陕西省西安市碑林区铁一中学2016-2017学年八年级(上)第一次月考数学试卷(解析版) (1)

合集下载

2016-2017学年陕西省西安市碑林区铁一中学(滨河)八年级(上)第一次月考数学试卷

2016-2017学年陕西省西安市碑林区铁一中学(滨河)八年级(上)第一次月考数学试卷

2016-2017学年陕西省西安市碑林区铁一中学(滨河)八年级(上)第一次月考数学试卷一、精心选一选1.(3分)在,3.,0中,无理数有()A.1个B.2个C.3个D.4个2.(3分)下列四组数:①5,12,13;②7,24,25;③3a,4a,5a(a>0);④32,42,52.其中可以构成直角三角形的边长有()A.1组B.2组C.3组D.4组3.(3分)下列计算正确的是()A.B.+=C.D.4.(3分)如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是()A.B.C.D.1.45.(3分)下列说法不正确的是()A.的平方根是B.﹣9是81的算术平方根C.(﹣0.1)2的平方根是±0.1D.=﹣36.(3分)两只小鼹鼠在地下从同一处开始打洞,一只朝北面挖,每分钟挖8cm,另一只朝东面挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距()A.100cm B.50cm C.140cm D.80cm7.(3分)若有意义,则x的取值范围是()A.x≥1B.x>1C.x≠1D.x≤18.(3分)如图,长方体的透明玻璃鱼缸,假设其长AD=80cm,高AB=60cm,水深为AE=40cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60cm;一小虫想从鱼缸外的A点沿壁爬进鱼缸内G处吃鱼饵,则小动物爬行的最短路线长为()A.40cm B.60cm C.80cm D.100cm9.(3分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.45°B.60°C.90°D.30°10.(3分)如图,在锐角三角形ABC中AB=,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是()A.4B.5C.6D.2二、细心填一填11.(3分)|3.14﹣π|+=.12.(3分)在“寻找滨河最美,拒绝不文明行为”系列活动中,细心的董明同学发现:学校六号楼前有一块长方形花圃(如图所示),有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,请你计算,他们仅仅少走了步路(假设2步为1米),却踩伤了花草.13.(3分)已知直角三角形的两边长分别为5和12,那么以这个直角三角形的斜边为边长的正方形的面积为.14.(3分)如图所示,网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则S△ABC=.15.(3分)比较大小:.16.(3分)如图所示,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2015的值为.三、认真做一做17.(8分)计算下列各题(1)﹣+(2)×(3)﹣﹣+2(4)(π﹣3)0﹣|﹣3|+﹣.18.(8分)一长方形的长与宽的比为4:3,其对角线长为,求这个长方形的长与宽(结果精确到0.1).19.(8分)求代数式x2+xy+y2的值,其中x=﹣,y=+.20.(8分)矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),则着色部分的面积为多少?21.(8分)如图,在△ABC中,已知AB=13cm,AC=5cm,C边上的中线AD=6cm,求以BC为边长的正方形的面积.22.(10分)阅读下列解题过程:;请回答下列问题:(1)观察上面的解题过程,化简:①②(2)利用上面提供的解法,请计算:.四、附加题23.(10分)操作发现将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF的长直角边DE重合.问题解决将图①中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上,AC与BD交于点O,连接CD,如图②.(1)求证:△CDO是等腰三角形;(2)若DF=8,求AD的长.24.(12分)(1)已知非零实数a,b满足|a﹣4|+(b+3)2++4=a,求a+b的值.(2)已知非负实数a,b满足a+b+|﹣1|=4+2﹣4,求a+2b﹣2c的值.2016-2017学年陕西省西安市碑林区铁一中学(滨河)八年级(上)第一次月考数学试卷参考答案与试题解析一、精心选一选1.(3分)(2016秋•碑林区校级月考)在,3.,0中,无理数有()A.1个B.2个C.3个D.4个【考点】26:无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,﹣共2个.故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)(2014秋•滕州市期末)下列四组数:①5,12,13;②7,24,25;③3a,4a,5a(a>0);④32,42,52.其中可以构成直角三角形的边长有()A.1组B.2组C.3组D.4组【考点】KS:勾股定理的逆定理.【分析】求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:①52+122=132,能构成直角三角形;②72+242=252,能构成直角三角形,能构成直角三角形;③(3a)2+(4a)2=(5a)2,能构成直角三角形;④(32)2+(42)2≠(52)2,不能构成直角三角形.故可以构成直角三角形的边长有3组.故选C.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.(3分)(2016秋•碑林区校级月考)下列计算正确的是()A.B.+=C.D.【考点】79:二次根式的混合运算.【专题】11:计算题.【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的加减运算对B、D进行判断;根据最简二次根式的定义对C进行判断.【解答】解:A、原式==,所以A选项正确;B、与不能合并,所以B选项错误;C、为最简二次根式,所以C选项错误;D、与﹣不能合并,所以D选项错误.故选A.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.4.(3分)(2015秋•东明县期末)如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是()A.B.C.D.1.4【考点】29:实数与数轴.【分析】先根据勾股定理求出OB的长,进而可得出结论.【解答】解:∵OB==,∴OA=OB=.∵点A在原点的右边,∴点A表示的数是.故选B.【点评】本题考查的是实数与数轴,熟知数轴上各点与全体实数是一一对应关系是解答此题的关键.5.(3分)(2016秋•碑林区校级月考)下列说法不正确的是()A.的平方根是B.﹣9是81的算术平方根C.(﹣0.1)2的平方根是±0.1D.=﹣3【考点】21:平方根;22:算术平方根;24:立方根.【分析】根据平方根的定义判断A、C;根据算术平方根的定义判断B;根据立方根的定义判断D.【解答】解:A、的平方根是±,说法正确,故本选项不符合题意;B、9是81的算术平方根,说法错误,故本选项符合题意;C、(﹣0.1)2的平方根是±0.1,说法正确,故本选项不符合题意;D、=﹣3,说法正确,故本选项不符合题意.故选B.【点评】本题考查了平方根、算术平方根、立方根的定义,是基础知识,需熟练掌握.6.(3分)(2016秋•碑林区校级月考)两只小鼹鼠在地下从同一处开始打洞,一只朝北面挖,每分钟挖8cm,另一只朝东面挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距()A.100cm B.50cm C.140cm D.80cm【考点】KU:勾股定理的应用.【专题】12:应用题.【分析】由已知两只鼹鼠打洞的方向的夹角为直角,其10分钟内走路程分别等于两直角边的长,利用勾股定理可求斜边即其距离.【解答】解:两只鼹鼠10分钟所走的路程分别为80cm,60cm,∵正北方向和正东方向构成直角,∴由勾股定理得=100,∴其距离为100cm.故选A.【点评】此题主要考查学生对勾股定理的理解及运用.解题的关键是弄清正北方向和正东方向构成直角.7.(3分)(2013秋•广州校级期中)若有意义,则x的取值范围是()A.x≥1B.x>1C.x≠1D.x≤1【考点】72:二次根式有意义的条件;62:分式有意义的条件.【分析】根据被开方数大于等于0列式求解即可.【解答】解:根据题意得,x﹣1≥0且x﹣1≠0,解得x≥1且x≠1,所以x>1.故选B.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.8.(3分)(2016秋•碑林区校级月考)如图,长方体的透明玻璃鱼缸,假设其长AD=80cm,高AB=60 cm,水深为AE=40cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60cm;一小虫想从鱼缸外的A点沿壁爬进鱼缸内G处吃鱼饵,则小动物爬行的最短路线长为()A.40cm B.60cm C.80cm D.100cm【考点】KV:平面展开﹣最短路径问题.【分析】做出A关于BC的对称点A′,连接A′G,与BC交于点Q,此时AQ+QG最短,A′G为直角△A′EG 的斜边,根据勾股定理求解即可.【解答】解:如图所示作点A关于BC的对称点A′,连接A′G交BC与点Q,小虫沿着A→Q→G的路线爬行时路程最短.在直角△A′EG中,A′E=80cm,EG=60cm,∴AQ+QG=A′Q+QG=A′G==100cm.∴最短路线长为100cm.故选:D.【点评】本题考查最短路径问题,关键知道两点之间线段最短,从而可找到路径求出解.9.(3分)(2015秋•新泰市期中)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.45°B.60°C.90°D.30°【考点】KW:等腰直角三角形;KQ:勾股定理;KS:勾股定理的逆定理.【分析】根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.【解答】解:根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选A.【点评】本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键.10.(3分)(2016秋•碑林区校级月考)如图,在锐角三角形ABC中AB=,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是()A.4B.5C.6D.2【考点】PA:轴对称﹣最短路线问题.【分析】从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【解答】解:如图,在AC上截取AE=AN,连接BE,∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,,∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE,当BE是点B到直线AC的距离时,BE⊥AC,此时BM+MN有最小值,∵AB=4,∠BAC=45°,此时△ABE为等腰直角三角形,∴BE=4,即BE取最小值为4,∴BM+MN的最小值是4.故选A.【点评】本题考查了轴对称的应用.易错易混点:解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.规律与趋势:构造法是初中解题中常用的一种方法,对于最值的求解是初中考查的重点也是难点.二、细心填一填11.(3分)(2016秋•碑林区校级月考)|3.14﹣π|+=2π﹣6.28.【考点】28:实数的性质.【分析】根据差的绝对值是大数减小数,二次根式是非负数,可得答案.【解答】解:原式=π﹣3.14+π﹣3.14=2π﹣6.18,故答案为:2π﹣6.18.【点评】本题考查了实数的性质,利用差的绝对值是大数减小数,二次根式是非负数是解题关键.12.(3分)(2016秋•碑林区校级月考)在“寻找滨河最美,拒绝不文明行为”系列活动中,细心的董明同学发现:学校六号楼前有一块长方形花圃(如图所示),有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,请你计算,他们仅仅少走了4步路(假设2步为1米),却踩伤了花草.【考点】KU:勾股定理的应用.【分析】本题关键是根据勾股定理求出路长,即三角形的斜边长.再求两直角边的和与斜边的差即可求解.【解答】解:根据勾股定理可得斜边长是=5m.则少走的距离是3+4﹣5=2m,∵2步为1米,∴少走了4步,故答案为:4.【点评】此题考查了勾股定理的应用,注意单位的换算,通过实际问题向学生渗透思想教育.13.(3分)(2016秋•碑林区校级月考)已知直角三角形的两边长分别为5和12,那么以这个直角三角形的斜边为边长的正方形的面积为144或169.【考点】KQ:勾股定理.【分析】分两种情况考虑:当12为直角三角形的斜边时,利用正方形面积公式可求以这个直角三角形的斜边为边长的正方形的面积;当12为直角三角形的直角边时,利用勾股定理求出斜边的平方,即为以这个直角三角形的斜边为边长的正方形的面积.【解答】解:当12为直角三角形的斜边,此时以这个直角三角形的斜边为边长的正方形的面积为122=144;当12为直角三角形的直角边时,根据勾股定理得斜边的平方为52+122=25+144=169,此时以这个直角三角形的斜边为边长的正方形的面积为169.综上,以这个直角三角形的斜边为边长的正方形的面积为144或169.故答案为:144或169.【点评】此题考查了勾股定理,以及正方形的面积,利用了分类讨论的思想,分类讨论时注意考虑问题要全面,做到不重不漏.14.(3分)(2016秋•碑林区校级月考)如图所示,网格中的每个小正方形的边长都是1,△ABC每个=6.顶点都在网格的交点处,则S△ABC【考点】K3:三角形的面积.【分析】由正方形的面积减去三个直角三角形的面积即可.【解答】解:S=4×4﹣2××2×4﹣×2×2=6;△ABC故答案为:6.【点评】本题考查了三角形面积的计算、正方形的面积;熟练掌握三角形的面积公式是关键.15.(3分)(2016秋•碑林区校级月考)比较大小:<.【考点】2A:实数大小比较.【分析】先求出3<<4,可得0<﹣3<1,由于分母相同,比较分子的大小即可求解.【解答】解:∵3<<4,∴0<﹣3<1,∴<.故答案为:<.【点评】此题考查了实数的大小比较,用到的知识点是正实数>0,0>负实数,正实数>负实数.16.(3分)(2016秋•碑林区校级月考)如图所示,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2015的值为.【考点】LE:正方形的性质;KW:等腰直角三角形.【专题】2A:规律型.【分析】根据题意可知第2个正方形的边长是×2,则第3个正方形的边长是()2×2,…,进而可找出规律,第n个正方形的边长是()n﹣1×2,那么易求S2015的值.【解答】解:根据题意:第一个正方形的边长为2;第二个正方形的边长为:×2;第三个正方形的边长为:()2×2,…第n个正方形的边长是()n﹣1×2,所以S2015的值是()2012即.故答案为.【点评】本题考查了正方形的性质、等腰直角三角形的性质、勾股定理.解题的关键是长特殊到一般,探究规律后,应用规律解决问题,属于中考常考题型.三、认真做一做17.(8分)(2016秋•碑林区校级月考)计算下列各题(1)﹣+(2)×(3)﹣﹣+2(4)(π﹣3)0﹣|﹣3|+﹣.【考点】79:二次根式的混合运算;6E :零指数幂;6F :负整数指数幂.【专题】11:计算题.【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用二次根式的乘法法则运算;(3)先把各二次根式化简为最简二次根式,然后合并即可;(4)根据零指数幂和负整数指数的意义计算.【解答】解:(1)原式=2﹣3+5=4;(2)原式==;(3)原式=2﹣﹣+=+;(4)原式=1﹣3++9﹣=7.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.18.(8分)(2016秋•碑林区校级月考)一长方形的长与宽的比为4:3,其对角线长为,求这个长方形的长与宽(结果精确到0.1).【考点】LB :矩形的性质;1H :近似数和有效数字.【分析】长方形的长为4xcm ,则宽为3xcm ,由勾股定理得出方程,解方程即可.【解答】解:设长为4x ,则宽为3x ,(4x )2+(3x )2=75,∴,∴长为米,宽为米.【点评】本题考查了矩形的性质、勾股定理以及近似数和有效数字的认识,由勾股定理得出方程是解决问题的关键.19.(8分)(2016秋•碑林区校级月考)求代数式x2+xy+y2的值,其中x=﹣,y=+.【考点】7A:二次根式的化简求值.【分析】根据题目中x、y的值可以求得x+y的值和xy的值,从而可以求得代数式x2+xy+y2的值.【解答】解:∵x=﹣,y=+,∴x+y=2,xy=﹣1,∴x2+xy+y2=(x+y)2﹣xy=(2)2﹣(﹣1)=8+1=9.【点评】本题考查二次根式的化简求值,解答此类问题的关键是明确二次根式化简求值的方法.20.(8分)(2016秋•碑林区校级月考)矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),则着色部分的面积为多少?【考点】PB:翻折变换(折叠问题).【分析】根据矩形的性质,可得AB与CD的关系,根据翻折的性质,可得∠FEA=∠FEC;AD与CG的关系,根据全等三角形的判定与性质,可得FG与BE的关系,根据勾股定理,可得BE的长,根据面积的和差,可得答案.【解答】解:∵ABCD是矩形,∴AB||CD∴∠FEA=∠EFC.∵将矩形纸片沿EF折叠,使点A与点C重合,∴∠FEA=∠FEC∴∠EFC=∠FEC∴CF=CE.∵将矩形纸片沿EF折叠,使点A与点C重合,∴CG=AD=2.∵ABCD是矩形,∴AD=BC∴CG=BC.在Rt△CGF和Rt△CBE中,,∴△CGF≌△CBE(HL),∴FG=BE.设AE=CE=x,则BE=FG=(4﹣x),在Rt△BCE中,EC2=EB2+BC2,即(4﹣x)2+22=x2x=,BE=.∵CF=AE=,∴DF=BE=,∴S着色=S四边形BEFC+S△CFG,=(BE+CF)BC+CG•FG=×(+)×2+×2×=4+=.【点评】本题考查了翻折的性质,利用了矩形的性质,翻折的性质,利用勾股定理得出BE的长是解题关键,又利用了面积的和差.21.(8分)(2016秋•碑林区校级月考)如图,在△ABC中,已知AB=13cm,AC=5cm,C边上的中线AD=6cm,求以BC为边长的正方形的面积.【考点】KS:勾股定理的逆定理;KD:全等三角形的判定与性质.【分析】延长AD至E,使ED=AD,连接BE,由中线的定义得出BD=CD=BC,由SAS证明△BDE≌△CDA,得出对应边相等BE=AC=13,由勾股定理的逆定理证出∠BAD=90°,由勾股定理求出BD2,进一步求得BC2,即可得出结果.【解答】解:延长AD至E,使ED=AD,连接BE,如图所示:∵AD是BC边上的中线,∴BD=CD=BC,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=5,∵52+122=132,∴BE2+AE2=AB2,∴∠BED=90°,∴BD2=AB2+AD2=52+62=61,∴BC2=(2BD)2=4BD2=4×61=244.【点评】本题考查了全等三角形的判定与性质、勾股定理的逆定理、勾股定理;通过作辅助线构造三角形全等得出对应边相等证出直角三角形是解决问题的关键.22.(10分)(2016秋•碑林区校级月考)阅读下列解题过程:;请回答下列问题:(1)观察上面的解题过程,化简:①②(2)利用上面提供的解法,请计算:.【考点】76:分母有理化.【专题】21:阅读型.【分析】(1)观察阅读材料的解题过程,实质是二次根式的分母有理化,因此解答(1)题的关键是找出分母的有理化因式.(2)先将第一个括号内的各式分母有理化,此时发现除第一项和最后一项外,每两项都互为相反数,由此可求出第一个括号内各式的和,再求和第二个括号的乘积即可.【解答】解:(1)①==+3;②==;(2)=(﹣+﹣+﹣+…+﹣)(+)=(﹣)(+)=n.【点评】此题考查的是二次根式的分母有理化以及二次根式的加减法,关键是寻找分母有理化后的抵消规律.四、附加题23.(10分)(2013•威海)操作发现将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF的长直角边DE重合.问题解决将图①中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上,AC与BD交于点O,连接CD,如图②.(1)求证:△CDO是等腰三角形;(2)若DF=8,求AD的长.【考点】KW:等腰直角三角形;KI:等腰三角形的判定;KO:含30度角的直角三角形;KQ:勾股定理;LD:矩形的判定与性质.【专题】16:压轴题.【分析】(1)根据题意可得BC=DE,进而得到∠BDC=∠BCD,再根据三角形内角和定理计算出度数,然后再根据三角形内角与外角的性质可得∠DOC=∠DBC+∠BCA,进而算出度数,根据角度可得△CDO 是等腰三角形;(2)作AG⊥BC,垂足为点G,DH⊥BF,垂足为点H,首先根据∠F=60°,DF=8,可以算出DH=4,HF=4,DB=8,BF=16,进而得到BC=8,再根据等腰三角形的性质可得BG=AG=4,证明四边形AGHD为矩形,根据线段的和差关系可得AD长.【解答】(1)证明:由图①知BC=DE,∴∠BDC=∠BCD,∵∠DEF=30°,∴∠BDC=∠BCD=75°,∵∠ACB=45°,∴∠DCO+∠BCO=75°∴∠DCO=30°∵∠DCO+∠CDO+∠DOC=180°,∴∠DOC=30°+45°=75°,∴∠DOC=∠BDC,∴△CDO是等腰三角形;(2)解:作AG⊥BC,垂足为点G,DH⊥BF,垂足为点H,在Rt△DHF中,∠F=60°,DF=8,∴DH=4,HF=4,在Rt△BDF中,∠F=60°,DF=8,∴DB=8,BF=16,∴BC=BD=8,∵AG⊥BC,∠ABC=45°,∴BG=AG=4,∴AG=DH,∵AG⊥BC,DH⊥BF,∴AG∥DH,又∵AD∥BF,∠AGC=90°,∴四边形AGHD为矩形,∴AD=GH=BF﹣BG﹣HF=16﹣4﹣4=12﹣4.【点评】此题主要考查了等腰三角形的判定与性质,矩形的判定与性质,以及三角函数的应用,关键是掌握如果一个三角形有两个角相等,那么这两个角所对的边也相等.24.(12分)(2016秋•碑林区校级月考)(1)已知非零实数a,b满足|a﹣4|+(b+3)2++4=a,求a+b的值.(2)已知非负实数a,b满足a+b+|﹣1|=4+2﹣4,求a+2b﹣2c的值.【考点】4J:整式的混合运算—化简求值;2C:实数的运算.【分析】(1)先根据二次根式的性质求出a的范围,然后去掉绝对值号进行化简.最后利用非负性求出a+b的值(2)先将a+b+|﹣1|=4+2﹣4,化为几个非负数的和为零的形式,然后利用非负性求出a、b、c的值.【解答】(1)解:∵∴a﹣4≥0∴∴∴b+3=0,a﹣4=0∴b=﹣3,a=4∴a+b=1(2)由题意可知:∴∴,,∴a=6,b=0,c=2∴a+2b﹣2c=6+0﹣2×2=2【点评】本题考查非负数的性质,解题的关键是将所给的式子化为非负数的和为0的性质,然后利用非负性求出a、b、c的值,本题属于中等题型.。

