2008年普通高等学校招生全国统一考试数学理试题(四川卷)
2008年普通高等学校招生全国统一考试(四川卷)(数学理)
2008年普通高等学校招生全国统一考试(四川卷)理科数学说明:2008年是四川省高考自主命题的第三年,因突遭特大地震灾害,四川六市州40县延考,本卷为非延考卷.一、选择题:(5'1260'⨯=)1.若集合{1,2,3,4,5}U =,{1,3}A =2,,{234}B =,,,则()U C AB =( )A .{2,3}B .{1,4,5}C .{4,5}D .{1,5}解析:选B .离散型集合的交并补,送分题.难度为三年来最低,究其原因,盖汶川地震之故. 2.复数22(1)i i +=( )A .-4B .4C .-4iD .4i解析:选A .计算题,无任何陷阱,徒送分耳.2008四川考生因祸得福. 3.2(tan cot )cos x x x +=( )A .tan xB .sin xC .cos xD .cot x 解析: 原式32sin cos cos ()cos sin cos cos sin sin x x x x x x x x x =+=+ 23sin cos cos sin x x x x +=22cos (sin cos )sin x x x x +=cos sin xx=cot x =, 选D .同角三角函数基本关系式,切化弦技巧等,属三角恒等变换范畴,辅以常规的代数变形.中等生无忧.4.直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位后所得的直线为( )A .1133y x =-+ B .113y x =-+ C .33y x =- D .113y x =+ 解析:本题有新意,审题是关键.旋转90︒则与原直线垂直,故旋转后斜率为13-.再右移1得1(1)3y x =--.选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换.5.若02απ≤<,sin αα,则α的取值范围是( )A .(,)32ππB .(,)3ππC .4(,)33ππD .3(,)32ππ解析:sin αα,即sin 0αα>,即2sin()03πα->,即sin()03πα->;又由02απ≤<,得5333πππα-≤-<;综上,03παπ≤-<,即433ππα≤<.选C .本题考到了正弦函数的正负区间.除三角函数的定义域、值域和最值、单调性、奇偶性、周期性之外,还要记对称轴、对称中心、正负区间.3,4,5题是本卷第一个坡,是中差生需消耗时间的地方.6.从包括甲、乙共10人中选4人去参加公益活动,要求甲、乙至少有1人参加,则不同的选法有( )A .70B .112C .140D .168解析:审题后针对题目中的至少二字,首选排除法.4410821070140C C -=-=.选C .本题应注意解题策略.7.已知等比数列{}n a 中,21a =,则该数列前三项和3S 的取值范围是( )A .(,1]-∞-B .(,0)(1,)-∞+∞C .[3,)+∞D .(,1][3,)-∞-+∞解析:311S x x =++(0)x ≠.由双勾函数1y x x =+的图象知,12x x +≥或12x x+≤-,故本题选D .本题主要考查等比数列的相关概念和双勾函数的图象和性质.以上诸题,基本功扎实的同学耗时不多. 8.设M 、N 是球O 的半径OP 上的两点,且NP MN OM ==,分别过N 、M 、O 作垂直于OP 的面截球得三个圆,则这三个圆的面积之比为( )A .3:5:6B .3:6:8C .5:7:9D .5:8:9解析:由题知,M 、N 是OP 的三等分点,三个圆的面积之比即为半径的平方之比.在球的轴载面图中易求得:2228()39R R R -=,22225()39R R R -=,故三个圆的半径的平方之比为:22285::99R R R ,故本题选D .本题着意考查空间想象能力.9.设直线l ⊂平面α,过平面α外一点A 且与l 、α都成30︒角的直线有且只有( )A .1条B .2条C .3条D .4条解析:所求直线在平面α内的射影必与直线l 平行,这样的直线只有两条,选B .本题考查空间角的概念和空间想象能力.10.设()sin()f x x ωϕ=+,其中0ϕ>,则函数()f x 是偶函数的充分必要条件是( )A .(0)0f =B .(0)1f =C .'(0)1f =D .'(0)0f = 解析:本题考查理性思维和综合推理能力.函数()f x 是偶函数,则2k πϕπ=+,(0)1f =±,故排除A ,B .又'()cos()f x x ωωϕ=+,2k πϕπ=+,'(0)0f =.选D .此为一般化思路.也可走特殊化思路,取1ω=,2πϕ=±验证.11.定义在R 上的函数()f x 满足:()(2)13f x f x ⋅+=,(1)2f =,则(99)f =( )A .13B .2C .132D .213解析:由()(2)13f x f x ⋅+=,知(2)(4)13f x f x +⋅+=,所以(4)()f x f x +=,即()f x 是周期函数,周期为4.所以1313(99)(3424)(3)(1)2f f f f =+⨯===.选C .题着意考查抽象函数的性质.赋值、迭代、构造是解抽象函数问题不可或缺的三招.本题看似艰深,实为抽象函数问题中的常规题型,优生要笑了.12.设抛物线2:8C y x =的焦点为F ,准线与x 轴相交于点K ,点A 在C 上且AK =,则AFK ∆的面积为( )A .4B .8C .16D .32解析:解几常规题压轴,不怕.边读题边画图.28y x =的焦点(2,0)F ,准线2x =-,(2,0)K -.设(,)Axy ,由AK =,,即2222(2)2[(2)]x y x y ++=-+.化简得:22124y x x =-+-,与28y x =联立求解,解得:2x =,4y =±.1144822AFK A S FK y ∆=⋅⋅=⋅⋅=,选B .本题的难度仅体现在对运算的准确性和快捷性上. 点评:(1)纵观12道选择题,没有真正意义上的压轴题,这是大众数学时代的来临呢,还是沾了2008地震的光?(2)真正体现了多考点想,少考点算的一套试题,做到了言而有信.(3)进一步体现了回归教材的意图,在高三复习中,题海战术应被教材串讲取而代之. (4)全面考查双基,基础扎实的同学受益,走难偏深押题路线的策略得不偿失. (5)周考月考的命题意图命题方向命题难度值得反思.二、填空题:(4'416'⨯=)13.34(12)(1)x x +-的展开式中2x 项的系数是 答案:6-.解析:二项式定理再现,难度高于文科.341221223344(12)(1)(124)(1)x x C x C x C x C x +-=+⋅+⋅+-++2x 项的系数是2112434324624126C C C C -+=-+=-.这是中档略偏难的常规题.中差生在准确性和快捷性上有缺陷.14.已知直线:60l x y -+=,圆22:(1)(1)2C x y -+-=,则圆C 上各点到直线l 的距离的最小值是答案:解析:由数想形,所求最小值=圆心到到直线的距离-圆的半径.圆心(1,1)到直线60x y -+=的距离d === 15,则该正四棱柱的体积是 . 答案:2.解析:由题意,2226cos a a h θ⎧++=⎪⎨==⎪⎩12a h =⎧⇒⎨=⎩,22V a h ⇒== 16.设等差数列{}n a 的前n 项和为n S ,410S ≥,515S ≤,则4a 的最大值是 . 答案:4.解析:由题意,11434102545152a d a d ⨯⎧+≥⎪⎪⎨⨯⎪+≤⎪⎩,即11461051015a d a d +≥⎧⎨+≤⎩,1123523a d a d +≥⎧⎨+≤⎩,413a a d =+.这是加了包装的线性规划,有意思.建立平面直角坐标系1a od ,画出可行域1123523a d a d +≥⎧⎨+≤⎩(图略),画出目标函数即直线413a a d =+,由图知,当直线413a a d =+过可行域内(1,1)点时截距最大,此时目标函数取最大值44a =.本题明为数列,实为线性规划,着力考查了转化化归和数形结合思想.掌握线性规划问题"画-移-求-答"四步曲,理解线性规划解题程序的实质是根本.这是本题的命题意图.因约束条件只有两个,本题也可走不等式路线.设111213(23)(2)a d a d a d λλ+=+++,由121221323λλλλ+=⎧⎨+=⎩解得1213λλ=-⎧⎨=⎩,∴1113(23)3(2)a d a d a d +=-+++,由不等式的性质得:1123523a d a d +≥⎧⎨+≤⎩ 11(23)53(2)9a d a d -+≤-⎧⇒⎨+≤⎩ 11(23)3(2)4a d a d ⇒-+++≤,即4134a a d =+≤,4a 的最大值是4.从解题效率来看,不等式路线为佳,尽管命题者的意图为线性规划路线.本题解题策略的选择至关重要. 点评:(1)二项式定理,直线和圆的方程,正四棱柱,数列几个知识点均为前两年未考点.(2)无多选压轴题.无开放性压轴题.易入手,考不好考生只能怪自已.题出得基础,出得好,出得妙.尤其是第16题.三、解答题:(12'12'12'12'12'14'76'+++++=)解答应写出文字说明,证明过程或演算步骤. 17.求函数2474sin cos 4cos 4cos y x x x x =-+-的最大值和最小值. 解析:2474sin cos 4cos 4cos y x x x x =-+-2484sin cos 14cos 4cos x x x x =--+-2284sin cos (12cos )x x x =---282sin 2cos 2x x =--282sin 2(1sin 2)x x =---272sin 2sin 2x x =-+26(1sin 2)x =+-max 10y =,min 6y =.解析:2474sin cos 4cos 4cos y x x x x =-+-2272sin 24cos (1cos )x x x =-+-2272sin 24cos sin x x x =-+ 272sin 2sin 2x x =-+26(1sin 2)x =+-max 10y =,min 6y =.点评:一考三角恒等变换,二考三角函数与二次函数相结合,意在避开前几年固定套路.由此观之,一味追前两年高考试题套路之风有踏空之嫌,立足考点回归教材方为根本.18.设进入某商场的每一位顾客购买甲商品的概率0.5,购买乙商品的概率为0.6,且顾客购买甲商品与购买乙商品相互独立,每位顾客间购买商品也相互独立.(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率; (Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(Ⅲ)设ξ是进入商场的3位顾客至少购买甲、乙商品中一种的人数,求ξ的分布列及期望. 解析:题目这么容易,估计今年的评分标准要偏严了. (Ⅰ)0.5(10.6)(10.5)0.6P =⨯-+-⨯0.20.30.5=+= (Ⅱ)1(10.5)(10.6)0.8P =---= (Ⅲ)ξ可取0,1,2,3.33(0)(10.8)0.008P C ξ==⨯-= 123(1)(10.8)0.80.096P C ξ==⨯-⨯=223(2)(10.8)0.80.384P C ξ==⨯-⨯= 333(3)0.80.512P C ξ==⨯=ξ的分布列为~(3,0.8)B ξ30.8 2.4E ξ=⨯=.点评:返朴归真,教材难度,审题无障碍.平和中正之风宜大力提倡.19.如图,面ABEF ⊥面ABCD ,四边形ABEF 与ABCD 都是直角梯形,90BAD BAF ∠=∠=︒,BC //=12AD ,BE //=12AF . (Ⅰ)求证:C 、D 、E 、F 四点共面;(Ⅱ)若BA BC BE ==,求二面角A ED B --的大小.解析:不是会不会的问题,而是熟不熟的问题,答题时间是最大问题. (Ⅰ)∵面ABEF ⊥面ABCD ,90AF AB ⊥=︒ ∴AF ⊥面ABCD .∴以A 为原点,以AB ,AD ,AF 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系A xyz -. 不妨设AB a =,2AD b =,2AF c =,则(0,0,A ,(,0,0)B a ,(,,0)C a b ,(0,2,0)D b ,(,0,)E a c ,(0,0,2)F c . ∴(0,2,2)DF b c =-,(0,,)CE b c =-,∴2DF CE =,∴//DF CE ,∵E DF ∉,∴//DF CE , ∴C 、D 、E 、F 四点共面.(Ⅱ)设1AB =,则1BC BE ==,∴(1,0,0)B ,(0,2,0)D ,(1,0,1)E .设平面AED 的法向量为1111(,,)n x y z =,由1100n AE n AD ⎧⋅=⎪⎨⋅=⎪⎩,得111020x z y +=⎧⎨=⎩,1(1,0,1)n =-设平面BED 的法向量为2222(,,)n x y z =由210n BE n BD ⎧⋅=⎪⎨⋅=⎪⎩,得222020z x y =⎧⎨-+=⎩,2(2,1,0)n =B ACDEF12cos ,n n <>1212n n n n ⋅=⋅=5=由图知,二面角A ED B --为锐角,∴其大小为arccos5. 