第二章 确定信号和随机信号分析答案
第2章 确知信号与随机信号分析基础课件
七、频域卷积
若 f1(t) F1( j), f2 (t) F2 ( j)
则
f1 (t )
f2 (t)
1
2
[ F1 (
j)
F2 (
j)]
此定理的物理意义是 :时域相乘对应频域卷积
16
§3 信号的分类与特点 一、确定性信号与随机信号
确定性信号:可用确定的数学函数表示的信号, 且信号的取值是确定的。
12
例题: 试利用对称性 求低通滤波器 的付氏变换。
f (t) A
/ 2 0 / 2 t
F (t) ASa t
2
2
0
F (t) 2A0Sa0t
比例特性, 两边
同时除以2
F (t)
A0
Sa0t
F () ASa
2
f () 2A
/ 2 0 / 2 f ()
2A
0 0 0
)dt
2
25
2、若为非周期功率信号,则
T
R12 ( )
lim
T
1 T
2 T
f1 (t )
f2 (t
)dt
2
3、若为能量信号,则
R12 ( ) f1(t) f2 (t )dt
二、自相关函数的定义:若f1(t)=f2(t)=f(t),上述三个
公式即成为自相关函数的定义,记为R(τ)
26
三、互相关函数与自相关函数的性质 (一)互相关函数的性质
/ 2 0 / 2 t
9
数字信号频带宽度 f 估算
010110
f 1 T
T
数字信号带宽与码元宽度成反比
10
《随机信号分析》-高新波等-课后答案
C = *第0章1/1;1/ 2;1/ 3;1/4;1/ 5;1/ 6;2 /1;2 / 2;2 / 3;2 /4;2 / 5;2/6;3/l;3/2;3/3;3/4;3/5;3/6;4/l;4/2;4/3;4/4;4/5;4/6;5/l;5/2;5/3;5/4;5/5;5/6;6/l;6/2;6/3;6/4;6/5;6/64 = {l/l;2/2;3/3;4/4;5/5;6/6}1/5;!/ 6;2 /4;2 / 5;2 / 6;3 / 3;3 / 4;3 / 5;3 / 6;4 / 2;4 / 3;4 / 4;4 / 5;'4/6;5/l;5/2;5/3;5/4;5/5;5/6;6/l;6/2;6/3;6/4;6/5;6/6 /1 /1;1 / 2;1 / 3;1 / 4;1 / 5;1 / 6;2 /1;2 / 2;2 / 3;2 / 4;2 / 5;2 / 6;3 /1;3 / 2;'3/3;3/4;3/5;3/6;4/l;4/2;4/3;5/l;5/2;5/3;6/l;6/2;6/3B =0.2(2)'0用)=x < 00<x<30x 2/12 2x -3-x 2/4,3<x <41 x>4P (l<x<7/2)=f^v +⑴⑶0.3E (X )= L 2<T :t/r = £ ~^y %dy =E (X2)=「Ji 奇dx = 了241a\^e~y 晶尸dy = 2a 2r (2)= 2a 2o(x)=£(/)-(研x))2=2尸_m S=04292S 0.4⑴£(Jf)=(-1)x03+0x0.44-1x03=0£(K)=1x0.4+2x0.2+3x0.4=2(2)由于存在X=0的情况,所以研Z)不存在(3)E(Z)=(-1-1)2x0.2+(-1-2)2xO.l+(O-l)2xO.l+(0-3)2x0.3+(l-l)2xO.1+0-2)2x0.1+(1-3)2x0.1=5 0.5X=ln*,当\dy\=^M=^e(Iny-mf2/”00.6t2+勺血s=£0<x<l,0<.y<2f32\X x~.—+—s as=(363-)7X*i X丁-312=诉号>=2尸号间=fp+导=土名/(x)0.7££be~^x+y^dxdy=[/>(1-e~'\~y dy=/>(1-e-,)= 1,/>=(!—e~x尸/(x)=he~x Ve-y dy=—^e~x fi<x<\f(y)=be~y^e~x dx—e~y,y>00.8(1)x,v不独立⑵F(z)=££~'|(X+yY{x+y}dxdy=£|/『(xe~x +ye~x}ixdy =g按(1一(1+Z一*片5+*(]_e-(z-y)肱,=]_]+z+/2\2f(z)=F'(z)=\+z+—e~:-(1+z)e~z=—e-2,z>0、2)20.9。
通信原理 第2章 确定信号和随机信号分析
其中: a t 是包络函数;c 是中心频率; t 是随机相位函数。
②上式利用三角函数和角公式,可写成
t a tcos tcosct sin tsin ct
其中 c tcosct s tsin ct
c t s t
a a
tcos t t 的同相分量 tsin t t 的正交分量
双边能量谱密度(焦耳/ 赫兹)
③
G
2E
0,
,
R E
0 0
单边能量谱密度(焦耳/ 赫兹)
R
f
*t
f
t
dt
E R0
2.2 确定信号的表示
(2) 功率信号:平均功率有限的信号f t F
① S lim 1 T T
T /2
T / 2 fT t
2 dt 1
2
lim FT
:
Fn
1 T
FT
n0
Fn
2
1 T
PT
() n0
④ Fn 与 f t
:
F
2 Fn
n0
n
P 2
Fn 2
n0
n
R
Fn
2 e jn0t
n
2. 3 随机过程
设 t是一个随机过程,任意时刻
机变量,定义:Page 13
t1上 t1 是一个随
1 t
v1
总体: t
t
2 t
1 T
T
2
T 2
xt
xt
dt
①各态历经过程的任一实现都好象经历了随机过程的所有可能状态 似的。
②任一实现都能代表整个随机过程。
③各态历经过程必须首先是平稳过程,但平稳过程不一定是各态历 经过程。