【真卷】2016-2017年陕西省西安市碑林区铁一中学八年级上学期数学期末试卷及答案

【真卷】2016-2017年陕西省西安市碑林区铁一中学八年级上学期数学期末试卷及答案

2016-2017学年陕西省西安市碑林区铁一中学八年级(上)期末数学试卷一、精心选一选,慧眼识金1.(3分)9的平方根是()A.3B .C.±3D .2.(3分)在下列各数,,,﹣π,3.14,,0.030030003…(相邻两个3之间依次增加一个0)中,是无理数的有()A.1个B.2个C.3个D.4个3.(3分)以下各组数为三角形的三条边长,其中能作成直角三角形的是()A.2,3,4B.4,5,6C.1,,D.2,,4 4.(3分)我市从2017年1月1日起连续七天空气质量堪忧,PM2.5大于300时为严重污染,下表是这几天的Pm2.5空气质量指数则这组数据的中位数和平均数分别为()A.446,416B.446,406C.451,406D.499,416 5.(3分)下列各式计算正确的是()A.B.C.D.=46.(3分)若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()A.第四象限B.第三象限C.第二象限D.第一象限7.(3分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=4时,点R应运动到()A.M处B.N处C.P处D.Q处8.(3分)如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是()A.(﹣2,4),(1,3)B.(﹣2,4),(2,3)C.(﹣3,4),(1,4)D.(﹣3,4),(1,3)9.(3分)长方体的长为15,宽为10,高为20,点B在棱上与点C的距离为5,如图,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,则需要爬行的最短距离是()A.B.C.25D.10.(3分)如图,两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是()A.2cm B.4cm C.6cm D.8cm二、耐心填一填,一锤定音11.(3分)立方根等于本身的数是.12.(3分)直线y=3x+b与x轴的交点坐标是(1,0),则关于x的一元一次方程3x+b=0的解是.13.(3分)如图,已知直线AB∥CD,且线段AD=CD,若∠1=75°,则∠2的度数是.14.(3分)将直线y=﹣3x沿着x轴正向向右平移2个单位,所得直线的解析式为.15.(3分)一架长25m的云梯,斜立在一竖直的墙上,这时梯足距墙底端7m,如果梯子的顶端沿墙下滑了4m,那么梯足将滑动.16.(3分)如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是.三、用心做一做,马到成功17.(8分)计算或化简(1)﹣•(2)(π﹣1)0++|5﹣|﹣2.18.(8分)解下列方程组(1)(2).19.如图,正方形网格中的两个小正方形的边长都是1,每个小正方形的顶点叫格点,一个顶点为格点的三角形称为格点三角形:(1)如图①,已知格点△ABC,则△ABC(是或不是)直角三角形:(2)画一个格点△DEF,使其为钝角三角形,且面积为4.20.(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究:信息读取:(1)甲、乙两地之间的距离为km;(2)请解释图中点B的实际意义;图象理解:(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;问题解决:(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?21.(10分)已知:如图,已知:D是△ABC的边AB上一点,CN∥AB,DN交AC于M,MA=MC,求证:CD=AN.22.(12分)某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的A,B两种长方体形状的无盖纸盒,现有正方形纸板140张,长方形纸板360张,刚好全部用完,问能做成多少个A型盒子?多少个B型盒子?(1)根据题意,甲和乙两同学分别设了不同意义的未知数:甲同学设做了x个A型纸盒,y个B型纸盒,则甲同学所列方程组应为;而乙同学设做A型纸盒用x张正方形纸板,做B型纸盒用y张正方形纸板,则乙同学所列方程组应为.(2)求做成的A型盒子和B型盒子分别有多少个(写出完整的解答过程)?23.(12分)如图,一次函数y=﹣x+m的图象与x和y分别交于点A和点B,与正比例函数y=x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积;(3)在直线OP上是否存在异与点P的另一点C,使得△OBC与△OBP的面积相等?若存在,请求出C点的坐标;若不存在,请说明理由.24.(12分)(1)问题发现:如图(1),小明在同一个平面直角坐标系中作出了两个一次函数y=x+1和y=x﹣1的图象,经测量发现:∠1∠2(填数量关系)则l1l2(填位置关系),从而二元一次方程组无解.(2)问题探究:小明发现对于一次函数y=k1x+b1与y=k2x+b2(b1≠b2),设它们的图象分别是l1和l2(如备用图1)①如果k1k2(填数量关系),那么l1l2(填位置关系);②反过来,将①中命题的结论作为条件,条件作为结论,所得命题可表述为,请判断此命题的真假或举出反例;(3)问题解决:若关于x,y的二元一次方程组(各项系数均不为0)无解,那么各项系数a1、b1、c1、a2、b2、c2应满足什么样的数量关系?请写出你的结论.2016-2017学年陕西省西安市碑林区铁一中学八年级(上)期末数学试卷参考答案与试题解析一、精心选一选,慧眼识金1.(3分)9的平方根是()A.3B.C.±3D.【解答】解:9的平方根是±3.故选:C.2.(3分)在下列各数,,,﹣π,3.14,,0.030030003…(相邻两个3之间依次增加一个0)中,是无理数的有()A.1个B.2个C.3个D.4个【解答】解:无理数有:,﹣π,0.030030003…(相邻两个3之间依次增加一个0)共3个.故选:C.3.(3分)以下各组数为三角形的三条边长,其中能作成直角三角形的是()A.2,3,4B.4,5,6C.1,,D.2,,4【解答】解:A、22+32=13≠42=16,故A选项错误;B、42+52=41≠62=36,故B选项错误;C、12+()2=3=()2,此三角形是直角三角形,故C选项正确;D、22+()2=6≠42=16,故D选项错误.故选:C.4.(3分)我市从2017年1月1日起连续七天空气质量堪忧,PM2.5大于300时为严重污染,下表是这几天的Pm2.5空气质量指数则这组数据的中位数和平均数分别为( ) A .446,416B .446,406C .451,406D .499,416【解答】解:将所有的数据排序后位于中间的数是1号,446, 所以中位数为446;平均数为(446+402+456+499+500+434+105)÷7=406, 故选:B .5.(3分)下列各式计算正确的是( ) A .B .C .D .=4【解答】解:A 、2,无意义,故此选项不合题意;B 、(﹣)2=2,故此选项不合题意;C 、=3,故此选项不合题意;D 、=4,正确,符合题意.故选:D .6.(3分)若点A (﹣2,n )在x 轴上,则点B (n ﹣1,n +1)在( ) A .第四象限B .第三象限C .第二象限D .第一象限【解答】解:∵点A (﹣2,n )在x 轴上, ∴n=0,∴点B 的坐标为(﹣1,1).则点B(n﹣1,n+1)在第二象限.故选:C.7.(3分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=4时,点R应运动到()A.M处B.N处C.P处D.Q处【解答】解:点R在NP上时,三角形面积增加,点R在点P时,三角形的面积最大,故选:C.8.(3分)如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是()A.(﹣2,4),(1,3)B.(﹣2,4),(2,3)C.(﹣3,4),(1,4)D.(﹣3,4),(1,3)【解答】解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°,∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD,在△AOE和△OCD中,,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD,∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3),同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4);故选:A.9.(3分)长方体的长为15,宽为10,高为20,点B在棱上与点C的距离为5,如图,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,则需要爬行的最短距离是()A.B.C.25D.【解答】解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:∴AB===25;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB===5;只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴AC=CD+AD=20+10=30,在直角三角形ABC中,根据勾股定理得:∴AB===5;∵25<5<5,∴蚂蚁爬行的最短距离是25.故选:C.10.(3分)如图,两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是()A.2cm B.4cm C.6cm D.8cm【解答】解:甲液体的体积等于液体在乙中的体积.设乙杯中水深为xcm,则AP=AB=4cm,则π×(2)2×16=π×(4)2×x,解得x=4.在直角△ABP中,已知AP=4 cm,AB=8 cm,∴BP=12cm.根据三角形的面积公式可知直角△ABP斜边上的高是6cm,所以乙杯中的液面与图中点P的距离是16﹣6﹣4=6(cm).故选:C.二、耐心填一填,一锤定音11.(3分)立方根等于本身的数是1,﹣1,0.【解答】解:∵=1,=﹣1,=0∴立方根等于本身的数是±1,0.12.(3分)直线y=3x+b与x轴的交点坐标是(1,0),则关于x的一元一次方程3x+b=0的解是x=1.【解答】解:∵直线y=3x+b与x轴的交点坐标是(1,0),∴3×1+b=0,∴关于x的一元一次方程3x+b=0的解是x=1.故答案为:x=1.13.(3分)如图,已知直线AB∥CD,且线段AD=CD,若∠1=75°,则∠2的度数是30°.【解答】解:∵AB∥CD,∴∠ACD=∠1=75°,∵AD=CD,∴∠ACD=∠CAD=75°,∴∠2=180°﹣75°×2=30°.故答案为:30°.14.(3分)将直线y=﹣3x沿着x轴正向向右平移2个单位,所得直线的解析式为y=﹣3x+6.【解答】解:根据题意,得直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=﹣3(x﹣2)=﹣3x+6.故答案为:y=﹣3x+6.15.(3分)一架长25m的云梯,斜立在一竖直的墙上,这时梯足距墙底端7m,如果梯子的顶端沿墙下滑了4m,那么梯足将滑动8m.【解答】解:梯子顶端距离墙角地距离为=24m,顶端下滑后梯子低端距离墙角的距离为=15m,15m﹣7m=8m.故答案为:8m.16.(3分)如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是(﹣1,0).【解答】解:作A关于x轴的对称点C,连接BC交x轴于P,则此时AP+BP最小,∵A点的坐标为(2,3),B点的坐标为(﹣2,1),∴C(2,﹣3),设直线BC的解析式是:y=kx+b,把B、C的坐标代入得:解得.即直线BC的解析式是y=﹣x﹣1,当y=0时,﹣x﹣1=0,解得:x=﹣1,∴P点的坐标是(﹣1,0).故答案为:(﹣1,0).三、用心做一做,马到成功17.(8分)计算或化简(1)﹣•(2)(π﹣1)0++|5﹣|﹣2.【解答】解:(1)原式=﹣=1﹣;(2)原式=1﹣2+3﹣5﹣2=﹣6.18.(8分)解下列方程组(1)(2).【解答】解:(1)方程组整理得:,①+②得:4x=12,解得:x=3,把x=3代入①得:y=,则方程组的解为;(2),①+②+③得:2(a+b+c)=8,即a+b+c=4④,把①代入④得:c=1;把②代入④得:a=6;把③代入④得:b=﹣3,则方程组的解为.19.如图,正方形网格中的两个小正方形的边长都是1,每个小正方形的顶点叫格点,一个顶点为格点的三角形称为格点三角形:(1)如图①,已知格点△ABC,则△ABC不是(是或不是)直角三角形:(2)画一个格点△DEF,使其为钝角三角形,且面积为4.【解答】解:(1)如图1,∵AB=,BC=,AC=,∴AB2+BC2≠AC2,∴△ABC不是直角三角形;故答案为:不是;(2)如图2,△DEF中∠DEF>90°,△DEF的面积=×2×4=4.∴△DEF即为所求.20.(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究:信息读取:(1)甲、乙两地之间的距离为900km;(2)请解释图中点B的实际意义;图象理解:(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;问题解决:(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?【解答】解:(1)900;(2)图中点B的实际意义是:当慢车行驶4h时,慢车和快车相遇.(3)由图象可知,慢车12h行驶的路程为900km,所以慢车的速度为=75(km/h);当慢车行驶4h时,慢车和快车相遇,两车行驶的路程之和为900km,所以慢车和快车行驶的速度之和为=225(km/h),所以快车的速度为150(km/h).(4)根据题意,快车行驶900km到达乙地,所以快车行驶=6(h)到达乙地,此时两车之间的距离为6×75=450(km),所以点C的坐标为(6,450).设线段BC所表示的y与x之间的函数关系式为y=kx+b,把(4,0),(6,450)代入得,解得,所以,线段BC所表示的y与x之间的函数关系式为y=225x﹣900.自变量x的取值范围是4≤x≤6.(5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h.把x=4.5代入y=225x﹣900,得y=112.5.此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km,所以两列快车出发的间隔时间是112.5÷150=0.75(h),即第二列快车比第一列快车晚出发0.75h.21.(10分)已知:如图,已知:D是△ABC的边AB上一点,CN∥AB,DN交AC于M,MA=MC,求证:CD=AN.【解答】证明:如图,因为AB∥CN,所以∠1=∠2.在△AMD和△CMN中,∴△AMD≌△CMN.∴AD=CN.又AD∥CN,∴四边形ADCN是平行四边形.∴CD=AN.22.(12分)某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的A,B两种长方体形状的无盖纸盒,现有正方形纸板140张,长方形纸板360张,刚好全部用完,问能做成多少个A型盒子?多少个B型盒子?(1)根据题意,甲和乙两同学分别设了不同意义的未知数:甲同学设做了x个A型纸盒,y个B型纸盒,则甲同学所列方程组应为;而乙同学设做A型纸盒用x张正方形纸板,做B型纸盒用y张正方形纸板,则乙同学所列方程组应为.(2)求做成的A型盒子和B型盒子分别有多少个(写出完整的解答过程)?【解答】解:(1)甲:乙:,故答案为:,;(2)设能做成的A型盒有x个,B型盒子有y个,根据题意得:,解得:,答:A型盒有60个,B型盒子有40个.23.(12分)如图,一次函数y=﹣x+m的图象与x和y分别交于点A和点B,与正比例函数y=x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积;(3)在直线OP上是否存在异与点P的另一点C,使得△OBC与△OBP的面积相等?若存在,请求出C点的坐标;若不存在,请说明理由.【解答】解:(1)∵点P(2,n)在正比例函数y=x图象上,∴n=×2=3,∴点P的坐标为(2,3).∵点P(2,3)在一次函数y=﹣x+m的图象上,∴3=﹣2+m,解得:m=5,∴一次函数解析式为y=﹣x+5.∴m的值为5,n的值为3.(2)当x=0时,y=﹣x+5=5,∴点B的坐标为(0,5),=OB•x P=×5×2=5.∴S△POB(3)存在.OB•|x C|=S△POB=5,∵S△OBC∴x C=﹣2或x C=2(舍去).当x=﹣2时,y=×(﹣2)=﹣3.∴点C的坐标为(﹣2,﹣3).24.(12分)(1)问题发现:如图(1),小明在同一个平面直角坐标系中作出了两个一次函数y=x+1和y=x﹣1的图象,经测量发现:∠1=∠2(填数量关系)则l1∥l2(填位置关系),从而二元一次方程组无解.(2)问题探究:小明发现对于一次函数y=k1x+b1与y=k2x+b2(b1≠b2),设它们的图象分别是l1和l2(如备用图1)①如果k1=k2(填数量关系),那么l1∥l2(填位置关系);②反过来,将①中命题的结论作为条件,条件作为结论,所得命题可表述为如果l1∥l2,那么k1=k2,,请判断此命题的真假或举出反例;(3)问题解决:若关于x,y的二元一次方程组(各项系数均不为0)无解,那么各项系数a1、b1、c1、a2、b2、c2应满足什么样的数量关系?请写出你的结论.【解答】解:(1)如图(1),y=x+1中,当x=0时,y=1,当y=0时,x=﹣1,∴A(0,1),B(﹣1,0),∴OA=OB=1,∵∠AOB=90°,∴∠1=45°,同理求得∠2=45°,∴∠1=∠2,∴l1∥l2,故答案为:=,∥;(2)①当k1=k2时,如备用图1,过P作PQ∥x轴,交l2于Q,过Q作QF⊥x轴于F,当y=0时,k1x+b1=0,x=﹣,∴OA=,当x=0时,y=b1,∴P(0,b1),∵PQ∥x轴,∴点P与点Q的纵坐标相等,当y=b1时,b1=k2x+b2,x=,∴OF=,在y=k2x+b2中,当y=0时,0=k2x+b2,x=﹣,∴OB=﹣,∴BF=﹣(﹣)=,∵k1=k2,∴OA=BF,∵∠AOP=∠BFQ=90°,∴△AOP≌△BFQ,∴∠1=∠2,∴l1∥l2;则当k1=k2时,l1∥l2;∴故答案为:=,∥;②将①中命题的结论作为条件,条件作为结论,所得命题可表述为:如果l1∥l2,那么k1=k2,此命题为真命题;理由是:∵l1∥l2,∵∠AOP=∠BFQ=90°,OP=FQ,∴△AOP≌△BFQ,∴OA=BF,同理可得:OA=,BF=﹣(﹣)=,∴=,∵b1≠b2,∴k1=k2;③由a1x+b1y=c1得:y=﹣,由a2x+b2y=c2得:y=﹣,∵方程组无解,∴直线y=﹣和直线y=﹣平行,∴,则.附赠:初中数学易错题填空专题一、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是____ _____。

2016-2017年度陕西地区西安市铁一中学八年级上学期期末考试数学试卷

2016-2017年度陕西地区西安市铁一中学八年级上学期期末考试数学试卷

2016-2017学年陕西省西安市铁一中学八年级上学期期末考试数学试卷考试范围:xxx;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、单选题1.9的平方根是()A. √3B. 3C. ±√3D. ±32.在下列各数0.21,√16,√5,−π,3.14,22,0.030030003⋯(相邻两个3之间依次7增加一个0)中,是无理数....的有()A. 1个B. 2个C. 3个D. 4个3.以下列各组数为三角形三条边长,其中能构成直角三角形的是……()A. 2,3,4B. 4,5,6C. 1,√2,√3D. 2,√2,44.我市从2017年1月1日起连续七天空气质量堪忧,PM2.5大于300时为严重污染,下表是这几天的Pm2.5空气质量指数则这组数据的中位数和平均数分别为()A. 446,416B. 446,406C. 451,406D. 499,4165.下列各式计算正确的是()A. 2√−8=−2B. (−√2)2=4C. √(−3)2=−3D. √16=±46.若点A(−2 , m)在x轴上,则点B(m−1 , m+1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=4时,点R应运动到()8.如图,在正方形OABC中,点A的坐标是(−3 , 1),点B的纵坐标是4,则B,C两点的坐标分别是()A. (−2 , 4) , (1 , 3)B. (−2 , 4) , (2 , 3)C. (−3 , 4) , (1 , 4)D. (−3 , 4) , (1 , 3)9.长方体的长为15,宽为10,高为20,点B在棱上与点C的距离为5,如图,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,则需要爬行的最短距离是()A. 10√5+5B. 5√29C. 25D. 5√3710.两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯,相关数据如图所示,若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是()A. 6cmB. 4√3cmC. 8cmD. 10cm第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.立方根等于本身的数是______:12.直线v =3x +b 与x 轴的交点坐标是(1 , 0),则关于x 的一元一次方程3x +b =0的理解是_______:13.将直线y =−3x 沿着x 轴正向向右平移2个单位,所得直线的解析式为_______:14.一架25m 长的梯子斜靠在一竖直的墙上,这时梯足距离墙底7m ,如果梯子的顶端沿墙下滑4m ,那么梯足将滑_______m :15.如图,在平面直角坐标系中,已知点A(2 , 3),点B(−2 , 1)。

