若函数fx 是定义在R 上的偶函数,在]0,(-∞上是减函数,且f 2=0,则使得fx <0的x 的取值范围是A -∞,2B 2,+∞C -∞,-2⋃2,+∞D -2,232.设()f x 是R 上的任意函数,则下列叙述正确的是 A ()()f x f x -是奇函数 B ()()f x f x -是奇函数 C ()()f x f x --是偶函数 D ()()f x f x +-是偶函数33.函数)2(log )(22--=x x x f 的单调增区间是___________,减区间是______________.34. 函数1231)(+--⎪⎭⎫⎝⎛=x x x f 的单调增区间是___________,减区间是______________.35.设fx 是定义在R 上的奇函数,且y=f x 的图象关于直线21=x 对称,则f 1+ f 2+ f 3+ f 4+ f 5=______________.36.若函数)2(log )(22a x x x f a ++=是奇函数,则a = . 37、函数fx =111122+++-++x x x x 的图象 A.关于x 轴对称 B.关于y 轴对称 C.关于原点对称D.关于直线x =1对称38、函数fx 在R 上为增函数,则y =f |x +1|的一个单调递减区间是_________. 39、若fx 为奇函数,且在0,+∞内是增函数,又f -3=0,则xfx <0的解集为_________.40、如果函数fx 在R 上为奇函数,在-1,0上是增函数,且fx +2=-fx ,试比较f 31,f 32,f 1的大小关系______41、已知函数y =fx =cbx ax ++12 a ,b ,c ∈R ,a >0,b >0是奇函数,当x >0时,fx 有最小值2,其中b ∈N 且f 1<25.1试求函数fx 的解析式;2问函数fx 图象上是否存在关于点1,0对称的两点,若存在,求出点的坐标;若不存在,说明理由.42、已知函数()()1011且x x a f x a a a -=>≠+.1判断()f x 的奇偶性;2当1a >时,判断()f x 的单调性,并证明.43、已知函数()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增,()30f =,则不等式()0f x ≥的解集是 .44、函数()()212log 23f x x x =-++的单调递减区间是 .45、若函数()11a f x x x a=+-+是奇函数,则实数a 的值为 . 46、若函数()2f x a x b =-+在[)0,+∞上为增函数,则实数a 、b 的取值范围分别是 . 47、已知对于任意实数x ,函数()f x 满足()()f x f x -=,若方程()0f x =有2009个实数解,则这2009个实数解之和为 .◆详细解析 例1、(1,0)(1,)-+∞ 变式1、C 变式2、C例2、解:12222(1),0(1),0()()(1),0(1),0x x x x x x f x f x x x x x x x ⎧⎧---≥-+≤⎪⎪-===⎨⎨--+-<->⎪⎪⎩⎩ 故()f x 为偶函数;2()f x 的定义域由240|3|30x x ⎧-≥⎨--≠⎩确定,解得2206x x x -≤≤⎧⎨≠≠⎩且∴定义域为[2,0)(0,2]-关于原点对称∴()f x x =-∵()()f x f x x-==- 故()f x 为奇函数 变式3、解:1当0=a 时,2)(x x f =,对任意(0)(0)x ∈-∞+∞,,,)()()(22x f x x x f ==-=-, )(x f ∴为偶函数.当0≠a 时,2()(00)af x x a x x=+≠≠,,取1±=x ,得 (1)(1)20(1)(1)20f f f f a -+=≠--=-≠,,(1)(1)(1)(1)f f f f ∴-≠--≠,,∴ 函数)(x f 既不是奇函数,也不是偶函数.变式4、解:1由101x x ->+解得1,1x x <->或,则定义域关于原点对称; ∵222111()log log log ()111x x x f x f x x x x --+--===-=--+-+ ∴()f x 为奇函数 21,01,0()()1,01,0x x x x f x f x x x x x --->--<⎧⎧-===⎨⎨--≤-≥⎩⎩,故()f x 为偶函数;例3、证明: ∵函数定义域为R,其定义域关于原点对称.∵fx+y=fx+fy,令y=-x,∴f0=fx+f-x.令x=y=0, ∴f0=f0+f0,得f0=0.∴fx+f-x=0,得f-x=-fx, ∴fx 为奇函数. 变式5A 、C变式5B 、证明:令0x y ==,可得(0)0f =;令y x =-,可得()()()f x x xf x xf x -=--即(0)[()()]0f x f x f x =--= 又x R ∈ ∴()()f x f x -- ∴()f x 是偶函数例4、解:'22ln 1(),ln x f x x x +=-其中01x x >≠且若 '()0,f x < 则 1x e >,此时()f x 单调递减,故减区间为1(,1),(1,)e +∞;若 '()0,f x > 则 1x e <,此时()f x 单调递增,故增区间为1(0,)e;变式6、解析()()(3)(3)(2)x x x f x x e x e x e '''=-+-=-,令()0f x '>,解得2x >,故选D 例5、解: 函数的定义域为{x|x ≤-1或x ≥1},则fx=12-x ,可分解成两个简单函数.fx=)(,)(x u x u =x2-1的形式.当x ≥1时,ux 为增函数,)(x u 为增函数.∴fx=12-x 在1,+∞上为增函数.当x ≤-1时,ux 为减函数,)(x u 为减函数,∴fx=12-x 在-∞,-1上为减函数.变式7、解: 由4x-x 2>0,得函数的定义域是0,4.令t=4x-x 2,则y=21log t.∵t=4x-x 2=-x-22+4,∴t=4x-x 2的单调减区间是2,4,增区间是0,2.又y=21log t 在0,+∞上是减函数,∴函数y=21log 4x-x 2的单调减区间是0,2,单调增区间是2,4.例6、答案:A. 解析:由2121()(()())0x x f x f x -->等价,于2121()()0f x f x x x ->-则()f x 在1212,(,0]()x x x x ∈-∞≠上单调递增, 又()f x 是偶函数,故()f x 在1212,(0,]()x x x x ∈+∞≠单调递减.且满足*n N ∈时, (2)(2)f f -=, 03>21>>,得(3)(2)(1)f f f <-<,故选A. 变式8、D例6B 、解:∵32()f x x ax ax =+-在区间(1,)+∞上递增 ∴2()320f x x ax a '=+-≥在区间(1,)+∞上恒成立 即2(21)3x a x -≥-在区间(1,)+∞上恒成立 ∵210x ->∴2321x a x ≥--在区间(1,)+∞上恒成立 只要满足2max 3()21x a x ≥-- ∵23333334[(21)](2)321422142x x x x -=--++≤-⨯+=--- ∴3a ≥-变式9、2解:∵)(x f 在[2)x ∈+∞,上为增函数 ∴ ()0f x '≥在[2)x ∈+∞,上恒成立即32202a x a x x-≥≤即在[2)x ∈+∞,上恒成立,故只要满足3min (2)a x ≤显然33min (2)2216x =⋅= a ∴的取值范围是(16]-∞,. 例7、解析:由()()12f x f x +=得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5f f f f f =-=-==--+;变式10、解析:取x=1 y=0得21)0(=f 法一:通过计算)........4(),3(),2(f f f ,寻得周期为6 法二:取x=n y=1,有fn=fn+1+fn-1,同理fn+1=fn+2+fn 联立得fn+2= —fn-1 所以T=6 故()2010f =f0=21变式11、解析:由()()()()()x f x f x f x f x f =+-=+⇒-=+242由()x f 是定义在R 上的奇函数得()00=f ,∴()()()()002246=-==+=f f f f ,故选择B; 1、答案:C 解析对于0a =时有()2f x x =是一个偶函数2、解析依题意可得函数应在(0,)x ∈+∞上单调递减,故由选项可得A 正确;3、答案A 解析由于fx 是偶函数,故fx =f|x|∴得f|2x -1|<f 13,再根据fx 的单调性 得|2x -1|<13 解得13<x <234、答案A 解析若x ≠0,则有)(1)1(x f xx x f +=+,取21-=x ,则有: )21()21()21(21211)121()21(f f f f f -=--=---=+-= ∵)(x f 是偶函数,则)21()21(f f =- 由此得0)21(=f 于是, 0)21(5)21(]21211[35)121(35)23(35)23(23231)123()25(==+=+==+=+=f f f f f f f 5、解析:因为)(x f 满足(4)()f x f x -=-,所以(8)()f x f x -=,所以函数是以8为周期的周期函数, 则)1()25(-=-f f ,)0()80(f f =,)3()11(f f =,又因为)(x f 在R 上是奇函数, (0)0f =,得0)0()80(==f f ,)1()1()25(f f f -=-=-,而由(4)()f x f x -=-得)1()41()3()3()11(f f f f f =--=--==,又因为)(x f 在区间0,2上是增函数,所以0)0()1(=>f f ,所以0)1(<-f ,即(25)(80)(11)f f f -<<,故选D.6、选A7、答案D8、答案:B9、D .()33(),()33()x x x x f x f x g x g x ---=+=-=-=-.10、11、解析 gx=e x +ae -x 为奇函数,由g0=0,得a =-1;12、A 13、A 14、B15、B 16、D 17、C 18、D30、A 33.()+∞,2;()1,-∞- 34.⎪⎭⎫ ⎝⎛+∞-,21;⎪⎭⎫ ⎝⎛-∞-21, 36.22 37、答案:C 解析:f -x =-fx ,fx 是奇函数,图象关于原点对称.38、解析:令t =|x +1|,则t 在-∞,-1]上递减,又y =fx 在R 上单调递增,∴y =f |x +1|在-∞,-1]上递减.答案:-∞,-1]39、答案:-3,0∪0,3 解析:由题意可知:xfx <0⎩⎨⎧<>⎩⎨⎧><⇔0)(00)(0x f x x f x 或 ⎩⎨⎧<>⎩⎨⎧-><⇔⎩⎨⎧<>⎩⎨⎧-><⇔3030 )3()(0 )3()(0x x x x f x f x f x f x 或或∴x ∈-3,0∪0,3 40、答案:f 31<f 32<f 1 解析:∵fx 为R 上的奇函数∴f 31=-f -31,f 32=-f -32,f 1=-f -1,又fx 在-1,0上是增函数且-31> -32>-1. ∴f -31>f -32>f -1,∴f 31<f 32<f 1.41、解:1∵fx 是奇函数,∴f -x =-fx ,即c bx c bx cbx ax c bx ax -=+⇒+-+-=++1122 ∴c =0,∵a >0,b >0,x >0,∴fx =bx x b a bx ax 112+=+≥22b a ,当且仅当x =a1时等号成立,于是22ba =2,∴a =b 2,由f 1<25得b a 1+<25即b b 12+<25,∴2b 2-5b +2<0,解得21<b <2,又b ∈N ,∴b =1,∴a =1,∴fx =x +x1.2设存在一点x 0,y 0在y =fx 的图象上,并且关于1,0的对称点2-x 0,-y 0也在y =fx 图象上,则⎪⎪⎩⎪⎪⎨⎧-=-+-=+0020002021)2(1y x x y x x 消去y 0得x 02-2x 0-1=0,x 0=1±2.∴y =fx 图象上存在两点1+2,22,1-2,-22关于1,0对称.42、解:1由()f x 的定义域为R ,关于原点对称()()1111x xx xa a f x f x a a -----===-++得()f x 为R 上的奇函数 2证明:12x x ∀<∈R ,则由1a >得12x x a a <()()()()()()()12121212122121101111x x x x x x x x a a a a f x f x f x f x a a a a ----=-=<⇒>++++ ∴当1a >时,()f x 在R 上单调递增 43、(][),33,-∞-+∞ 44、[)1,3 45、1 46、00且a b >≤ 47、0。