点评:证共面就是证平行,求二面角转为求法向量夹角,时间问题是本题的困惑处.心浮气燥会在计算、书写、时间上丢分.因建系容易,提倡用向量法.本时耗时要超过17题与18题用时之和.20.设数列{}n a 满足:2(1)n n n ba b S -=-. (Ⅰ)当2b =时,求证:1{2}n n a n --⋅是等比数列; (Ⅱ)求n a 通项公式.解析:由题意,在2(1)n n n ba b S -=-中,令1n =,得112(1)ba b a -=-,12a =. 由2(1)n n n ba b S -=-得1112(1)n n n ba b S ----=-(2,*)n n N ≥∈ 两式相减得:11()2(1)n n n n b a a b a ----=-即112n n n a ba --=+(2,*)n n N ≥∈ …………① (Ⅰ)当2b =时,由①知,1122n n n a a --=+于是11122(1)2n n n n a n a n ----⋅=--⋅212[(1)2]n n a n --=--⋅(2,*)n n N ≥∈又1111210a --⋅=≠,所以1{2}n n a n --⋅是首项为1,公比为2的等比数列. (Ⅰ)变:当2b =时,求n a 的通项公式.解法如下:解:当2b =时,由①知,1122n n n a a --=+两边同时除以2n得111222n n n n a a --=+(2,*)n n N ≥∈ 111222n n n n a a ---=(2,*)n n N ≥∈ ∴{}2n na 是等差数列,公差为12,首项为112a =∴111(1)(1)222n n a n n =+-=+ ∴1(1)2n n a n -=+(∴1122n n n a n ---⋅=,∴1{2}n n a n --⋅是等比数列,首项为1,公比为2)(Ⅱ)当2b =时,由(Ⅰ)知,1122n n n a n ---⋅=,即1(1)2n n a n -=+⋅当2b ≠时,由①:112n n n a ba --=+ 两边同时除以2n得1112222n n n n a a b --=⋅+ 可设11()222n n n n a a b λλ--+=⋅+ …………② 展开②得1122222n n n n a a b b λ---=⋅+⋅,与1112222n n n n a a b --=⋅+比较, 得2122b λ-⋅=,∴12b λ=-. ∴1111()22222n n n n a a b b b --+=⋅+-- ∴1{}22n n a b +-是等比数列,公比为2b ,首项为11122b b b -+=-- ∴111()2222n n n a b b b b --+=⋅-- ∴111()2222n n n a b b b b --=⋅---∴11112(1)22()2222n n nn n b b b b a b b b -----⎡⎤=⋅-=⎢⎥---⎣⎦ 点评:这是第一道考查"会不会"的问题.如若不会,对不起,请先绕道走.对大多数考生而言,此题是一道拦路虎.可能比压轴题还让人头痛.原因是两个小题分别考到了两种重要的递推方法.递推数列中对递推方法的考查,有30年历史了,现在只是陈题翻新而已.不过此题对考生有不公平之嫌.大中城市参加过竞赛培训的优生占便宜了.解题有套方为高啊.21.设椭圆22221(0)x y a b a b +=>>的左、右焦点分别是1F 、2F,离心率e =,右准线l 上的两动点M 、N ,且120FM F N ⋅=. (Ⅰ)若1225F M F N ==,求a 、b 的值; (Ⅱ)当MN 最小时,求证12FM F N +与12F F 共线.解析:数列和解几位列倒数第三和第二,意料之中.开始挤牙膏吧.(Ⅰ)由已知,1(,0)F c -,2(,0)F c.由2e =,2212c a =,∴222a c =.又222a b c =+,∴22b c =,222a b =.∴l :2222a c x c c c===,1(2,)M c y ,2(2,)N c y . 延长2NF 交1MF 于P ,记右准线l 交x 轴于Q . ∵120FM F N ⋅=,∴12FM F N ⊥.12F M F N ⊥ 由平几知识易证1Rt MQF ∆≌2Rt F QN ∆ ∴13QN FQ c ==,2QM F Q c == 即1y c =,23y c =. ∵1225F M F N ==,∴22920c c +=,22c =,22b =,24a=. ∴2a =,b =(Ⅰ)另解:∵120FM F N ⋅=,∴12(3,)(,)0c y c y ⋅=,21230y y c =-<. 又1225F M F N ==联立212221222392020y y c c y c y ⎧=-⎪+=⎨⎪+=⎩,消去1y 、2y 得:222(209)(20)9c c c --=,整理得:4292094000c c -+=,22(2)(9200)0c c --=.解得22c =.但解此方程组要考倒不少人.(Ⅱ)∵1212(3,)(,)0FM F N c y c y ⋅=⋅=,∴21230y y c =-<. 22222121212121212222412MN yy y y y y y y y y y y c =-=+-≥--=-=.当且仅当12y y =-或21y y =-=时,取等号.此时MN 取最小值. 此时1212(3,3)(,3)(4,0)2FM F N c c c c c F F +=±+==.∴12FM F N +与12F F 共线. (Ⅱ)另解:∵120FM F N ⋅=,∴12(3,)(,)0c y c y ⋅=,2123y y c =-. 设1MF ,2NF 的斜率分别为k ,1k-. 由1()32y k x c y kc x c =+⎧⇒=⎨=⎩,由21()2y x c c y k k x c ⎧=--⎪⇒=-⎨⎪=⎩1213MN y y c k k=-=⋅+≥.当且仅当13k k=即213k =,k =时取等号. 即当MN 最小时,3k =±, 此时1212(3,3)(,)(3,3)(,3)(4,0)2cF M F N c kc c c c c c c F F k +=+-=±+==. ∴12FM F N +与12F F 共线. 点评:本题第一问又用到了平面几何.看来,与平面几何有联系的难题真是四川风格啊.注意平面几何可与三角向量解几沾边,应加强对含平面几何背景的试题的研究.本题好得好,出得活,出得妙!均值定理,放缩技巧,永恒的考点.22.已知3x =是函数2()ln(1)10f x a x x x =++-的一个极值点.(Ⅰ)求a 的值;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)当直线y b =与函数()y f x =的图像有3个交点,求b 的取值范围.解析:似曾相识.通览后三题,找感觉,先熟后生,先易后难,分步得分.本卷后三难中,压轴题最熟最易入手.(Ⅰ)2()ln(1)10f x a x x x =++-'()2101a f x x x=+-+ 3x =是函数2()ln(1)10f x a x x x =++-的一个极值点.'(3)404a f =-= 16a =(Ⅱ)由(Ⅰ)2()16ln(1)10f x x x x =++-,(1,)x ∈-+∞.2162862(1)(3)'()210111x x x x f x x x x x -+--=+-==+++ 令'()0f x =,得1x =,3x =.'()f x 和()f x 随x 的变化情况如下:()f x 的增区间是(1,1)-,(3,)+∞;减区间是(1,3).(Ⅲ)由(Ⅱ)知,()f x 在(1,1)-上单调递增,在(3,)+∞上单调递增,在(1,3)上单调递减. ∴()(1)16ln 29f x f ==-极大,()(3)32ln 221f x f ==-极小.又1x +→-时,()f x →-∞;x →+∞时,()f x →+∞;可据此画出函数()y f x =的草图(图略),由图可知,当直线y b =与函数()y f x =的图像有3个交点时,b 的取值范围为(32ln 221,16ln 29)--. 点评:压轴题是这种难度吗?与前两年相比档次降得太多了.太常规了,难度尚不及20题和21题.天上掉馅饼了吗?此题当为漏掉定义域者戒.。
2008高考四川数学理科试卷和答案(全word版)
2008年普通高等学校招生全国统一考试(四川卷)数 学(理工农医类)及逐题详解本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。
2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动、用橡皮擦干净后,再选涂其他答案标号。
3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上.....书写。
在试题卷上作答无效.........。
4. 考试结束,监考员将试题卷和答题卡一并收回。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次实验中发生的概率是p ,那么 343V R π=n 次独立重复实验中事件A 恰好发生k 次的概率 其中R 表示球的半径()()()1,0,1,2,,n kk kn n P k C p p k n -=-=第Ⅰ卷一.选择题:1.设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则()U A B = ð( B )(A){}2,3 (B){}1,4,5 (C){}4,5 (D){}1,5 【解】:∵{}{}1,2,3,2,3,4A B == ∴{}2,3A B =又∵{}1,2,3,4,5U = ∴(){}1,4,5U A B = ð 故选B ; 【考点】:此题重点考察集合的交集,补集的运算; 【突破】:画韦恩氏图,数形结合; 2.复数()221i i +=( A )(A)4- (B)4 (C)4i - (D)4i【解】:∵()()222121212244i i i i i i i +=+-=⨯==- 故选A ;【点评】:此题重点考复数的运算;【突破】:熟悉乘法公式,以及注意21i =-; 3.()2tan cot cos x x x +=( D )(A)tan x (B)sin x (C)cos x (D)cot x【解】:∵()22222sin cos sin cos tan cot cos cos cos cos sin sin cos x x x x x x x x x x x x x +⎛⎫+=+=⋅ ⎪⎝⎭cos cot sin xx x== 故选D ; 【点评】:此题重点考察各三角函数的关系;【突破】:熟悉三角公式,化切为弦;以及注意22sin cos sin cos 1,tan ,cot cos sin x xx x x x x x+===; 4.直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( A )(A)1133y x =-+ (B)113y x =-+ (C)33y x =- (D)113y x =+ 【解】:∵直线3y x =绕原点逆时针旋转090的直线为13y x =-,从而淘汰(C),(D )又∵将13y x =-向右平移1个单位得()113y x =--,即1133y x =-+ 故选A ;【点评】:此题重点考察互相垂直的直线关系,以及直线平移问题;【突破】:熟悉互相垂直的直线斜率互为负倒数,过原点的直线无常数项;重视平移方法:“左加右减”;5.若02,sin απαα≤≤>,则α的取值范围是:( C ) (A),32ππ⎛⎫⎪⎝⎭ (B),3ππ⎛⎫ ⎪⎝⎭ (C)4,33ππ⎛⎫ ⎪⎝⎭ (D)3,32ππ⎛⎫⎪⎝⎭【解】:∵sin αα ∴sin 0αα> ,即12sin 2sin 023πααα⎛⎫⎛⎫=-> ⎪ ⎪ ⎪⎝⎭⎝⎭又∵02απ≤≤ ∴5333πππα-≤-≤,∴03παπ≤-≤ ,即4,33x ππ⎛⎫∈ ⎪⎝⎭故选C ; 【考点】:此题重点考察三角函数中两角和与差的正余弦公式逆用,以及正余弦函数的图象; 【突破】:熟练进行三角公式的化简,画出图象数形结合得答案;6.从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有( C )(A)70种 (B)112种 (C)140种 (D)168种 【解】:∵从10个同学中挑选4名参加某项公益活动有410C 种不同挑选方法;从甲、乙之外的8个同学中挑选4名参加某项公益活动有48C 种不同挑选方法;∴甲、乙中至少有1人参加,则不同的挑选方法共有4410821070140C C -=-=种不同挑选方法 故选C ;【考点】:此题重点考察组合的意义和组合数公式;【突破】:从参加 “某项”切入,选中的无区别,从而为组合问题;由“至少”从反面排除易于解决;7.