八年级数学上册第一次月考试卷【带答案】

八年级数学上册第一次月考试卷【带答案】

八年级数学上册第一次月考试卷【带答案】(总4页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除八年级数学上册第一次月考试卷 数学试卷(全等三角形-轴对称)一. 填空:(每题3分,共45分)1. 如图,在△ABC 中,AD=DE ,AB=BE ,∠A=80°,则∠CED= ..2. 如图,在△ABC 中,BE ,CF 是中线,则由 可得,△AFC ≌△AEB. 3. 在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E 是BC 的中点,DE 平分∠ADC ,∠CED=35°,则∠EAB= .4. 如图,在Rt △ABC 中,∠BAC=90°AB=AC ,分别过点B ,C 坐过点A 的直线的垂线BD ,CE ,若BD=4,CE=3,则DE= .5. 如图,在△ABC 中,点O 在在△ABC 内,且∠OBC=∠OCA ,∠BOC==110°,则∠A= .6. 如图,∠AOB==30°,OC 平分∠AOB ,∠CED=35°,P 为OC 上的一点,PD ∥OA 交OB 于D ,PE ⊥OA 于点E ,若OD=4,则PE= .7. 如图,已知,∠A=15°,AB=BC=CD=DE=EF ,则∠FEN=(7)MN FE D CBA(6)DEP OCBA OBA8. △ABC 的顶点A (-1,0),B (1,3),C (1,0)它关于y 轴的轴对称图形为△A ’B ’C ’,两图形重叠部分的面积为 .9. 在△ABC 中,∠ACB=90°,∠BAC=30°,在直线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件点P 共有 个. 10. 从镜子中看到钟表的时刻为3点15分,则实际时间为 .11. 长方形沿对角线折叠后如图所示,△ABC 到△ACE 的位置,若∠BAC=α,则∠ECD 的度数为 .12. 如图,△ABC 与△DPC 是两个全等的等边三角形,且PA ⊥PD ,有下列四个结论:⑴∠PBC==15°,⑵AD ∥BC ,⑶直线PC 与AB 垂直,⑷四边形ABCD 是轴对称图形.其中正确的结论的个数为 .13.点P 到x 轴,y 轴的距离分别是1和2,且点P 关于x 轴对称的点在第一象限,则P 点的坐标为 .14.如图,∠B=∠C=40°,∠ADE=∠AED=80°,则图中共有等腰三角形 个. 15.已知点(2,x )和点(y ,3)关于不要轴对称,则x+y= .解答题:(每题10分,共50分)(11)(12)(14)1.如图,在△ABC中,∠ACB=90°CD,CE三等分∠ACB分别交AB于点E,D,CD⊥AB于D,求证:AB=2BC.2.如图AB=AF,BC=EF,∠B=∠F,D是BC的中点.求证:(1)AD⊥CF;(2)连接BF后,还能得出什么结论?写出两个(不必证明).3. 如图,在△ABC中,∠BAC=90°,AB=AC,BD⊥AE于D,CE⊥AE于E,那么,BD,DE,CE之间有什么关系?证明之.4. 如图,在△ABC中,∠A=80°,D、E、F分别是三边上的点,且CF=CD,BD=BE,求∠EDF的度数. F5. 如图:已知OD 平分∠AOB,DC ⊥OA 于C ,AO+BO=2OC.求证:∠OAD+∠OBD=180°.三.画图(5分)如图所示,找一点P,到OA,BO 所在直线距离相等.到点M,N 距离也相等.(写作法,并保留画图痕迹).四.附加题:△ABC 和△ACD 是两个全等的等边三角形, ∠EAF=60°.(1)如图1,探究BE,CF 的关系: (2)如图2,(1)中得到的结论还成立吗?说明理由.ODCBAA参考答案:一.1. 100°;2. SAS;3. 35°;4. 7;5. 40°;6. 2;7. 75°;8. 1.5;9. 5个; 10. 8点45分; 11. 90°-2α; 12. ①②③④; 13.(1,-2);14. 4个;15. 1.二.1. ∵∠C=90°,CD⊥BA,∠BCD=30°,∴∠B=60°,∠BCE=60°,∠EAC=∠ECA=30°.∴△CBE是等边三角形,AE=CE,∴AB=BE+EA=2BC.2.(1)连接AC,AE,由△ABC≌△AFE,∴AC=AE,又AD是△ACE的中线,所以,AD⊥CE.(2)AD垂直平分BF,BF∥CE.3.BD=DE+CE;由△ABD≌△CAE,所以,BD=AE,AD=CE,所以,DB=CE+DE.4.因为,CF==CD,BD=BE,所以,∠BDE=12(180°-∠B)=90°-12∠B,同理,∠CDF=90°-12∠C,所以,∠EDF=180°-(∠BDE+∠CDF)=180°-[180°-12(∠B+∠C)]=12(∠B+∠C)=12(180°-∠A)=50°.5.过D作PD⊥OB于D,所以,CD=PD,所以,△OCD≌△OPD,所以,OC=OP,所以,OC+AC+BO=2OC=OC+OB+PB,所以,AC=PB,又,CD=PD,AC=PB,所以,Rt△ACD≌Rt△BPD,所以,∠A=∠PBD,所以,∠OBD+∠DBP=180°,所以,∠A+∠OBD=180°.三.作法:(1)作∠AOB及其邻补角的平分线所在直线,(2)连接MN,作MN的垂直平分线,与前面的两直线交于P1,P2,则P1,P2就是所求的点.四 .(1)BE=CF,由△ABE≌△ACF,所以,BE=CF.(2)仍然成立. 由△ABE≌△ACF,所以,BE=CF.。

陕西西安碑林区西北工大附中16-17学年八年级上第一次月考试卷--数学(解析版)

陕西西安碑林区西北工大附中16-17学年八年级上第一次月考试卷--数学(解析版)
2016-2017学年陕西省西安市碑林区西北工大附中八年级(上)第一次月考数学试卷
参考答案与试题解析
一、选择题(共10小题)
1.y=(m﹣1)x|m|+3m表示一次函数,则m等于( )
A.1B.﹣1C.0或﹣1D.1或﹣1
【考点】F1:一次函数的定义.
【分析】根据一次函数的定义,自变量x的次数为1,一次项系数不等于0列式解答即可.
3.将函数y=﹣3x)
A.y=﹣3x+2B.y=﹣3x﹣2C.y=﹣3(x+2)D.y=﹣3(x﹣2)
4.已知一次函数y=kx﹣1,若y随x的增大而增大,则它的图象经过( )
A.第一、二、三象限B.第一、二、四象限
C.第一、三、四象限D.第二、三、四象限
19.在平面直角坐标系中,一次函数图象是由直线y=﹣x+8平移得到的,且经过点A(2,3),交y轴于点B.
(1)求此一次函数的表达式;
(2)若点P为此一次函数图象上一点,且△POB的面积为10,求点P的坐标.
20.已知两直线l1:y1=k1x+b1,l2:y2=k2x+b2,若l1⊥l2,则有k1•k2=﹣1.
A.y= xB.y= xC.y= xD.y= x
二、填空题
11.函数 中,自变量x的取值范围是.
12.已知y与x+2成正比例,当x=3时,y=10,那么当y=16时,x=.
13.在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2.(填“>”“<”或“=”)
【解答】解:由题意得,|m|=1且m﹣1≠0,
解得m=±1且m≠1,
所以,m=﹣1.
故选B.

八年级上第一次月考数学试题.docx

八年级上第一次月考数学试题.docx

八年级(上)第一次月考数学试题班级:姓名:学号:一、选择题:(36分)1.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A. 13cmB. 6cmC. 5cm2.能将三角形面积平分的是三角形的(A、角平分线B、高C、中线3.三角形一个外角小于与它相邻的内角,D. 4cm)D、这个三角形是(外角平分线A.直角三角形B.锐角三角形C.钝角三角形D.属于哪一类不能确定4.如图所示,已知冏性⑦,Z1=Z2, ZB=ZC,下列不正确式子是()A. AB=ACB. ZBA^ZCADC. BE^DC5 .如图,将一副三角板叠放在一起,ZA0C+ZD0B=()A、90°B、120°C、160°6.如图所示,点B、C. E在同一条直线上, 三角形,则下列结论不一定成立的是(使直角的顶点重合于0,则B. 4BGg4AFCC. 4DCG^4ECFD. /XADB^/^CEA7.要测量河两岸相对的两点4.日的距离,先在点3的垂线上取两点。

D ,使= 再作出的垂线使X. C・E在一条直线上(如图所示),可以说明左EDC^AABC ,得E ED = ria ,因此测得EQ的长就是AB的长,判定△£此至勾43(? 第7题图最恰当的理由是()A.边角边B.角边角C.边边边D.边边角8.已知:如图所示,AOCD,Z5=Z^90° , AC VCD,则不正确的结论是()A. Z/与Z〃互为余角C. 4ABC^4CEDB. Z^=Z2D. Z1=Z2第5题图D、180°△/冏7与△宓都是等边)第8题图9.如图,在直角三角形ABC 中,AC 尹AB, AD 是斜边上的高,DEXAC, DF±AB,垂足分别二、填空题:(本大题共5小题,共20分)13. 为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是 14.如图,已知Z1=Z2,请你添加一个条件:,使左ABD^AACD.15、 如图,小华从点A 出发向前走10m,向右转15。

西安铁一中分校八年级数学上册第一单元《三角形》检测题(含答案解析)

西安铁一中分校八年级数学上册第一单元《三角形》检测题(含答案解析)