数学分析1-4具有某些特性的函数

数学分析1-4具有某些特性的函数

数 zn x1/ n 在 R+ 上严格增,故对任意有理数
r
n m
,
y
xr

R+
上亦为严格增.
易证:ax (a 1, x Q)严格增;
ax (0 a 1, x Q)严格减.前页 后页 返回
定义3 a 0, a 1, 定义
ax
sup
ar
r Q,r x ,
a 1,
inf ar r Q, r x , 0 a 1.
2
2
提示:如果 f(x)g(x)h(x), 则 f(x)g(x)h(x), 于是
g(x) 1[ f (x) f (x)] , h(x) 1[ f (x) f (x)].
2
2
前页 后页 返回
四、周期函数
定义5 设 f 为 D上定义的函数. 若 0, 使 x D 必有x D,且 f ( x ) f ( x), 则称 f 为周期函数, 为 f 的一个周期.
前页 后页 返回
y1, y2 f (D), y1 y2 , x1 f 1( y1 ), x2 f 1( y2 ),
由于 y1 y2 及 f 的严格增性,必有 x1 x2 , 即
f 1( y1 ) f 1( y2 ), 因此 f 1也是严格增函数.
例6 由于 yn xn 在 R+ 上严格增,因此 yn 的反函
若周期函数 f 的所有正周期中有一个最小的周期 , 则称此最小正周期为 f 的基本周期,简称周期. 例如函数 f ( x) x [ x]的周期为 1. 见后图.
前页 后页 返回
y
1
-3 -2 -1 O
1 2 3x
例9 sin x 的周期为 2π, tan x 的周期为 π, 注1 周期函数的定义域不一定是R. 例如:

函数的奇偶性、单调性、周期性

函数的奇偶性、单调性、周期性

一. 函数的奇偶性
2.对函数奇偶性的理解 . (1)函数的奇偶性是函数在整个定义域上的性质,是函 )函数的奇偶性是函数在整个定义域上的性质, 数的整体性质. 数的整体性质 (2)函数奇偶性中对定义域内任意一个 ,都有 (-x) = )函数奇偶性中对定义域内任意一个x,都有f - f (x),f (-x) = -f (x)的实质是:函数的定义域关于原点 的实质是: , - 的实质是 对称,这是函数具备奇偶性的必要条件. 对称,这是函数具备奇偶性的必要条件 函数的奇偶性是 其相应图象特殊的对称性的反映. 其相应图象特殊的对称性的反映
A.关于原点对称 A.关于原点对称 C.关于y C.关于y轴对称 关于
B.关于直线y B.关于直线y=-x对称 关于直线 D.关于直线y D.关于直线y=x对称 关于直线
解析: 解析:
由于定义域为( 由于定义域为(-2,2)关于原点对称,又 关于原点对称,
f(x)=-f(-x),故函数为奇函数,图象关于原点对称. )=),故函数为奇函数,图象关于原点对称. 故函数为奇函数
例3:(2008·山东)函数y=ln cos x (2008·山东)函数y 山东
(−
π
2
<x<
π
2
)
的图象是 (A )
解析: 解析:
为偶函数, y=ln cos x为偶函数,且函数图象在 [ 0 , π )上单
2
调递减. 调递减.
若函数f 的导函数 若函数 (x)的导函数 f ′(x) 在D上的函数 上的函数
值为正,则称 上为增函数; 值为正 则称y = f (x)在D上为增函数; 则称 在 上为增函数
四.函数的单调性
2. 函数单调性的等价定义

高考数学(文通用)一轮复习课件:第二章第4讲函数的奇偶性及周期性

高考数学(文通用)一轮复习课件:第二章第4讲函数的奇偶性及周期性

第二章基本初等函数、导数及其应用函数的奇偶性及周期性教材回顾▼夯实基础课本温故追根求源和课梳理1.函数的奇偶性2. 周期性(1)周期函数:对于函数j=/(x),如果存在一个非零常数T,那么就称函数y=/a )为周期函数,称F 为这个函数的周期.(2)最小正周期:如果在周期函数/(兀)的所有周期中存在一个正周期.要点整會尸1. 辨明三个易误点 (1)应用函数的周期性时,应保证自变量在给定的区间内.使得当兀取定义域内的任何值时,都有 f(x+T)=f(x)的正数,那么这个最小 正数就叫做沧)的最小(2)判断函数的奇偶性,易忽视函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. (3)判断函数/(兀)是奇函数,必须对定义域内的每一个x,均有/(一兀)=一/(兀),而不能说存在丸使/(一兀0)=—/(兀0),对于偶函数的判断以此类推.2.活用周期性三个常用结论对/(*)定义域内任一自变量的值(1)®f(x+a)= —f(x)9则T=2a;i⑵若Z(x+a)=y (乂),则T=2a; (1)(3)若f(x-\-a)=—屮(比)“,则T= 2a.3.奇、偶函数的三个性质(1)在奇、偶函数的定义中,f(-x)=-f(x)^ 定义域上的恒等式.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也成立.利用这一性质可简化一些函数图象的画法.(3)设心),g(x)的定义域分别是Di,6,那么在它们的公共定义域上:奇+奇=奇,奇><奇=偶,偶+偶=偶,偶X偶 =偶,奇乂偶=奇.(2015•高考福建卷)下列函数为奇函数的是(D B. y=e D. j=e x -e"x 双基自测 C ・ j=cosx1.2.已知/(x)=«x 2+Z»x 是定义在[«-1,加]上的偶函数,那 么"+方的值是(B )解析:因为f(x)=ax 2-\-bx 是定义在[«-1,加]上的偶函数, 所以a~l+2a=0,所以 a =-. 3X/(—x)=/(x),所以方=0,所以a+b=£ 3 A.D. 3 23.(2016•河北省五校联盟质量监测)设/(兀)是定义在R上的周期为3的函数,当xe[ - 2, 1)时,f(x)=4x2— 2, — 2WxW 0,X, 0<x<l,B. 1A. 0D. -1解析:因为心)是周期为3的周期函数,所以龙)=/(一扌+3)4.(必修1 P39习题1.3B组T3改编)若/(x)是偶函数且在(0,+ 8)上为增函数,则函数心)在(一8, °)上捋函数5.(必修1 P39习题X3A组T6改编)已知函数/(x)是定义在R 上的奇函数,当xMO时,gx) = x(1+x),则xVO时,/(x) = x(l—x)解析:当xVO时,则一x>0,所以/(—x) = (—x)(1—x)・又/(X)为奇函数,所以/(-x) = -/(x) = (-x)(1-x),所以/(X)=x(1—X)・國例1 (2014-高考安徽卷)若函ft/(x)(xe R)是周期为4的典例剖析护考点突破」 考点一函数的周期性名师导悟以例说法奇函数,且在[0 , 2]上的解析式为/(x)=\x (1—x) , OWxWl, 、sin Ji x, 1<X W2, 5/?)+眉)=—^因为当 1 <xW2 时,/(x)=sin Tix,所以 XS =sinZ r =_2-所以 3因为当 OWxWl 时,/(x)=x(l-x), 所以简兮X 。