已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是(D ) (A)(],1-∞- (B)()(),01,-∞+∞ (C)[)3,+∞ (D)(][),13,-∞-+∞【解1】:∵等比数列()n a 中21a = ∴当公比为1时,1231a a a ===,33S = ; 当公比为1-时,1231,1,1a a a =-==-,31S =- 从而淘汰(A)(B)(C)故选D ;【解2】:∵等比数列()n a 中21a = ∴312321111S a a a a q q q q⎛⎫=++=++=++ ⎪⎝⎭∴当公比0q >时,31113S q q =++≥+=;当公比0q <时,31111S q q ⎛⎫=---≤-=- ⎪⎝⎭ ∴(][)3,13,S ∈-∞-+∞ 故选D ;【考点】:此题重点考察等比数列前n 项和的意义,等比数列的通项公式,以及均值不等式的应用;【突破】:特殊数列入手淘汰;重视等比数列的通项公式,前n 项和,以及均值不等式的应用,特别是均值不等式使用的条件;8.设,M N 是球心O 的半径OP 上的两点,且NP MN OM ==,分别过,,N M O 作垂线于OP 的面截球得三个圆,则这三个圆的面积之比为:( D )(A)3,5,6 (B)3,6,8 (C)5,7,9 (D)5,8,9【解】:设分别过,,N M O 作垂线于OP 的面截球得三个圆的半径为123,,r r r ,球半径为R ,则:22222222222212325182,,39393r R R R r R R R r R R R ⎛⎫⎛⎫⎛⎫=-==-==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴222123::5:8:9r r r = ∴这三个圆的面积之比为:5,8,9 故选D【点评】:此题重点考察球中截面圆半径,球半径之间的关系; 【突破】:画图数形结合,提高空间想象能力,利用勾股定理;9.设直线l ⊂平面α,过平面α外一点A 与,l α都成030角的直线有且只有:( D ) (A)1条 (B)2条 (C)3条 (D)4条 【解】:如图,当030AOC ACB ∠=∠=时,直线AC 满足条件; 同理,当030AOB ABC ∠=∠=时,直线AB 满足条件;又由图形的对称性,知在另一侧存在两条满足条件与直线l 成异面直线的直线 故选D 【点评】:此题重点考察线线角,线面角的关系,以及空间想象能力,图形的对称性;【突破】:数形结合,利用圆锥的母线与底面所成的交角不变画图,重视空间想象能力和图形的对称性;10.设()()sin f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f =(D)()'00f=【解】:∵()()sin f x x ωϕ=+是偶函数∴由函数()()sin f x x ωϕ=+图象特征可知0x =必是()f x 的极值点, ∴()'00f= 故选D【点评】:此题重点考察正弦型函数的图象特征,函数的奇偶性,函数的极值点与函数导数的关系;【突破】:画出函数图象草图,数形结合,利用图象的对称性以及偶函数图象关于y 轴对称的要求,分析出0x =必是()f x 的极值点,从而()'00f=;11.设定义在R 上的函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213【解】:∵()()213f x f x ⋅+=且()12f = ∴()12f =,()()1313312f f ==, ()()13523f f ==,()()1313752f f ==,()()13925f f ==, , ∴()221132n f n n ⎧⎪-=⎨⎪⎩为奇数为偶数,∴()()1399210012f f =⨯-=故选C【点评】:此题重点考察递推关系下的函数求值;【突破】:此类题的解决方法一般是求出函数解析式后代值,或者得到函数的周期性求解; 12.已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且A K A F =,则AFK ∆的面积为(B )(A)4 (B)8 (C)16 (D)32 【解】:∵抛物线2:8C y x =的焦点为()20F ,,准线为2x =- ∴()20K -, 设()00A x y ,,过A 点向准线作垂线AB ,则()02B y -,∵AK =,又()0022AF AB x x ==--=+∴由222BK AK AB =-得()22002y x =+,即()20082x x =+,解得()24A ±,∴AFK ∆的面积为01144822KF y ⋅=⨯⨯= 故选B 【点评】:此题重点考察双曲线的第二定义,双曲线中与焦点,准线有关三角形问题; 【突破】:由题意准确化出图象,利用离心率转化位置,在ABK ∆中集中条件求出0x 是关键;第Ⅱ卷二.填空题:本大题共4个小题,每小题4分,共16分。
……2008年普通高等学校招生全国统一考试理科数学试题及答案-全国卷1
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-=,,,一、选择题1.函数y =)A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( ) A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( )A .e 2x-1B .e 2xC .e 2x+1D . e 2x+27.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,, D .(10)(01)-,,10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b+≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为A .B .C .D .ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13BCD .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为,M 、N 分别是AC 、BC 的中点,则EM 、AN 所成角的余弦值等于 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a 、b 、c ,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 20.(本小题满分12分)CDE AB(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=.(Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<; (Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.参考答案一、选择题 1、C 2、A 3、A 4、D 5、C 6、B 7、D 8、A 9.D 10.D . 11.B . 12.B. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.答案:9.14. 答案:2.15.答案:38. 16.答案:16. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.解析:(Ⅰ)由正弦定理得a=CBc b C A c sin sin ,sin sin = acosB-bcosA=(A CBB C A cos sin sin cos sin sin ⋅-⋅)c =c B A AB B A ⋅+-)sin(cos sin cos sin=c B A B A BA B A ⋅+-sin cos cos sin sin cos cos sin=1cot tan )1cot (tan +-B A cB A依题设得c B A c B A 531cot tan )1cot (tan =+- 解得tanAcotB=4(II)由(I )得tanA=4tanB ,故A 、B 都是锐角,于是tanB>0 tan(A-B)=B A BA tan tan 1tan tan +-=B B 2tan 41tan 3+ ≤43, 且当tanB=21时,上式取等号,因此tan(A-B)的最大值为4318.解:(I)作AO ⊥BC ,垂足为O ,连接OD ,由题设知,AO ⊥底面BCDE ,且O 为BC 中点, 由21==DE CD CD OC 知,Rt △OCD ∽Rt △CDE , 从而∠ODC=∠CED ,于是CE ⊥OD ,由三垂线定理知,AD ⊥CE(II )由题意,BE ⊥BC ,所以BE ⊥侧面ABC ,又BE ⊂侧面ABE ,所以侧面ABE ⊥侧面ABC 。
2008年普通高等学校招生全国统一考试数学卷(全国Ⅱ.理)含详解
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k kn k k n P k C p p k n -=-= ,,,,一、选择题1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 2.设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( ) A .223b a = B .223a b =C .229b a =D .229a b =3.函数1()f x x x=-的图像关于( )A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称4.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a5.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值( )A .2-B .4-C .6-D .8-6.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A .929B .1029C .1929D .20297.64(1(1-的展开式中x 的系数是( )A .4-B .3-C .3D .48.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( )A .1BCD .29.设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( ) A. B.C .(25),D.(210.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A .13B.3C.3D .2311.等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( ) A .3B .2C .13-D .12-12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1B .2C .3D .22008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 14.设曲线axy e =在点(01),处的切线与直线210x y ++=垂直,则a = . 15.已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB >,则FA 与FB 的比值等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,5cos 13B =-,4cos 5C =. (Ⅰ)求sin A 的值;(Ⅱ)设ABC △的面积332ABC S =△,求BC 的长. 18.(本小题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为41010.999-.(Ⅰ)求一投保人在一年度内出险的概率p ;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).19.(本小题满分12分)如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1CC 上且EC E C 31=.(Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小.20.(本小题满分12分)设数列{}n a 的前n 项和为n S .已知1a a =,13nn n a S +=+,*n ∈N .(Ⅰ)设3nn n b S =-,求数列{}n b 的通项公式;(Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.21.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF =,求k 的值;(Ⅱ)求四边形AEBF 面积的最大值. 22.