一、选择题1.如图,AB 和CD 相交于点O ,A C ∠=∠,则下列结论中不正确的是( ).A .B D ∠=∠B .1A D ∠=∠+∠C .2D ∠>∠ D .C D ∠=∠2.如图,ABC 中,BC 边上的高是( )A .AEB .ADC .CD D .CF3.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是( )A .12B .10C .9D .64.在多边形的一边上任取一点(不是顶点),将这个点与多边形的各顶点连接起来,可以将多边形分割成8个三角形,则该多边形的边数为( )A .8B .9C .10D .11 5.如图,ABC 中,将A ∠沿DE 翻折,若30A ∠=︒,25BDA '∠=︒,则CEA '∠多少度( )A .60°B .75°C .85°D .90°6.如图,D 是ABC 的边BC 上任意一点,E 、F 分别是线段AD CE 、的中点,且ABC 的面积为220cm ,则BEF 的面积是( )2cmA .5B .6C .7D .87.长度分别为2,3,4,5的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )A .8B .5C .6D .7 8.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( ) A .3cmB .10cmC .4cmD .6cm 9.设四边形的内角和等于,a 五边形的外角和等于,b 则a 与b 的关系是( ) A .a b = B .120a b =+ C .180b a =+︒ D .360b a =+︒ 10.如图,小明从点A 出发沿直线前进9米到达点,B 向左转45后又沿直线前进9米到达点C ,再向左转45后沿直线前进9米到达点D ……照这样走下去,小明第一次回到出发点A 时所走的路程为( )A .72米B .80米C .100米D .64米 11.下列说法正确的个数为( )①过两点有且只有一条直线;②两点之间,线段最短;③若ax ay =,则x y =;④若A 、B 、C 三点共线且AB BC =,则B 为AC 中点;⑤各边相等的多边形是正多边形. A .①②④ B .①②③ C .①④⑤ D .②④⑤ 12.如图,105DBA ∠=︒,125ECA ∠=︒,则A ∠的度数是( )A .75°B .60°C .55°D .50°二、填空题13.如图,已知//,AB CD E 是直线AB 上方一点,G 为直线AB 下方一点,F 为直线CD 上一点,148EAF ︒∠=,3BAF BAG ∠=∠,3DCE DCG ∠=∠,则E ∠和G ∠的数量关系为___________.14.如图,C 为∠AOB 的边OA 上一点,过点C 作CD ∥OB 交∠AOB 的平分线OE 于点F ,作CH ⊥OB 交BO 的延长线于点H ,若∠EFD =α,现有以下结论:①∠COF =α;②∠AOH =180°﹣2α;③CH ⊥CD ;④∠OCH =2α﹣90°.其中正确的是__(填序号).15.如图,飞机P 在目标A 的正上方,飞行员测得目标B 的俯角为30°,那么APB ∠的度数为______°.16.如图,若∠CGE=α,则∠A+∠B+∠C+∠D+∠E+∠F=____.17.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则A DB '∠=________.18.如图,六边形ABCDEF 中,AB ∥DC ,∠1、∠2、∠3、∠4分别是∠BAF 、∠AFE 、∠FED 、∠EDC 的外角,则∠1+∠2+∠3+∠4=_____.19.已知//AB CD ,点P 是平面内一点,若30,20BPD PBA ∠=︒∠=︒,则CDP ∠=___________度.20.如图,把正三角形、正四边形、正五边形按如图所示的位置摆放,若150,222∠=︒∠=︒,则3∠=_______.三、解答题21.△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C=60°,求∠DAE 的度数;(2)如图2,∠B <∠C ,则DAE 、∠B ,∠C 之间的数量关系为___________;(3)如图3,延长AC 到点F ,∠CAE 和∠BCF 的角平分线交于点G ,求∠G 的度数.22.如图,ABC 中,AD 平分BAC ∠,P 为AD 延长线上一点,PE BC ⊥于点E ,若70C ∠=︒,24B ∠=︒,求P ∠的度数.23.如图①,ABC 中,BD 平分ABC ∠,且与ABC 的外角ACE ∠的角平分线交于点D .(1)若75ABC ∠=︒,45ACB ∠=︒,求D ∠的度数;(2)若把A ∠截去,得到四边形MNCB ,如图②,猜想D ∠、M ∠、N ∠的关系,并说明理由.24.已知,a ,b ,c 为ABC 的三边,化简|a ﹣b ﹣c|﹣2|b ﹣c ﹣a|+|a+b ﹣c|. 25.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,则我们把形如这样的图形称为“8字型”.(1)在图1中,请直接写出∠A 、∠B 、∠C 、∠D 之间的数量关系: ;(2)如图2,若∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,且与CD 、AB 分别相交于点M 、N .①以线段AC 为边的“8字型”有 个,以点O 为交点的“8字型”有 个; ②若∠B =100°,∠C =120°,求∠P 的度数;③若角平分线中角的关系改为“∠CAP =13∠CAB ,∠CDP =13∠CDB”,请直接写出∠P 与∠B 、∠C 之间存在的数量关系.26.如图,已知:点P 是ABC ∆内一点.(1)求证:BPC A ∠>∠;(2)若PB 平分ABC ∠,PC 平分ACB ∠,40A ︒∠=,求P ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用三角形的外角性质,对顶角相等逐一判断即可.【详解】∵∠1=∠2,∠A=∠C ,∠1=∠A+∠D ,∠2=∠B+∠C ,∴∠B=∠D ,∴选项A 、B 正确;∵∠2=∠A+∠D ,∴2D ∠>∠,∴选项C 正确;没有条件说明C D ∠=∠故选:D.【点睛】本题考查了对顶角的性质,三角形外角的性质,熟练掌握并运用两条性质是解题的关键. 2.B解析:B【分析】根据从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,确定出答案即可.【详解】由图可知,过点A作BC的垂线段AD,则ABC中,BC边上的高是AD.故选:B【点睛】本题主要考查了三角形的高的定义,熟记概念是解题的关键.3.D解析:D【分析】要先根据题意,画出图形,通过对图形观察,思考,得出需要小木棍的根数,然后图形对比,选出最少需要小木棍的根数.【详解】图1没有共用部分,要6根小木棍,图2有共用部分,可以减少小木棍根数,仿照图2得到图3,要7根小木棍,同法搭建的图4,要9根小木棍,如按图5摆放,外围大的等边三角形,可以得到5个等边三角形,要9根小木棍,如按图6摆成三棱锥(西面体)就可以得到4个等边三角形,∴搭建4个等边三角形最少需要小木棍6根.故选:D【点睛】此题考查的是组成图形的边的条数,解答此题需要灵活利用立体空间思维解答.4.B解析:B【分析】逐一探究在三角形,四边形,五边形一边上任取一点(不是顶点),将这个点与多边形的各顶点连接起来,得到分割成的三角形的数量,再总结规律,运用规律列方程即可得到答案.【详解】解:如图,探究规律:在三角形的一边上任取一点(不是顶点),将这个点与三角形的各顶点连接起来,可以将三角形分割成2个三角形,在四边形的一边上任取一点(不是顶点),将这个点与四边形的各顶点连接起来,可以将四边形分割成3个三角形,在五边形的一边上任取一点(不是顶点),将这个点与五边形的各顶点连接起来,可以将五边形分割成4个三角形,总结规律:在n 边形的一边上任取一点(不是顶点),将这个点与n 边形的各顶点连接起来,可以将n 边形分割成()1n -个三角形,应用规律:由题意得:18,n -=9.n ∴=故选:.B【点睛】本题考查的是规律探究及规律运用,探究“在n 边形的一边上任取一点(不是顶点),将这个点与n 边形的各顶点连接起来,把n 边形分割成的三角形的数量”是解题的关键. 5.C解析:C【分析】根据折叠前后对应角相等可得ADE A DE '∠=∠,AED A ED '∠=∠,再运用平角的定义和三角形内角和定理依次求得ADE ∠、AED ∠,再次运用平角的定义即可求得CEA '∠.【详解】解:∵将A ∠沿DE 翻折,∴ADE A DE '∠=∠,AED A ED '∠=∠,∵D 是线段AB 上的点,25BDA '∠=︒,∴180ADE A D B E DA '∠+∠-'∠=︒,即251280ADE ︒=∠-︒,解得102.5ADE ∠=︒,∵30A ∠=︒,180A AED ADE ∠+∠+∠=︒,∴180180102.53047.5AED ADE A ∠=︒-∠-∠=︒-︒-︒=︒,∴18018047.547.585CEA AED A ED ''∠=︒-∠-∠=︒-︒-︒=︒.故选:C .【点睛】本题考查折叠的性质,三角形内角和定理,平角的定义.理解折叠前后对应角相等是解题关键.6.A解析:A【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】解:∵点E 是AD 的中点,∴S △ABE =12S △ABD ,S △ACE =12S △ADC , ∴S △ABE +S △ACE =12S △ABC =12×20=10cm 2, ∴S △BCE =12S △ABC =12×20=10cm 2, ∵点F 是CE 的中点, ∴S △BEF =12S △BCE =12×10=5cm 2. 故选:A .【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.7.C解析:C【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】解:①长度分别为5、4、5,能构成三角形,且最长边为5;②长度分别为2、7、5,不能构成三角形;③长度分别为2、3、9,不能构成三角形;④长度分别为7、3、4,不能构成三角形;⑤长度分别为3、5、6,能构成三角形,且最长边为6;⑥长度分别为2、4、8,不能构成三角形;综上所述,得到三角形的最长边长为6.故选:C.【点睛】本题考查了三角形的三边关系,利用了三角形中三边的关系求解.注意分类讨论,不重不漏.8.D解析:D【分析】根据三角形的三边关系解答.【详解】解:∵三角形的两边为3cm,7cm,∴第三边长的取值范围为7-3<x<7+3,即4<x<10,只有D符合题意,故选:D.【点睛】本题考查了三角形的三边关系,要知道,三角形的两边之和大于第三边.9.A解析:A【分析】根据多边形的内角和定理与多边形外角和即可得出结论.【详解】解:∵四边形的内角和等于a,∴a=(4-2)•180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选:A.【点睛】本题考查的是多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键.10.A解析:A【分析】根据题意,小明走过的路程是正多边形,先用360°除以45°求出边数,然后再乘以9米即可.【详解】解:∵小明每次都是沿直线前进9米后向左转45度,∴他走过的图形是正多边形,∴边数n=360°÷45°=8,∴他第一次回到出发点A时,一共走了8×9=72(m).故选:A .【点睛】本题考查了正多边形的边数的求法,多边形的外角和为360°;根据题意判断出小明走过的图形是正多边形是解题的关键.11.A解析:A【分析】根据直线的性质、两点间的距离、等式的性质、线段中点定义、多边形的定义依次判断.【详解】①过两点有且只有一条直线,故①正确;②两点之间,线段最短,故②正确;③若ax ay =,当0a =时,x 不一定等于y ,故③错误;④若A ,B ,C 三点共线且AB BC =,则B 为AC 中点,故④正确;⑤各角都相等且各边相等的多边形是正多边形,故⑤错误.∴正确的有①②④,故选:A .【点睛】此题考查理解能力,正确掌握直线的性质、两点间的距离、等式的性质、线段中点定义、正多边形的定义是解题的关键.12.D解析:D【分析】根据邻补角的定义可求得ABC ∠和ACB ∠,再根据三角形内角和为180°即可求出A ∠.【详解】解:105DBA ∠=︒,125ECA ∠=︒,18010575ABC ∴∠=︒-︒=︒,18012555ACB ∠=︒-︒=︒.180755550A ∴∠=︒-︒-︒=︒.故选D .【点睛】 本题考查了邻补角和三角形内角和定理,识记三角形内角和为180°是解题的关键.二、填空题13.【分析】延长线段BA 交CE 于点M 过点G 作AB 的平行线GN 交CE 于点N 根据平行的性质得由得再根据三角形的外角的性质得即可求出和的数量关系【详解】解:如图延长线段BA 交CE 于点M 过点G 作AB 的平行线GN 解析:1483E G ∠=︒-∠【分析】延长线段BA 交CE 于点M ,过点G 作AB 的平行线GN 交CE 于点N ,根据平行的性质得G BAG GCD ∠=∠+∠,由3BAF BAG ∠=∠,3DCE DCG ∠=∠,得333G BAG DCG ∠=∠+∠,再根据三角形的外角的性质得E EMA EAF BAF ∠+∠=∠-∠,即可求出E ∠和G ∠的数量关系.【详解】解:如图,延长线段BA 交CE 于点M ,过点G 作AB 的平行线GN 交CE 于点N ,∵//AB CD ,∴////BH GN CD ,∴BAG AGN ∠=∠,NGC GCD ∠=∠,EMA ECD ∠=∠,∵G AGN NGC ∠=∠+∠,∴G BAG GCD ∠=∠+∠,∵3BAF BAG ∠=∠,3DCE DCG ∠=∠,∴333G BAG DCG ∠=∠+∠,∵EAB E EMA ∠=∠+∠,EAB EAF BAF ∠=∠-∠,∴E EMA EAF BAF ∠+∠=∠-∠,∴E ECD EAF BAF ∠+∠=∠-∠,∴31483E DCG BAG ∠+∠=︒-∠,∴()14833E BAG DCG ∠=︒-∠+∠,∴1483E G ∠=︒-∠.故答案是:1483E G ∠=︒-∠.【点睛】本题考查平行线的性质和三角形外角的性质,解题的关键是通过平行线的性质和三角形外角的性质找到角与角之间的数量关系.14.①②③④【分析】分别根据平行线的性质角平分线的定义邻补角的定义直角三角形两锐角互余进行判断即可得出结论【详解】解:∵CD ∥OB ∠EFD =α∴∠EOB =∠EFD =α∵OE 平分∠AOB ∴∠COF =∠EO解析:①②③④【分析】分别根据平行线的性质,角平分线的定义,邻补角的定义,直角三角形两锐角互余进行判断即可得出结论.【详解】解:∵CD∥OB,∠EFD=α,∴∠EOB=∠EFD=α,∵OE平分∠AOB,∴∠COF=∠EOB=α,故①正确;∠AOB=2α,∵∠AOB+∠AOH=180°,∴∠AOH=180°﹣2α,故②正确;∵CD∥OB,CH⊥OB,∴CH⊥CD,故③正确;∴∠HCO+∠HOC=90°,∠AOB+∠HOC=180°,∴∠OCH=2α﹣90°,故④正确.故答案为:①②③④.【点睛】本题考查了平行线的性质,角平分线的定义,邻补角的定义,直角三角形两锐角互余等知识,熟练掌握相关知识点是解题关键.15.60【分析】先由题意得到∠A=∠B=根据直角三角形两锐角互余求得结果【详解】∵飞机P在目标A的正上方飞行员测得目标B的俯角为30°∴∠A=∠CPB=∵CP∥AB∴∠B=∠CPB=∴=-∠B=故答案为解析:60【分析】先由题意得到∠A=90︒,∠B=30,根据直角三角形两锐角互余求得结果.【详解】∵飞机P在目标A的正上方,飞行员测得目标B的俯角为30°,∴∠A=90︒,∠CPB=30,∵CP∥AB,∴∠B=∠CPB=30,∠=90︒-∠B=60︒,∴APB故答案为:60.【点睛】此题考查直角三角形两锐角互余的性质,理解飞行员测得目标B的俯角为30°得到∠B=30是解题的关键.16.2【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B∠D+∠E再根据邻补角表示出∠CGF然后利用三角形的内角和定理列式整理即可得解【详解】解:如图根据三角形的外角性质∠1=∠A解析:2【分析】根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠A+∠B,∠D+∠E,再根据邻补角表示出∠CGF,然后利用三角形的内角和定理列式整理即可得解.【详解】解:如图,根据三角形的外角性质,∠1=∠A+∠B,∠2=∠D+∠E,∵∠3=180°-∠CGE=180°-α,∴∠1+∠F+180°-α=180°,∴∠A+∠B+∠F=α,同理:∠2+∠C+180°-α=180°,∴∠D+∠E+∠C=α,∴∠A+∠B+∠C+∠D+∠E+∠F=2α.故答案为:2α【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,准确识图是解题的关键.17.10°【分析】由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=45°再利用三角形的内角和求解【详解】解:由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=×90°=45°∴∠ADC解析:10°【分析】由对折可得:∠A=∠CA′D=50°,∠ACD=∠A′CD=45°,再利用三角形的内角和求解.【详解】解:由对折可得:∠A=∠CA′D=50°,∠ACD=∠A′CD=1×90°=45°,2∴∠ADC=∠A′DC=180°−45°−50°=85°,∴∠A′DB=180°−85°×2=10°.故答案为:10°.【点睛】本题利用对折考查轴对称的性质,三角形的内角和定理,掌握以上知识是解题的关键.18.180°【分析】根据多边形的外角和减去∠B和∠C的外角的和即可确定四个外角的和【详解】解:∵AB∥DC∴∠B+∠C=180°∴∠B的外角与∠C的外角的和为180°∵六边形ABCDEF的外角和为360解析:180°【分析】根据多边形的外角和减去∠B和∠C的外角的和即可确定四个外角的和.【详解】解:∵AB∥DC,∴∠B+∠C=180°,∴∠B的外角与∠C的外角的和为180°,∵六边形ABCDEF的外角和为360°,∴∠1+∠2+∠3+∠4=180°,故答案为:180°.【点睛】本题考查了多边形的外角和定理,解题的关键是发现∠B和∠C的外角的和为180°19.10或50【分析】分点P在AB的上方点P在AB与CD的中间点P在CD的下方三种情况再分别根据平行线的性质三角形的外角性质求解即可得【详解】由题意分以下三种情况:(1)如图点P在AB的上方;(2)如图解析:10或50【分析】分点P在AB的上方、点P在AB与CD的中间、点P在CD的下方三种情况,再分别根据平行线的性质、三角形的外角性质求解即可得.【详解】由题意,分以下三种情况:(1)如图,点P在AB的上方,30,20∠=︒∠=︒,BPD PBABPD PBA∴∠=∠+∠=︒,150AB CD,//∴∠=∠=︒;150CDP(2)如图,点P 在AB 与CD 的中间,延长BP ,交CD 于点E ,//,20AB CD PBA ∠=︒,20BED PBA ∴∠=∠=︒,30BPD ∠=︒,10CDP BPD BED ∴∠=∠-∠=︒;(3)如图,点P 在CD 的下方,//,20AB CD PBA ∠=︒,120PBA ∴∠=∠=︒,30BPD ∠=︒,13030CDP BPD CDP ∴∠=∠+∠=∠+︒>︒与120∠=︒不符,即点P 不可能在CD 的下方;综上,10CDP ∠=︒或50CDP ∠=︒,故答案为:10或50.【点睛】本题考查了平行线的性质、三角形的外角性质,依据题意,正确分三种情况讨论是解题关键.20.30°【分析】通过正三角形正四边形正五边形的内角度数结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°正方形的内角度数是90°正五边形的内角的度数是:(5﹣2)×180°=10解析:30°【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:1 5(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2==360°﹣60°﹣90°﹣108°﹣50°﹣22°=30°.故答案是:30°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.三、解答题21.(1)10°;(2)∠DAE=12(∠C−∠B);(3)45°.【分析】(1)根据三角形的内角和定理可求得∠BAC=80°,由角平分线的定义可得∠CAD的度数,利用三角形的高线可求∠CAE得度数,进而求解即可得出结论;(2)根据(1)的推理方法可求解∠DAE、∠B、∠C的数量关系;(3)设∠ACB=α,根据角平分线的定义得∠CAG=12∠EAC=12(90°−α)=45°−12α,∠FCG=12∠BCF=12(180°−α)=90°−12α,再利用三角形外角的性质即可求得结果.【详解】解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD平分∠BAC,∴∠CAD=∠BAD=12∠BAC=40°,∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°−60°=30°,∴∠DAE=∠CAD−∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°−∠B−∠C,∵AD平分∠BAC,∴∠CAD=∠BAD=12∠BAC,∵AE是△ABC的高,∴∠AEC =90°,∴∠CAE =90°−∠C ,∴∠DAE =∠CAD−∠CAE =12∠BAC−(90°−∠C )=12(180°−∠B−∠C )−90°+∠C =12∠C−12∠B , 即∠DAE =12(∠C−∠B). 故答案为:∠DAE =12(∠C−∠B). (3)设∠ACB =α,∵AE ⊥BC ,∴∠EAC =90°−α,∠BCF =180°−α,∵∠CAE 和∠BCF 的角平分线交于点G ,∴∠CAG =12∠EAC =12(90°−α)=45°−12α, ∠FCG =12∠BCF =12(180°−α)=90°−12α, ∵∠FCG =∠G +∠CAG , ∴∠G =∠FCG −∠CAG =90°−12α−(45°−12α)=45°. 【点睛】本题考查了三角形的内角和定理、三角形的高及角平分线等知识,熟练掌握三角形内角和定理并能灵活运用三角形的高、角平分线这些知识解决问题是关键.22.23°【分析】在△ABC 中,利用三角形内角和定理可求出∠BAC 的度数,结合角平分线的定义可得出∠CAD 的度数,在△ACD 中,利用三角形外角定理可求出∠CDP 的度数,结合PE BC ⊥即90PED ∠=︒及三角形外角定理,从而得出P CDP PED ∠=∠-∠即可求得∠P 的度数.【详解】解:在ABC 中,70C ∠=︒,24B ∠=︒,∴180702486BAC ∠=︒-︒-︒=︒,∵AD 平分BAC ∠,∴43CAD ∠=︒,∴4370113CDP CAD C ∠=∠+∠=︒+︒=︒,∵PE BC ⊥,即90PED ∠=︒,∴1139023P CDP PED ∠=∠-∠=︒-︒=︒.【点睛】本题考查了三角形外角定理、角平分线的定义,利用三角形外角定理及角平分线的定义,求出∠CDP 的度数是解题的关键.23.(1)30D ∠=︒;(2)()11802D M N ∠=∠+∠-︒,理由见解析 【分析】 (1)根据三角形内角和定理以及角平分线定义,先求出∠D 、∠A 的等式,推出∠A=2∠D ,最后代入求出即可;(2)根据(1)中的结论即可得到结论.【详解】解:ACE A ABC ∠=∠+∠,ACD ECD A ABD DBE ∴∠+∠=∠+∠+∠,DCE D DBC ∠=∠+∠,又∵BD 平分ABC ∠,CD 平分ACE ∠,ABD DBE ∴∠=∠,ACD ECD ∠=∠,()2A DCE DBC ∴∠=∠-∠,D DCE DBC ∠=∠-∠,2A D ∴∠=∠,75ABC ∠=︒,45ACB ∠=︒,60A ∴∠=︒,30D ∴∠=︒;(2)()11802D M N ∠=∠+∠-︒; 理由:延长BM 、CN 交于点A ,则180A BMN CNM ∠=∠+∠-︒,由(1)知,12D A ∠=∠, ()11802D M N ∴∠=∠+∠-︒.【点睛】此题考查三角形内角和定理以及角平分线的定义的综合运用,解此题的关键是求出∠A=2∠D .24.﹣2a+4b ﹣2c【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负值,然后去绝对值进行计算即可.【详解】解:∵a,b,c为ABC的三边,∴a+b>c,b+c>a,a+c>b∴|a﹣b﹣c|﹣2|b﹣c﹣a|+|a+b﹣c|=|a-(b+c)|-2|b-(c+a)|+ |a+b﹣c|=﹣[a﹣(b+c)]+2[b﹣(c+a)]+(a+b﹣c)=-a+(b+c)+2b-2(c+a)+a+b-c=﹣a+b+c+2b﹣2c﹣2a+a+b﹣c=﹣2a+4b﹣2c.【点睛】此题主要考查了三角形三边关系,以及绝对值的性质,关键是掌握三边关系定理.25.(1)∠A+∠C=∠B+∠D;(2)①3,4;②110°;③3∠P=∠B+2∠C.【分析】(1)根据三角形的内角和即可得到结论;(2)①以线段AC为边的“8字型”有3个,以点O为交点的“8字型”有4个;②根据角平分线的定义得到∠CAP=∠BAP,∠BDP=∠CDP,再根据三角形内角和定理得到∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,两等式相减得到∠C-∠P=∠P-∠B,即∠P=1(∠C+∠B),然后把∠C=120°,∠B=100°代入计算即可;2③与②的证明方法一样得到3∠P=∠B+2∠C.【详解】(1)证明:在图1中,有∠A+∠C=180°-∠AOC,∠B+∠D=180°-∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①以线段AC为边的“8字型”有3个:以点O为交点的“8字型”有4个:故答案为:3,4;②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=12(∠B+∠C)=12(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=13∠CAB,∠CDP=13∠CDB,∴∠BAP=23∠CAB,∠BDP=23∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C-∠P=∠CDP-∠CAP=13(∠CDB-∠CAB),∠P-∠B=∠BDP-∠BAP=23(∠CDB-∠CAB).∴2(∠C-∠P)=∠P-∠B,∴3∠P=∠B+2∠C.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.也考查了角平分线的定义.26.(1)证明见解析;(2)110°【分析】(1)延长BP交AC于D,根据△PDC外角的性质知∠BPC>∠1;根据△ABD外角的性质知∠1>∠A,所以易证∠BPC>∠A.(2)由三角形内角和定理求出∠ABC+∠ACB=140°,由角平分线和三角形内角和定理即可得出结果.【详解】(1)延长BP交AC于D,如图所示:∵∠BPC是△CDP的一个外角,∠1是△ABD的一个外角,∴∠BPC>∠1,∠1>∠A,∴∠BPC>∠A;(2)在△ABC中,∵∠A=40°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣40°=140°,∵PB平分∠ABC,PC平分∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB,在△PBC中,∠P=180°﹣(∠PBC+∠PCB)=180°﹣(12∠ABC+12∠ACB)=180°﹣12(∠ABC+∠ACB)=180°﹣12×140°=110°.【点睛】此题主要考查了三角形的外角性质、三角形内角和定理、三角形的角平分线定义;熟练掌握三角形的外角性质和三角形内角和定理是解决问题的关键.。

【全国百强校】陕西省西安市铁一中学2016-2017学年八年级上学期期末考试数学试题

【全国百强校】陕西省西安市铁一中学2016-2017学年八年级上学期期末考试数学试题

绝密★启用前【全国百强校】陕西省西安市铁一中学2016-2017学年八年级上学期期末考试数学试题试卷副标题考试范围:xxx ;考试时间:73分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(题型注释)1、两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯,相关数据如图所示,若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点的距离是( )A .B .C .D .2、长方体的长为,宽为,高为,点在棱上与点的距离为,如图,一只蚂蚁如果要沿着长方体的表面从点爬到点,则需要爬行的最短距离是()A .B .C .D .3、如图,在正方形中,点的坐标是,点的纵坐标是,则,两点的坐标分别是()A .B .C .D.4、如图1,在矩形中,动点从点出发,沿方向运动至点处停止,设点运动的路程为,的面积为,如果关于的函数图象如图2所示,则当时,点应运动到()A .处B .处C .处D .处5、若点在轴上,则点在( )6、下列各式计算正确的是( ) A .B .C .D .7、我市从2017年1月1日起连续七天空气质量堪忧,大于时为严重污染,下表是这几天的空气质量指数日期 号 号 号 号 号 号 号空气质量指数则这组数据的中位数和平均数分别为() A.,B.,C.,D.,8、在下列各数,,,,,,(相邻两个之间依次增加一个)中,是无理数的有()A.个 B.个 C.个 D.个9、9的平方根是()A. B. C. D.第II卷(非选择题)二、填空题(题型注释)10、立方根等于本身的数是______:11、如图,在平面直角坐标系中,已知点,点。

若在轴上存在点,使点到、两点的距离之和最小,则点的坐标是_______.12、一架长的梯子斜靠在一竖直的墙上,这时梯足距离墙底,如果梯子的顶端沿墙下滑,那么梯足将滑_______:13、将直线沿着轴正向向右平移个单位,所得直线的解析式为_______:14、直线与轴的交点坐标是,则关于的一元一次方程的理解是_______:三、解答题(题型注释)15、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之间的函数关系,根据图象进行一下探究:信息读取(1)甲、乙两地之间的距离为______:(2)请解释图中点的实际意义:_______图象理解(3)求慢车和快车的速度:问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇分钟后,第二列快车与慢车相遇,求第二列快车比第一列快车晚出发多少小时?四、判断题(题型注释)16、(1)问题发现:如图(1),小明在同一个平面直角坐标系中作出了两个一次函数和的图像,经测量发现:_____(填数量关系)则____(填位置关系),从而二元一次方程组无解(2)问题探究:小明发现对于一次函数与,设它们的图像分别是和(如备用图1) ①如果_____(填数量关系),那么_____(填位置关系);②反过来,将①中命题的结论作为条件,条件作为结论,所得命题可表述为__________,请判断此命题的真假或举出反例;(3)问题解决:若关于,的二元一次方程组(各项系数均不为)无解,那么各项系数、、、、、应满足什么样的数量关系?请写出你的结论。

陕西省西安市碑林区铁一中学2016-2017学年八年级(上)期中数学试卷(解析版)

陕西省西安市碑林区铁一中学2016-2017学年八年级(上)期中数学试卷(解析版)