函数的奇偶性及周期性

函数的奇偶性及周期性

函数的奇偶性及周期性1.函数的奇偶性(1)周期函数对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x +T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.[小题体验]1.下列函数中为偶函数的是()A.y=x2sin x B.y=x2cos xC.y=|ln x|D.y=2-x答案:B2.若函数f(x)是周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(8)-f(14)=________.答案:-13.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(1+x),则x<0时,f(x)=________.答案:x(1-x)1.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)=-f(x)或f(-x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0).3.分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性.[小题纠偏]1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13B.13C.12D .-12解析:选B ∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数, ∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.2.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时, f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 解析:由题意得,f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. 答案:1考点一 函数奇偶性的判断(基础送分型考点——自主练透)[题组练透]判断下列函数的奇偶性: (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3; (3)f (x )=3x -3-x ;(4)(易错题)f (x )=4-x 2|x +3|-3;(5)(易错题)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解:(1)∵由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1,∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0,即f (x )=±f (-x ).∴f (x )既是奇函数又是偶函数.(2)∵函数f (x )=3-2x +2x -3的定义域为⎩⎨⎧⎭⎬⎫32,不关于坐标原点对称,∴函数f (x )既不是奇函数,也不是偶函数. (3)∵f (x )的定义域为R ,∴f (-x )=3-x -3x =-(3x -3-x )=-f (x ), 所以f (x )为奇函数.(4)∵由⎩⎪⎨⎪⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为[-2,0)∪(0,2], ∴f (x )=4-x 2|x +3|-3=4-x 2(x +3)-3=4-x 2x ,∴f (-x )=-f (x ),∴f (x )是奇函数.(5)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x >0时,f (x ) =x 2+x ,则当x <0时,-x >0, 故f (-x )=x 2-x =f (x );当x <0时,f (x )=x 2-x ,则当x >0时,-x <0, 故f (-x )=x 2+x =f (x ),故原函数是偶函数.[谨记通法]判定函数奇偶性的3种常用方法(1)定义法:(2)图象法:(3)性质法:①设f (x ),g (x )的定义域分别是 D 1,D 2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.②复合函数的奇偶性可概括为“同奇则奇,一偶则偶”.[提醒](1)“性质法”中的结论是在两个函数的公共定义域内才成立的.(2)判断分段函数的奇偶性应分段分别证明f(-x)与f(x)的关系,只有对各段上的x都满足相同的关系时,才能判断其奇偶性.如“题组练透”第(5)题.考点二函数的周期性(题点多变型考点——纵引横联)[典型母题]设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求函数的最小正周期;(2)计算f(0)+f(1)+f(2)+…+f(2 015).[解](1)∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)的最小正周期为4.(2)f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1.又∵f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 012)+f(2 013)+f(2 014)+f(2 015)=0,∴f(0)+f(1)+f(2)+…+f(2 015)=0.[类题通法]1.判断函数周期性的2个方法(1)定义法.(2)图象法.2.周期性3个常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a;(2)若f(x+a)=1f(x),则T=2a;(3)若f(x+a)=-1f(x),则T=2a.(a>0)[越变越明][变式1] 若母题中条件变为“f (x +2)=-1f (x )”,求函数f (x )的最小正周期. 解:∵对任意x ∈R ,都有f (x +2)=-1f (x ), ∴f (x +4)=f (x +2+2)=-1f (x +2)=-1-1f (x )=f (x ),∴f (x )的最小正周期为4.[变式2] 若母题条件改为:定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .求f (1)+f (2)+f (3)+…+f (2 015)的值.解:∵f (x +6)=f (x ),∴T =6. ∵当-3≤x <-1时,f (x )=-(x +2)2; 当-1≤x <3时,f (x )=x ,∴f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0,∴f (1)+f (2)+…+f (6)=1,∴f (1)+f (2)+…+f (6)=f (7)+f (8)+…+f (12) =…=f (2 005)+f (2 006)+…+f (2 010)=1, ∴f (1)+f (2)+…+f (2 010)=1×2 0106=335.而f (2 011)+f (2 012)+f (2 013)+f (2 014)+f (2 015) =f (1)+f (2)+f (3)+f (4)+f (5)=1+2-1+0-1=1. ∴f (1)+f (2)+…+f (2 015)=335+1=336.[变式3] 在母题条件下,求f (x )(x ∈[2,4])的解析式. 解:当x ∈[-2,0]时,-x ∈[0,2],由已知得f (-x )=2(-x )-(-x )2=-2x -x 2, 又f (x )是奇函数,∴f (-x )=-f (x )=-2x -x 2.∴f(x)=x2+2x.又当x∈[2,4]时,x-4∈[-2,0],∴f(x-4)=(x-4)2+2(x-4).又f(x)是周期为4的周期函数,∴f(x)=f(x-4)=(x-4)2+2(x-4)=x2-6x+8.故x∈[2,4]时,f(x)=x2-6x+8.考点三函数性质的综合应用(常考常新型考点——多角探明)[命题分析]函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.多以选择题、填空题形式出现.常见的命题角度有:(1)奇偶性的应用;(2)单调性与奇偶性结合;(3)周期性与奇偶性结合;(4)单调性、奇偶性与周期性结合.[题点全练]角度一:奇偶性的应用1.已知f(x)是R上的偶函数,且当x>0时,f(x)=x2-x-1,则当x<0时,f(x)=________.解析:∵f(x)是定义在R上的偶函数,∴当x<0时,-x>0.由已知f(-x)=(-x)2-(-x)-1=x2+x-1=f(x),∴f(x)=x2+x-1.答案:x2+x-12.设函数f(x)=(x+1)(x+a)x为奇函数,则a=________.解析:∵f(x)=(x+1)(x+a)x为奇函数,∴f(1)+f(-1)=0,即(1+1)(1+a)1+(-1+1)(-1+a)-1=0,∴a=-1.答案:-1角度二:单调性与奇偶性结合3.下列函数中,在其定义域内既是偶函数又在(-∞,0)上单调递增的函数是() A.f(x)=x2B.f(x)=2|x|C.f(x)=log21|x|D.f(x)=sin x解析:选C函数f(x)=x2是偶函数,但在区间(-∞,0)上单调递减,不合题意;函数f(x)=2|x|是偶函数,但在区间(-∞,0)上单调递减,不合题意;函数f(x)=log21|x|是偶函数,且在区间(-∞,0)上单调递增,符合题意;函数f(x)=sin x是奇函数,不合题意.4.已知定义在(-1,1)上的奇函数f(x),其导函数为f′(x)=1+cos x,如果f(1-a)+f(1-a2)<0,则实数a的取值范围为()A.(0,1)B.(1,2)C.(-2,-2)D.(1,2)∪(-2,-1)解析:选B依题意得,f′(x)>0,则f(x)是定义在(-1,1)上的奇函数、增函数.不等式f(1-a)+f(1-a2)<0等价于f(1-a2)<-f(1-a)=f(a-1),则-1<1-a2<a-1<1,由此解得1<a< 2.角度三:周期性与奇偶性结合5.已知f(x)是定义在R上的以3为周期的偶函数,若f(1)<1,f(5)=2a-3a+1,则实数a的取值范围为()A.(-1,4)B.(-2,0)C.(-1,0)D.(-1,2)解:选A∵f(x)是定义在R上的周期为3的偶函数,∴f(5)=f(5-6)=f(-1)=f(1),∵f(1)<1,f(5)=2a-3a+1,∴2a-3a+1<1,即a-4a+1<0,解得-1<a<4.角度四:单调性、奇偶性与周期性结合6.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则()A.f(-25)<f(11)<f(80)B.f(80)<f(11)<f(-25)C.f(11)<f(80)<f(-25)D.f(-25)<f(80)<f(11)解析:选D 因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1). 因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数, 所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).[方法归纳]函数性质综合应用问题的常见类型及解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.一抓基础,多练小题做到眼疾手快 1.下列函数为奇函数的是( ) A .y =x B .y =e x C .y =cos xD .y =e x -e -x解析:选D 对于A ,定义域不关于原点对称,故不符合要求;对于B ,f (-x )≠-f (x ),故不符合要求;对于C ,满足f (-x )=f (x ),故不符合要求;对于D ,∵f (-x )=e -x -e x =-(e x -e -x )=-f (x ),∴y =e x -e-x为奇函数,故选D.2.已知f (x )=3ax 2+bx -5a +b 是偶函数,且其定义域为[6a -1,a ],则a +b =( ) A.17 B .-1 C .1D .7解析:选A 因为偶函数的定义域关于原点对称,所以6a -1+a =0,所以a =17.又f (x )为偶函数,所以3a (-x )2-bx -5a +b =3ax 2+bx -5a +b ,解得b =0,所以a +b =17.3.设函数f (x )为偶函数,当x ∈(0,+∞)时,f (x )=log 2x ,则f (-2)=( ) A .-12B.12C .2D .-2解析:选B因为函数f(x)是偶函数,所以f(-2)=f(2)=log22=1 2.4.函数f(x)=lg|sin x|是()A.最小正周期为π的奇函数B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为2π的偶函数解析:选C∵f(-x)=lg|sin(-x)|=lg|sin x|,∴函数f(x)为偶函数.∵f(x+π)=lg|sin(x+π)|=lg|sin x|,∴函数f(x)的周期为π.5.函数f(x)在R上为奇函数,且x>0时,f(x)=x+1,则当x<0时,f(x)=________.解析:∵f(x)为奇函数,x>0时,f(x)=x+1,∴当x<0时,-x>0,f(x)=-f(-x)=-(-x+1),即x<0时,f(x)=-(-x+1)=--x-1.答案:--x-1二保高考,全练题型做到高考达标1.下列函数中,与函数y=-3|x|的奇偶性相同,且在(-∞,0)上单调性也相同的是()A.y=-1x B.y=log2|x|C.y=1-x2D.y=x3-1解析:选C函数y=-3|x|为偶函数,在(-∞,0)上为增函数,选项A的函数为奇函数,不符合要求;选项B的函数是偶函数,但其单调性不符合;选项D的函数为非奇非偶函数,不符合要求;只有选项C符合要求.2.已知f(x),g(x)是定义在R上的函数,h(x)=f(x)·g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:选B一方面,若f(x),g(x)均为偶函数,则f(-x)=f(x),g(-x)=g(x),因此,h(-x)=f(-x)g(-x)=f(x)g(x)=h(x),∴h(x)是偶函数;另一方面,若h(x)是偶函数,但f(x),g(x)不一定均为偶函数,事实上,若f(x),g(x)均为奇函数,h(x)也是偶函数,因此,“f(x),g(x)均为偶函数”是“h(x)为偶函数”的充分不必要条件.3.已知函数f(x)是定义在(-∞,+∞)上的奇函数,若对于任意的实数x≥0,都有f(x +2)=f(x),且当x∈[0,2)时f(x)=log2(x+1),则f(-2 013)+f(2 014)的值为() A.-1B.-2C .2D .1解析:选A 因为f (x )是奇函数,且周期为2,所以f (-2 013)+f (2 014)=-f (2 013)+f (2 014)=-f (1)+f (0).又当x ∈[0,2)时,f (x )=log 2(x +1),所以f (-2 013)+f (2 014)=-1+0=-1.4.定义在R 上的奇函数f (x )满足f (x -2)=-f (x ),且在[0,1]上是增函数,则有( ) A .f ⎝⎛⎭⎫14<f ⎝⎛⎭⎫-14<f ⎝⎛⎭⎫32 B .f ⎝⎛⎭⎫-14<f ⎝⎛⎭⎫14<f ⎝⎛⎭⎫32 C .f ⎝⎛⎭⎫14<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫-14 D .f ⎝⎛⎭⎫-14<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫14解析:选B 由题设知f (x )=-f (x -2)=f (2-x ),所以函数f (x )的图象关于直线x =1对称.又函数f (x )是奇函数,其图象关于坐标原点对称,由于函数f (x )在[0,1]上是增函数,故f (x )在[-1,0]上也是增函数, 综上函数f (x )在[-1,1]上是增函数,在[1,3]上是减函数. 又f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫2-32=f ⎝⎛⎭⎫12, 所以f ⎝⎛⎭⎫-14<f ⎝⎛⎭⎫14<f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32. 5.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)解析:选C ∵f (x )是奇函数,∴当x <0时,f (x )=-x 2+2x .作出函数f (x )的大致图象如图中实线所示,结合图象可知f (x )是R 上的增函数,由f (2-a 2)>f (a ),得2-a 2>a ,解得-2<a <1.6.定义在R 上的奇函数y =f (x )在(0,+∞)上递增,且f ⎝⎛⎭⎫12=0,则满足f (x )>0的x 的集合为________.解析:由奇函数y =f (x )在(0,+∞)上递增,且 f ⎝⎛⎭⎫12=0,得函数y =f (x )在(-∞,0)上递增,且f ⎝⎛⎭⎫-12=0,∴f (x )>0时,x >12或-12<x <0. 即满足f (x )>0的x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪ -12<x <0或x >12. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <0或x >12 7.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )-g (x )=⎝⎛⎭⎫12x ,则f (1),g (0),g (-1)之间的大小关系是______________.解析:在f (x )-g (x )=⎝⎛⎭⎫12x 中,用-x 替换x ,得f (-x )-g (-x )=2x ,由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以f (-x )=-f (x ),g (-x )=g (x ),因此得-f (x )-g (x )=2x .联立方程组解得f (x )=2-x -2x 2,g (x )=-2-x +2x 2, 于是f (1)=-34,g (0)=-1,g (-1)=-54, 故f (1)>g (0)>g (-1).答案:f (1)>g (0)>g (-1)8.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 解析:依题意知:函数f (x )为奇函数且周期为2,∴f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52 =f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12+f (1)-f ⎝⎛⎭⎫12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12+f (1)+f (0)=212-1+21-1+20-1 = 2. 答案:29.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积.解:(1)由f (x +2)=-f (x ),得f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ),∴f (x )是以4为周期的周期函数.∴f (π)=f (-1×4+π)=f (π-4)=-f (4-π)=-(4-π)=π-4.(2)由f (x )是奇函数与f (x +2)=-f (x ),得f [(x -1)+2]=-f (x -1)=f [-(x -1)],即f (1+x )=f (1-x ).从而可知函数y =f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.设当-4≤x ≤4时,f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝⎛⎭⎫12×2×1=4. 10.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数. (1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1, 所以1<a ≤3,故实数a 的取值范围是(1,3].三上台阶,自主选做志在冲刺名校1.已知函数g (x )是R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,g (x ),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( ) A .(-∞,1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(1,2)D .(-2,1)解析:选D 设x >0,则-x <0.∵x <0时,g (x )=-ln(1-x ),∴g (-x )=-ln(1+x ).又∵g (x )是奇函数,∴g (x )=ln(1+x )(x >0), ∴f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (1+x ),x >0.其图象如图所示.由图象知,函数f (x )在R 上是增函数. ∵f (2-x 2)>f (x ),∴2-x 2>x ,即-2<x <1.所以实数x 的取值范围是(-2,1).2.函数f (x )的定义域为D ={x |x ≠0},且满足对任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2, 且f (x )在(0,+∞)上是增函数,求x 的取值范围. 解:(1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)f (x )为偶函数.证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0. 令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,由(2)知,f (x )是偶函数,∴f(x-1)<2⇔f(|x-1|)<f(16).又f(x)在(0,+∞)上是增函数.∴0<|x-1|<16,解之得-15<x<17且x≠1.∴x的取值范围是(-15,1)∪(1,17).。