(本小题满分12分) 设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.AB CD EA 1B 1C 1D 12008年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.B 2.A 3.C 4.C 5.D 6.D 7.B 8.B 9.B 10.C 11.A 12.C 二、填空题13.2 14.2 5.3+16.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 【答案】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M 【高考考点】集合的运算,整数集的符号识别2.设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( ) A .223b a = B .223a b =C .229b a =D .229a b =【答案】A【解析】i b b a ab a i b ab bi a a bi a )3()3(33)(322332233-+-=--+=+,因是实数且 0b ≠,所以2232303a b b b a =⇒=- 【高考考点】复数的基本运算3.函数1()f x x x=-的图像关于( ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称【答案】C 【解析】1()f x x x=-是奇函数,所以图象关于原点对称 【高考考点】函数奇偶性的性质4.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a【答案】C【解析】由0ln 111<<-⇒<<-x x e ,令x t ln =且取21-=t 知b <a <c 5.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值( )A .2-B .4-C .6-D .8- 【答案】D【解析】如图作出可行域,知可行域的顶点是A (-2,2)、B(32,32)及C(-2,-2)于是8)(m in -=A z6.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A .929B .1029C .1929D .2029【答案】D【解析】2920330110220210120=+=C C C C C P 7.64(1(1-的展开式中x 的系数是( )A .4-B .3-C .3D .4【答案】B【解析】324156141604262406-=-+=-+C C C C C C 【易错提醒】容易漏掉1416C C 项或该项的负号8.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( )A .1B CD .2【答案】B【解析】在同一坐标系中作出x x f sin )(1=及x x g cos )(1=在]2,0[π的图象,由图象知,当43π=x ,即43π=a 时,得221=y ,222-=y ,∴221=-=y y MN【高考考点】三角函数的图象,两点间的距离【备考提示】函数图象问题是一个常考常新的问题9.设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )A .B .C .(25),D .(2【答案】B【解析】222222)11(1)1()(a a a a a c e ++=++==,因为a 1是减函数,所以当1a >时 110<<a,所以522<<e ,即52<<e 【高考考点】解析几何与函数的交汇点 10.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( )A .13B .3C D .23【答案】C【解析】连接AC 、BD 交于O ,连接OE ,因OE ∥SD.所以∠AEO 为所求。
2008年普通高等学校招生全国统一考试理科数学试题及答案-全国卷1
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名.准考证号.填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号.姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-=,,,一.选择题1.函数y =)A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动.加速行驶.匀速行驶.减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( ) A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( )A .e 2x-1B .e 2xC .e 2x+1D . e 2x+27.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,, D .(10)(01)-,,10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b +≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为A .B .C .D .ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13BCD .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名.准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号.姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M.N 分别是AC.BC 的中点,则EM.AN 所成角的余弦值等于 .三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a.b.c ,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.CDE AB方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=.(Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<; (Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.参考答案一.选择题 1.C 2.A 3.A 4.D 5.C 6.B 7.D 8.A 9.D 10.D . 11.B . 12.B. 二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.答案:9.14. 答案:2.15.答案:38. 16.答案:16. 三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.解析:(Ⅰ)由正弦定理得a=CBc b C A c sin sin ,sin sin = acosB-bcosA=(A CBB C A cos sin sin cos sin sin ⋅-⋅)c =c B A AB B A ⋅+-)sin(cos sin cos sin=c B A B A BA B A ⋅+-sin cos cos sin sin cos cos sin=1cot tan )1cot (tan +-B A cB A依题设得c B A c B A 531cot tan )1cot (tan =+- 解得tanAcotB=4(II)由(I )得tanA=4tanB ,故A.B 都是锐角,于是tanB>0 tan(A-B)=B A BA tan tan 1tan tan +-=B B 2tan 41tan 3+ ≤43, 且当tanB=21时,上式取等号,因此tan(A-B)的最大值为4318.解:(I)作AO ⊥BC ,垂足为O ,连接OD ,由题设知,AO ⊥底面BCDE ,且O 为BC 中点, 由21==DE CD CD OC 知,Rt △OCD ∽Rt △CDE , 从而∠ODC=∠CED ,于是CE ⊥OD , 由三垂线定理知,AD ⊥CE(II )由题意,BE ⊥BC ,所以BE ⊥侧面ABC ,又BE ⊂侧面ABE ,所以侧面ABE ⊥侧面ABC 。
2008年普通高等学校招生全国统一考试(理科数学)(四川延考卷)
2008年普通高等学校招生全国统一考试(四川延考卷)数学(理科)一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)集合{1,0,1}A =−,A 的子集中,含有元素0的子集共有(A)2个(B)4个(C)6个(D)8个解:A 的子集共328=个,含有元素0的和不含元素0的子集各占一半,有4个.选B (2)已知复数(3)(3)2i i z i+−=−,则||z =(D)解:(3)(3)10(2)2(2)422(2)(2)i i i z i i i i i +−+===+=+−−+||z ⇒==(3)41(1)(1)x x++的展开式中含2x 的项的系数为(A)4(B)6(C)10(D)12解:41223344411(1)(1)(1)(1)x C x C x C x x x++=+++++L 展开式中含2x 项的系数为234410C C +=(4)已知*n N ∈,则不等式220.011nn −<+的解集为(A){|n n ≥199,*}n N ∈(B){|n n ≥200,*}n N ∈(C){|n n ≥201,*}n N ∈(D){|n n ≥202,*}n N ∈解:22220.0111200n n n −=<=++*200,n n N ⇒≥∈(5)已知1tan 2α=,则2(sin cos )cos 2ααα+=(A)2(B)2−(C)3(D)3−解:211(sin cos )sin cos 1tan 231cos 2cos sin 1tan 12ααααααααα++++====−−−,选C (6)一个正三棱锥的底面边长等于一个球的半径,该正三棱锥的高等于这个球的直径,则球的体积与正三棱锥体积的比值为(D)解:设球的半径为r 3143V r π⇒=;正三棱锥的底面面积2S =,2h r =,232123V r ⇒=×=。
2008高考四川数学理科试卷含详细解答(全word版)
2008年普通高等学校招生全国统一考试(四川卷)数 学(理工农医类)及逐题详解本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。
2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动、用橡皮擦干净后,再选涂其他答案标号。
3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上.....书写。
在试题卷上作答无效.........。
4. 考试结束,监考员将试题卷和答题卡一并收回。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次实验中发生的概率是p ,那么 343V R π=n 次独立重复实验中事件A 恰好发生k 次的概率 其中R 表示球的半径()()()1,0,1,2,,n kk kn n P k C p p k n -=-=第Ⅰ卷一.选择题:1.设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则()U A B = ð( B )(A){}2,3 (B){}1,4,5 (C){}4,5 (D){}1,5 【解】:∵{}{}1,2,3,2,3,4A B == ∴{}2,3A B =又∵{}1,2,3,4,5U = ∴(){}1,4,5U A B = ð 故选B ; 【考点】:此题重点考察集合的交集,补集的运算; 【突破】:画韦恩氏图,数形结合; 2.复数()221i i +=( A )(A)4- (B)4 (C)4i - (D)4i【解】:∵()()222121212244i i i i i i i +=+-=⨯==- 故选A ;【点评】:此题重点考复数的运算;【突破】:熟悉乘法公式,以及注意21i =-; 3.()2tan cot cos x x x +=( D )(A)tan x (B)sin x (C)cos x (D)cot x【解】:∵()22222sin cos sin cos tan cot cos cos cos cos sin sin cos x x x x x x x x x x x x x +⎛⎫+=+=⋅ ⎪⎝⎭cos cot sin xx x== 故选D ; 【点评】:此题重点考察各三角函数的关系;【突破】:熟悉三角公式,化切为弦;以及注意22sin cos sin cos 1,tan ,cot cos sin x xx x x x x x+===; 4.