2016-2017学年陕西省西安市碑林区铁一中学八年级(上)期中数学试卷一、选择题1.的算术平方根为()A.9 B.±9 C.3 D.±32.下列各数是有理数的是()A.B.﹣πC.D.3.若点A(﹣2,m)在正比例函数y=﹣x的图象上,则m的值是()A.B.﹣C.1 D.﹣14.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=﹣x﹣1 B.y=﹣x﹣6 C.y=﹣x﹣2 D.y=﹣x+105.一个数的平方根等于它本身的数是()A.﹣1 B.0 C.±1 D.±1或06.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm27.若点A(m,2)在y轴上,则点B(m﹣1,m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限8.在平面直角坐标系中,过点(﹣2,3)的直线l经过一、二、三象限,若点(0,a),(﹣1,b),(c,﹣1)都在直线l上,则下列判断正确的是()A.a<b B.a<3 C.b<3 D.c<﹣29.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.10.如图,在平面直角坐标系上有个点A(﹣1,0),点A第1次向上跳动一个单位至点A1(﹣1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A第2015次跳动至点A2015的坐标是()A.B.(﹣504,1007)C.D.(﹣503,1008)二、填空题11.已知点A(2,1),线段AB∥x轴,且AB=3,则点B的坐标为.12.若点A(m+2,3)与点B(﹣4,n+5)关于x轴对称,则m+n=.13.如果点P(m+3,m+1)在第二象限的角平分线上,则点P的坐标为.14.若一次函数y=(3﹣k)x﹣2k2+18的图象经过原点,则k=.15.已知a是小于的整数,且,那么a的所有可能值是.16.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC上,以AD为折痕△ABD 折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是.三、解答题17.计算(1)﹣(1﹣)2(2)(2﹣)0﹣3﹣(﹣)﹣1﹣|﹣2|18.解方程组:(1)(2).19.已知y=+9,求代数式的值.20.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A1B1C1;(3)写出点B1的坐标;(4)求△ABC的面积.21.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D是OA 的中点,点E在线段AB上,当△CDE的周长最小时,求点E的坐标.22.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶时间x(小时)之间的函数关系如图所示,根据图象提供的信息,解决下列问题:(1)A,B两城相距多少千米?(2)分别求甲、乙两车离开A城的距离y与x的关系式.(3)求乙车出发后几小时追上甲车?(4)求甲车出发几小时的时候,甲、乙两车相距50千米?23.某家具商场计划购进某种餐桌、餐椅,有关信息如表:原进价(元/张)零售价(元/张)成套售价(元/张)餐桌150 270 500元餐椅40 70(1)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和4张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?(2)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,按照(1)中获得最大利润的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价格的情况下,实际全部售出后,所得利润比(1)中的最大利润少了2250元.请问本次成套的销售量为多少?24.如图,已知一次函数y=﹣x+3的图象与x轴、y轴分别交于点A、B.(1)求点A,B两点的坐标.(2)点M为一次函数y=x+3的图象上一点,若△ABM与△ABO的面积相等,求点M的坐标.(3)点Q为y轴上的一点,若△ABQ为等腰三角形,请直接写出Q点坐标.2016-2017学年陕西省西安市碑林区铁一中学八年级(上)期中数学试卷参考答案与试题解析一、选择题1.的算术平方根为()A.9 B.±9 C.3 D.±3【考点】算术平方根.【分析】直接根据算术平方根的定义进行解答即可.【解答】解:∵=9,32=9∴的算术平方根为3.故选C.2.下列各数是有理数的是()A.B.﹣πC.D.【考点】实数.【分析】根据有理数的定义,可得答案.【解答】解:3=3×3=9,故A符合题意;故选:A.3.若点A(﹣2,m)在正比例函数y=﹣x的图象上,则m的值是()A.B.﹣C.1 D.﹣1【考点】一次函数图象上点的坐标特征.【分析】利用待定系数法代入正比例函数y=﹣x可得m的值.【解答】解:∵点A(﹣2,m)在正比例函数y=﹣x的图象上,∴m=﹣×(﹣2)=1,故选:C.4.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=﹣x﹣1 B.y=﹣x﹣6 C.y=﹣x﹣2 D.y=﹣x+10【考点】两条直线相交或平行问题.【分析】设一次函数解析式为y=kx+b,根据两直线平行问题得到k=﹣1,然后把(8,2)代入y=﹣x+b求出b,即可得到一次函数解析式.【解答】解:由题意可得出方程组,解得:,那么此一次函数的解析式为:y=﹣x+10.故选:D.5.一个数的平方根等于它本身的数是()A.﹣1 B.0 C.±1 D.±1或0【考点】平方根.【分析】根据平方根的定义即可求出平方根等于它本身的数.【解答】解:∵02=0,∴0的平方根是0.∴平方根等于它本身的数是0.故选B.6.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2【考点】勾股定理;完全平方公式.【分析】要求Rt△ABC的面积,只需求出两条直角边的乘积.根据勾股定理,得a2+b2=c2=100.根据勾股定理就可以求出ab的值,进而得到三角形的面积.【解答】解:∵a+b=14∴(a+b)2=196∴2ab=196﹣(a2+b2)=96∴ab=24.故选A.7.若点A(m,2)在y轴上,则点B(m﹣1,m+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据y轴上点的横坐标为0判断出m=0,然后求出点B的坐标,再根据各象限内点的坐标特征解答.【解答】解:∵点A(m,2)在y轴上,∴m=0,∴点B(m﹣1,m+1)为(﹣1,1),∴点B在第二象限.故选B.8.在平面直角坐标系中,过点(﹣2,3)的直线l经过一、二、三象限,若点(0,a),(﹣1,b),(c,﹣1)都在直线l上,则下列判断正确的是()A.a<b B.a<3 C.b<3 D.c<﹣2【考点】一次函数图象上点的坐标特征.【分析】设一次函数的解析式为y=kx+b(k≠0),根据直线l过点(﹣2,3).点(0,a),(﹣1,b),(c,﹣1)得出斜率k的表达式,再根据经过一、二、三象限判断出k的符号,由此即可得出结论.【解答】解:设一次函数的解析式为y=kx+t(k≠0),∵直线l过点(﹣2,3).点(0,a),(﹣1,b),(c,﹣1),∴斜率k===,即k==b﹣3=,∵直线l经过一、二、三象限,∴k>0,∴a>3,b>3,c<﹣2.故选D.9.若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.【考点】一次函数的图象;零指数幂;二次根式有意义的条件.【分析】首先根据二次根式中的被开方数是非负数,以及a0=1(a≠0),判断出k的取值范围,然后判断出k﹣1、1﹣k的正负,再根据一次函数的图象与系数的关系,判断出一次函数y=(k﹣1)x+1﹣k的图象可能是哪个即可.【解答】解:∵式子+(k﹣1)0有意义,∴k﹣1≥0,且k﹣1≠0,解得k>1,∴k﹣1>0,1﹣k<0,∴一次函数y=(k﹣1)x+1﹣k的图象如图所示:故选:B.10.如图,在平面直角坐标系上有个点A(﹣1,0),点A第1次向上跳动一个单位至点A1(﹣1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A第2015次跳动至点A2015的坐标是()A. B.(﹣504,1007)C. D.(﹣503,1008)【考点】规律型:点的坐标.【分析】设第n次跳动至点A n,根据部分点A n坐标的变化找出变化规律“A4n(﹣n﹣1,2n),A4n+1(﹣n﹣1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数)”,依此规律结合2015=503×4+3即可得出点A2015的坐标.【解答】解:设第n次跳动至点A n,观察,发现:A(﹣1,0),A1(﹣1,1),A2(1,1),A3(1,2),A4(﹣2,2),A5(﹣2,3),A6(2,3),A7(2,4),A8(﹣3,4),A9(﹣3,5),…,∴A4n(﹣n﹣1,2n),A4n+1(﹣n﹣1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数).∵2015=503×4+3,∴A2015,即.故选A.二、填空题11.已知点A(2,1),线段AB∥x轴,且AB=3,则点B的坐标为(﹣1,1)或(5,1).【考点】坐标与图形性质.【分析】AB∥x轴,可得A、B两点纵坐标相等,由AB的长为3,分B点在A点左边和右边,分别求B点坐标即可.【解答】解:∵AB∥x轴,点A的坐标为(2,1),∴A、B两点纵坐标都是1,又∵AB=3,∴当B点在A点左边时,B的坐标为(﹣1,1),当B点在A点右边时,B的坐标为(5,1).故答案为:(﹣1,1)或(5,1).12.若点A(m+2,3)与点B(﹣4,n+5)关于x轴对称,则m+n=﹣14.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n的值,再计算m+n即可.【解答】解:由题意,得m+2=﹣4,n+5=﹣3,解得m=﹣6,n=﹣8.m+n=﹣14.故答案为:﹣14.13.如果点P(m+3,m+1)在第二象限的角平分线上,则点P的坐标为(1,﹣1).【考点】点的坐标.【分析】根据第二象限角平分线上的点的横坐标与纵坐标互为相反数,可得答案.【解答】解:由题意,得m+3+m+1=0,解得m=﹣2,点P的坐标为(1,﹣1),故答案为:(1,﹣1).14.若一次函数y=(3﹣k)x﹣2k2+18的图象经过原点,则k=3或﹣3.【考点】一次函数图象上点的坐标特征.【分析】把原点坐标代入函数解析式可求得k的值.【解答】解:∵一次函数y=(3﹣k)x﹣2k2+18的图象经过原点,∴0=﹣2k2+18,解得k=3或k=﹣3,故答案为3或﹣3.15.已知a是小于的整数,且,那么a的所有可能值是5,4,3,2.【考点】估算无理数的大小.【分析】先根据题意估算出3+的取值范围,再根据得出a的取值范围,进而可得出结论.【解答】解:∵4<5<9,∴2<<3,∴5<3+<9,∵a是小于的整数,∴a≤5,∵=a﹣2,∴2﹣a≤0,解得a≥2,∴2≤a≤5,∴a的所有可能值是5,4,3,2.故答案为:5,4,3,2.16.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC上,以AD为折痕△ABD 折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是2或5.【考点】翻折变换(折叠问题).【分析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=10,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.【解答】解:∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=10,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=10.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8﹣x.在Rt△AFB′中,由勾股定理得:AB′2=AF2+FB′2,即(6+x)2+(8﹣x)2=102.解得:x1=2,x2=0(舍去).∴BD=2.如图2所示:当∠B′ED=90°时,C与点E重合.∵AB′=10,AC=6,∴B′E=4.设BD=DB′=x,则CD=8﹣x.在Rt△′BDE中,DB′2=DE2+B′E2,即x2=(8﹣x)2+42.解得:x=5.∴BD=5.综上所述,BD的长为2或5.故答案为:2或5.三、解答题17.计算(1)﹣(1﹣)2(2)(2﹣)0﹣3﹣(﹣)﹣1﹣|﹣2|【考点】二次根式的混合运算;零指数幂;负整数指数幂.【分析】(1)先算乘方,再算加减即可;(2)先根据0指数幂及负整数指数幂的计算法则、数的开方法则及绝对值的性质分别计算出各数,再根据实数的加减法则进行计算即可.【解答】解:(1)原式=﹣(4﹣2)=6﹣4+2=2+2;(2)原式=1+4+4﹣(2﹣)=1+4+4﹣2+=7+.18.解方程组:(1)(2).【考点】解三元一次方程组;解二元一次方程组.【分析】(1)先把②去掉分母,再①﹣③求出y的值,然后代入①求出x的值,从而得出方程组的解;(2)先①+②求出y的值,再③﹣②得出x﹣y=﹣2,求出x的值,然后把x、y的值代入①求出z的值,即可得出方程组的解.【解答】解:(1),由②得:3x﹣2y=6③,①﹣③得:﹣3y=﹣3,解得:y=1,把y=1代入①得:x=,则原方程组的解是:.(2),①+②得:y=8④,③﹣②得:x﹣y=﹣2⑤,④+⑤得:x=6,把x=6,y=8代入①得:z=3,则原方程组的解为:.19.已知y=+9,求代数式的值.【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,求出x的值,代入原式求出y的值,代入代数式根据算术平方根的概念计算即可.【解答】解:由题意可得,x﹣4≥0,4﹣x≥0,解得,x=4,则y=9,则==2﹣3=﹣1.20.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A1B1C1;(3)写出点B1的坐标;(4)求△ABC的面积.【考点】作图﹣轴对称变换.【分析】(1)根据A点坐标建立平面直角坐标系即可;(2)作出各点关于y轴的对称点,再顺次连接即可;(3)根据点B1在坐标系中的位置写出其坐标即可;(4)利用矩形的面积减去三个顶点上三角形的面积即可.【解答】解:(1)根据题意可作出如图所示的坐标系;(2)如图,△A1B1C1即为所求;(3)由图可知,B1(2,1);(4)S△ABC=3×4﹣×2×4﹣×2×1﹣×2×3=12﹣4﹣1﹣3=4.21.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D是OA 的中点,点E在线段AB上,当△CDE的周长最小时,求点E的坐标.【考点】轴对称﹣最短路线问题;坐标与图形性质;矩形的性质.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE 的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE 的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,).22.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶时间x(小时)之间的函数关系如图所示,根据图象提供的信息,解决下列问题:(1)A,B两城相距多少千米?(2)分别求甲、乙两车离开A城的距离y与x的关系式.(3)求乙车出发后几小时追上甲车?(4)求甲车出发几小时的时候,甲、乙两车相距50千米?【考点】一次函数的应用.【分析】(1)根据函数图象可以解答本题;(2)根据图象中的信息分别求出甲乙两车对应的函数解析式,(3)根据(2)甲乙两车对应的函数解析式,然后令它们相等即可解答本题;(4)根据(2)中的函数解析式,可知它们相遇前和相遇后两种情况相距50千米,从而可以解答本题.【解答】解:(1)由图可知,A、B两城相距300千米;(2)设甲对应的函数解析式为:y=kx,300=5k解得,k=60,即甲对应的函数解析式为:y=60x,设乙对应的函数解析式为y=mx+n,,解得,,即乙对应的函数解析式为y=100x﹣100,(3)解,解得2.5﹣1=1.5,即乙车出发后1.5小时追上甲车;(4)由题意可得,当乙出发前甲、乙两车相距50千米,则50=60x,得x=,当乙出发后到乙到达终点的过程中,则60x﹣=±50,解得,x=1.25或x=3.75,当乙到达终点后甲、乙两车相距50千米,则300﹣50=60x,得x=,即小时、1.25小时、3.75小时、小时时,甲、乙两车相距50千米.23.某家具商场计划购进某种餐桌、餐椅,有关信息如表:原进价(元/张)零售价(元/张)成套售价(元/张)餐桌150 270 500元餐椅40 70(1)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和4张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?(2)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,按照(1)中获得最大利润的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价格的情况下,实际全部售出后,所得利润比(1)中的最大利润少了2250元.请问本次成套的销售量为多少?【考点】一次函数的应用.【分析】(1)设购进餐桌x张,餐椅(5x+20)张,销售利润为W元.根据购进总数量不超过200张,得出关于x的一元一次不等式,解不等式即可得出x的取值范围,再根据“总利润=成套销售的利润+零售餐桌的利润+零售餐椅的利润”即可得出W关于x的一次函数,根据一次函数的性质即可解决最值问题;(2)设本次成套销售量为m套,先算出涨价后每张餐桌及餐椅的进价,再根据利润间的关系找出关于m的一元一次方程,解方程即可得出结论.【解答】解:(1)设购进餐桌x张,则购进餐椅(5x+20)张,销售利润为W元.由题意得:x+5x+20≤200,解得:x≤30.∵a=150,∴餐桌的进价为150元/张,餐椅的进价为40元/张.依题意可知:W=x•+x•+(5x+20﹣x•4)•(70﹣40)=245x+600,∵k=245>0,∴W关于x的函数单调递增,∴当x=30时,W取最大值,最大值为7950.故购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是7950元.(2)涨价后每张餐桌的进价为160元,每张餐椅的进价为50元,设本次成套销售量为m套.依题意得:m+(30﹣m)×+×(70﹣50)=7950﹣2250,即6700﹣50m=5700,解得:m=20.答:本次成套的销售量为20套.24.如图,已知一次函数y=﹣x+3的图象与x轴、y轴分别交于点A、B.(1)求点A,B两点的坐标.(2)点M为一次函数y=x+3的图象上一点,若△ABM与△ABO的面积相等,求点M的坐标.(3)点Q为y轴上的一点,若△ABQ为等腰三角形,请直接写出Q点坐标.【考点】一次函数综合题.【分析】(1)对于直线y=﹣x+3,令x=0得到y=3,令=0得到x=6,可得A(6,0),B (0,3).(2)如图1中,作OM∥AB交直线y=x+3于M,求出直线OM的解析式,利用方程组可得点M的坐标,再利用中线的性质求出M′的坐标即可.(3)分种情形分别讨论即可解决问题.【解答】解:(1)对于直线y=﹣x+3,令x=0得到y=3,令=0得到x=6,∴A(6,0),B(0,3).(2)如图1中,作OM∥AB交直线y=x+3于M,∵OM∥AB,∴S△ABM=S△ABO,∵直线AB的解析式为y=﹣x+3,∴直线OM的解析式为y=﹣x,由,解得,∴点M的坐标为(﹣2,1).当BM=BM′时,△ABM′与△ABM的面积相等,此时M′(2,5),∴满足条件的点M的坐标为(﹣2,1)或(2,5).(3)如图2中,在Rt△ABO中,AB==3,当BA=BQ时,点Q的坐标为(0,3+3)或(0,3﹣3),当AB=AQ时,点Q的坐标为(0,﹣3),当QB=QA时,设QA=QB=a,在Rt△AOQ中,∵OA2+OQ2=AQ2,∴(a﹣3)2+62=a2,解得a=,∴OQ=BQ﹣OB=,∴点Q的坐标为(0,﹣).综上所述,满足条件的点Q的坐标为(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,﹣).2017年5月3日。

2017年八年级上数学第一次月考试卷(附答案和解释)

2017年八年级上数学第一次月考试卷(附答案和解释)