(完整版)函数的奇偶性与周期性

(完整版)函数的奇偶性与周期性

函数的奇偶性与周期性1.函数的奇偶性奇函数偶函数定义一般地,如果对于函数f(x)的定义域内任意一个x都有f(-x)=-f(x),那么函数f(x)就叫做奇函数都有f(-x)=f(x),那么函数f(x)就叫做偶函数图象特征关于原点对称关于y轴对称2.函数的周期性(1)周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)若f(x)是定义在R上的奇函数,则f(-x)+f(x)=0.(√)(2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×)(3)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.(√)(4)定义域关于原点对称是函数具有奇偶性的一个必要条件.(√)(5)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√)(6)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√)(7)函数f(x)=0,x∈(0,+∞)既是奇函数又是偶函数.(×)(8)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.(√)(9)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.(√)(10)若某函数的图象关于y轴对称,则该函数为偶函数;若某函数的图象关于(0,0)对称,则该函数为奇函数.(√)考点一判断函数的奇偶性命题点用函数奇偶性定义判断[例1] (1)下列函数为奇函数的是( )A .y =xB .y =e xC .y =cos xD .x x e e y --= 解析:对于A ,定义域不关于原点对称,故不符合要求;对于B ,f (-x )≠-f (x ),故不符合要求;对于C ,满足f (-x )=f (x ),故不符合要求;对于D , ∵f (-x )=e -x -e x =-(e x -e -x )=-f (x ),∴y =e x -e -x 为奇函数,故选D. 答案:D(2)下列函数中为偶函数的是( )A .y =1x B .y =lg|x | C .y =(x -1)2 D .y =2x解析:根据奇、偶函数的定义,可得A 是奇函数,B 是偶函数,C ,D 为非奇非偶函数. 答案:B(3)函数f (x )=3-x 2+x 2-3,则( )A .不具有奇偶性B .只是奇函数C .只是偶函数D .既是奇函数又是偶函数 解析:由⎩⎨⎧3-x 2≥0,x 2-3≥0,得x =-3或x = 3.∴函数f (x )的定义域为{-3,3}.∵对任意的x ∈{-3,3},-x ∈{-3,3},且f (-x )=-f (x )=f (x )=0,∴f (x )既是奇函数,又是偶函数. 答案:D[方法引航] 判断函数的奇偶性的三种重要方法 (1)定义法:(2)图象法:函数是奇(偶)函数的充要条件是它的图象关于原点(y 轴)对称. (3)性质法:①“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;②“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;③“奇·偶”是奇,“奇÷偶”是奇.判断下列函数的奇偶性(1)f(x)=(x+1) 1-x1+x;(2)f(x)=lg1-x1+x.解:(1)要使函数有意义,则1-x1+x≥0,解得-1<x≤1,显然f(x)的定义域不关于原点对称,∴f(x)既不是奇函数,也不是偶函数.(2)由1-x1+x>0⇒-1<x<1,定义域关于原点对称.又f(-x)=lg 1+x1-x=lg1)11(-+-xx=-lg1-x1+x=-f(x),f(-x)≠f(x).故原函数是奇函数.考点二函数的周期性及应用命题点1.周期性的简单判断2.利用周期性求函数值[例2](1)下列函数不是周期函数的是()A.y=sin x B.y=|sin x| C.y=sin|x| D.y=sin(x+1)解析:y=sin x与y=sin(x+1)的周期T=2π,B的周期T=π,C项y=sin|x|是偶函数,x∈(0,+∞)与x∈(-∞,0)图象不重复,无周期.答案:C(2)已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=-1f(x),且当x∈[0,2)时,f(x)=log2(x+1),则求f(-2 017)+f(2 019)的值为________.解析:当x≥0时,f(x+2)=-1f(x),∴f(x+4)=f(x),即4是f(x)(x≥0)的一个周期.∴f(-2 017)=f(2 017)=f(1)=log22=1,f(2 019)=f(3)=-1f(1)=-1,∴f(-2 017)+f(2 019)=0.答案:0[方法引航](1)利用周期f(x+T)=f(x)将不在解析式范围之内的x通过周期变换转化到解析式范围之内,以方便代入解析式求值.(2)判断函数周期性的几个常用结论.①f(x+a)=-f(x),则f(x)为周期函数,周期T=2|a|.②f(x+a)=1f(x)(a≠0),则函数f(x)必为周期函数,2|a|是它的一个周期;③f(x+a)=-1f(x),则函数f(x)必为周期函数,2|a|是它的一个周期.1.若将本例(2)中“f(x+2)=-1f(x)”变为“f(x+2)=-f(x)”,则f(-2 017)+f(2 019)=________.解析:由f(x+2)=-f(x)可知T=4∴f(-2 017)=1,f(2 019)=-1,∴f(-2 017)+f(2 019)=0. 答案:02.若本例(2)条件变为f(x)对于x∈R,都有f(x+2)=f(x)且当x∈[0,2)时,f(x)=log2(x+1),求f(-2 017)+f(2 019)的值.解:由f(x+2)=f(x),∴T=2∴f(2 019)=f(1)=log22=1,f(-2 017)=f(2 017)=f(1)=1,∴f(-2 017)+f(2 019)=2.考点三函数奇偶性的综合应用命题点1.已知奇偶性求参数2.利用奇偶性、单调性求解不等式3.利用奇偶性求解析式或函数值[例3](1)若函数f(x)=2x-a是奇函数,则使f(x)>3成立的x的取值范围为() A.(-∞,-1)B.(-1,0) C.(0,1) D.(1,+∞)解析:因为函数y=f(x)为奇函数,所以f(-x)=-f(x),即2-x+12-x-a=-2x+12x-a.化简可得a=1,则2x+12x-1>3,即2x+12x-1-3>0,即2x+1-3(2x-1)2x-1>0,故不等式可化为2x-22x-1<0,即1<2x<2,解得0<x<1,故选C. 答案:C(2)函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且)21(f =25.①确定函数f (x )的解析式;②用定义证明f (x )在(-1,1)上是增函数; ③解不等式f (t -1)+f (t )<0.解:①∵在x ∈(-1,1)上f (x )为奇函数,∴f (0)=0,即b =0,∴f (x )=ax1+x 2. 又∵)21(f =25,∴a21+14=25.解得,a =1.∴f (x )=x 1+x 2,经检验适合题意. ②证明:由f ′(x )=1+x 2-2x 2(1+x 2)2=1-x 2(1+x 2)2.x ∈(-1,1)时,1-x 2>0,∴f ′(x )>0 ∴f (x )在(-1,1)上为增函数.③由f (t -1)+f (t )<0,得f (t -1)<-f (t ),即f (t -1)<f (-t ).∴⎩⎨⎧-1<t -1<1-1<-t <1t -1<-t得0<t <12.(3)已知f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln(1+x ),则当x <0时,f (x )=( ) A .-x 3-ln(1-x ) B .x 3+ln(1-x ) C .x 3-ln(1-x ) D .-x 3+ln(1-x ) 解析:当x <0时,-x >0,f (-x )=(-x )3+ln(1-x ),∵f (x )是R 上的奇函数,∴当x <0时, f (x )=-f (-x )=-[(-x )3+ln(1-x )]=x 3-ln(1-x ). 答案:C[方法引航] (1)根据奇偶性求解析式中的参数,是利用f (-x )=-f (x )或f (-x )=f (x )在定义域内恒成立,建立参数关系.(2)根据奇偶性求解析式或解不等式,是利用奇偶性定义进行转化.1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________. 解析:a -1+2a =0,∴a =13.f (x )=ax 2+bx 为偶函数,则b =0,∴a +b =13. 答案:132.定义在R 上的偶函数y =f (x )在[0,+∞)上递减,且)21(f =0,则满足f (x )<0的x 的集合为( )A.),2()21,(+∞⋃-∞∪(2,+∞)B.)1,21(∪(1,2)C.)21,0(∪(2,+∞)D.)1,21(∪(2,+∞)解析:选C.由题意可得f =f<0=)21(f ,又f (x )在[0,+∞)上递减,所以>12,即x >12或x <-12,解得0<x <12或x >2,所以满足不等式f<0的x 的集合为)21,0(∪(2,+∞).3.已知函数f (x )=-x +log 21-x 1+x +1,则)21()21(-+f f 的值为( )A .2B .-2C .0D .2log 213 解析:选A.由题意知,f (x )-1=-x +log 21-x 1+x ,f (-x )-1=x +log 21+x 1-x =x -log 21-x1+x=-(f (x )-1),所以f (x )-1为奇函数,则)21(f -1+)21(-f -1=0,所以)21()21(-+f f =2.[方法探究]“多法并举”解决抽象函数性质问题[典例] (2017·山东泰安模拟)定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),f (x +2)=-f (x )且f (x )在[-1,0]上是增函数,给出下列四个命题:①f (x )是周期函数;②f (x )的图象关于x =1对称;③f (x )在[1,2]上是减函数;④f (2)=f (0),其中正确命题的序号是________(请把正确命题的序号全部写出来).[分析关系] ①f (x +y )=f (x )+f (y )隐含了用什么结论?什么方法探究? ②f (x +2)=-f (x ),隐含了什么结论?用什么方法探究.③若f (x )的图象关于x =1对称,其解析式具备什么等式关系?从何处理探究? ④f (x )在[-1,0]上的图象与[1,2]上的图象有什么关系?依据什么指导? ⑤f (2),f (0)从何处计算.[解析]第一步:f(x+y)=f(x)+f(y)对任意x,y∈R恒成立.(赋值法):令x=y=0,∴f(0)=0.令x+y=0,∴y=-x,∴f(0)=f(x)+f(-x).∴f(-x)=-f(x),∴f(x)为奇函数.第二步:∵f(x)在x∈[-1,0]上为增函数,又f(x)为奇函数,∴f(x)在[0,1]上为增函数.第三步:由f(x+2)=-f(x)⇒f(x+4)=-f(x+2)⇒f(x+4)=f(x),(代换法)∴周期T=4,即f(x)为周期函数.第四步:f(x+2)=-f(x)⇒f(-x+2)=-f(-x).(代换法)又∵f(x)为奇函数,∴f(2-x)=f(x),∴关于x=1对称.第五步:由f(x)在[0,1]上为增函数,又关于x=1对称,∴[1,2]上为减函数.(对称法)第六步:由f(x+2)=-f(x),令x=0得f(2)=-f(0)=f(0).(赋值法)[答案]①②③④[回顾反思]此题用图象法更直观.[高考真题体验]1.(2014·高考课标全国卷Ⅰ)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数解析:选C.由题意可知f(-x)=-f(x),g(-x)=g(x),对于选项A,f(-x)·g(-x)=-f(x)·g(x),所以f(x)g(x)是奇函数,故A项错误;对于选项B,|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),所以|f(x)|g(x)是偶函数,故B项错误;对于选项C,f(-x)|g(-x)|=-f(x)|g(x)|,所以f(x)|g(x)|是奇函数,故C项正确;对于选项D,|f(-x)g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,所以|f(x)g(x)|是偶函数,故D项错误,选C.2.(2016·高考山东卷)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,)21()21(-=+x f x f .则f (6)=( )A .-2B .-1C .0D .2解析:选D.由题意可知,当-1≤x ≤1时,f (x )为奇函数,且当x >12时,f (x +1)=f (x ),所以f (6)=f (5×1+1)=f (1).而f (1)=-f (-1)=-[(-1)3-1]=2,所以f (6)=2.故选D.3.(2016·高考四川卷)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则)25(-f +f (1)=________.解析:综合运用函数的奇偶性和周期性进行变换求值. ∵f (x )为奇函数,周期为2,∴f (1)=f (1-2)=f (-1)=-f (1),∴f (1)=0.∵f (x )=4x ,x ∈(0,1),∴)25(-f =)21()21()225(f f f -=-=+-=-4⨯12=-2.∴)25(-f +f (1)=-2.答案:-24.(2015·高考课标全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:由题意得f (x )=x ln(x +a +x 2)=f (-x )= -x ln(a +x 2-x ),所以a +x 2+x =1a +x 2-x,解得a =1.答案:15.(2014·高考四川卷)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎨⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则)23(f =________.解析:由已知易得)21(-f =12)21(42=+-⨯-,又由函数的周期为2,可得)23(f =)21(-f =1. 答案:1课时规范训练 A 组 基础演练1.下列函数中为偶函数的是( )A .y =x 2sin xB .y =x 2cos xC .y =|ln x |D .y =2-x解析:选B.因为y =x 2是偶函数,y =sin x 是奇函数,y =cos x 是偶函数,所以A 选项为奇函数,B 选项为偶函数;C 选项中函数图象是把对数函数y =ln x 的图象在x 轴下方部分翻折到x 轴上方,其余部分的图象保持不变,故为非奇非偶函数;D 选项为指数函数y =x )21(,是非奇非偶函数.2.下列函数中既不是奇函数也不是偶函数的是( )A .y =2|x |B .y =lg(x +x 2+1)C .x x y -+=22D .y =lg1x +1解析:选D.选项D 中函数定义域为(-1,+∞),不关于原点对称,故y =lg 1x +1不是奇函数也不是偶函数,选项A 为偶函数,选项B 为奇函数,选项C 为偶函数.3.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)等于( ) A .-1 B .1 C .-2 D .2解析:选A.由f (x )是R 上周期为5的奇函数知f (3)=f (-2)=-f (2)=-2, f (4)=f (-1)=-f (1)=-1,∴f (3)-f (4)=-1,故选A.4.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)=( ) A .-2 B .0 C .1 D .2 解析:选A.当x >0时,f (x )=x 2+1x , ∴f (1)=12+11=2.∵f (x )为奇函数,∴f (-1)=-f (1)=-2.5.设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎨⎧4x 2-2,-2≤x ≤0x ,0<x <1,则)25(f =( )A .0B .1 C.12 D .-1解析:选D.因为f (x )是周期为3的周期函数,所以)25(f =)21()321(-=+-f f =4×2)21(--2=-1,故选D.6.函数f (x )对于任意实数x 满足条件f (x +2)=1f (x ),若f (1)=-5,则f (f (5))=________. 解析:f (x +2)=1f (x ),∴f (x +4)=1f (x +2)=f (x ), ∴f (5)=f (1)=-5,∴f (f (5))=f (-5)=f (3)=1f (1)=-15. 答案:-157.已知f (x )是定义在R 上的偶函数,f (2)=1,且对任意的x ∈R ,都有f (x +3)=f (x ),则f (2 017)=________.解析:由f (x +3)=f (x )得函数f (x )的周期T =3,则f (2 017)=f (1)=f (-2),又f (x )是定义在R 上的偶函数,所以f (2 017)=f (2)=1. 答案:18.函数f (x )=e x +x (x ∈R )可表示为奇函数h (x )与偶函数g (x )的和,则g (0)=________. 解析:由题意可知h (x )+g (x )=e x +x ①,用-x 代替x 得h (-x )+g (-x )=e -x -x ,因为h (x )为奇函数,g (x )为偶函数,所以 -h (x )+g (x )=x e x -- ②.由(①+②)÷2得g (x )=e x +e -x 2,所以g (0)=e 0+e 02=1. 答案:19.已知f (x )是R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg(2-x ),求f (x )的解析式. 解:设x ∈(0,+∞),∴-x ∈(-∞,0),∴f (-x )=x lg(2+x ), ∵f (x )为奇函数,f (-x )=-f (x ),∴-f (x )=x lg(2+x ),∴f (x )=-x lg(2+x ). 又∵当x =0时,f (0)=0,适合f (x )=-x lg(2+x ) ∴f (x )=⎩⎨⎧-x lg (2+x ) x ∈[0,+∞)-x lg (2-x ) x ∈(-∞,0)10.已知函数f (x )=x 2+ax (x ≠0,常数a ∈R ). (1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在[2,+∞)上为增函数,求实数a 的取值范围. 解:(1)函数f (x )的定义域为{x |x ≠0}, 当a =0时,f (x )=x 2(x ≠0),显然为偶函数;当a ≠0时,f (1)=1+a ,f (-1)=1-a ,因此f (1)≠f (-1),且f (-1)≠-f (1),所以函数f (x )=x 2+a x (x ≠0)既不是奇函数,也不是偶函数.(2)f ′(x )=2x -a x 2=2x 3-a x 2,当a ≤0时,f ′(x )>0,则f (x )在[2,+∞)上是增函数;当a >0时,令f ′(x )=2x 3-a x 2≥0,解得x ≥32a ,由f (x )在[2,+∞)上是增函数,可知32a ≤2,解得0<a ≤16.综上,实数a 的取值范围是(-∞,16].B 组 能力突破1.若f (x )是定义在R 上的函数,则“f (0)=0”是“函数f (x )为奇函数”的 ( )A .必要不充分条件B .充要条件C .充分不必要条件D .既不充分也不必要条件解析:选A.f (x )在R 上为奇函数⇒f (0)=0;f (0)=0f (x )在R 上为奇函数,如f (x )=x 2,故选A. 2.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=x x a a --+2(a >0,且a ≠1).若g (2)=a ,则f (2)等于( )A .2 B.154 C.174 D .a 2解析:选B.∵f (x )为奇函数,g (x )为偶函数,∴f (-2)=-f (2),g (-2)=g (2)=a ,∵f (2)+g (2)=a 2-a -2+2,①∴f (-2)+g (-2)=g (2)-f (2)=a -2-a 2+2,②由①、②联立,g (2)=a =2,f (2)=a 2-a -2=154.3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:选D.由函数f (x )是奇函数且f (x )在[0,2]上是增函数可以推知,f (x )在[-2,2]上递增,又f (x -4)=-f (x )⇒f (x -8)=-f (x -4)=f (x ),故函数f (x )是以8为周期的周期函数.f (-25)=f (-1),f (11)=f (3)=-f (3-4)=f (1),f (80)=f (0),故f (-25)<f (80)<f (11).4.定义在R 上的函数f (x ),对任意x 均有f (x )=f (x +2)+f (x -2)且f (2 016)=2 016,则f (2 028)=________.解析:∵x ∈R ,f (x )=f (x +2)+f (x -2),∴f (x +4)=f (x +2)-f (x )=-f (x -2),∴f (x +6)=-f (x ),∴f (x +12)=f (x ),则函数f (x )是以12为周期的函数.又∵f (2 016)=2 016,∴f (2 028)=f (2 028-12)=f (2 016)=2 016.答案:2 0165.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有)()()(2121x f x f x x f +=⋅.(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围.解:(1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数.∴0<|x -1|<16,解得-15<x <17且x ≠1.∴x 的取值范围是{x |-15<x <17且x ≠1}.。