直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( A )(A)1133y x =-+ (B)113y x =-+ (C)33y x =- (D)113y x =+ 【解】:∵直线3y x =绕原点逆时针旋转090的直线为13y x =-,从而淘汰(C),(D )又∵将13y x =-向右平移1个单位得()113y x =--,即1133y x =-+ 故选A ;【点评】:此题重点考察互相垂直的直线关系,以及直线平移问题;【突破】:熟悉互相垂直的直线斜率互为负倒数,过原点的直线无常数项;重视平移方法:“左加右减”;5.若02,sin απαα≤≤>,则α的取值范围是:( C ) (A),32ππ⎛⎫⎪⎝⎭ (B),3ππ⎛⎫ ⎪⎝⎭ (C)4,33ππ⎛⎫ ⎪⎝⎭ (D)3,32ππ⎛⎫⎪⎝⎭【解】:∵sin αα ∴sin 0αα> ,即12sin 2sin 023πααα⎛⎫⎛⎫=-> ⎪ ⎪ ⎪⎝⎭⎝⎭又∵02απ≤≤ ∴5333πππα-≤-≤,∴03παπ≤-≤ ,即4,33x ππ⎛⎫∈ ⎪⎝⎭故选C ; 【考点】:此题重点考察三角函数中两角和与差的正余弦公式逆用,以及正余弦函数的图象; 【突破】:熟练进行三角公式的化简,画出图象数形结合得答案;6.从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有( C )(A)70种 (B)112种 (C)140种 (D)168种 【解】:∵从10个同学中挑选4名参加某项公益活动有410C 种不同挑选方法;从甲、乙之外的8个同学中挑选4名参加某项公益活动有48C 种不同挑选方法;∴甲、乙中至少有1人参加,则不同的挑选方法共有4410821070140C C -=-=种不同挑选方法 故选C ;【考点】:此题重点考察组合的意义和组合数公式;【突破】:从参加 “某项”切入,选中的无区别,从而为组合问题;由“至少”从反面排除易于解决;7.已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是(D ) (A)(],1-∞- (B)()(),01,-∞+∞ (C)[)3,+∞ (D)(][),13,-∞-+∞【解1】:∵等比数列()n a 中21a = ∴当公比为1时,1231a a a ===,33S = ; 当公比为1-时,1231,1,1a a a =-==-,31S =- 从而淘汰(A)(B)(C)故选D ;【解2】:∵等比数列()n a 中21a = ∴312321111S a a a a q q q q⎛⎫=++=++=++ ⎪⎝⎭∴当公比0q >时,31113S q q =++≥+=;当公比0q <时,31111S q q ⎛⎫=---≤-=- ⎪⎝⎭ ∴(][)3,13,S ∈-∞-+∞ 故选D ;【考点】:此题重点考察等比数列前n 项和的意义,等比数列的通项公式,以及均值不等式的应用;【突破】:特殊数列入手淘汰;重视等比数列的通项公式,前n 项和,以及均值不等式的应用,特别是均值不等式使用的条件;8.设,M N 是球心O 的半径OP 上的两点,且NP MN OM ==,分别过,,N M O 作垂线于OP 的面截球得三个圆,则这三个圆的面积之比为:( D )(A)3,5,6 (B)3,6,8 (C)5,7,9 (D)5,8,9【解】:设分别过,,N M O 作垂线于OP 的面截球得三个圆的半径为123,,r r r ,球半径为R ,则:22222222222212325182,,39393r R R R r R R R r R R R ⎛⎫⎛⎫⎛⎫=-==-==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴222123::5:8:9r r r = ∴这三个圆的面积之比为:5,8,9 故选D【点评】:此题重点考察球中截面圆半径,球半径之间的关系; 【突破】:画图数形结合,提高空间想象能力,利用勾股定理;9.设直线l ⊂平面α,过平面α外一点A 与,l α都成030角的直线有且只有:( D ) (A)1条 (B)2条 (C)3条 (D)4条 【解】:如图,当030AOC ACB ∠=∠=时,直线AC 满足条件; 同理,当030AOB ABC ∠=∠=时,直线AB 满足条件;又由图形的对称性,知在另一侧存在两条满足条件与直线l 成异面直线的直线 故选D 【点评】:此题重点考察线线角,线面角的关系,以及空间想象能力,图形的对称性;【突破】:数形结合,利用圆锥的母线与底面所成的交角不变画图,重视空间想象能力和图形的对称性;10.设()()sin f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f =(D)()'00f=【解】:∵()()sin f x x ωϕ=+是偶函数∴由函数()()sin f x x ωϕ=+图象特征可知0x =必是()f x 的极值点, ∴()'00f= 故选D【点评】:此题重点考察正弦型函数的图象特征,函数的奇偶性,函数的极值点与函数导数的关系;【突破】:画出函数图象草图,数形结合,利用图象的对称性以及偶函数图象关于y 轴对称的要求,分析出0x =必是()f x 的极值点,从而()'00f=;11.设定义在R 上的函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213【解】:∵()()213f x f x ⋅+=且()12f = ∴()12f =,()()1313312f f ==, ()()13523f f ==,()()1313752f f ==,()()13925f f ==, , ∴()221132n f n n ⎧⎪-=⎨⎪⎩为奇数为偶数,∴()()1399210012f f =⨯-=故选C【点评】:此题重点考察递推关系下的函数求值;【突破】:此类题的解决方法一般是求出函数解析式后代值,或者得到函数的周期性求解; 12.已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且A K A F =,则AFK ∆的面积为(B )(A)4 (B)8 (C)16 (D)32 【解】:∵抛物线2:8C y x =的焦点为()20F ,,准线为2x =- ∴()20K -, 设()00A x y ,,过A 点向准线作垂线AB ,则()02B y -,∵AK =,又()0022AF AB x x ==--=+∴由222BK AK AB =-得()22002y x =+,即()20082x x =+,解得()24A ±,∴AFK ∆的面积为01144822KF y ⋅=⨯⨯= 故选B 【点评】:此题重点考察双曲线的第二定义,双曲线中与焦点,准线有关三角形问题; 【突破】:由题意准确化出图象,利用离心率转化位置,在ABK ∆中集中条件求出0x 是关键;第Ⅱ卷二.填空题:本大题共4个小题,每小题4分,共16分。
高中数学2008年普通高等学校招生全国统一考试(四川卷)(理科)试题
高中数学2008年普通高等学校招生全国统一考试(四川卷)(理科) 试题 2019.091,如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点()P x y ,、点()P x y ''',满足x x '≤且y y '≥,则称P 优于P '.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧( )A.AB B .BC C .CD D .DA2,若数列 {}n a 是首项为1,公比为32a =的无穷等比数列,且{}n a 各项的和为a ,则a 的值是( )A.1 B.2 C.12 D.543,给定空间中的直线l 及平面α.条件“直线l 与平面α内两条相交直线都垂直”是“直线l 与平面α垂直”的( )A.充分非必要条件 B.必要非充分条件 C .充要条件 D.既非充分又非必要条件4,在平面直角坐标系中,从五个点:(00)(20)(11)(02)(22)A B C D E ,,,,,,,,,中任取三个,这三点能构成三角形的概率是 (结果用分数表示).5,若函数()()(2)f x x a bx a =++(常数a b ∈R ,)是偶函数,且它的值域为(]4-∞,,则该函数的解析式()f x = .6,已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别 .7,在平面直角坐标系中,点A B C ,,的坐标分别为(01)(42)(26),,,,,.如果()P x y ,是ABC △围成的区域(含边界)上的点,那么当xy ω=取到最大值时,点P 的坐标 是 .8,设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A .4B .5C .8D .109,若z 是实系数方程220x x p ++=的一个虚根,且2z =,则p = .10,若直线10ax y -+=经过抛物线24y x =的焦点,则实数a = .11,若向量a ,b 满足12a b ==,且a 与b 的夹角为3π,则a b += .12,若函数()f x 的反函数为12()log f x x -=,则()f x =.13,若函数()f x 的反函数为12()log f x x -=,则()f x = .14,若集合{}|2A x x =≤,{}|B x x a =≥满足{2}A B =,则实数a= .15,若复数z 满足(2)z i z =- (i 是虚数单位),则z= .16,不等式11x -<的解集是 .17,设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则()U A B =ð( ) (A){}2,3(B){}1,4,5(C){}4,5(D){}1,5 18,复数()221i i +=( )(A)4-(B)4(C)4i -(D)4i19,()2tan cot cos x x x +=( )(A)tan x (B)sin x (C)cos x (D)cot x20,直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( )(A)1133y x =-+(B)113y x =-+(C)33y x =-(D)113y x =+试题答案1, D【解析】由题意知,若P 优于P ',则P 在P '的左上方, ∴当Q 在DA 上时, 左上的点不在圆上, ∴不存在其它优于Q 的点,∴Q 组成的集合是劣弧DA.2, B【解析】由11123121 22153||1||1222a a a a S a q a a q a ⎧=⎧⎪⎧==⎪=-+⎪⎪⎪-⇒⇒⇒=⎨⎨⎨⎪⎪⎪<<<⎩-<⎪⎪⎩⎩或3, C【解析】“直线l 与平面α内两条相交直线都垂直”⇔“直线l 与平面α垂直”.4, 【解析】由已知得 A C E B C D 、、三点共线,、、三点共线,所以五点中任选三点能构成三角形的概率为333524.5C C -=5, 【解析】22()()(2)(2)2f x x a bx a bx a ab x a =++=+++是偶函数,则其图象关于y 轴对称, 202,a ab b ∴+=⇒=-22()22,f x x a ∴=-+且值域为(]4-∞,,224,a ∴=2()2 4.f x x ∴=-+6, 【解析】中位数为10.521,a b ⇒+=根据均值不等式知,只需10.5a b ==时,总体方差最小.7, 【解析】作图知xy ω=取到最大值时,点P 在线段BC 上,:210,[2,4],BC y x x =-+∈(210),xy x x ω∴==-+故当5,52x y ==时, ω取到最大值.8, D【解析】 由椭圆的第一定义知12210.PF PF a +==9, 【解析】设z a bi =+,则方程的另一个根为z a bi '=-,且22z ==,由韦达定理直线22,1,z z a a '+==-∴=-23,b b ∴==所以(1)(1) 4.p z z '=⋅=-+-=10, 【解析】直线10ax y -+=经过抛物线24y x =的焦点(1,0),F 则10 1.a a +=∴=-11, 【解析】2||()()2a b a b a b a a b b a b +=++=++ 22||||2||||cos73a b a b π=++=||7.a b ⇒+=12, 【解析】令2log (0),y x x =>则y R ∈且2,yx =()()2.x f x x R ∴=∈13, 【答案】()2x x R ∈14, 【解析】由{2}, 22A B A B a =⇒⇒=只有一个公共元素 15, 【解析】由22(1)(2)11(1)(1)i i i z i z z i i i i -=-⇒===+++-16, 【解析】由11102x x -<-<⇒<<.17, 【解】:∵{}{}1,2,3,2,3,4A B == ∴{}2,3A B = 又∵{}1,2,3,4,5U = ∴(){}1,4,5U A B =ð 故选B 18, 【解】:∵()()222121212244i i i i i i i +=+-=⨯==- 故选A19, 【解】:∵()22222sin cos sin cos tan cot cos cos cos cos sin sin cos x x x x x x x x x x x x x +⎛⎫+=+=⋅ ⎪⎝⎭ cos cot sin xx x == 故选D20, 【解】:∵直线3y x =绕原点逆时针旋转090的直线为13y x =-,从而淘汰(C),(D )又∵将13y x =-向右平移1个单位得()113y x =--,即1133y x =-+故选A。