2017年八年级上数学第一次月考试卷(附答案和解释)2016-2017学年陕西省西安市雁塔区八年级(上)第一次月考数学试卷一、选择题 1.以下列各组数为三边的三角形中不是直角三角形的是() A.9、12、15 B.41、40、9 C.25、7、24 D.6、5、4 2.在3.14,π,3.212212221,2+ ,�,2 �6,�5.2121121112…(在相邻两个2之间1的个数逐次加1)中,无理数的个数为()A.5 B.2 C.3 D.4 3.如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是()A. B. C. D.1.4 4.下列说法中:①±3都是27的立方根,② =y,③ 的立方根是2,④ =±4.其中正确的有() A.1个 B.2个 C.3个 D.4个 5.三个数的大小关系是()A. B. C. D. 6.若a是(�8)2的平方根,则等于() A.�8 B.2 C.2或�2 D.8或�8 7.如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕的长不可能是() A.8cm B.5 cm C.5.5cm D.1cm 8.在△ABC中,AB=15,AC=13,BC上的高AD 长为12,则△ABC的面积为() A.84 B.24 C.24或84 D.42或84 9.如图是由边长为1的小正方形组成的网格,△ABC的顶点A,B,C均在格点上,BD⊥AC于点D,则BD的长为()A. B. C. D. 10.如图,在△ABC中,∠ACB=90°,分别以点A 和点B为圆心,以相同的长(大于 AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC=3,AB=5,则DE等于() A.2 B. C. D.二、填空题 11.计算:= . 12.的平方根是. 13.已知一个正数的平方根是3x�2和5x+6,则这个数是. 14.已知y= + + ,则x�y= . 15.如图所示的长方体是某种饮料的纸质包装盒,规格为5×6×10(单位:cm),在上盖中开有一孔便于插吸管,吸管长为13cm,小孔到图中边AB距离为1cm,到上盖中与AB相邻的两边距离相等,设插入吸管后露在盒外面的管长为hcm,则h的最小值大约为cm.(精确到个位,参考数据:≈1.4,≈1.7,≈2.2). 16.如图,正方形ABCD的面积为256,点F在AD上,点E在AB的延长线上,Rt△CEF中,∠ECF=90°,面积为200,则BE的值为. 17.如图,已知四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第2个正方形ACEF,再以第2个正方形的对角线AE为边作第3个正方形AEGH,如此下去,则第n个正方形的面积Sn= .三、解答题 18.计算:�2�1+ �|�2|+(π�)0. 19.解方程:(1)3(x+1)2�108=0 (2)(2x+3)3�54=0. 20.已知a、b、c满足2|a�1|+ +(c+b)2=0,求2a+b�c的值. 21.“交通管理条例第三十五条”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方50米处,过了4秒后,测得小汽车与车速检测仪间距离为130米,这辆小汽车超速了吗? 22.在△ABC 中,∠ACB=90°,P为BC中点,PD⊥AB于D,求证:AD2�BD2=AC2. 23.如图,在长方形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点F处,求AE的长. 24.如图,已知AB=12;AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,求AE的长. 25.有一个如图所示的长方体透明玻璃鱼缸,假设其长AD=80cm,高AB=60cm,水深AE=40cm,在水面上紧贴内壁G处有一块面包屑,G在水面线EF上,且EG=60cm,一只蚂蚁想从鱼缸外的A点沿鱼缸壁爬进鱼缸内的G处面包屑.(1)该蚂蚁应该沿怎样的路线爬行才能使路程最短呢?请你画出它爬行的路线,并用箭头标注;(2)求蚂蚁爬行的最短路线长.2016-2017学年陕西省西安市雁塔区八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题 1.以下列各组数为三边的三角形中不是直角三角形的是() A.9、12、15 B.41、40、9 C.25、7、24 D.6、5、4 【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.【解答】解:A、92+122=225=152,符合勾股定理的逆定理,是直角三角形; B、402+92=1681=412,符合勾股定理的逆定理,是直角三角形; C、72+242=625=252,符合勾股定理的逆定理,是直角三角形; D、52+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选D. 2.在3.14,π,3.212212221,2+ ,�,2 �6,�5.2121121112…(在相邻两个2之间1的个数逐次加1)中,无理数的个数为() A.5 B.2 C.3 D.4 【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:π,2+ ,2 �6,�5.2121121112…(在相邻两个2之间1的个数逐次加1)是无理数,故选:D. 3.如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是() A. B. C. D.1.4 【考点】实数与数轴.【分析】先根据勾股定理求出OB的长,进而可得出结论.【解答】解:∵OB= = ,∴OA=OB= .∵点A在原点的右边,∴点A表示的数是.故选B. 4.下列说法中:①±3都是27的立方根,② =y,③ 的立方根是2,④ =±4.其中正确的有()A.1个 B.2个 C.3个 D.4个【考点】立方根;算术平方根.【分析】根据平方根及立方根定义计算即可得到结果.【解答】解:①3是27的立方根,故原式错误;② ≠y故原式错误;③ =8,8的立方根是2,正确;④ =4,故原式错误,故选A. 5.三个数的大小关系是() A. B. C. D.【考点】实数大小比较.【分析】根据二次根式的性质把这一组数化为二次根式的形式,再比较被开方数的大小.【解答】解:这一组数据可化为、、,∵27>25>24,∴ >>,即2 <5<.故选A. 6.若a是(�8)2的平方根,则等于() A.�8 B.2 C.2或�2 D.8或�8 【考点】立方根;平方根.【分析】先求出a的值,再得出的值即可.【解答】解:因为a是(�8)2的平方根,可得:a=±8,所以,故选C. 7.如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕的长不可能是() A.8cm B.5 cm C.5.5cm D.1cm 【考点】翻折变换(折叠问题).【分析】根据勾股定理求出对角线的长,由折痕的长不会超过对角线的长即可作出判断.【解答】解:易知最长折痕为矩形对角线的长,根据勾股定理对角线长为: =≈7.8cm.故折痕的长不可能为8cm.故选:A. 8.在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为() A.84 B.24 C.24或84 D.42或84 【考点】勾股定理.【分析】由于高的位置是不确定的,所以应分情况进行讨论.【解答】解:(1)△ABC 为锐角三角形,高AD在△ABC内部.BD= =9,CD= =5 ∴△ABC的面积为×(9+5)×12=84;(2)△ABC为钝角三角形,高AD在△ABC 外部.方法同(1)可得到BD=9,CD=5 ∴△ABC的面积为×(9�5)×12=24.故选C. 9.如图是由边长为1的小正方形组成的网格,△ABC的顶点A,B,C均在格点上,BD⊥AC于点D,则BD的长为() A. B. C. D.【考点】勾股定理;三角形的面积.【分析】利用勾股定理得出AC的长,再利用等面积法得出BD的长.【解答】解:如图所示:S△ABC= ×BC×AE= ×BD×AC,∵AE=4,AC= =5,BC=6 即×6×4= ×5×BD,解得:BD= .故选:B 10.如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于 AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC=3,AB=5,则DE等于() A.2 B. C. D.【考点】勾股定理;线段垂直平分线的性质;作图―基本作图.【分析】根据勾股定理求出BC,根据线段垂直平分线性质求出AE=BE,根据勾股定理求出AE,再根据勾股定理求出DE即可.【解答】解:在Rt△ACB 中,由勾股定理得:BC= =4,连接AE,从作法可知:DE是AB的垂直平分线,根据性质得出AE=BE,在Rt△ACE中,由勾股定理得:AC2+CE2=AE2,即32+(4�AE)2=AE2,解得:AE= ,在Rt△ADE 中,AD= AB= ,由勾股定理得:DE2+()2=()2,解得:DE= .故选C.二、填空题 11.计算: = π�3.14 .【考点】二次根式的性质与化简.【分析】先判断3.14�π的符号,然后再进行化简.【解答】解:∵3.14<π,∴3.14�π<0,∴ =π�3.14,故答案为π�3.14. 12.的平方根是±2.【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2 13.已知一个正数的平方根是3x�2和5x+6,则这个数是.【考点】平方根.【分析】由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.【解答】解:根据题意可知:3x�2+5x+6=0,解得x=�,所以3x�2=�,5x+6= ,∴()2= 故答案为:. 14.已知y= + + ,则x�y= .【考点】二次根式有意义的条件.【分析】根据被开方数是非负数,可得x,y,根据有理数的减法,可得答案.【解答】解:由题意得,解得x= ,y= x�y= � = ,故答案为:. 15.如图所示的长方体是某种饮料的纸质包装盒,规格为5×6×10(单位:cm),在上盖中开有一孔便于插吸管,吸管长为13cm,小孔到图中边AB距离为1cm,到上盖中与AB相邻的两边距离相等,设插入吸管后露在盒外面的管长为hcm,则h的最小值大约为 2 cm.(精确到个位,参考数据:≈1.4,≈1.7,≈2.2).【考点】勾股定理的应用.【分析】本题中,要求露出外面的管长h的最短值,其实相当于求一个3×4×10长方体的对角线(此时,h最小),据此解答即可.【解答】解:如图所示:连接DC,CF,由题意:ED=3,EC=5�1=4 CD2=32+42=25=52,CF2=52+102=125,∴吸管口到纸盒内的最大距离= =5≈11cm.∴h=13�11≈2cm.故答案为:2. 16.如图,正方形ABCD的面积为256,点F在AD上,点E在AB的延长线上,Rt△CEF 中,∠ECF=90°,面积为200,则BE的值为12 .【考点】正方形的性质;全等三角形的判定与性质.【分析】根据∠DCB=90°,∠FCE=90°,首先证明∠DCF=∠BCE,然后根据正方形的性质即可证明△CDF≌△CBE,从而得CF=CE,由正方形的面积求出正方形边长BC,然后根据等腰Rt△CFE的面积求出CE的长度,根据勾股定理即可求得BE的长度.【解答】解:∵四边形ABCD是正方形,∴CD=CB,∠D=∠DCB=∠CBA=90°,又∵∠FCE=90°,∴∠FCB+∠FCD=90°,∴∠DCF=∠BCE(同角的余角相等),∵在△CDF和△CBE中,,∴△CDF≌△CBE(ASA),∴CF=CE,∴△CEF是等腰直角三角形,∵正方形ABCD的面积为256,∴CB=16,∴S△CEF= CF×CE=200,解得:CE=20,在Rt△CBE中,BE= =12.故答案为:12. 17.如图,已知四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第2个正方形ACEF,再以第2个正方形的对角线AE为边作第3个正方形AEGH,如此下去,则第n个正方形的面积Sn=2n�1 .【考点】正方形的性质.【分析】先求出S1,S2,S3,S4,S5,…探究规律后即可解决问题.【解答】解:由题意:S1=1,S2=()2=2, S3=(× )2=4, S4=(× × )2=8, S5=[()4]2=16,…, Sn=[()n�1]2=2n�1.故答案为2n�1.三、解答题 18.计算:�2�1+ �|�2|+(π�)0.【考点】实数的运算;零指数幂;负整数指数幂.【分析】原式利用平方根、立方根定义,零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可得到结果.【解答】解:原式=3�+2�2+1=3 . 19.解方程:(1)3(x+1)2�108=0 (2)(2x+3)3�54=0.【考点】立方根;平方根.【分析】(1)直接利用平方根的定义求出方程的根;(2)直接利用立方根的定义求出方程的根.【解答】解:(1)3(x+1)2�108=0 (x+1)2=36,故x+1=6或x+1=�6,解得:x1=5,x2=�7;(2)(2x+3)3�54=0.解:(2x+3)3=54,(2x+3)3=216, 2x+3=6,则2x=3,解得:x= . 20.已知a、b、c满足2|a�1|+ +(c+b)2=0,求2a+b�c的值.【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数之和为零,则各自为零,进而求出a,b,c的值求出答案.【解答】解:∵2|a�1|+ +(c+b)2=0,又∵|a�1|≥0,≥0,(c+b)2≥0,∴ ,∴ ,∴2a+b�c=2+2+2=6. 21.“交通管理条例第三十五条”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方50米处,过了4秒后,测得小汽车与车速检测仪间距离为130米,这辆小汽车超速了吗?【考点】勾股定理的应用.【分析】利用勾股定理列式求出BC,再根据速度=路程÷时间求出小汽车的速度,然后化为千米/小时的单位即可得解.【解答】解:由勾股定理得,BC= = =120米,v=120÷4=30米/秒,∵30×3.6=108,∴30米/秒=108千米/小时,108>70,∴这辆小汽车超速了超速了. 22.在△ABC中,∠ACB=90°,P为BC中点,PD⊥AB于D,求证:AD2�BD2=AC2.【考点】勾股定理.【分析】连接AP得到三个直角三角形,运用勾股定理分别表示出AD2、BD2、AC2进行代换就可以最后得到所要证明的结果.【解答】证明:连接AP,如图所示 AD2�BD2=AP2�PD2�(BP2�PD2)=AC2+CP2�PD2�BP2+PD2 =AC2+CP2�BP2,∵P为BC中点,∴CP=BP,∴CP2�BP2=0,∴AD2�BD2=AC2. 23.如图,在长方形纸片ABCD 中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点F处,求AE的长.【考点】翻折变换(折叠问题).【分析】由勾股定理可求得BD=13,由翻折的性质可求得FB=8,EF=EA,EF⊥BD,设AE=EF=x,则BE=12�x,在Rt△BEF中,由勾股定理列方程求解即可.【解答】解:由折叠性质可知:DF=AD=5,EF=EA,EF⊥BD.在Rt△BAD中,由勾股定理得:BD= ,∵BF=BD�DF,∴BF=13�5=8.设AE=EF=x,则BE=12�x.在Rt△BEF中,由勾股定理可知:EF2+BF2=BE2,即x2+64=(12�x)2,解得:x= .∴AE= . 24.如图,已知AB=12;AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,求AE的长.【考点】勾股定理;全等三角形的判定与性质.【分析】如图,延长AE交BC于F,构造全等三角形△AED≌△FEC(AAS),则对应边AE=FE,AD=FC.在Rt△ABF中,利用勾股定理即可求得线段AF的长度.【解答】解:如图,延长AE交BC于F.∵AB⊥BC,AB⊥AD,∴AD∥BC ∴∠D=∠C,∠DAE=∠CFE,又∵点E是CD的中点,∴DE=CE.∵在△AED与△FEC 中,,∴△AED≌△FEC(AAS),∴AE=FE,AD=FC.∵AD=5,BC=10.∴BF=5 在Rt△ABF中,,∴AE= AF=6.5. 25.有一个如图所示的长方体透明玻璃鱼缸,假设其长AD=80cm,高AB=60cm,水深AE=40cm,在水面上紧贴内壁G处有一块面包屑,G在水面线EF 上,且EG=60cm,一只蚂蚁想从鱼缸外的A点沿鱼缸壁爬进鱼缸内的G处面包屑.(1)该蚂蚁应该沿怎样的路线爬行才能使路程最短呢?请你画出它爬行的路线,并用箭头标注;(2)求蚂蚁爬行的最短路线长.【考点】平面展开�最短路径问题.【分析】(1)做出A关于BC的对称点A′,连接A′G,与BC交于点Q,此时AQ+QG最短;(2)A′G为直角△A′EG的斜边,根据勾股定理求解即可.【解答】解:(1)如图所示作点A关于BC的对称点A′,连接A′G交BC与点Q,蚂蚁沿着A→Q→G的路线爬行时,路程最短.(2)∵在直角△A′EG中,A′E=80cm,EG=60cm,∴AQ+QG=A′Q+QG=A′G==100cm.∴最短路线长为100cm.2017年5月10日。

八上第一次月考试题卷.docx

八上第一次月考试题卷.docx

永十二中2015——2016学年度2017级第一学月质量检测数学试题出题人:吴宗政审核:2017级数学备课组一、选择题(下面每小题给出的四个选项中,只有一个是正确的,对把正确选项前的字母填在相应括号内,每小题4分,共40分) /\1、如图,共有三角形的个数是()r^\A. 3B. 4C. 5D. 6 匕~~\2、能将三角形面积平分的是三角形的()(第1题)A.角平分线B.高C.中线D.外角平分线3、以下列各组线段为边,能组成三角形的是()A. 1, 2, 3B. 2, 5, 8C. 3, 4, 5D. 4, 5, 104、一个三角形中,有一个角是65° ,另外的两个角可能是()A. 95° , 20°B. 45° , 80°C. 55° , 60° D、90° , 20° 5、已知等腰三角形的两边长分别为4cm和7血,则此三角形的周长为()A. 15cmB. 18cmC. 15cm 或 18cm D,不能确定6、如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带O去配。

A.①B.②C.③D.①和②7、适合条件ZA-ZB--ZC的三角形是()2第6题图A、钝角三角形B、等边三角形C、直角三角形D、等腰直角三角形8、如图,已知AB = AD,^么添加下列一个条件后,仍无法判定△ ABC^AADC 的是()A. CB = CDB. ZBAC = ZDACC. ZBCA = ZDCAD. Z5 = ZD = 9O°9题第8题囹第9、如图,中,匕。

90°, /〃平分/CAB交成1于点〃,DELAB,垂足为5, 且0^6an,则庞的长为()A、 4cmB、 6cmC、 8cmD、 10cm10、用尺规作ZAOB的平分线的方法如下:以。