函数奇偶性对称性周期性知识点总结

函数奇偶性对称性周期性知识点总结

函数奇偶性对称性周期性知识点总结函数的奇偶性、对称性和周期性是数学中经常研究的重要性质。

它们描述了函数的特征和性质,对于理解函数的行为和解决问题都具有重要意义。

下面将分别对这三个概念进行总结。

一、函数的奇偶性1.奇函数:如果对于函数f(x),对任意的x,都有f(-x)=-f(x),那么称该函数为奇函数。

即函数在原点关于y轴对称。

奇函数的特点:-奇函数的图像关于原点(0,0)对称。

-当函数的定义域包括0时,即使x等于0,函数值仍然等于0。

常见的奇函数有:- 正弦函数sin(x)。

-奇数次幂的多项式函数,如x^3、x^5等。

2.偶函数:如果对于函数f(x),对任意的x,都有f(-x)=f(x),那么称该函数为偶函数。

即函数在原点关于x轴对称。

偶函数的特点:-偶函数的图像关于x轴对称。

-当函数的定义域包括0时,对于任意的x,f(0)=f(-x)=f(x)。

常见的偶函数有:- 余弦函数cos(x)。

-偶数次幂的多项式函数,如x^2、x^4等。

3.奇偶性的判断方法:-对于已知函数,可以通过代数运算证明是否满足奇偶性的定义。

-函数图像的轴对称性可以直接判断奇偶性。

-对于周期函数,可以利用周期性的性质判断奇偶性。

二、函数的对称性1.关于y轴对称:如果对于函数f(x),对任意的x,都有f(-x)=f(x),那么称该函数关于y轴对称。

即函数的图像左右对称。

2.关于x轴对称:如果对于函数f(x),对任意的x,都有f(-x)=-f(x),那么称该函数关于x轴对称。

即函数的图像上下对称。

3.关于原点对称:如果对于函数f(x),对任意的x,都有f(-x)=-f(x),那么称该函数关于原点对称。

即函数的图像关于原点对称。

三、函数的周期性1.周期函数:如果存在一个正实数T,对于函数f(x),对于任意的x,都有f(x+T)=f(x),那么称该函数为周期函数,T为函数的周期。

周期函数的特点:-周期函数在一个周期内的函数值是相同的。

4函数的奇讲义偶性与周期性

4函数的奇讲义偶性与周期性

么 a b的值是( )
A. 1 B.1 C .1 D. 1
3
32
2
7. 设 f (x)是 定 义 在 R 上 的 奇 函 数 , 当 x 0时 f ( x ) 2 x 2 x b ,( b 为 常 数 ), 则 f ( 1 ) ( ) A . 3 B . 1 C .1 D .3
9. 已 知 定 义 在 R 上 的 奇 函 数 f (x)满 足 f (x 4) f (x),
且 在 区 间 [0 , 2]上 是 增 函 数 ,若 方 程 f ( x ) m ( m 0 ) ,在 区 间
[8,8]上 有 四 个 Fra bibliotek 同 的 根 x1, x2, x3, x4, 则
x1 x2 x3 x4

10 . 已 知 f (x) 是 定 义 在 R 上 的 奇 函 数 , 且 满 足 f ( x ) f ( x 1) 1 ,当 x [0,1]时 ,有 f ( x ) x 2,现 在 有 三 个 命 题 :① f ( x ) 是 以 2 为 周 期 的 周 期 函 数 ;② 当 x [1 , 2 ] 时 , f (x) x2 2x ③ f (x)是偶函数。
精品jing
4函数的奇偶性与周期性
讲评《§2.4 函数的奇偶性与周期性》
目标
(1)掌握函数奇偶性的定义及性质; (2)掌握函数周期性的定义及性质; (3)奇偶性和周期性的应用。
一、基本知识 二、基本方法
基础梳理
双基自测
2. 已 知 函 数 f ( x ) 在 [ 5,5]上 是 偶 函 数 , f ( x ) 在 [0,5]上 是 单 调 函 数 , 且 f (3) f (1), 则 下 列 不 等 式 成 立 的 是 ( ) A. f (1) f (3) B . f (2) f (3) C . f ( 3 ) f (5 ) D . f (0 ) f (1)

函数的奇偶性、对称性与周期性总结,史上最全

函数的奇偶性、对称性与周期性总结,史上最全

函数的奇偶性、对称性与周期性常用结论,史上最全函数是高中数学的重点与难点,在高考数学中占分比重巨大。

高考中对函数的考查灵活,相关的结论众多,有奇偶性,对称性,还有周期性,这些结论及变形能否掌握,都影响着学生的最终成绩。

本篇将函数的奇偶性、对称性与周期性常用的结论进行总结,希望对同学们有帮助。

需要WORD 电子文档的同学,可以入群领取。

1.奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或奇偶函数的定义域关于原点对称。

①若为奇函数;则称)(),()(x f y x f x f =-=-()()()0,1()f x f x f x f x +-==-- ②若为偶函数则称)()()(x f y x f x f ==-。

()()-()0,1()f x f x f x f x -==- 2.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。

分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y =[]a b T b a x -=∈,,。

把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT a ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。

[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x)()(kT x f x f x f函数周期性的几个重要结论2、()()f x a f x b +=+ ⇔)(x f y =的周期为a b T -=3、)()(x f a x f -=+ ⇔)(x f y =的周期为a T 2=4、)(1)(x f a x f =+⇔)(x f y =的周期为a T 2= 5、)(1)(x f a x f -=+⇔)(x f y =的周期为a T 2=6、)(1)(1)(x f x f a x f +-=+ ⇔)(x f y =的周期为a T 3=7、 1)(1)(+-=+x f a x f ⇔)(x f y =的周期为a T 2= 8、)(1)(1)(x f x f a x f -+=+ ⇔)(x f y =的周期为a T 4=9、)()()2(x f a x f a x f -+=+ ⇔)(x f y =的周期为a T 6= 10、若.2, )2()(,0p T p px f px f p =-=>则推论:偶函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 2=推论:奇函数)(x f y =满足)()(x a f x a f -=+⇔)(x f y = 周期a T 4=函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A -- ②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-= ④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=- ⑤成中心对称。