(完整版)2008年四川省高考数学试卷(理科)
2008年四川省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•四川)已知全集U={1,2,3,4,5},集合A={1,3},B={3,4,5},则集合∁U(A∩B)=()A.{3} B.{4,5} C.{3,4,5} D.{1,2,4,5}2.(5分)(2008•四川)复数2i(1+i)2=()A.﹣4 B.4 C.﹣4i D.4i3.(5分)(2008•四川)(tanx+cotx)cos2x=()A.tanx B.sinx C.cosx D.cotx4.(5分)(2008•四川)直线y=3x绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为()A.B.C.y=3x﹣3 D.5.(5分)(2008•四川)若0≤α≤2π,sinα>cosα,则α的取值范围是()A.(,)B.(,π)C.(,)D.(,)6.(5分)(2008•四川)从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有()A.70种B.112种C.140种D.168种7.(5分)(2008•四川)已知等比数列{a n}中,a2=1,则其前3项的和S3的取值范围是()A.(﹣∞,﹣1]B.(﹣∞,0)∪(1,+∞)C.[3,+∞)D.(﹣∞,﹣1]∪[3,+∞)8.(5分)(2008•四川)设M,N是球心O的半径OP上的两点,且NP=MN=OM,分别过N,M,O作垂线于OP的面截球得三个圆,则这三个圆的面积之比为:()A.3,5,6 B.3,6,8 C.5,7,9 D.5,8,99.(5分)(2008•四川)设直线l⊂平面α,过平面α外一点A与l,α都成30°角的直线有且只有()A.1条B.2条C.3条D.4条10.(5分)(2008•四川)设f(x)=sin(ωx+φ),其中ω>0,则f(x)是偶函数的充要条件是()A.f(0)=1 B.f(0)=0 C.f′(0)=1 D.f′(0)=011.(5分)(2008•四川)设定义在R上的函数f(x)满足f(x)•f(x+2)=13,若f(1)=2,则f(99)=()A.13 B.2 C.D.12.(5分)(2008•四川)已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A 在C上且,则△AFK的面积为()A.4 B.8 C.16 D.32二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2008•四川)(1+2x)3(1﹣x)4展开式中x2的系数为.14.(4分)(2008•四川)已知直线l:x﹣y+4=0与圆C:(x﹣1)2+(y﹣1)2=2,则C上各点到l的距离的最小值为.15.(4分)(2008•四川)已知正四棱柱的对角线的长为,且对角线与底面所成角的余弦值为,则该正四棱柱的体积等于.16.(4分)(2008•四川)设等差数列{a n}的前n项和为S n,若S4≥10,S5≤15,则a4的最大值为.三、解答题(共6小题,满分74分)17.(12分)(2008•四川)求函数y=7﹣4sinxcosx+4cos2x﹣4cos4x的最大值与最小值.18.(12分)(2008•四川)设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(Ⅲ)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望.19.(12分)(2008•四川)如,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC,BE(Ⅰ)证明:C,D,F,E四点共面;(Ⅱ)设AB=BC=BE,求二面角A﹣ED﹣B的大小.20.(12分)(2008•四川)设数列{a n}的前n项和为S n,已知ba n﹣2n=(b﹣1)S n(Ⅰ)证明:当b=2时,{a n﹣n•2n﹣1}是等比数列;(Ⅱ)求{a n}的通项公式.21.(12分)(2008•四川)设椭圆,({a>b>0})的左右焦点分别为F1,F2,离心率,右准线为l,M,N是l上的两个动点,(Ⅰ)若,求a,b的值;(Ⅱ)证明:当|MN|取最小值时,与共线.22.(14分)(2008•四川)已知x=3是函数f(x)=aln(1+x)+x2﹣10x的一个极值点.(Ⅰ)求a;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.。
2008年普通高等学校招生全国统一考试(四川卷).doc
绝密★启用前2008年普通高等学校招生全国统一考试(四川卷)理科综合能力测试第Ⅰ卷本卷共21小题,每小题6分,共126分相对原子质量(原子量):H1 C12 N14 O16 Al 127 Cl 35.5一.选择题:(本大题共13小题,每小题出的四个选项中,只有一项是符合题目要求的。
) 1.将蛙的卵巢放入含有蛙垂体提取液的培养液中,同时检测某种急速的含量.经过一点时间培养后,再检测培养液中该激素的含量,发现该激素含量增加,这种激素是A.促性腺素释放激素B.促性腺激素C.促甲状腺激素D.雌激素2.分别取适宜条件下和低温低光照强度条件下生长的玉米植株叶片,徒手切片后,立即用典液染色,置于显微镜下观察,发现前者维管束鞘细胞有蓝色颗粒,而后者维管束鞘细胞没有蓝色颗粒,后者没有..的原因是A.维管束鞘细胞不含叶绿体,不能进行光合作用B.维管束鞘细胞能进行光反应,不能进行暗反应C.叶片光合作用强度低,没有光合作用产物积累D.叶片光合作用强度高,呼吸耗尽光合作用产物3.下列关于生态系统稳定性的叙述,错误..的是A.在一块牧草地上播种杂草形成杂草地后,其抵抗力稳定性提高B.在一块牧草地上通过管理提高某种牧草的产量后,其抵抗力稳定性提高C.在一块牧草地上栽种乔木形成树林后,其恢复力稳定性下降D.一块弃耕后的牧草地上形成灌木林后,其抵抗力稳定性提高4.下列关于病毒的描述,正确的是A.噬菌体通常在植物细胞中增值 B.病毒可作为基因工程的运载体C.青霉素可有效抑制流感病毒增值 D.癌症的发生于病毒感染完全无关5.下列不.属于免疫过程的是A.花粉引起体内毛细血管扩张 B.移植的器官被患者排斥C.骨髓瘤细胞与B淋巴细胞融合 D.病原微生物被体内吞噬细胞吞噬6.下列说法不正确...的是A.1mol 氧气中含有12.04×1023个氧原子,在标准状况下占有体积22.4LB.1mol臭氧和1.5mol氧气含有相同的氧原子数C.等体积、浓度均为1mol/L的磷酸和盐酸,电离出的氢离子数之比为3∶1D.等物质的量的干冰和葡萄糖中所含碳原子数之比为1∶6,氧原子数之比为1∶37.下列关于热化学反应的描述中正确的是A.HCl和NaOH反应的中和热ΔH=-57.3kJ/mol,则H2SO4和Ca(OH)2反应的中和热ΔH=2×(-57.3)kJ/molB.CO(g)的燃烧热是283.0kJ/mol,则2CO2(g) =2CO(g)+O2(g)反应的ΔH=2×283.0kJ/molC.需要加热才能发生的反应一定是吸热反应D .1mol 甲烷燃烧生成气态水和二氧化碳所放出的热量是甲烷燃烧热8.在密闭容器中进行如下反应:H 2(g) +I 2(g) 2HI(g),在温度T 1和T 2时,产物的量与反应时间的关系如下图所示.符合图示的正确判断是 A.T 1>T 2,ΔH >0 B .T 1>T 2,ΔH <0 C .T 1<T 2,ΔH >0 D .T 1<T 2,ΔH <09.下列叙述中正确的是A .除零族元素外,短周期元素的最高化合价在数值上都等于该元素所属的租序数B .除点周期外,其他周期均有18个元素C .副族元素中没有非金属元素D .碱金属元素是指ⅠA 族的所有元素10.下列说法中正确的是A .离子晶体中每个离子周围均吸引着6个带相反电荷的离子B .金属导电的原因是在外电场作用下金属产生自由电子,电子定向移动C .分子晶体的熔沸点很低,常温下都呈液态或气态D .原子晶体中的各相邻原子都以共价键相结合11.能正确表示下列反应的离子方程式是A .足量硫酸铝与纯碱反应:↑+↓=++-+232233CO 3)OH (Al 2O H 3COI 3Al 2 B .硫酸铜与烧碱反应:--+↓=+2424S O )OH (Cu OH 2CuS OC .苯酚与碳酸钠反应:O H CO O H C 2CO OH H C 222562356+↑+=+-- D .碳酸钡与硫酸反应:↓=+-+4242BaSO S O Ba 12.胡椒粉是植物挥发油的成分之一。
2008年四川省高考数学试卷(理科)及答案
2008年四川省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知全集U={1,2,3,4,5},集合A={1,3},B={3,4,5},则集合∁U(A∩B)=()A.{3}B.{4,5}C.{3,4,5}D.{1,2,4,5}2.(5分)复数2i(1+i)2=()A.﹣4 B.4 C.﹣4i D.4i3.(5分)(tanx+cotx)cos2x=()A.tanx B.sinx C.cosx D.cotx4.(5分)直线y=3x绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为()A.B.C.y=3x﹣3 D.5.(5分)若0≤α≤2π,sinα>cosα,则α的取值范围是()A.(,) B.(,π)C.(,)D.(,)6.(5分)从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有()A.70种B.112种C.140种D.168种7.(5分)已知等比数列{a n}中,a2=1,则其前3项的和S3的取值范围是()A.(﹣∞,﹣1]B.(﹣∞,0)∪(1,+∞)C.[3,+∞)D.(﹣∞,﹣1]∪[3,+∞)8.(5分)设M,N是球心O的半径OP上的两点,且NP=MN=OM,分别过N,M,O作垂线于OP的面截球得三个圆,则这三个圆的面积之比为:()A.3,5,6 B.3,6,8 C.5,7,9 D.5,8,99.(5分)设直线l⊂平面α,过平面α外一点A与l,α都成30°角的直线有且只有()A.1条 B.2条 C.3条 D.4条10.(5分)设f(x)=sin(ωx+φ),其中ω>0,则f(x)是偶函数的充要条件是()A.f(0)=1 B.f(0)=0 C.f′(0)=1 D.f′(0)=011.(5分)设定义在R上的函数f(x)满足f(x)•f(x+2)=13,若f(1)=2,则f(99)=()A.13 B.2 C.D.12.(5分)已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A在C 上且,则△AFK的面积为()A.4 B.8 C.16 D.32二、填空题(共4小题,每小题4分,满分16分)13.(4分)(1+2x)3(1﹣x)4展开式中x2的系数为.14.(4分)已知直线l:x﹣y+4=0与圆C:(x﹣1)2+(y﹣1)2=2,则C上各点到l的距离的最小值为.15.(4分)已知正四棱柱的对角线的长为,且对角线与底面所成角的余弦值为,则该正四棱柱的体积等于.16.(4分)设等差数列{a n}的前n项和为S n,若S4≥10,S5≤15,则a4的最大值为.三、解答题(共6小题,满分74分)17.(12分)求函数y=7﹣4sinxcosx+4cos2x﹣4cos4x的最大值与最小值.18.(12分)设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(Ⅲ)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望.19.(12分)如,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC,BE(Ⅰ)证明:C,D,F,E四点共面;(Ⅱ)设AB=BC=BE,求二面角A﹣ED﹣B的大小.20.(12分)设数列{a n}的前n项和为S n,已知ba n﹣2n=(b﹣1)S n(Ⅰ)证明:当b=2时,{a n﹣n•2n﹣1}是等比数列;(Ⅱ)求{a n}的通项公式.21.(12分)设椭圆,({a>b>0})的左右焦点分别为F1,F2,离心率,右准线为l,M,N是l上的两个动点,(Ⅰ)若,求a,b的值;(Ⅱ)证明:当|MN|取最小值时,与共线.22.(14分)已知x=3是函数f(x)=aln(1+x)+x2﹣10x的一个极值点.(Ⅰ)求a;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.2008年四川省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•四川)已知全集U={1,2,3,4,5},集合A={1,3},B={3,4,5},则集合∁U(A∩B)=()A.{3}B.