为圆心,任意长为半径画弧交。

西安市碑林区2016-2017学年八年级上开学数学试卷含答案解析

西安市碑林区2016-2017学年八年级上开学数学试卷含答案解析

2016-2017学年陕西省西安市碑林区八年级(上)开学数学试卷一、选择题1.在,0,,,﹣0.333…,,3.1415926,0.010010001…(相邻两个1之间依次多1个0)中,无理数有()A.1个 B.2个 C.3个 D.4个2.下列事件发生的概率为0的是()A.将来的某年会有370天B.小强的体重只有25公斤C.小明的爸爸买体彩中了大奖D.未来三天必有强降雨3.如图是各种汽车的标志,其中是轴对称图形的有()个.A.1个 B.2个 C.3个 D.4个4.一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C点,那么∠ABC等于()A.75°B.105°C.45°D.90°5.3(22+1)(24+1)(28+1)…+1的个位数是()A.4 B.5 C.6 D.86.若△ABC的边长都是整数,周长为11,且有一边长为4,则这个三角形的最大边长为()A.7 B.6 C.5 D.47.如图所示,直线l1,l2,l3表示三条相交的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处 B.2处 C.3处 D.4处8.星期天晚饭后,小红从家里出发去散步,下图描述了她散步过程中离家的距离s(米)与散步所用的时间t(分)之间的关系,依据图象,下面描述符合小红散步情景的是()A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了B.从家里出发,一直散步(没有停留),然后回家了C.从家里出发,散了一会儿步,就找同学去了,18分钟后才开始返回D.从家出发,到了一个公共阅报栏,看了一会报,继续向前走了一段后,然后回家了9.如下图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是()A.S1+S2>S3B.S1+S2=S3 C.S1+S2<S3D.无法确定10.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与线段AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是()A.45°B.50°C.55°D.60°二、填空题11.的平方根是.12.如图,直线l1∥l2,AB⊥l1,垂足为O,BC与l2相交于点E,若∠1=43°,则∠2=度.13.若直角三角形的两边长分别是2和3,则第三边长是.14.等腰三角形的一个内角是80°,则另外两个内角的度数分别为.15.已知x2﹣5x+1=0,则x2+=.16.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是.三、解答题17.计算:(1);(2)先化简,再求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(﹣2x),其中x=﹣2,y=.18.在我市08年春季田径运动会上,某校七年级(1)班的全体同学荣幸成为拉拉队队员,为了在明天的比赛中给同学加油助威,提前每人制作了一面同一规格的直角三角形彩旗.队员小明放学回家后,发现自己的彩旗破损了一角,他想用如下图所示的长方形彩纸重新制作一面彩旗.请你帮助小明,用直尺与圆规在彩纸上作出一个与破损前完全一样的三角形(保留作图痕迹,不写作法).19.小明同学骑车去郊游,如图表示他离家的距离y(km)与所用时间x(h)之间的关系图象:(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发2.5h离家多远?(3)小明出发多长时间距离家12km?20.如图,在四边形ABCD中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,试求∠A 的度数.21.在一个不透明的口袋中,装有分别标有数字2,3,4的3个小球(小球除数字不同外,其余都相同),甲、乙两同学玩摸球游戏,游戏规则如下:先由甲同学从中随机摸出一球,记下球号,并放回搅匀,再由乙同学从中随机摸出一球,记下球号,将甲同学摸出的球号作为一个两位数的十位上的数,乙同学的作为个位上的数,若该两位数能被4整除,则甲胜,否则乙胜,问这个游戏公平吗?请说明理由.22.已知:如图,在△ABC中,AB=AC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=CF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=20°,求∠EFC的度数.23.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠EDC=°,∠AED=°;(2)线段DC的长度为何值时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求∠BDA的度数;若不可以,请说明理由.2016-2017学年陕西省西安市碑林区八年级(上)开学数学试卷参考答案与试题解析一、选择题1.在,0,,,﹣0.333…,,3.1415926,0.010010001…(相邻两个1之间依次多1个0)中,无理数有()A.1个 B.2个 C.3个 D.4个【考点】无理数;零指数幂.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,,0.010010001…(相邻两个1之间依次多1个0)是无理数,故选:C.2.下列事件发生的概率为0的是()A.将来的某年会有370天B.小强的体重只有25公斤C.小明的爸爸买体彩中了大奖D.未来三天必有强降雨【考点】概率的意义.【分析】直接利用概率的意义分别分析得出答案.【解答】解:A、将来的某年会有370天,是不可能事件,事件发生的概率为0,符合题意;B、小强的体重只有25公斤,是随机事件,事件发生的概率不可能为0,不合题意;C、小明的爸爸买体彩中了大奖,是随机事件,事件发生的概率不可能为0,不合题意;D、未来三天必有强降雨,是随机事件,事件发生的概率不可能为0,不合题意;故选:A.3.如图是各种汽车的标志,其中是轴对称图形的有()个.A.1个 B.2个 C.3个 D.4个【考点】轴对称图形.【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各项判断即可.【解答】解:第1,2,4个图形都是轴对称图形;第3个图形不是轴对称图形.故选:C.4.一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C点,那么∠ABC等于()A.75°B.105°C.45°D.90°【考点】方向角.【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【解答】解:由题意可知∠1=30°,∠3=15°,∠ABC=30°+15°=45°故选C.5.3(22+1)(24+1)(28+1)…+1的个位数是()A.4 B.5 C.6 D.8【考点】平方差公式.【分析】原式中的3变形为22﹣1,反复利用平方差公式计算即可得到结果.【解答】解:3(22+1)(24+1)(28+1)…+1=(22﹣1)(22+1)(24+1)(28+1)…+1 =(24﹣1)(24+1)(28+1)…+1…=264﹣1+1=264,∵21=2,22=4,23=8,24=16,25=32,…,∴个位上数字以2,4,8,6为循环节循环,∵64÷4=16,∴264个位上数字为6,即原式个位上数字为6.故选C.6.若△ABC的边长都是整数,周长为11,且有一边长为4,则这个三角形的最大边长为()A.7 B.6 C.5 D.4【考点】三角形三边关系.【分析】根据已知条件可以得到三角形的另外两边之和,再根据三角形的三边关系可以得到另外两边之差应小于4,则最大的差应是3,从而求得最大边.【解答】解:设这个三角形的最大边长为a,最小边是b.根据已知,得a+b=7.根据三角形的三边关系,得:a﹣b<4,当a﹣b=3时,解得a=5,b=2;故选:C.7.如图所示,直线l1,l2,l3表示三条相交的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处 B.2处 C.3处 D.4处【考点】角平分线的性质.【分析】根据到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角平分线两两相交的交点,共三处.故选:D.8.星期天晚饭后,小红从家里出发去散步,下图描述了她散步过程中离家的距离s(米)与散步所用的时间t(分)之间的关系,依据图象,下面描述符合小红散步情景的是()A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了B.从家里出发,一直散步(没有停留),然后回家了C.从家里出发,散了一会儿步,就找同学去了,18分钟后才开始返回D.从家出发,到了一个公共阅报栏,看了一会报,继续向前走了一段后,然后回家了【考点】函数的图象.【分析】根据实际意义与图象的变化,可得答案.【解答】解:从家出发,到了一个公共阅报栏,看了一会报,继续向前走了一段后,然后回家了,D符合题意,故选:D.9.如下图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是()A.S1+S2>S3B.S1+S2=S3 C.S1+S2<S3D.无法确定【考点】勾股定理.【分析】分别计算大圆的面积S3,两个小圆的面积S1,S2,根据直角三角形中大圆小圆直径(2r3)2=(2r1)2+(2r2)2的关系,可以求得S1+S2=S3.【解答】解:设大圆的半径是r3,则S3=πr32;设两个小圆的半径分别是r1和r2,则S1=πr12,S2=πr22.由勾股定理,知(2r3)2=(2r1)2+(2r2)2,得r32=r12+r22.所以S1+S2=S3.故选B.10.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与线段AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是()A.45°B.50°C.55°D.60°【考点】翻折变换(折叠问题);线段垂直平分线的性质;等腰三角形的性质.【分析】作辅助线,由∠BAC的平分线与线段AB的中垂线交于点O,可求出∠OBM,∠OCM的值,再求出BOM和∠COM的值,由折叠性求出∠OEM,即可求出∠CEF.【解答】解:如图,延长AO交BC于点M,连接BO,∵等腰△ABC中,AB=AC,∠BAC=50°,∴∠ABC=∠ACB=÷2=65°,∵AO是∠BAC的平分线,∴∠BAO=25°,又∵OD是AB的中垂线,∴∠OBA=∠OAB=25°,∴∠OBM=∠OCM=60°﹣25°=40°,∴∠BOM=∠COM=90°﹣40°=50°,由折叠性可知,∠OCM=∠COE,∴∠MOE=∠COM﹣∠COE=50°﹣40°=10°,∴∠OEM=90°﹣10°=80°,∵由折叠性可知,∠OEF=∠CEF,∴∠CEF=÷2=50°.故选:B.二、填空题11.的平方根是±2.【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±212.如图,直线l1∥l2,AB⊥l1,垂足为O,BC与l2相交于点E,若∠1=43°,则∠2=133度.【考点】平行线的性质.【分析】两直线平行,同位角、内错角相等,据此即可解答.【解答】解:过点B作BD∥l1,则BD∥l2,∴∠ABD=∠AOF=90°,∠1=∠EBD=43°,∴∠2=∠ABD+∠EBD=133°.故答案为:133.13.若直角三角形的两边长分别是2和3,则第三边长是或.【考点】勾股定理.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:2是直角边,3是斜边;2,3均为直角边;可根据勾股定理求出上述两种情况下第三边的长.【解答】解:当2是直角边,3是斜边时:第三边的长==;当2,3均为直角边时,第三边的长==故答案为:或.14.等腰三角形的一个内角是80°,则另外两个内角的度数分别为50°,50°或20°、80°.【考点】等腰三角形的性质.【分析】80°的角可作底角,也可作顶角,故分两种情况进行计算即可.【解答】解:①当80°的角是顶角,则两个底角是50°、50°;②当80°的角是底角,则顶角是20°.故答案是50°,50°或20°、80°.15.已知x2﹣5x+1=0,则x2+=23.【考点】完全平方公式.【分析】将方程x2﹣5x+1=0,两边同时除以x,可得出x+=5,再平方可得出的值.【解答】解:∵x2﹣5x+1=0,∴x+=5(方程两边同时除以x),故可得则+2=25,解得:=23.故答案为:23.16.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是.【考点】轴对称﹣最短路线问题.【分析】首先确定DC′=DE+EC′=DE+CE的值最小.然后根据勾股定理计算.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于E,连接CE,此时DE+CE=DE+EC′=DC′的值最小.连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=2,∵D是BC边的中点,∴BD=1,根据勾股定理可得DC′==.故答案为:.三、解答题17.计算:(1);(2)先化简,再求值:[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(﹣2x),其中x=﹣2,y=.【考点】整式的混合运算—化简求值.【分析】(1)根据单项式乘多项式,然后根据合并同类项即可解答本题;(2)先化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:(1)==﹣5a2b;(2)[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷(﹣2x)=[x2+4xy+4y2﹣3x2﹣3xy+xy+y2﹣5y2]÷(﹣2x)=[﹣2x2+2xy]÷(﹣2x)=x﹣y当x=﹣2,时,原式=.18.在我市08年春季田径运动会上,某校七年级(1)班的全体同学荣幸成为拉拉队队员,为了在明天的比赛中给同学加油助威,提前每人制作了一面同一规格的直角三角形彩旗.队员小明放学回家后,发现自己的彩旗破损了一角,他想用如下图所示的长方形彩纸重新制作一面彩旗.请你帮助小明,用直尺与圆规在彩纸上作出一个与破损前完全一样的三角形(保留作图痕迹,不写作法).【考点】作图—应用与设计作图.【分析】在矩形的较短的边上截取线段等于彩旗的短直角边,再作一角等于彩旗的顶角即可.【解答】解:19.小明同学骑车去郊游,如图表示他离家的距离y(km)与所用时间x(h)之间的关系图象:(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?(2)求小明出发2.5h离家多远?(3)小明出发多长时间距离家12km?【考点】一次函数的应用.【分析】(1)由函数图象可以得出根据y与x的数量关系就可以得出结论;(2)先由待定系数法求出CD的解析式,再将x=2.5时代入解析式求出y的值即可;(3)由待定系数法分别求出AB的解析式和EF的解析式就可以求出结论.【解答】解:(1)由函数图象,得小明到达离家最远的地方需3小时小时;此时离家30千米;(2)设CD的解析式为y=kx+b,由题意,得,解得:.∴y=15x﹣15,当x=2.5时,y=22.5.答:小明出发2.5h离家22.5千米;(3)设AB的解析式为y=kx,由图象,得15=k,y=15x,设EF的解析式为y=kx+b,由图象,得,,y=﹣15x+90,当y=12时,或x=.答:小明出发小时或小时时距离家12km.20.如图,在四边形ABCD中,AB=BC=2,CD=3,AD=1,且∠ABC=90°,试求∠A 的度数.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,根据勾股定理求出A的C,再△ADC中利用勾股定理逆定理得到∠CAD=90°,进而求出∠A的度数.【解答】解:连接AC,∵AB=BC=2,且∠ABC=90°,∴且∠CAB=45°,又∵AD=1,CD=3,∴AD2+AC2=CD2∴∠CAD=90°,∴∠A=∠CAD+∠CAB=135°.21.在一个不透明的口袋中,装有分别标有数字2,3,4的3个小球(小球除数字不同外,其余都相同),甲、乙两同学玩摸球游戏,游戏规则如下:先由甲同学从中随机摸出一球,记下球号,并放回搅匀,再由乙同学从中随机摸出一球,记下球号,将甲同学摸出的球号作为一个两位数的十位上的数,乙同学的作为个位上的数,若该两位数能被4整除,则甲胜,否则乙胜,问这个游戏公平吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】根据题意列出表格,找出被4整除的情况,求出甲乙各自的概率,比较即可判断出游戏得公平性.【解答】解:根据题意列出表格如下:234 2(2,2)(3,2)(4,2)3(2,3)(3,3)(4,3)4(2,4)(3,4)(4,4)共有9种可能.22,23,24,32,33,34,42,43,44能被4整除有:24,32,44,即甲胜的概率:,不能被4整除,即乙胜的概率:,∵<∴不公平22.已知:如图,在△ABC中,AB=AC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=CF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=20°,求∠EFC的度数.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)欲证明AE=CF,只要证明△ABE≌△CBF(SAS)即可.(2)根据∠AEB=∠BFC,求出∠BFC,根据∠EFC=∠BFC﹣∠EFB即可解决问题.【解答】(1)证明:在△ABE和△CBF中,,∴△ABE≌△CBF(SAS)∴AE=CF(2)解:∵∠ABC=90°,AB=BC,∴∠CAB=45°,∵∠CAE=20°,∴∠EAB=45°﹣20°=25°,∴∠BCF=∠EAB=25°,∵∠CBF=90°,∴∠BFC=180°﹣25°﹣90°=65°,∵∠EBF=90°,BE=BF,∴∠EFB=45°,∴∠EFC=∠BFC﹣∠EFB=20°.23.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠EDC=25°,∠AED=65°;(2)线段DC的长度为何值时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求∠BDA的度数;若不可以,请说明理由.【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】(1)利用邻补角的性质和三角形内角和定理解题;(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【解答】解:(1)∠EDC=180°﹣∠ADB﹣∠ADE=180°﹣115°﹣40°=25°.∠AED=∠EDC+∠C=40°+25°=65°.(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAE=70°,∴∠AED=180°﹣70°﹣40°=70°∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAE=40°,∴∠DAE=∠ADE∴△ADE的形状是等腰三角形.知识像烛光,能照亮一个人,也能照亮无数的人。

陕西省西安市八年级上学期数学第一次月考试卷

陕西省西安市八年级上学期数学第一次月考试卷

陕西省西安市八年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2015七下·深圳期中) 长度分别为3cm,5cm,7cm,9cm的四根木棒,能搭成(首尾连结)三角形的个数为()A . 1B . 2C . 3D . 42. (2分)教室的一扇窗户打开后,用窗钩可以将其固定,这里所运用的几何原理是()A . 两点之间线段最短B . 三角形的稳定性C . 两点确定一条直线D . 垂线段最短3. (2分)△ABC中,∠A=∠B,若与△ABC全等的三角形中有一个角为90°,则△ABC中等于90°的角是()A . ∠AB . ∠BC . ∠CD . ∠B或∠C4. (2分) (2019八上·淮南期中) 已知一个等腰三角形的两边长a、b满足方程组则此等腰三角形的周长为()A . 5B . 4C . 3D . 5或45. (2分) (2016八上·平谷期末) 如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是()A . 17°B . 34°C . 56°D . 68°6. (2分)(2019·常德模拟) 如图,从△ABC纸片中剪去△CDE,得到四边形ABDE,若∠C=60°.则∠1+∠2等于()A . 240°B . 120°C . 230°D . 200°7. (2分) (2020八下·瑞安期末) “勾股图”有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以“勾股图”为背景的邮票(如图1),欧几里得在《几何原本》中曾对该图做了深入研究.如图2,在中,,分别以的三条边为边向外作正方形,连结,,,分别与,相交于点P,Q.若,则的值为()A .B .C .D .8. (2分) (2018八上·鄞州期中) 已知:如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A . ∠A与∠D互为余角B . ∠A=∠2C . △ABC≌△CEDD . ∠1=∠2二、填空题 (共8题;共8分)9. (1分) (2020八上·松阳期末) △ABC中,∠C=90°,∠A=54°,则∠B=________°.10. (1分) (2019八下·城区期末) 已知三角形两边长分别为2,3,那么第三边的长可以是________.11. (1分) (2018八上·南充期中) 已知,如图1,,,那么的度是________.12. (1分)一个四边形它有________条边,有________个内角,有________个外角,从一个顶点出发可以引________条对角线,一共可以画________条对角线.13. (1分) (2020八上·东台月考) 如图,和是分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=7:2:1,则∠α的度数为________°.14. (1分) (2020七下·锡山期末) 如图,若AB∥CD,∠C=60°,则∠A+∠E=________度.15. (1分) (2019七下·常熟期中) 如图,AD是△ABC的中线,点E在AB上,且BE=3AE,设四边形BEFD的面积为,△ACF的面积为,若 ,则△ABC的面积为________.16. (1分)如图四边形ABCD中,AB=4, BC=12,∠ABC=45°,∠ADC=90°,AD=CD,则BD=________三、解答题 (共9题;共66分)17. (5分) (2020八上·北流期末) 已知:如图,、相交于点,是的中点,且.求证: .18. (5分) (2019八上·重庆月考) 已知一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的总的对角线条数.19. (10分) (2019七下·宿豫期中) 画图(只能借助于网格)并填空:如图,每个小正方形的边长为个单位,每个小正方形的顶点叫格点.(1)将向左平移格,再向上平移格,请在图中画出平移后的;(2)的面积为________;(3)利用网格在图中画出△ABC的中线,高线;(4)在图中能使的格点的个数有________个(点异于 ).20. (10分) (2019七下·廉江期末) P是三角形内一点,射线PD//AC,射线PE//AB.(1)当点D,E分别在AB,BC上时,①补全图1:②猜想与的数量关系,并证明;,(2)当点都在线段上时,请先画出图形,想一想你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由21. (5分) (2018八上·甘肃期末) 如图,AB=DF , BC=DE , AF=CE .求证:AB∥DF .22. (5分)(2020·乾县模拟) 如图,在△ABC中,AB=BC,点E为AC的中点,且∠DCA=∠ACB,DE的延长线交AB于点F。

陕西西安碑林区西安铁一中东城滨河中学初二上学期期中数学试卷 (2)

陕西西安碑林区西安铁一中东城滨河中学初二上学期期中数学试卷 (2)

(2) 当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元? 25. A(0, 4)是直角坐标系y轴上一点,P 是x轴上一动点,从原点O出发,沿正半轴运动,速度为每秒1个单位长度,以P 为直角
顶点在第一象限内作等腰Rt△AP B,设P 点的运动时间为t秒.
(1) 若AB//x轴,求t值.
康 (2) 设点B的坐标为(x, y),试求y关于x函数表达式. 智 (3) 当t = 3时,平面直角坐标系内有一点M (3, a),请直接写出使△AP M 为等腰三角形的点M 的坐标.

A. 2
2
2
b = c −a
B. a : b : c = 3 : 4 : 5
C. ∠C = ∠A − ∠B
D. ∠A : ∠B : ∠C = 12 : 13 : 15
3. 下列式子中正确的是( ).
−2
A. 1 ()
= −9
3
康 2
B. (−2) = −6

−−−−− 2
C. √(−2) = −2
0

3
D. ( , 4 − 2√3)
2
康 13. 某公司制作毕业纪念册的收费如下:设计费与加工费共1000元,另外每册收取材料费4元,则总收费y与制作纪念册的册数
x 的函数关系式为
.智 爱
14. 点P 到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P 点的坐标是

15. 已知一次函数的图象与直线y = −x + 1平行,且过点(8, 2),则此一次函数的解析式为
A. , k > 2 m > 0
B. , k > 2 m < 0
C. , k < 2 m > 0

陕西省西安市八年级数学上学期第一次月考试题 新人教版

陕西省西安市八年级数学上学期第一次月考试题 新人教版

2017-2018学年度第一学期第一次月考八年级数学试卷一.选择题(每小题3分,共30分)1.下列二次根式中是最简二次根式的是( ) A .B .C .D .2.下列各组数中,是勾股数的是( ) A .12,15,18B .11,60,61C .15,16,17D .12,35,363.下列计算正确的是( ) A .﹣=B .÷=6 C .3+=4D .×(﹣)=34.下列说法正确的是( ) A .(﹣1)2的平方是﹣1B .立方根等于它本身的数有3个C .无限小数称为无理数D .绝对值等于它本身的数只有0 5.一个直角三角形的两边是6和8,则第三边的平方等于( )A .100或28B .10C .100D .14或1006.x 是2)9( 的平方根,y 是27的立方根,则x -y 的值为( )A.0B.-6C.0 或-6D.0或 -37.如图,数轴上点A 对应的数为2,AB ⊥OA 于A ,且AB=1,以点O 为圆心,以OB 为半径画弧,交正半轴于点C ,则点C 对应的数为( ) A .3B .C .D .8.若实数a ,b ,c 在数轴上对应点的位置如图,则下列不等式不成立的是( )A .b >aB .ab >0C .a+b <0D .c+a >09.若直角三角形两直角边长分别为5,12,则斜边上的高为( ) A .6B .8C .D .10.如图所示:是一段楼梯,高BC 是3m ,斜边AC 是5m ,如果在楼梯上铺地毯,那么至少需要地毯( ) A .5m B .6m C .7m D .8m 二.填空题(每题3分,共21分)11.的平方根是12.计算= .13.﹣的相反数是,倒数是,绝对值是.14.比较大小:(用“>”或“<”填空).15.有一个数值转换器,原理如下:当输入x为64时,输出的y的值是.16. 如图,一架2.5米长的梯子斜靠在一竖直的墙上,这时梯子的底端B距离墙底O的距离为1.5米,如果将梯顶A向上滑动0.4米,则梯足B应向墙底O滑动米.三.解答题(共72分)17.把下列各数填入相应集合的括号内(共6分)﹣(﹣2),﹣,﹣,3.14,﹣π,﹣|﹣6|,,﹣,2.131********…(相邻两个1之间的3的个数逐次加1)正分数集合:{ …};负有理数集合:{ …};无理数集合:{ …}.18.计算(每小题3分,共9分)(1)×(2)+(3)+19.计算(每小题4分,共24分)(1)+(2)(﹣3)2(3)(+)(﹣)(4)(5)(6)20.(6分)一个正数x的两个平方根分别是2a﹣1与﹣a+2,求a的值和这个正数x的值.21.(6分)已知x=,y=,求下列各式的值:(1)x2﹣2xy+y2(2)x2﹣y2.22.(6分)如图:有一个圆柱,底面圆的直径AB=,高BC=12cm,P为BC的中点,求蚂蚁从A 点爬到P点的最短距离.23.(7分)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.C'EDCBA24.(8分)如图,将长方形ABCD 沿着对角线BD 折叠,使点C 落在'C 处,'BC 交AD 于点E . (1)试判断△BDE 的形状,并说明理由; (2)若AB=6,8AD ,求△BDE 的面积.西科中学2017-2018学年度第一学期第一次月考初二年级数学试卷答案一.选择题(每小题3分,共30分) C B C B A C D D D C 二.填空题(每题3分,共21分) 11. 2±12. 2. 13. ;﹣;.14. > 15. 2. 16. 0.8三.解答题(共72分)17. 正分数集合:{ 3.14, …}; 负有理数集合:{﹣,﹣|﹣6|,﹣,…};无理数集合:{﹣,﹣π,2.131********…,…}.18.(1)9; (2)7;(3)-1. 19.(1)429; (2)5614- (3)4 (4)8; (5)53 (6)12 20. 解:∵正数x 有两个平方根,分别是﹣a+2与2a ﹣1, ∴﹣a+2+2a ﹣1=0 解得a=﹣1.所以x=(﹣a+2)2=(1+2)2=9. 21.(1) 16; (2)8.22. 解:已知如图: ∵圆柱底面直径AB=cm 、母线BC=12cm ,P 为BC 的中点,∴圆柱底面圆的半径是cm ,BP=6cm ,∴AB=×2×=8cm ,在Rt △ABP 中,AP==10cm,∴蚂蚁从A点爬到P点的最短距离为10cm.23. 解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.24.(1)等边三角形,证明略;(2)18.75。