函数的奇偶性与周期性

函数的奇偶性与周期性

函数的奇偶性与周期性函数是数学中一种重要的概念,它描述了两个变量之间的关系。

在数学中,我们经常对函数的性质进行研究,其中包括奇偶性和周期性。

本文将探讨函数的奇偶性与周期性,并讨论它们在实际问题中的应用。

一、奇偶函数的定义与性质奇函数定义:对于任意实数x,若函数f(x)满足f(-x) = -f(x),则称f(x)为奇函数。

换句话说,奇函数关于原点对称。

偶函数定义:对于任意实数x,若函数f(x)满足f(-x) = f(x),则称f(x)为偶函数。

换句话说,偶函数关于y轴对称。

奇偶函数的性质:1. 若函数f(x)是偶函数,则f(0) = f(-0),即函数在原点对称,图像关于y轴对称。

2. 若函数f(x)是奇函数,则f(0) = -f(-0),即函数在原点对称,图像关于原点对称。

3. 若函数f(x)是偶函数,则可以推导出f(-x) = f(x),即偶函数的性质在整个定义域内成立。

4. 若函数f(x)是奇函数,则可以推导出f(-x) = -f(x),即奇函数的性质在整个定义域内成立。

二、周期函数的定义与性质周期函数定义:对于任意实数x,若存在正常数T,使得f(x+T) =f(x),则称f(x)为周期函数。

换句话说,周期函数在自身的一个周期内,函数值具有相同的周期性重复。

周期函数的性质:1. 若函数f(x)是周期函数,则任意一个周期内的函数值都相同。

2. 若函数f(x)是周期函数,则其所有周期的长度都是T的整数倍。

3. 周期函数可以是正弦函数、余弦函数等传统函数,也可以是其他基于数学模型得出的函数。

三、奇偶函数与周期性的应用奇偶函数与周期函数在实际问题中具有广泛的应用,特别是在物理学和工程学领域。

以下是一些具体的应用案例:1. 电信号的表示在电子工程中,信号可以表示为奇函数或偶函数的组合。

根据信号的特性,我们可以通过分析奇偶性来判断信号的对称性和周期性,从而更好地进行信号处理和调整。

2. 物理振动奇函数和周期函数经常用来描述物体的振动情况。

函数的周期性与奇偶性

函数的周期性与奇偶性

函数的周期性与奇偶性函数是数学中非常重要的概念之一,它描述了一种规律性的映射关系。

函数的周期性和奇偶性是函数性质中的两个重要方面。

本文将就函数的周期性和奇偶性展开论述。

一、函数的周期性周期性是函数在某个区间内具有相似性质的重复性。

若对于函数f(x)存在一个正数T,使得对于任意的x∈R,有f(x+T) = f(x),则称函数f(x)是周期函数,T称为函数的周期。

周期函数是一类具有固定重复规律的函数。

常见的周期函数有三角函数和指数函数。

以三角函数为例,正弦函数和余弦函数就是周期为2π的函数。

它们的图像在每个周期内重复出现相同的形状。

在数学中,我们可以通过函数图像的观察或者计算来确定周期。

对于三角函数而言,周期往往是已知的,如正弦函数的周期为2π。

而对于其他函数,我们可以观察函数图像是否在一个特定区间内重复。

函数的周期性可以帮助我们更好地理解函数的性质和特点。

很多实际问题中的规律性变化都可以用周期函数来描述,比如天体运动、电流的变化等。

二、函数的奇偶性奇偶性是函数在坐标系中对称性的一种表现。

若对于任意的x∈R,有f(-x) = f(x) 或者f(-x) = -f(x),则称函数f(x)是偶函数或奇函数。

偶函数的图像关于y轴对称,即在y轴上的每个点关于原点有对应的相等点。

典型的偶函数有多项式中的偶次幂函数,如x²、x⁴等。

奇函数的图像关于坐标原点对称,即在原点关于x轴和y轴的每个点有对应的相等点。

典型的奇函数有多项式中的奇次幂函数,如x³、x⁵等。

在数学中,我们可以通过对函数进行代数计算来判断函数的奇偶性。

比如,若函数f(x)满足f(-x) = f(x),则可以判定f(x)是偶函数;若函数f(x)满足f(-x) = -f(x),则可以判定f(x)是奇函数。

同时,我们也可以通过观察函数图像来确定函数的奇偶性。

函数的奇偶性是函数图像的一种对称性,它在数学运算和函数性质研究中有重要的应用。

函数的奇偶性与周期性

函数的奇偶性与周期性

函数的奇偶性与周期性函数是数学中的重要概念,用于描述自然界和社会现象中的各种关系。

在数学中,函数的奇偶性和周期性是两个常见的性质,它们描述了函数图像的对称性和重复性。

本文将深入探讨函数的奇偶性和周期性,并说明它们在数学和实际问题中的应用。

一、函数的奇偶性函数的奇偶性是指函数在坐标轴上的对称性质。

具体而言,对于定义域内的任意 x 值,如果函数 f(-x) = f(x) 对于所有 x 成立,那么函数就是偶函数;如果函数 f(-x) = -f(x) 对于所有 x 成立,那么函数就是奇函数。

以数学中常见的函数 y = x^2 和 y = x^3 为例,前者是偶函数,后者是奇函数。

通过将 x 值取负,我们可以验证它们的对称性。

对于偶函数 y = x^2,有 f(-x) = (-x)^2 = x^2 = f(x);对于奇函数 y = x^3,有 f(-x) = (-x)^3 = -x^3 = -f(x)。

函数的奇偶性不仅仅是一种几何上的对称性,还可以对函数的性质进行推理和证明。

例如,奇函数与奇函数相加、相减或与偶函数相乘的结果仍然是奇函数;而偶函数与偶函数相加、相减或与奇函数相乘的结果仍然是偶函数。

二、函数的周期性函数的周期性是指函数图像在特定区间内的重复性质。

具体而言,如果存在一个正数 T,对于定义域内的所有 x,有 f(x + T) = f(x) 成立,那么函数就是周期函数,而 T 则是函数的周期。

常见的周期函数包括三角函数(如正弦函数和余弦函数)、指数函数和对数函数等。

例如,正弦函数具有周期2π,即sin(x + 2π) = sin(x);指数函数 e^x 则是自变量连续取整数时的周期函数,即 e^(x + 1) = e^x。

周期函数在数学和物理中有广泛的应用。

例如,三角函数可以用来描述物体的振动、电流的变化和天体运动等。

周期函数的性质使得我们能够准确地描述和预测这些现象。

结语函数的奇偶性和周期性是数学中常见且重要的概念。

函数奇偶性与周期性概念

函数奇偶性与周期性概念

函数奇偶性与周期性概念函数是数学中一种重要的概念,描述了一种输入和输出之间的对应关系。

在函数的研究中,奇偶性和周期性是两个重要而有趣的特性。

本文将介绍函数的奇偶性和周期性,并讨论它们在数学中的应用。

一、奇偶性的定义和性质1. 奇函数:若对于函数f(x),对任意实数x,有f(-x)=-f(x),则称函数f(x)为奇函数。

换句话说,当自变量取相反数时,函数值也取相反数。

2. 偶函数:若对于函数f(x),对任意实数x,有f(-x)=f(x),则称函数f(x)为偶函数。

换句话说,当自变量取相反数时,函数值不变。

3. 奇偶函数的性质:a. 奇函数的特点在于,当函数的定义区间关于原点对称时,奇函数图像关于原点对称。

b. 偶函数的特点在于,无论是函数的定义区间如何,偶函数图像关于y轴对称。

c. 奇函数和偶函数的图像都具有完全的对称性,这是它们的一个重要性质。

二、周期性的定义和性质1. 周期函数:若存在正数T,对于函数f(x),对任意实数x,有f(x+T)=f(x),则称函数f(x)为周期函数。

周期T称为函数的周期,满足最小的正周期。

2. 周期函数的性质:a. 周期函数的图像在任意相邻两个周期内有重复的性质。

b. 周期函数的周期可以有多个,但存在最小的正周期。

c. 周期函数的定义区间一般为整个实数集,但也可以是部分实数集。

三、奇偶性和周期性在数学中的应用1. 奇函数和偶函数的应用:a. 奇函数和偶函数是函数的一种特殊性质,它们在各个数学分支和实际问题中都有广泛的应用。

b. 在对称性相关问题中,奇偶函数的性质可以简化计算过程,提供更简洁的解决方法。

c. 在优化问题中,奇函数的性质可以简化极值点的寻找过程。

2. 周期函数的应用:a. 周期函数广泛应用于信号处理、音乐理论、电路分析等领域。

b. 在物理学中,周期函数被用于描述波动现象,如光的干涉、声音的频率等。

c. 在经济学中,周期函数被用于描述经济指标的变化规律,如季节性波动等。

函数的奇偶性和周期性

函数的奇偶性和周期性

函数的奇偶性和周期性知识回顾1.函数的奇偶性的定义:① 对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f -=-〔或0)()(=+-x f x f 〕,则称)(x f 为奇函数. 奇函数的图象关于原点对称。

② 对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f =-〔或0)()(=--x f x f 〕,则称)(x f 为偶函数. 偶函数的图象关于y 轴对称。

③ 通常采用图像或定义判断函数的奇偶性. 具有奇偶性的函数,其定义域原点关于对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)1. 函数的周期性命定义:对于函数)(x f ,如果存在一个非零常数T ,使得定义域内的每一个x 值,都满足)()(x f T x f =+,那么函数)(x f 就叫做周期函数,非零常数T 叫做这个函数的周期。

注:①若0)(=x f ,则)(x f 既是奇函数又是偶函数,若)0()(≠=m m x f ,则)(x f 是偶函数;②若)(x f 是奇函数且在0=x 处有定义,则0)0(=f ③若在函数)(x f 的定义域内有)()(m f m f ≠-,则可以断定)(x f 不是偶函数,同样,若在函数)(x f 的定义域内有)()(m f m f -≠-,则可以断定)(x f 不是奇函数。

2.奇偶函数图象的对称性(1) 若)(x a f y +=是偶函数,则⇔=-⇔-=+)()2()()(x f x a f x a f x a f )(x f 的图象关于直线a x=对称; (2) 若)(x b f y +=是奇函数,则⇔-=-⇔+-=-)()2()()(x f x b f x b f x b f )(x f 的图象关于点)0,(b 中心对称;3.函数的周期性(1)函数值之和等于零型,即函数)(0)()(b a x b f x a f ≠=+++ 对于定义域中任意x 满足)(0)()(b a x b f x a f ≠=+++,则有)()]22([x f a b x f =-+,故函数)(x f 的周期是)(2a b T -=(2)函数图象有a x =,)(b a b x ≠=两条对称轴型函数图象有a x =,)(b a b x ≠=两条对称轴,即)()(x a f x a f -=+,)()(x b f x b f -=+,得)()]22([x f a b x f =-+,故函数)(x f 的周期是)(2a b T -=(3) 两个函数值之积等于1±,即函数值互为倒数或负倒数型若)(1)()(b a b x f a x f ≠=+⋅+,则得)]22()2[()2(a b a x f a x f -++=+,函数)(x f 的周期是a b T 22-=;同理若)(1)()(b a b x f a x f ≠-=+⋅+,则)(x f 的周期是)(2a b T -=(4) 分式递推型,即函数)(x f 满足)()(1)(1)(b a b x f b x f a x f ≠+-++=+ 由)()(1)(1)(b a b x f b x f a x f ≠+-++=+得)2(1)2(b x f a x f +-=+,进而得 1)2()2(-=+⋅+b x f a x f ,由前面的结论得)(x f 的周期是)(4a b T -=考点一 判断函数的奇偶性及其应用 题型1:判断有解析式的函数的奇偶性[例1] 判断下列函数的奇偶性:(1)f (x )=|x +1|-|x -1|;(2)f (x )=(x -1)·xx -+11; (3)2|2|1)(2-+-=x x x f ;(4)⎩⎨⎧>+<-=).0()1(),0()1()(x x x x x x x f[解析] (1)函数的定义域x ∈(-∞,+∞),对称于原点.∵f (-x )=|-x +1|-|-x -1|=|x -1|-|x +1|=-(|x +1|-|x -1|)=-f (x ),∴f (x )=|x +1|-|x -1|是奇函数.(2)由xx -+11≥0,得-1≤x <1,其定义域关于原点不对称,f (x )不是奇函数不是偶函数. (3)f (x )的定义域为[-1,0)∪(0,1],关于原点对称,且有x +2>0.从而有f (x )= 2212-+-x x =x x 21-,∴f (-x )=x x ---2)(1=-xx 21-=-f (x ) 故f (x )为奇函数.(4)∵函数f (x )的定义域是(-∞,0)∪(0,+∞),并且当x >0时,-x <0,∴f (-x )=(-x )[1-(-x )]=-x (1+x )=-f (x )(x >0).当x <0时,-x >0,∴f (-x )=-x (1-x )=-f (x )(x <0).故函数f (x )为奇函数.注:○1定义域具有对称性 ( 即若奇函数或偶函数的定义域为D, 则D x ∈时D x ∈-) 是一个函数为奇函数或偶函数的必要条件○2分段函数的奇偶性一般要分段证明.③判断函数的奇偶性应先求定义域再化简函数解析式.题型2:证明抽象函数的奇偶性[例2] 定义在区间)1,1(-上的函数f (x )满足:对任意的)1,1(,-∈y x ,都有)1()()(xyy x f y f x f ++=+. 求证f (x )为奇函数; [解析]令x = y = 0,则f (0) + f (0) = )0()0100(f f =++ ∴ f (0) = 0 令x ∈(-1, 1) ∴-x ∈(-1, 1) ∴ f (x ) + f (-x ) = f (21x xx --) = f (0) = 0∴ f (-x ) =-f (x )∴ f (x ) 在(-1,1)上为奇函数[练习] 1.设函数()()()a x x x f ++=12为奇函数,则=a ___________。