{4,5}C.{3,4,5}D.{1,2,4,5}【分析】根据交集的含义求A∩B、再根据补集的含义求解.【解答】解:A={1,3},B={3,4,5}⇒A∩B={3};所以C U(A∩B)={1,2,4,5},故选D2.(5分)(2008•四川)复数2i(1+i)2=()A.﹣4 B.4 C.﹣4i D.4i【分析】先算(1+i)2,再算乘2i,化简即可.【解答】解:∵2i(1+i)2=2i(1+2i﹣1)=2i×2i=4i2=﹣4故选A;3.(5分)(2008•四川)(tanx+cotx)cos2x=()A.tanx B.sinx C.cosx D.cotx【分析】此题重点考查各三角函数的关系,切化弦,约分整理,凑出同一角的正弦和余弦的平方和,再约分化简.【解答】解:∵=故选D;4.(5分)(2008•四川)直线y=3x绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为()A.B.C.y=3x﹣3 D.【分析】先利用两直线垂直写出第一次方程,再由平移写出第二次方程.【解答】解:∵直线y=3x绕原点逆时针旋转90°∴两直线互相垂直则该直线为,那么将向右平移1个单位得,即故选A.5.(5分)(2008•四川)若0≤α≤2π,sinα>cosα,则α的取值范围是()A.(,) B.(,π)C.(,)D.(,)【分析】通过对sinα>cosα等价变形,利用辅助角公式化为正弦,利用正弦函数的性质即可得到答案.【解答】解:∵0≤α≤2π,sinα>cosα,∴sinα﹣cosα=2sin(α﹣)>0,∵0≤α≤2π,∴﹣≤α﹣≤,∵2sin(α﹣)>0,∴0<α﹣<π,∴<α<.故选C.6.(5分)(2008•四川)从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有()A.70种B.112种C.140种D.168种【分析】根据题意,分析可得,甲、乙中至少有1人参加的情况数目等于从10个同学中挑选4名参加公益活动挑选方法数减去从甲、乙之外的8个同学中挑选4名参加公益活动的挑选方法数,分别求出其情况数目,计算可得答案.【解答】解:∵从10个同学中挑选4名参加某项公益活动有C104种不同挑选方法;从甲、乙之外的8个同学中挑选4名参加某项公益活动有C84种不同挑选方法;∴甲、乙中至少有1人参加,则不同的挑选方法共有C104﹣C84=210﹣70=140种不同挑选方法,故选C.7.(5分)(2008•四川)已知等比数列{a n}中,a2=1,则其前3项的和S3的取值范围是()A.(﹣∞,﹣1]B.(﹣∞,0)∪(1,+∞)C.[3,+∞)D.(﹣∞,﹣1]∪[3,+∞)【分析】首先由等比数列的通项入手表示出S3(即q的代数式),然后根据q的正负性进行分类,最后利用均值不等式求出S3的范围.【解答】解:∵等比数列{a n}中,a2=1∴∴当公比q>0时,;当公比q<0时,.∴S3∈(﹣∞,﹣1]∪[3,+∞).故选D.8.(5分)(2008•四川)设M,N是球心O的半径OP上的两点,且NP=MN=OM,分别过N,M,O作垂线于OP的面截球得三个圆,则这三个圆的面积之比为:()A.3,5,6 B.3,6,8 C.5,7,9 D.5,8,9【分析】先求截面圆的半径,然后求出三个圆的面积的比.【解答】解:设分别过N,M,O作垂线于OP的面截球得三个圆的半径为r1,r2,r3,球半径为R,则:∴r12:r22:r32=5:8:9∴这三个圆的面积之比为:5,8,9故选D9.(5分)(2008•四川)设直线l⊂平面α,过平面α外一点A与l,α都成30°角的直线有且只有()A.1条 B.2条 C.3条 D.4条【分析】利用圆锥的母线与底面所成的交角不变画图,即可得到结果.【解答】解:如图,和α成300角的直线一定是以A为顶点的圆锥的母线所在直线,当∠ABC=∠ACB=30°,直线AC,AB都满足条件故选B.10.(5分)(2008•四川)设f(x)=sin(ωx+φ),其中ω>0,则f(x)是偶函数的充要条件是()A.f(0)=1 B.f(0)=0 C.f′(0)=1 D.f′(0)=0【分析】当f(x)=sin(ωx+φ)是偶函数时,f(0)一定是函数的最值,从而得到x=0必是f(x)的极值点,即f′(0)=0,因而得到答案.【解答】解:∵f(x)=sin(ωx+φ)是偶函数∴由函数f(x)=sin(ωx+φ)图象特征可知x=0必是f(x)的极值点,∴f′(0)=0故选D11.(5分)(2008•四川)设定义在R上的函数f(x)满足f(x)•f(x+2)=13,若f(1)=2,则f(99)=()A.13 B.2 C.D.【分析】根据f(1)=2,f(x)•f(x+2)=13先求出f(3)=,再由f(3)求出f(5),依次求出f(7)、f(9)观察规律可求出f(x)的解析式,最终得到答案.【解答】解:∵f(x)•f(x+2)=13且f(1)=2∴,,,,∴,∴故选C.12.(5分)(2008•四川)已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A在C上且,则△AFK的面积为()A.4 B.8 C.16 D.32【分析】根据抛物线的方程可知焦点坐标和准线方程,进而可求得K的坐标,设A(x0,y0),过A点向准线作垂线AB,则B(﹣2,y0),根据及AF=AB=x0﹣(﹣2)=x0+2,进而可求得A点坐标,进而求得△AFK的面积.【解答】解:∵抛物线C:y2=8x的焦点为F(2,0),准线为x=﹣2∴K(﹣2,0)设A(x0,y0),过A点向准线作垂线AB,则B(﹣2,y0)∵,又AF=AB=x0﹣(﹣2)=x0+2∴由BK2=AK2﹣AB2得y02=(x0+2)2,即8x0=(x0+2)2,解得A(2,±4)∴△AFK的面积为故选B.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2008•四川)(1+2x)3(1﹣x)4展开式中x2的系数为﹣6.【分析】利用乘法原理找展开式中的含x2项的系数,注意两个展开式的结合分析,即分别为第一个展开式的常数项和第二个展开式的x2的乘积、第一个展开式的含x项和第二个展开式的x项的乘积、第一个展开式的x2的项和第二个展开式的常数项的乘积之和从而求出答案.【解答】解:∵(1+2x)3(1﹣x)4展开式中x2项为C3013(2x)0•C4212(﹣x)2+C3112(2x)1•C4113(﹣x)1+C3212(2x)2•C4014(﹣x)0∴所求系数为C30•C42+C31•2•C41(﹣1)+C32•22•C4014=6﹣24+12=﹣6.故答案为:﹣6.14.(4分)(2008•四川)已知直线l:x﹣y+4=0与圆C:(x﹣1)2+(y﹣1)2=2,则C上各点到l的距离的最小值为.【分析】如图过点C作出CD与直线l垂直,垂足为D,与圆C交于点A,则AD 为所求;求AD的方法是:由圆的方程找出圆心坐标与圆的半径,然后利用点到直线的距离公式求出圆心到直线l的距离d,利用d减去圆的半径r即为圆上的点到直线l的距离的最小值.【解答】解:如图可知:过圆心作直线l:x﹣y+4=0的垂线,则AD长即为所求;∵圆C:(x﹣1)2+(y﹣1)2=2的圆心为C(1,1),半径为,点C到直线l:x﹣y+4=0的距离为,∴AD=CD﹣AC=2﹣=,故C上各点到l的距离的最小值为.故答案为:15.(4分)(2008•四川)已知正四棱柱的对角线的长为,且对角线与底面所成角的余弦值为,则该正四棱柱的体积等于2.【分析】由题意画出图形,求出高,底面边长,然后求出该正四棱柱的体积.【解答】解::如图可知:∵∴∴正四棱柱的体积等于=2故答案为:216.(4分)(2008•四川)设等差数列{a n}的前n项和为S n,若S4≥10,S5≤15,则a4的最大值为4.【分析】利用等差数列的前n项和公式变形为不等式,再利用消元思想确定d 或a1的范围,a4用d或a1表示,再用不等式的性质求得其范围.【解答】解:∵等差数列{a n}的前n项和为S n,且S4≥10,S5≤15,∴,即∴∴,5+3d≤6+2d,d≤1∴a4≤3+d≤3+1=4故a4的最大值为4,故答案为:4.三、解答题(共6小题,满分74分)17.(12分)(2008•四川)求函数y=7﹣4sinxcosx+4cos2x﹣4cos4x的最大值与最小值.【分析】利用二倍角的正弦函数公式及同角三角函数间的基本关系化简y的解析式后,再利用配方法把y变为完全平方式即y=(1﹣sin2x)2+6,可设z═(u﹣1)2+6,u=sin2x,因为sin2x的范围为[﹣1,1],根据u属于[﹣1,1]时,二次函数为递减函数,利用二次函数求最值的方法求出z的最值即可得到y的最大和最小值.【解答】解:y=7﹣4sinxcosx+4cos2x﹣4cos4x=7﹣2sin2x+4cos2x(1﹣cos2x)=7﹣2sin2x+4cos2xsin2x=7﹣2sin2x+sin22x=(1﹣sin2x)2+6由于函数z=(u﹣1)2+6在[﹣1,1]中的最大值为z max=(﹣1﹣1)2+6=10最小值为z min=(1﹣1)2+6=6故当sin2x=﹣1时y取得最大值10,当sin2x=1时y取得最小值618.(12分)(2008•四川)设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(Ⅲ)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望.【分析】(1)进入商场的1位顾客购买甲、乙两种商品中的一种,包括两种情况:即进入商场的1位顾客购买甲种商品不购买乙种商品,进入商场的1位顾客购买乙种商品不购买甲种商品,分析后代入相互独立事件的概率乘法公式即可得到结论.(2)进入商场的1位顾客至少购买甲、乙两种商品中的一种的对立事件为,该顾客即不习甲商品也不购买乙商品,我们可以利用对立事件概率减法公式求解.(3)由(1)、(2)的结论,我们列出ξ的分布列,计算后代入期望公式即可得到数学期望.【解答】解:记A表示事件:进入商场的1位顾客购买甲种商品,记B表示事件:进入商场的1位顾客购买乙种商品,记C表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种,记D表示事件:进入商场的1位顾客至少购买甲、乙两种商品中的一种,(Ⅰ)===0.5×0.4+0.5×0.6=0.5(Ⅱ)==0.5×0.4=0.2∴(Ⅲ)ξ~B(3,0.8),故ξ的分布列P(ξ=0)=0.23=0.008P(ξ=1)=C31×0.8×0.22=0.096P(ξ=2)=C32×0.82×0.2=0.384P(ξ=3)=0.83=0.512所以Eξ=3×0.8=2.419.(12分)(2008•四川)如,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠FAB=90°,BC,BE(Ⅰ)证明:C,D,F,E四点共面;(Ⅱ)设AB=BC=BE,求二面角A﹣ED﹣B的大小.【分析】(Ⅰ)延长DC交AB的延长线于点G,延长FE交AB的延长线于G′,根据比例关系可证得G与G′重合,准确推理,得到直线CD、EF相交于点G,即C,D,F,E四点共面.(Ⅱ)取AE中点M,作MN⊥DE,垂足为N,连接BN,由三垂线定理知BN⊥ED,根据二面角平面角的定义可知∠BMN为二面角A﹣ED﹣B的平面角,在三角形BMN中求出此角即可.【解答】解:(Ⅰ)延长DC交AB的延长线于点G,由BC得延长FE交AB的延长线于G′同理可得故,即G与G′重合因此直线CD、EF相交于点G,即C,D,F,E四点共面.(Ⅱ)设AB=1,则BC=BE=1,AD=2取AE中点M,则BM⊥AE,又由已知得,AD⊥平面ABEF故AD⊥BM,BM与平面ADE内两相交直线AD、AE都垂直.所以BM⊥平面ADE,作MN⊥DE,垂足为N,连接BN由三垂线定理知BN⊥ED,∠BMN为二面角A﹣ED﹣B的平面角.故所以二面角A﹣ED﹣B的大小20.(12分)(2008•四川)设数列{a n}的前n项和为S n,已知ba n﹣2n=(b﹣1)S n(Ⅰ)证明:当b=2时,{a n﹣n•2n﹣1}是等比数列;(Ⅱ)求{a n}的通项公式.=2a n+2n.由此可知a n+1﹣(n+1)•2n=2a n+2n 【分析】(Ⅰ)当b=2时,由题设条件知a n+1﹣(n+1)•2n=2(a n﹣n•2n﹣1),所以{a n﹣n•2n﹣1}是首项为1,公比为2的等比数列.(Ⅱ)当b=2时,由题设条件知a n=(n+1)2n﹣1;当b≠2时,由题意得=,由此能够导出{a n}的通项公式.【解答】解:(Ⅰ)当b=2时,由题意知2a1﹣2=a1,解得a1=2,且ba n﹣2n=(b﹣1)S nba n+1﹣2n+1=(b﹣1)S n+1两式相减得b(a n﹣a n)﹣2n=(b﹣1)a n+1+1=ba n+2n①即a n+1=2a n+2n当b=2时,由①知a n+1于是a n﹣(n+1)•2n=2a n+2n﹣(n+1)•2n=2(a n﹣n•2n﹣1)+1又a1﹣1•20=1≠0,所以{a n﹣n•2n﹣1}是首项为1,公比为2的等比数列.(Ⅱ)当b=2时,由(Ⅰ)知a n﹣n•2n﹣1=2n﹣1,即a n=(n+1)2n﹣1当b≠2时,由①得==因此=即所以.21.