铁一中初二数学月考试卷

铁一中初二数学月考试卷

考试时间:120分钟满分:100分一、选择题(每题4分,共40分)1. 下列数中,有理数是()A. √16B. √-9C. πD. 0.1010010001…(无限循环小数)2. 下列各数中,属于负数的是()A. -3B. 2C. 0D. -2/33. 已知a=-2,b=-3,那么|a|+|b|的值是()A. 5B. 1C. 4D. 04. 在直角坐标系中,点A(-2,3)关于y轴的对称点是()A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,-3)5. 如果一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是()A. 16cmB. 24cmC. 26cmD. 30cm6. 下列方程中,解为正数的是()A. x+1=0B. 2x-3=0C. x-2=0D. x+3=07. 一个长方形的长是6cm,宽是4cm,那么它的面积是()A. 20cm²B. 24cm²C. 18cm²D. 12cm²8. 已知函数y=2x+1,当x=3时,y的值是()A. 7B. 5C. 6D. 49. 下列各式中,正确的是()A. 2a+b=3a+bB. 2a-b=a+2bC. 2a+2b=2(a+b)D. 2a-b=2a-2b10. 在一次函数y=kx+b中,若k=2,且当x=1时,y=4,那么b的值是()A. 2B. 3C. 4D. 5二、填空题(每题5分,共50分)11. 3/4的倒数是__________。

12. 若a=5,b=-3,则a-b的值是__________。

13. 在直角坐标系中,点P(-4,5)关于原点的对称点是__________。

14. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的面积是__________cm²。

15. 若x=2,那么2x²-3x+1的值是__________。

16. 已知函数y=3x-2,当x=2时,y的值是__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年陕西省西安市碑林区铁一中学八年级(上)第一次月考数学试卷一、选择题:1.如图,数轴上A、B两点表示的数分别为和5.1,则A、B两点之间表示整数的点共有()A.5个 B.6个C.4个D.3个2.下列各组数能构成勾股数的是()A.2,,B.12,16,20 C.,,D.32,42,523.下列各数:、3.1415926、﹣、0、π0、0.1010010001…(相邻两个1之间0的个数逐次加1)、3、﹣中无理数有()个.A.2 B.1 C.3 D.44.如图,四边形ABCD是矩形,BC=1,则点M表示的数是()A.2 B.C.D.5.下列各式正确的是()A.=±4 B.±=4 C.=﹣4 D.=﹣36.我国古代数学家赵爽的《勾股方圆图》是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是16,小正方形的面积是3,直角三角形较短的直角边为a,较长的直角边为b那么(a+b)2的值为()A.16 B.29 C.19 D.487.下列说法:①121的算术平方根是11;②﹣的立方根是﹣;③﹣81的平方根是±9;④实数和数轴上的点一一对应,其中错误的有()A.0个 B.1个 C.2个 D.3个8.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为()A.3 B.4 C.2 D.49.已知≈7.205,≈3.344,则约等于()A.﹣0.07205 B.﹣0.03344 C.﹣0.07205 D.﹣0.00334410.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片折叠,使点C与点A重合,折痕为EF,点D的对应点为G,连接DG,则图中阴影部分面积是()A.5 B.3 C.D.二、填空题11.的小数部分我们记作m,则m2+m+=.12.△ABC中,AB=41,AC=15,高AH=9,则△ABC的面积是.13.已知a<b,化简二次根式的结果是.14.如图,已知圆柱底面周长是4dm,圆柱的高为3dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为dm.15.已知x,y均为实数,且满足=(y﹣1),那么x2013﹣y2013=.16.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是.三、解答题(共8小题,满分72分)17.计算与化简(1)+2﹣3﹣8(2)+2﹣(3)﹣+×(4)﹣.18.若,求3m+6n的立方根.19.若|x+2|﹣=3﹣x﹣y,求﹣﹣的算术平方根.20.在玉溪州大河旁边的路灯杆顶上有一个物体,它的抽象几何图形如图,若AB=4,AC=10,∠ABC=60°,求B、C两点间的距离.21.已知=2﹣,且a+b=2,请化简并求值以下代数式: +.22.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形气旋风暴,有极强的破坏力,此时某台风中心在海域B处,在沿海城市A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)A城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?23.如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D,E,F为BC中点,BE 与DF,DC分别交于点G,H,∠ABE=∠CBE.(1)线段BH与AC相等吗?若相等给予证明,若不相等请说明理由;(2)求证:BG2﹣GE2=EA2.24.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CE=x(1)请求出AC+CE的最小值.(2)请构图求出代数式+的最小值.2016-2017学年陕西省西安市碑林区铁一中学八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题:1.如图,数轴上A、B两点表示的数分别为和5.1,则A、B两点之间表示整数的点共有()A.6个 B.5个 C.4个 D.3个【考点】实数与数轴;估算无理数的大小.【分析】根据比1大比2小,5.1比5大比6小,即可得出A、B两点之间表示整数的点的个数.【解答】解:∵1<2,5<5.1<6,∴A、B两点之间表示整数的点有2,3,4,5,共有4个;故选C.2.下列各组数能构成勾股数的是()A.2,,B.12,16,20 C.,,D.32,42,52【考点】勾股数.【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、22+()2=()2,但不是正整数,故选项错误;B、122+162=202,能构成直角三角形,是整数,故选项正确;C、()2+()2≠()2,不能构成直角三角形,故选项错误;D、(32)2+(42)2≠(52)2,不能构成直角三角形,故选项错误.故选B.3.下列各数:、3.1415926、﹣、0、π0、0.1010010001…(相邻两个1之间0的个数逐次加1)、3、﹣中无理数有()个.A.1 B.2 C.3 D.4【考点】无理数;零指数幂.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣、3,0.1010010001…(相邻两个1之间0的个数逐次加1)﹣是无理数,故选:D.4.如图,四边形ABCD是矩形,BC=1,则点M表示的数是()A.2 B.C.D.【考点】实数与数轴.【分析】根据勾股定理,可得AC的长,根据数轴上两点间的距离,可得答案.【解答】解:AC==,AM=AC=,点M表示的数是﹣1.故选:D.5.下列各式正确的是()A.=±4 B.±=4 C.=﹣4 D.=﹣3【考点】立方根;平方根;算术平方根.【分析】根据平方根、算术平方根、立方根,即可解答.【解答】解:A、=4,故本选项错误;B、=±4,故本选项错误;C、=4,故本选项错误;D、正确;故选:D.6.我国古代数学家赵爽的《勾股方圆图》是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是16,小正方形的面积是3,直角三角形较短的直角边为a,较长的直角边为b那么(a+b)2的值为()A.16 B.29 C.19 D.48【考点】勾股定理的证明.【分析】易求得ab的值,和a2+b2的值,根据完全平方公式即可求得(a+b)2的值,即可解题.【解答】解:∵大正方形的面积是16,小正方形的面积是3,∴四个直角三角形面积和为16﹣3=13,即4×ab=13,∴2ab=13,a2+b2=16,∴(a+b)2=a2+b2+2ab=16+13=29.答:(a+b)2的值为29,故选B.7.下列说法:①121的算术平方根是11;②﹣的立方根是﹣;③﹣81的平方根是±9;④实数和数轴上的点一一对应,其中错误的有()A.0个 B.1个 C.2个 D.3个【考点】实数与数轴;算术平方根;立方根.【分析】根据实数、算术平方根、平方根、立方根,数轴的定义和性质分别进行分析,即可得出答案.【解答】解:①121的算术平方根是11是正确的;②﹣的立方根是﹣是正确的;③﹣81没有平方根,错误;④实数和数轴上的点一一对应是正确的.故其中错误的有1个.故选:B.8.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为()A.3 B.4 C.2 D.4【考点】勾股定理.【分析】在Rt△AOB、Rt△DOC中分别表示出AO2、DO2,从而在Rt△ADO中利用勾股定理即可得出AD的长度.【解答】解:在Rt△AOB中,AO2=AB2﹣BO2;Rt△DOC中可得:DO2=DC2﹣CO2;∴可得AD2=AO2+DO2=AB2﹣BO2+DC2﹣CO2=18,即可得AD==3.故选A.9.已知≈7.205,≈3.344,则约等于()A.﹣0.07205 B.﹣0.03344 C.﹣0.07205 D.﹣0.003344【考点】算术平方根.【分析】将0.000374用科学计数法表示,然后利用立方根的性质即可化简求出答案.【解答】解:∵0.000374=374×10﹣6,∴==﹣×=﹣7.205×10﹣2=﹣0.07205故选(A)10.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片折叠,使点C与点A重合,折痕为EF,点D的对应点为G,连接DG,则图中阴影部分面积是()A.5 B.3 C.D.【考点】翻折变换(折叠问题);矩形的性质.【分析】由于AF=CF,则在Rt△ABF中由勾股定理求得AF的值,证得△ABF≌△AGE,有AE=AF,即ED=AD﹣AE,再由直角三角形的面积公式求得Rt△AGE中边AE上的高的值,即可计算阴影部分的面积.【解答】解:由题意知,AF=FC,AB=CD=AG=4,BC=AD=8在Rt△ABF中,由勾股定理知AB2+BF2=AF2,即42+(8﹣AF)2=AF2,解得AF=5∵∠BAF+∠FAE=∠FAE+∠EAG=90°∴∠BAF=∠EAG∵∠B=∠AGE=90°,AB=AG∴△BAF≌△GAE,∴AE=AF=5,ED=GE=3=AG•GE=AE•AE边上的高∵S△GAE∴AE边上的高==ED•AE边上的高=×3×=.∴S△GED故选D.二、填空题11.的小数部分我们记作m,则m2+m+=2.【考点】估算无理数的大小;代数式求值.【分析】先估计的近似值,再求得m,代入计算.【解答】解:∵的小数部分我们记作m,∴m=﹣1,即m+1=,∴m2+m+=m(m+1)+,=,=(m+1),=•,=2.故答案为:2.12.△ABC中,AB=41,AC=15,高AH=9,则△ABC的面积是234或126.【考点】勾股定理.【分析】分三角形ABC为锐角三角形、三角形ABC为钝角三角形两种情况,根据AH垂直于BC,利用垂直的定义得到三角形ABH与三角形AHC为直角三角形,利用勾股定理分别求出BH 与HC,由BH+HC=BC或BH﹣HC=BC求出BC,利用三角形的面积公式即可求出三角形ABC的面积.【解答】解:①当△ABC为锐角三角形时,如图1所示,∵AH⊥BC,∴∠AHB=∠AHC=90°,在Rt△ABH中,AB=41,AH=9,根据勾股定理得:BH==40,在Rt△AHC中,AC=15,AH=9,根据勾股定理得:HC==12,∴BC=BH+HC=40+12=52,=BC•AH=234;则S△ABC②当△ABC为钝角三角形时,如图2所示,由①得,BH=40,CH=12,∴BC=BH﹣HC=40﹣12=28,=BC•AH=126.则S△ABC综上,△ABC的面积为234或126.故答案为:234或126.13.已知a<b,化简二次根式的结果是﹣a.【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质得出a,b的符号,进而化简即可.【解答】解:∵a<b,有意义,∴a<0,b<0,∴=﹣a.故答案为:﹣a.14.如图,已知圆柱底面周长是4dm,圆柱的高为3dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为2dm.【考点】轴对称﹣最短路线问题.【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【解答】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为3dm,∴AB=3dm,BC=BC′=3dm,∴AC2=32+22=13,∴AC=dm.∴这圈金属丝的周长最小为2AC=2dm.故答案为:2.15.已知x,y均为实数,且满足=(y﹣1),那么x2013﹣y2013=﹣2.【考点】二次根式有意义的条件.【分析】原可以化成+(1﹣y)=0,然后根据非负数的性质可以列出关于x和y的方程,求得x、y的值,进而求得代数式的值.【解答】解:根据题意得+(1﹣y)=0,∵1+x≥0且1﹣y≥0,∴1+x=0且1﹣y=0,解得x=﹣1,y=1.则原式=(﹣1)2013﹣12013=﹣1﹣1=﹣2.故答案是:﹣2.16.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是15.【考点】勾股定理的逆定理;全等三角形的判定与性质.【分析】延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形即:△ABD为直角三角形,进而可求出△ABD的面积.【解答】解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,,∴△ABD≌△CED(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=AD•AB=15,故答案为:15.三、解答题(共8小题,满分72分)17.计算与化简(1)+2﹣3﹣8(2)+2﹣(3)﹣+×(4)﹣.【考点】二次根式的混合运算;零指数幂.【分析】(1)首先化简二次根式进而合并求出答案;(2)首先化简二次根式以及结合零指数幂的性质化简进而合并求出答案;(3)首先化简二次根式进而合并求出答案;(4)利用积的乘方运算法则化简进而求出答案.【解答】解:(1)+2﹣3﹣8=5+﹣3×6﹣=﹣13;(2)+2﹣=2(+1)+6﹣1=8+1;(3)﹣+×=﹣+3×2=﹣;(4)﹣=[(3+2)(3﹣2)]5(3﹣2)﹣(3﹣1)2=3﹣2﹣(18+1﹣6)=﹣16+4.18.若,求3m+6n的立方根.【考点】立方根;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】由于一个分式为0,只能分子为0,然后根据非负数的性质得到关于m、n的方程组,由此即可解得m、n,然后即可求3m+6n的立方根.【解答】解:∵,∴=0,|m2﹣9|=0,3﹣m≠0,解得m=﹣3,n=6,∴3m+6n的立方根为3.19.若|x+2|﹣=3﹣x﹣y,求﹣﹣的算术平方根.【考点】实数的运算.【分析】已知等式整理后,利用二次根式性质及绝对值的代数意义化简求出x与y的范围,原式利用二次根式性质及绝对值的代数意义化简,求出所求式子的算术平方根即可.【解答】解:已知等式整理得:|x+2|﹣=3﹣x﹣y,即|x+2|﹣|y﹣5|=3﹣x﹣y,整理得:﹣x﹣2﹣(y﹣5)=3﹣x﹣y,∴|x+2|=﹣(x+2),|y﹣5|=y﹣5,∴x+2≤0,y﹣5≥0,解得:x≤﹣2或y≥5,∴﹣﹣=|x﹣y|﹣|x﹣1|﹣|y﹣3|=y﹣x﹣1+x﹣y+3=2,则2的算术平方根是.20.在玉溪州大河旁边的路灯杆顶上有一个物体,它的抽象几何图形如图,若AB=4,AC=10,∠ABC=60°,求B、C两点间的距离.【考点】解直角三角形的应用.【分析】作AD⊥BC于点D,先根据三角函数的定义求出AD,再根据勾股定理求出CD的长.【解答】解:如图.过A点作AD⊥BC于点D.在Rt△ABD中,∵∠ABC=60°,∴∠BAD=30°.∵AB=4,∴BD=AB•cos60°=4×=2.∴AD=AB•sin60°=4×=2.在Rt△ADC中,AC=10,∴CD===2.∴BC=2+2.答:B、C两点间的距离为2+2.21.已知=2﹣,且a+b=2,请化简并求值以下代数式: +.【考点】二次根式的化简求值.【分析】解方程得出x=2,再分母有理化,化简得出原式=4x+2,最后代入求出即可.【解答】解:=2﹣,b(x﹣b)=2ab﹣a(x﹣a),bx+ax=(a+b)2,∵a+b=2,∴2x=4,∴x=2,∴+=+=x+1﹣2+x+x+1+2+x=4x+2=4×2+2=10.22.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形气旋风暴,有极强的破坏力,此时某台风中心在海域B处,在沿海城市A的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)A城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?【考点】勾股定理的应用.【分析】(1)求是否会受到台风的影响,其实就是求A到BC的距离是否大于台风影响范围的半径,如果大于,则不受影响,反之则受影响.如果过A作AD⊥BC于D,AD就是所求的线段.直角三角形ABD中,有∠ABD的度数,有AB的长,AD就不难求出了.(2)受台风影响时,台风中心移动的距离,应该是A为圆心,台风影响范围的半径为半径,所得圆截得的BC上的线段的长即EF得长,可通过在直角三角形AED和AFD中,根据勾股定理求得.有了路程,有了速度,时间就可以求出了.(3)风力最大时,台风中心应该位于D点,然后根据题目给出的条件判断出时几级风.【解答】解:(1)该城市会受到这次台风的影响.理由是:如图,过A作AD⊥BC于D.在Rt△ABD中,∵∠ABD=30°,AB=240,∴AD=AB=120,∵城市受到的风力达到或超过四级,则称受台风影响,∴受台风影响范围的半径为25×(12﹣4)=200.∵120<200,∴该城市会受到这次台风的影响.(2)如图以A为圆心,200为半径作⊙A交BC于E、F.则AE=AF=200.∴台风影响该市持续的路程为:EF=2DE=2=320.∴台风影响该市的持续时间t=320÷20=16(小时).(3)∵AD距台风中心最近,∴该城市受到这次台风最大风力为:12﹣=7.2(级).23.如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D,E,F为BC中点,BE 与DF,DC分别交于点G,H,∠ABE=∠CBE.(1)线段BH与AC相等吗?若相等给予证明,若不相等请说明理由;(2)求证:BG2﹣GE2=EA2.【考点】全等三角形的判定与性质;线段垂直平分线的性质;勾股定理.【分析】(1)根据三角形的内角和定理求出∠BCD=∠ABC,∠ABE=∠DCA,推出DB=CD,根据ASA证出△DBH≌△DCA即可;(2)根据DB=DC和F为BC中点,得出DF垂直平分BC,推出BG=CG,根据BE⊥AC和∠ABE=∠CBE得出AE=CE,在Rt△CGE中,由勾股定理即可推出答案.【解答】(1)BH=AC,理由如下:∵CD⊥AB,BE⊥AC,∴∠BDH=∠BEC=∠CDA=90°,∵∠ABC=45°,∴∠BCD=180°﹣90°﹣45°=45°=∠ABC∴DB=DC,∵∠BDH=∠BEC=∠CDA=90°,∴∠A+∠ACD=90°,∠A+∠HBD=90°,∴∠HBD=∠ACD,∵在△DBH和△DCA中,∴△DBH≌△DCA(ASA),∴BH=AC.(2)连接CG,由(1)知,DB=CD,∵F为BC的中点,∴DF垂直平分BC,∴BG=CG,∵∠ABE=∠CBE,BE⊥AC,∴EC=EA,在Rt△CGE中,由勾股定理得:CG2﹣GE2=CE2,∵CE=AE,BG=CG,∴BG2﹣GE2=EA2.24.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CE=x(1)请求出AC+CE的最小值.(2)请构图求出代数式+的最小值.【考点】轴对称﹣最短路线问题.【分析】(1)若点C不在AE的连线上,根据三角形中任意两边之和>第三边知,AC+CE>AE,故当A、C、E三点共线时,AC+CE的值最小;(2)由(1)的结果可作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,则AE的长即为代数式+的最小值,然后构造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性质可求得AE的值.【解答】解:连接AE交BD于C,故当A、C、E三点共线时,AC+CE的值最小;∵四边形BDEF是矩形,BF=DE=1,EF=BD=8,AF=AB+BF=5+1=6,AE==10,∴AC+CE的最小值是10;(2)∵+=+,如图2所示,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,设BC=x,则AE的长即为代数+的最小值.过点A作AF∥BD交ED的延长线于点F,得矩形ABDF,则AB=DF=2,AF=BD=12,EF=ED+DF=3+2=5,所以AE===13,即+的最小值为13.故代数式+的最小值为13.2017年5月11日。

相关文档
最新文档