高中数学基础之函数的奇偶性与周期性

高中数学基础之函数的奇偶性与周期性

D.
考点二 函数奇偶性的应用
【例 2】 (1)(2019·全国卷Ⅱ)设 f(x)为奇函数,且当 x≥0 时,f(x)=ex-1,则
当 x<0 时,f(x)=( D ) A.e-x-1
B.e-x+1
C.-e-x-1
D.-e-x+1
(2)(2020·长沙第一中学期末)若函数 f(x)=xln(x+ a+x2)为偶函数,则 a= ___1_____.
又 x<0,∴-x>0. ∵x≥0 时,f(x)=ex-1,∴-y=e-x-1, ∴y=-e-x+1(x<0),即 f(x)=-e-x+1(x<0). 解法三(赋值法):∵f(x)是奇函数,且 x≥0 时,f(x)=ex-1, ∴f(-1)=-f(1)=-(e1-1)=1-e,即 f(-1)=-e+1,只有 D 符合. (2)因为 f(x)-f(-x)=xln(x+ a+x2)+xln(-x+ a+x2)=xln(a+x2-x2)=xlna =0,所以 a=1.
1.(2020·福州市高三期末)下列函数为偶函数的是( B )
A.y=tan(x+π4)
B.y=x2+e|x|
C.y=xcosx
D.y=ln|x|-sinx
[解析] 对于选项 A,易知 y=tan(x+π4)为非奇非偶函数;对于选项 B,设 f(x)
=x2+e|x|,则 f(-x)=(-x)2+e|-x|=x2+e|x|=f(x),所以 y=x2+e|x|为偶函数;对于选
ቤተ መጻሕፍቲ ባይዱ
B.最小正周期为 2π 的奇函数
C.最小正周期为 π 的偶函数
D.最小正周期为 2π 的偶函数
(2)(2020·河南南阳模拟)已知函数 f(x)是定义在 R 上的偶函数,并且满足 f(x+

函数的周期性与奇偶性判断

函数的周期性与奇偶性判断

函数的周期性与奇偶性判断在数学中,函数的周期性和奇偶性是两个重要的性质,它们可以帮助我们更好地理解和分析函数的行为。

本文将详细介绍函数的周期性和奇偶性,以及如何判断一个函数是否具有这些性质。

一、函数的周期性周期性是指函数在一定的区间内,以相同的规律不断重复。

如果函数f(x)满足以下条件,则称其具有周期性:f(x + T) = f(x),其中T为正实数。

换句话说,如果对于函数f(x)的任意x值,都有f(x + T) = f(x),那么函数f(x)就是周期函数,其中T称为函数的周期。

常见的周期函数有正弦函数、余弦函数等。

例如,正弦函数sin(x)的周期是2π,即对于任意x,都有sin(x + 2π) = sin(x)。

而余弦函数cos(x)的周期也是2π。

判断一个函数是否具有周期性,可以通过观察函数的图像或使用数学方法来确定。

例如,对于三角函数来说,我们可以观察函数的波形是否在一定区间内不断重复。

对于其他类型的函数,我们可以使用数学方法来求解函数的周期。

二、函数的奇偶性奇偶性是指函数在坐标系中关于原点对称。

具体而言,如果函数f(x)满足以下条件,则称其具有奇偶性:奇函数:f(-x) = -f(x),即函数关于原点对称。

偶函数:f(-x) = f(x),即函数关于y轴对称。

对于奇函数来说,当x取正值时,函数值与对应的负值相等但符号相反。

而对于偶函数来说,无论x为正值还是负值,函数值都相等。

常见的奇函数有正弦函数sin(x),而常见的偶函数有余弦函数cos(x)。

例如,对于正弦函数sin(x),我们可以观察函数的图像是否关于原点对称,即是否在y轴上下对称。

而对于余弦函数cos(x),我们可以观察函数的图像是否关于y轴对称。

判断一个函数是否具有奇偶性,可以使用函数的性质来进行推导。

例如,对于三角函数来说,我们可以根据函数的定义和性质来判断其奇偶性。

对于其他类型的函数,我们可以使用函数的表达式进行分析。

三、函数周期性和奇偶性的应用函数的周期性和奇偶性在数学和物理中有广泛的应用。

函数对称性、周期性和奇偶性的规律总结大全 (1)

函数对称性、周期性和奇偶性的规律总结大全 (1)

函数对称性、周期性和奇偶性规律一、 同一函数的周期性、对称性问题(即函数自身)1、 周期性:对于函数)(x f y =,如果存在一个不为零的常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+都成立,那么就把函数)(x f y =叫做周期函数,不为零的常数T 叫做这个函数的周期。

如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。

2、 对称性定义(略),请用图形来理解。

3、 对称性:我们知道:偶函数关于y (即x=0)轴对称,偶函数有关系式)()(x f x f =-奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f上述关系式是否可以进行拓展?答案是肯定的 探讨:(1)函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=-简证:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。

得证。

若写成:)()(x b f x a f -=+,函数)(x f y =关于直线22)()(ba xb x a x +=-++=对称 (2)函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-简证:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+-可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点)2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称。

函数的奇偶性怎么判断函数的周期性奇函数与偶函数性质

函数的奇偶性怎么判断函数的周期性奇函数与偶函数性质

一、判断函数奇偶性的方法1.先分解函数为常见的一般函数,比如多项式x^n,三角函数,判断奇偶性2.根据分解的函数之间的运算法则判断,一般只有三种种f(x)g(x)、f(x)+g(x),f(g(x))(除法或减法可以变成相应的乘法和加法)3.若f(x)、g(x)其中一个为奇函数,另一个为偶函数,则f(x)g(x)奇、f(x)+g(x)非奇非偶函数,f(g(x))奇4.若f(x)、g(x)都是偶函数,则f(x)g(x)偶、f(x)+g(x)偶,f(g(x))偶5.若f(x)、g(x)都是奇函数,则f(x)g(x)偶、f(x)+g(x)奇,f(g(x))奇二、函数的奇偶性定义:1.偶函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)=f(x),则称函数f(x)为偶函数。

2.奇函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)=f(x),那么函数f(x)是奇函数。

三、函数的周期性:(1)定义:若T为非零常数,对于定义域内的任一x,使f(x+T)=f(x)恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。

周期函数定义域必是无界的。

(2)若T是周期,则k·T(k≠0,k∈Z)也是周期,所有周期中最小的正数叫最小正周期。

一般所说的周期是指函数的最小正周期。

周期函数并非都有最小正周期,如常函数f(x)=C。

四、函数的奇偶性:(1)定义:偶函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)=f(x),则称函数f(x)为偶函数。