(12分)(2008•四川)设椭圆,({a>b>0})的左右焦点分别为F1,F2,离心率,右准线为l,M,N是l上的两个动点,(Ⅰ)若,求a,b的值;(Ⅱ)证明:当|MN|取最小值时,与共线.【分析】(Ⅰ)设,根据题意由得,由,得,,由此可以求出a,b的值.(Ⅱ)|MN|2=(y1﹣y2)2=y12+y22﹣2y1y2≥﹣2y1y2﹣2y1y2=﹣4y1y2=6a2.当且仅当或时,|MN|取最小值,由能够推导出与共线.【解答】解:由a2﹣b2=c2与,得a2=2b2,,l的方程为设则由得①(Ⅰ)由,得②③由①、②、③三式,消去y1,y2,并求得a2=4故(Ⅱ)证明:|MN|2=(y1﹣y2)2=y12+y22﹣2y1y2≥﹣2y1y2﹣2y1y2=﹣4y1y2=6a2当且仅当或时,|MN|取最小值此时,故与共线.22.(14分)(2008•四川)已知x=3是函数f(x)=aln(1+x)+x2﹣10x的一个极值点.(Ⅰ)求a;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.【分析】(Ⅰ)先求导,再由x=3是函数f(x)=aln(1+x)+x2﹣10x的一个极值点即求解.(Ⅱ)由(Ⅰ)确定f(x)=16ln(1+x)+x2﹣10x,x∈(﹣1,+∞)再由f′(x)>0和f′(x)<0求得单调区间.(Ⅲ)由(Ⅱ)知,f(x)在(﹣1,1)内单调增加,在(1,3)内单调减少,在(3,+∞)上单调增加,且当x=1或x=3时,f′(x)=0,可得f(x)的极大值为f(1),极小值为f(3)一,再由直线y=b与函数y=f(x)的图象有3个交点则须有f(3)<b<f(1)求解,因此,b的取值范围为(32ln2﹣21,16ln2﹣9).【解答】解:(Ⅰ)因为所以因此a=16(Ⅱ)由(Ⅰ)知,f(x)=16ln(1+x)+x2﹣10x,x∈(﹣1,+∞)当x∈(﹣1,1)∪(3,+∞)时,f′(x)>0当x∈(1,3)时,f′(x)<0所以f(x)的单调增区间是(﹣1,1),(3,+∞)f(x)的单调减区间是(1,3)(Ⅲ)由(Ⅱ)知,f(x)在(﹣1,1)内单调增加,在(1,3)内单调减少,在(3,+∞)上单调增加,且当x=1或x=3时,f′(x)=0所以f(x)的极大值为f(1)=16ln2﹣9,极小值为f(3)=32ln2﹣21因此f(16)>162﹣10×16>16ln2﹣9=f(1)f(e﹣2﹣1)<﹣32+11=﹣21<f(3)所以在f(x)的三个单调区间(﹣1,1),(1,3),(3,+∞)直线y=b有y=f(x)的图象各有一个交点,当且仅当f(3)<b<f(1)因此,b的取值范围为(32ln2﹣21,16ln2﹣9).。
2008年普通高等学校招生全国统一考试四川卷Ⅰ理
2008年普通高等学校招生全国统一考试(四川卷Ⅰ)数 学(理工农医类)第Ⅰ卷本卷共12小题;每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径 P(A ·B)=P(A) ·P(B) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V=43πR3 n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 P n (k )=C k n P k (1-p )n- k (k =0,1,2,…,n )一、选择题(1)设集合U={1,2,,3,4,5},A ={1,2,3},则C U (A ∩B )=(A ){2,3} (B ){1,4,5} (C ){4,5} (D ){1,5}(2)复数2i(1+1)2=(A)-4 (B)4 (C)-4i (D)4i(3)(tan x +cot x ) cos 2x =(A)tan x (B)sin x (C)cos x (D)cot x(4)将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为(A )y =1133x -+ (B )y =113x -+ (C)y =3x -3 (D)y =113x +(5)设0≤a <2n .若sin a α,则α的取值范围是(A )(,32ππ) (B )(,3ππ) (C )(4,33ππ) (D )(3,32ππ) (6)从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有(A)70种(B)112种(C)140种(D)168种(7)已知等比数列{a n}中a2=1,则其前3项的和S3的取值范围是(A)(-∞,-1)(B)(-∞,0)∪(1,+∞)(C)[3,+∞] (D)(-∞,-1)∪[3,+∞](8)设M、N是球O半径OP上的两点,且NP=MN=OM,分别过N、M、O作垂直于OP 的平面,截球面得三个圆.则这三个圆的面积之比为(A)3:5:6 (B)3:6:8(C)5:7:9 (C)5:8:9(9)直线l 平面a,经过a外一点A与l、a都成30°角的直线有且只有(A)1条(B)2条(C)3条(D)4条(10)设f(x)=sin(ωx+φ),其中ω>0,则f(x)是偶函数的充要条件是(A)f(0)=1 (B)f(0)=0(C)f’(0)=1 (D)f’(0)=0(11)设定义在R上的函数f(x)满足f(x)·f(x+2)=13.若f(1)=2,则f(99)=(A)13 (B)2(C)152(D)213(12)已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A在C上且|AK|AF|,则△AFK的面积为(A)4 (B)8(C)16 (D)32第Ⅱ卷本卷共10小题,共90分二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)(1+2x)3 (1-x)4展开式中x2的系数为.(14)已知直线l2:x-y+4=0与圆C:(x-1)2+(y-1)2=2,则C上各点到l距离的最小值为.(15正四棱柱的体积等于.(16)设等差数列{a n}的前n项和为S n,若S4≥10,S5≤15,则a4的最大值为三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)求函数y=7-4sin x cos x+4cos2x-74cos4x的最大值与最小值.(18)(本小题满分12分)设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(Ⅲ)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望.(19)(本小题满分12分)如图,平面ABEF⊥平面ABCD,四边形ABEF与ABCD都是直角梯形,∠BAD=∠F AB=90°,BC∥12AD,BE∥12AF.(Ⅰ)证明:C、D、F、E四点共面:(Ⅱ)设AB=BC=BE,求二面角A-ED-B的大小. (20)(本小题满分12分)设数列{a n}的前n项和为S n,已知ba n-2n=(b-1)S n.. (Ⅰ)证明:当b=2时,{a n-n2n-1}是等比数列;(Ⅱ)求{a n}的通项公式.(21)(本小题满分12分)设椭圆22221x y a b+=(a >b >0)的左、右焦点分别为F 1、F 2,离心率e 右准线为l 。
2008年普通高等学校招生全国统一考试数学卷(全国Ⅱ.理)含详解
参考 式 如果 件 A B 互斥 那
球的表面
式
P ( A + B ) = P ( A) + P ( B )
如果 件 A B 相互独立 那
S = 4πR 2
其中 R 表示球的半径 球的体 那 式
P ( A B ) = P ( A) P ( B )
如果 件 A 在一次试验中发生的概率是 p
V=
4 3 πR 3
sin x 2 + cos x
求 f ( x ) 的单调区间 如果对任何 x
0
都有 f ( x )
ax
求 a 的取值范围
an
n ∈ N*
求 a 的取值范围
21
本小题满
12
设椭圆中心在坐标原点 于点 D
A(2 0) B(0 1) 是它的 个 点 直线 y = kx(k > 0)
点
AB 相交
椭圆相交于 E F
uuu r uuur 若 ED = 6 DF
求 k 的值
求四边形 AEBF 面 的最大值
22
本小题满
12
设函数 f ( x ) =
1 − 0.99910
4
求一投保人在一 度内出险的概率 p 设保险 开办该项险种业 除赔偿金外的成本 50 000 元 保证盈利的期望
第 3
共 15
小于 0 求 19 本小题满
投保人 交纳的最 保费 单 12
元
如
四棱柱 ABCD − A1 B1C1 D1 中 证明
AA1 = 2 AB = 4
点 E 在 CC1 D1 A1
2008 年普通高等学校招生全国统一考试 理科 学(必修+选修Ⅱ)
第 卷1至2 第 卷 3 至 10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省数学(理) 2008年普通高等学校招生统一考试
(6)从甲、乙等10名同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有
(A )70种 (B )112种 (C )140种 (D )168种
(7)已知等比数列{}n a 中21a =,则其前3项的和3S 的取值范围是
(A )(,1]-∞- (B )(,0)(1,)-∞+∞ (C )[3,)+∞ (D )(,1][3,)-∞-+∞
(8)设M 、N 是球O 半径O P 上的两点,且N P M N O M ==,分别过N 、M 、O 作垂直于O P 的平面,截球面得三个圆,则这三个圆的面积之比为
(A )3:5:6 (B )3:6:8 (C )5:7:9 (D )5:8:9
(9)直线l ⊂平面α,经过α外一点A 与l 、α都成30︒旬的直线有且只有
(A )1条 (B )2条 (C )3条 (D )4条
(10)设()sin()f x x ωϕ=+其中0ω>,则()f x 是偶函数的充要条件是
(A )(0)1f = (B )(0)0f = (C )(0)1f '= (D )(0)0f '=
(11)设定义在R 上的函数()f x 满足()(2)13f x f x += 。
若(1)2f =,则(99)f =
(A )13 (B )2 (C )13
2 (D )2
13
(12)已知抛物线:C 28y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且|||AK AF =
,则△A F K 的面积为
(A )4 (B )8 (C )16 (D )32
二、填空题:本大题共4小题,每小题4分,共16分。
把答案填在题中横线上
(13)34(12)(1)x x +-展开式中2x 的系数为 。
(14)已知直线:l 40x y -+=与圆:C 22(1)(1)2x y -+-=,则C 上各点到l 的距离的最小值为 。
(15)已知正四棱柱的对角线的长为,且对角线与底面所成角的余弦值为
3,则该正四棱柱的体积
等于 。
(16)设数列{}n a 的前n 项和为n S ,若410S ≥,515S ≤,则4a 的最大值为 。
三、解答题:本大题共6小题,共74分。
解答应写出必要的文字说明,证明过程或演算步骤。
(17)求函数2474sin cos 4cos 4cos y x x x x =-+-的最大值与最小值。
(18)设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙商品相互独立,各顾客之间购买商品也是相互独立的。
(1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(3)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望。
(19)如图,平面ABEF ⊥平面A B C D ,四边形ABEF 与A B C D
都是直角梯形,90BAD FAB ∠=∠=︒,//BC AD ,//B E A F ,
1
2B C A D =,1
2B E A F = (1)证明:C 、D 、F 、E 四点共面;
(2)设A B B C B E ==,求二面角A ED B --的大小。
(20)设数列{}n a 的前n 项和为n S ,已知2(1)n n n ba b S -=-。
(1)证明:当2b =时,1{2}n n a n -- 是等比数列;
(2)求{}n a 的通项公式。
(21)设椭圆22221x
y a b +=(0)a b >>的左、右焦点分
别为1F 、2F ,离心率2e =,右准线为l ,M 、N
是l 上的两动点,120F M F N = 。
(1)若12||||F M F N == a 、b 的值;
(2)证明:当||M N 取最小值时,
12F M F N + 与12F F 共线。
(22)已知3x =是函数2()ln(1)10f x a x x x =++-的一个极值点。
(1)求a ;
(2)求函数()f x 的单调区间;
(3)若直线y b =与函数()y f x =的图像有3个交点,求b 的取值范围。