奇函数:一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)=f(x),那么函数f(x)是奇函数。

(2)奇函数与偶函数的图像的对称性:奇函数的图像关于原点对称,偶函数的图像关于y轴对称。

(3)在公共定义域内,①两个奇函数的和是奇函数,两个奇函数的积是偶函数;②两个偶函数的和、积是偶函数;③一个奇函数,一个偶函数的积是奇函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(文)(2010·北京西城区抽检)下列各函数中,( )是R 上的偶函数( )A .y =x 2-2xB .y =2xC .y =cos2xD .y =1|x |-1[答案] C[解析] A 、B 不是偶函数,D 的定义域{x ∈R|x ≠±1}不是R ,故选C.(理)下列函数中既是奇函数,又在区间[-1,1]上单调递减的是( )A .f (x )=sin xB .f (x )=-|x +1|C .f (x )=12(a x+a -x )D .f (x )=ln 2-x2+x[答案] D[解析] y =sin x 与y =ln 2-x 2+x 为奇函数,而y =12(a x +a -x )为偶函数,y =-|x +1|是非奇非偶函数.y =sin x 在[-1,1]上为增函数.故选D.2.已知g (x )是定义在R 上的奇函数,且在(0,+∞)内有1005个零点,则f (x )的零点共有( )A .1005个B .1006个C .2009个D .2011个 [答案] D[解析] ∵奇函数的图象关于原点对称,g (x )在(0,+∞)上与x 轴有1005个交点,故在(-∞,0)上也有1005个交点,又f (0)=0,∴共有零点2011个.3.(文)(2011·全国理)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f (-52)=( )A .-12B .-14C.14D.12[答案] A[解析] f (-52)=f (-12)=-f (12)=-12.(理)(2011·兰州诊断)已知f (x )是定义在R 上的偶函数,并满足f (x +2)=-1f (x ),当1≤x ≤2时,f (x )=x -2,则f (6.5)=( ) A .4.5 B .-4.5 C .0.5 D .-0.5 [答案] D[解析] ∵f (x +2)=-1f (x ),∴f (x +4)=f [(x +2)+2]=-1f (x +2)=f (x ),∴f (x )周期为4,∴f (6.5)=f (6.5-8)=f (-1.5)=f (1.5)=1.5-2=-0.5.4.(2010·山东)设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=( )A .3B .1C .-1D .-3[答案] D[解析] 由条件知f (0)=0,∴b =-1, ∴f (-1)=-f (1)=-(21+2×1-1)=-3. 5.函数y =log 22-x2+x 的图象( )A .关于原点对称B .关于直线y =-x 对称C .关于y 轴对称D .关于直线y =x 对称 [答案] A [解析] 首先由2-x 2+x >0得,-2<x <2,其次令f (x )=log 22-x2+x,则f (x )+f (-x )=log 22-x 2+x +log 22+x2-x =log 21=0.故f (x )为奇函数,其图象关于原点对称,故选A.6.奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为( ) A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1) [答案] D[解析] ∵f (x )为奇函数,∴不等式f (x )-f (-x )x <0化为xf (x )<0, ∵f (x )在(0,+∞)上为增函数,且f (1)=0, ∴当0<x <1时,f (x )<0,当x >1时,f (x )>0, 又f (x )为奇函数,∴当-1<x <0时,f (x )>0, 当x <-1时,f (x )<0.∴不等式xf (x )<0的解集为0<x <1或-1<x <0.7.(2010·深圳中学)已知函数y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-π,π],且它们在x ∈[0,π]上的图象如图所示,则不等式f (x )g (x )<0的解集是________.[答案] ⎝ ⎛⎭⎪⎫-π3,0∪⎝ ⎛⎭⎪⎫π3,π [解析] 依据偶函数的图象关于y 轴对称,奇函数的图象关于原点对称,先补全f (x )、g (x )的图象,∵f (x )g (x )<0,∴⎩⎨⎧ f (x )<0g (x )>0,或⎩⎨⎧f (x )>0g (x )<0,观察两函数的图象,其中一个在x 轴上方,一个在x 轴下方的,即满足要求,∴-π3<x <0或π3<x <π.8.(文)函数f (x )=⎩⎪⎨⎪⎧x -1 x >0ax =0x +bx <0是奇函数,则a +b =________.[答案] 1[解析] ∵f (x )是奇函数,且x ∈R ,∴f (0)=0,即a =0.又f (-1)=-f (1),∴b -1=-(1-1)=0,即b =1,因此a +b =1.(理)若函数f (x )=a -e x1+a e x(a 为常数)在定义域上为奇函数,则实数a 的值为________.[答案] 1或-1[解析] f (-x )=a -e -x 1+ae -x =ae x -1e x +af (x )+f (-x )=(a -e x )(a +e x )+(1+ae x )(ae x -1)(1+ae x )(e x +a )=a 2-e 2x +a 2e 2x -1(1+ae x )(e x +a )=0恒成立, 所以a =1或-1.1.f (x )是定义在R 上的奇函数且满足f (x +2)=f (x ),当x ∈(0,1)时,f (x )=2x -1,则f (log 126)=( )A.12 B .-12C.16 D .6[答案] B[解析] ∵log 126=-log 26<0,且f (x )为奇函数, ∴f (log 126)=-f (log 26).又∵f (x +2)=f (x ),∴f (log 26)=f (log 26-2)=f (log 232),而log 232∈(0,1).∴f (log 232)=2log 232-1=32-1=12.∴f (log 126)=-12.2.(2011·开封调研)已知f (x )(x ∈R)为奇函数,f (2)=1,f (x +2)=f (x )+f (2),则f (3)等于( )A.12 B .1 C.32 D .2[答案] C[分析] 为求f (3)先求f (1),为求f (1)先在f (x +2)=f (x )+f (2)中,令x =-1,利用f (x )为奇函数,可解出f (1).[解析] 令x =-1得f (1)=f (-1)+f (2)=f (2)-f (1), ∴f (1)=12f (2)=12,∴f (3)=f (1)+f (2)=32.[点评] 解答此类题目,一般先看给出的值和待求值之间可以通过条件式怎样赋值才能产生联系,赋值时同时兼顾奇偶性或周期性的运用,请再练习下题:若奇函数f (x )(x ∈R)满足f (3)=1,f (x +3)=f (x )+f (3),则f ⎝ ⎛⎭⎪⎫32等于( )A .0B .1 C.12 D .-12[答案] C[解析] 在f (x +3)=f (x )+f (3)中取x =-32得,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-32+f (3),∴f (x )是奇函数,且f (3)=1,∴f ⎝ ⎛⎭⎪⎫32=12. 3.(2011·泰安模拟)f (x )是定义在R 上的以3为周期的偶函数,且f (2)=0,则方程f (x )=0在区间(0,6)内解的个数至少是( )A .1B .4C .3D .2[答案] B[解析] 由f (2)=0,得f (5)=0, ∴f (-2)=0,f (-5)=0. ∴f (-2)=f (-2+3)=f (1)=0, f (-5)=f (-5+9)=f (4)=0,故f (x )=0在区间(0,6)内的解至少有1,2,4,5四个.4.(文)已知函数f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x -1),若g (1)=2,则f (2012)的值为( )A .2B .0C .-2D .±2 [答案] A[解析] 由已知:g (-x )=f (-x -1), 又g (x )、f (x )分别为R 上的奇、偶函数,∴-g (x )=f (x +1),∴f (x -1)=-f (x +1),∴f (x )=-f (x +2),∴f (x )=f (x +4),即f (x )的周期T =4,∴f (2012)=f (0)=g (1)=2,故选A.(理)已知函数f (x )满足:f (1)=2,f (x +1)=1+f (x )1-f (x ),则f (2011)等于( )A .2B .-3C .-12D.13[答案] C[解析] 由条件知,f (2)=-3,f (3)=-12,f (4)=13,f (5)=f (1)=2,故f (x +4)=f (x ) (x ∈N *).∴f (x )的周期为4, 故f (2011)=f (3)=-12.[点评] 严格推证如下: f (x +2)=1+f (x +1)1-f (x +1)=-1f (x ),∴f (x +4)=f [(x +2)+2]=f (x ).即f (x )周期为4. 故f (4k +x )=f (x ),(x ∈N *,k ∈N *),5.设f (x )是定义在R 上的奇函数,且y =f (x )的图象关于直线x =12对称,则f (1)+f (2)+f (3)+f (4)+f (5)=________. [答案] 0[解析] ∵f (x )的图象关于直线x =12对称,∴f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x ,对任意x ∈R 都成立, ∴f (x )=f (1-x ),又f (x )为奇函数, ∴f (x )=-f (-x )=-f (1+x ) =f (-1-x )=f (2+x ),∴周期T =2 ∴f (0)=f (2)=f (4)=0又f (1)与f (0)关于x =12对称∴f (1)=0 ∴f (3)=f (5)=0. 6.已知函数f (x )=x |x -a |+2x -3.(1)若a =4,求当x ∈[2,5]时函数f (x )的最大值; (2)若函数f (x )在R 上是增函数,求a 的取值范围. [解析] (1)当a =4时,f (x )=x |x -4|+2x -3. 若2≤x <4,则f (x )=-x 2+6x -3=-(x -3)2+6, ∴当x =3时,f (x )有最大值是f (3)=6. 若4≤x ≤5,则f (x )=x 2-2x -3=(x -1)2-4, ∴当x =5时,f (x )有最大值f (5)=12. 故当x ∈[2,5)时,f (x )的最大值是12.(2)由于f (x )=⎩⎪⎨⎪⎧x 2-(a -2)x -3 x ≥a-x 2+(a +2)x -3 x <a 依题意,f (x )是R 上的增函数⇒⎩⎨⎧a -22≤a a +22≥a⇒-2≤a ≤2,∴实数a 的取值范围是-2≤a ≤2.7.(文)(2010·泉州模拟)已知函数f (x )=log a 1-mxx -1(a >0且a ≠1)是奇函数.(1)求m 的值;(2)判断f (x )在区间(1,+∞)上的单调性并加以证明;(3)当a >1,x ∈(1,3)时,f (x )的值域是(1,+∞),求a 的值. [解析] (1)∵f (x )是奇函数,x =1不在f (x )的定义域内,∴x =-1也不在函数定义域内,令1-m ·(-1)=0得m =-1. (也可以由f (-x )=-f (x )恒成立求m ) (2)由(1)得f (x )=log a x +1x -1(a >0且a ≠1),任取x 1,x 2∈(1,+∞),且x 1<x 2,令t (x )=x +1x -1,则t (x 1)=x 1+1x 1-1,t (x 2)=x 2+1x 2-1,∴t (x 1)-t (x 2)=x 1+1x 1-1-x 2-1x 2-1=2(x 2-x 1)(x 1-1)(x 2-1),∵x 1>1,x 2>1,x 1<x 2, ∴x 1-1>0,x 2-1>0,x 2-x 1>0. ∴t (x 1)>t (x 2),即x 1+1x 1-1>x 2+1x 2-1,∴当a >1时,log a x 1+1x 1-1>log a x 2+1x 2-1,即f (x 1)>f (x 2);当0<a <1时,log a x 1+1x 1-1<log a x 2+1x 2-1,即f (x 1)<f (x 2),∴当a >1时,f (x )在(1,+∞)上是减函数,当0<a <1时,f (x )在(1,+∞)上是增函数.(3)∵a >1,∴f (x )在(1,3)上是减函数, ∴当x ∈(1,3)时,f (x )>f (3)=log a (2+3), 由条件知,log a (2+3)=1,∴a =2+ 3. (理)已知函数f (x )=-x 2+8x ,g (x )=6ln x +m . (1)求f (x )在区间[t ,t +1]上的最大值h (t );(2)是否存在实数m ,使得y =f (x )的图象与y =g (x )的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由.[解析] (1)f (x )=-x 2+8x =-(x -4)2+16, 当t +1<4,即t <3时,f (x )在[t ,t +1]上单调递增, h (t )=f (t +1)=-(t +1)2+8(t +1) =-t 2+6t +7;当t ≤4≤t +1,即3≤t ≤4时,h (t )=f (4)=16; 当t >4时,f (x )在[t ,t +1]上单调递减, h (t )=f (t )=-t 2+8t .综上,h (t )=⎩⎪⎨⎪⎧-t 2+6t +7,t <316 3≤t ≤4-t 2+8t , t >4.(2)函数y =f (x )的图象与y =g (x )的图象有且只有三个不同的交点,即函数φ(x )=g (x )-f (x )的图象与x 轴的正半轴有且只有三个不同的交点.∵φ(x )=x 2-8x +6ln x +m ,∴φ′(x )=2x -8+6x =2x 2-8x +6x=2(x -1)(x -3)x(x >0). 当x ∈(0,1)时,φ′(x )>0,φ(x )是增函数; 当x ∈(1,3)时,φ′(x )<0,φ(x )是减函数; 当x ∈(3,+∞)时,φ′(x )>0,φ(x )是增函数; 当x =1或x =3时,φ′(x )=0. ∴φ(x )极大值=φ(1)=m -7, φ(x )极小值=φ(3)=m +6ln3-15.∵当x 充分接近0时,φ(x )<0; 当x 充分大时,φ(x )>0.∴要使φ(x )的图象与x 轴正半轴有三个不同的交点,必须且只需⎩⎪⎨⎪⎧φ(x )极大值=m -7>0φ(x )极小值=m +6ln3-15<0,即7<m <15-6ln3. 所以存在实数m ,使得函数y =f (x )与y =g (x )的图象有且只有三个不同的交点,m 的取值范围为(7,15-6ln3).1.函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是奇函数,则( )A .f (x )是偶函数B .f (x )是奇函数C .f (x )=f (x +2)D .f (x +3)是奇函数[答案] D[解析] 由于f (x +1)是奇函数,则函数f (x )的对称中心为(1,0),∴f (1+x )=-f (1-x ),即f (x )=-f (2-x ).又f (x -1)是奇函数,则函数f (x )的对称中心为(-1,0),∴f (-1+x )=-f (-x -1),即f (x )=-f (-2-x ),∴f (2-x )=f (-2-x ),∴f (4-x )=f (x ).可知4为函数f (x )的周期,则f (x +3)是奇函数,故选D.2.已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c =f (0.20.6),则a ,b ,c的大小关系是( )A .c <b <aB .b <c <aC .b <a <cD .a <b <c[答案] C[解析] 由题意知f (x )=f (|x |).∵log 47=log 27>1,|log 123|=log 23>log 27,0<0.20.6<1,∴|log 123|>|log 47|>|0.20.6|.又∵f (x )在(-∞,0]上是增函数,且f (x )为偶函数, ∴f (x )在[0,+∞)上是减函数. ∴b <a <c .故选C.3.若f (x )是偶函数,且当x ∈[0,+∞]时,f (x )=x -1,则不等式f (x -1)<0的解集是( )A .{x |-1<x <0}B .{x |x <0或1<x <2}C .{x |0<x <2}D .{x |1<x <2}[答案] C[解析] ∵f (x )为偶函数,x ∈[0,+∞)时,f (x )=x -1,∴当x ∈(-∞,0]时,f (x )=f (-x )=-x -1,∴f (x -1)<0⇒⎩⎪⎨⎪⎧ x -1≥0,x -1-1<0或⎩⎪⎨⎪⎧x -1<0,-(x -1)-1<0,解之得0<x <2.4.若函数f (x ),g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则有( )A .f (2)<f (3)<g (0)B .g (0)<f (3)<f (2)C .f (2)<g (0)<f (3)D .g (0)<f (2)<f (3)[答案] D[解析] 由已知,f (-x )-g (-x )=-f (x )-g (x )=e -x ,∴f (x )+g (x )=e -x ,又f (x )-g (x )=e x ,故f(x)=e x-e-x2,g(x)=-e x+e-x2.∵f′(x)=e x+e-x2>0,故f(x)单调递增,∴f(3)>f(2)=e2-e-22>0>g(0),故选D.5.给出下列三个等式:f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),f(x+y)=f(x)+f(y)1-f(x)f(y).下列函数中不满足其中任何一个等式的是()A.f(x)=3x B.f(x)=sin x C.f(x)=log2x D.f(x)=tan x [答案] B[解析]选项A,满足f(x+y)=f(x)f(y);选项C满足f(xy)=f(x)+f(y);选项D,满足f(x+y)=f(x)+f(y) 1-f(x)f(y).6.定义两种运算:a⊗b=a2-b2,a⊕b=|a-b|,则函数f(x)=2⊗x(x⊕2)-2()A.是偶函数B.是奇函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数[答案] B[解析]f(x)=4-x2|x-2|-2,∵x2≤4,∴-2≤x≤2,又∵x≠0,∴x∈[-2,0)∪(0,2].则f (x )=4-x 2-x,f (x )+f (-x )=0,故选B.7.函数f (x )的图象是如图所示的折线段OAB ,点A 的坐标为(1,2),点B 的坐标为(3,0).定义函数g (x )=f (x )·(x -1),则函数g (x )的最大值为( )A .0B .2C .1D .4[答案] C[解析] 由图象可知f (x )=⎩⎪⎨⎪⎧2x 0≤x ≤1-x +3 1<x ≤3,所以g (x )=⎩⎪⎨⎪⎧2x (x -1) 0≤x ≤1(-x +3)(x -1) 1<x ≤3,当x ∈[0,1]时,g (x )的最大值为g (0)=g (1)=0;当x ∈(1,3]时,g (x )的最大值为g (2)=1.综上可知,函数g (x )的最大值为1.8.对于函数f (x )定义域内任意的x 1,x 2(x 1≠x 2),①f (x 1+x 2)=f (x 1)f (x 2);②f (x 1·x 2)=f (x 1)+f (x 2);③f (x 1)-f (x 2)x 1-x 2>0;④f ⎝ ⎛⎭⎪⎫x 1+x 22<f (x 1)+f (x 2)2.当f (x )=2x 时,上述结论中正确结论的序号是______. [答案] ①③④[解析] 由于2x 1+x 2=2x 1·2x 2,所以①正确;由于f (x )在R 上为增函数,即当x 1<x 2时,f (x 1)<f (x 2),所以有f (x 1)-f (x 2)x 1-x 2>0,因此③正确;又f (x )=2x 的图象向下凸出,所以④正确.而20×1≠20+21,所以②不正确,故填①③④.9.定义在R 上的偶函数f (x )在[0,+∞)上单调递减,且f (12)=0,则满足f (log 14x )<0的集合为________.[答案] (0,12)∪(2,+∞)[解析] 由题意知f (x )<0的解为x >12或x <-12,∴由f (log 14 x )<0得log 14 x >12或log 14 x <-12,∴0<x <12或x >2.。

相关文档
最新文档