通信原理练习题
通信原理练习题LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】第一章绪论一、填空题1、数字通信系统的主要性能指标是有效性和可靠性。
码元速率RB定义是每秒传送码元的数目,单位Baud。
信息速率定义是每秒钟传送的信息量,单位bit/s。
2、数字通信系统的有效性用传输速率衡量,可靠性用差错率衡量。
3、模拟通信系统的有效性用传输带宽衡量,可靠性用信噪比衡量。
4、在等概条件下,八元离散信源能达到最大熵是3bit/符号,若该信源每秒钟发送2000个符号,则该系统的信息速率为6k bit/s。
5、通信系统的有效性衡量指标对于模拟通信系统为传输带宽,对于数字通信系统为传输速率。
6、通信系统的可靠性衡量指标对于模拟通信系统为信噪比对于数字通信系统为差错率。
7、一个M进制基带信号,码元周期为TS 秒,则传码率为1/TS波特,若码元等概出现,一个码元所含信息量为log2M (bit)。
8、通信系统模型中有两个变换,它们分别是非电量与电量之间的变换和基带信号与频带信号之间的变换。
9、模拟信号是指信号的参量可连续取值的信号,数字信号是指信号的参量可离散取值的信号。
10根据信道中所传输信号特征的不同,通信系统可分为模拟通信系统和数字通信系统。
二、画图1、画出模拟通信系统的一般模型。
2、画出通信系统的简化模型。
三、计算题1、对于二电平数字信号,每秒传输300个码元,问此传码率R B 等于多少?若该数字信号0和1出现是独立等概率的,那么传信率R b 等于多少?2、、现有一个由8个等概符号组成的信源消息符号集,各符号间相互独立,每个符号的宽度为。
计算:(1)平均信息量;(2)码元速率和平均信息速率;(3)该信源工作2小时后所获得的信息量;(4)若把各符号编成二进制比特后再进行传输,在工作2小时后发现了27个差错比特(若每符号至多出错1位),求传输的误比特率和误符号率。
通信原理樊昌信课后答案
第一章绪论第二章确定信号和随机信号分析第三章信道第四章模拟信号调制已知线性调制信号表示式为(1)COE C tecs C2) (1+0- Szin Q t)丈佔d t武中,•试分别画岀它们的液形图和频谙厦K解(1) fi (/)= cos Zcos 波形如图 4.1(a )所示频谱为百(劲=—{灿5@ 一 G )+ 3((D + Q )]*TT [5(G ? -A ?C ) + 3(o )+CD C )J =-+7Q )+S (Q} 4- 5Q )+3[a}- 7Q )+3(Q } - 5Q )]2频诸图如图4.1(b )所示。
图 4.1 _(2)f2(t )=(l+0.5sin Z ) cos 叫Z 的波形如图 4.2(a )所示 F 2[(D )=龙国少一少C ) + 3(0 + Q ?C )]+I r・ —[3(Q }~ G )+ 3(o?+G )]*?r [5(Q?_%)+3(a? +Q?c )] > 2兀[j =7r [5(a? — 6G )+ S [Q } + 6G )]+乎[3((D +7Q )-8{Q } - 7Q )-5 仙+5Q )+3[o )- 5Q )] 频谱如图4.2筛4-2已知调制信号加G 丿二cos (2000兀t )+cos (4000兀f )载波为coslO 4我1进行单 边带调制,试确定该单边带信号的表示式,并画出频谱图。
(b )f!©频谱图解因为应(e)=cos (2000 左e)+cos (4000 X t)对朋(t)进行希尔伯特变换得m(f) = sin(2000 劝+ sin(如00 戒)故上边带言号为Sg⑴=扌处)cose/-*做>smco p?=^cos(12000xrf) + ycos(14000^) 下边带信号为$*/)■= i w(/) cos cD r#+i m(t >sin 屮=cos(8000n/)+icos(6000 d )频谙如圉4.3所示知(“)4-3将调幅波通过滤波器产生残留边带信号,若此谑波器的传输函数M “)如燮 4.4所示(斜线段为直线)。
(仅供参考)随机信号分析与处理简明教程--第二章习题答案
2.1 设有正弦波随机过程 X (t) = V cosωt ,其中 0 ≤ t < ∞ , ω 为常数,V 是均匀分布于 [0,1] 区间的随机变量。
(1)画出该过程两条样本函数;
(2)确定随机变量
X (ti ) 的概率密度,画出 ti
=
0,
π 4ω
,
3π 4ω
,π ω
时概率密度的图形。
δ
(y
−
A)
2.4 设随机过程 X (t) = b + Nt ,已知 b 为常量,N 为正态随机变量,其均值为 m,方差为σ 2 。
试求随机过程 X(t)的一维概率密度及其均值和方差。
解:易知 X(t)也是正态随机变量,只需要知道 X(t)的均值和方差就可以知道其概率密度。
均值: mX = E[ X (t)] = E[b + Nt] = b + tE[N ] = b + mt
⎪⎩0, 其他
⎪⎩0, 其他
求随机过程 X(t)的一维概率密度。
解:首先设Y (t) = a cos(ωt + Θ) ,其中 a 和ω 是常数, Θ 同上。
(由例 2.1.1 知道)Y(t)的一维概率密度为
⎧ fY ( y) = ⎪⎨π
1 ,
a2 − y2
⎪⎩0,
比较 X(t)和 Y(t),可以看出
fX ( x,t) = ∫ ∫ π
1 a2 − x2
fA (a) fΩ (ω ) dadΩ =
∫ ∫ A0 350
da
1
2a 1 da =
x π 250 a2 − x2 A02 100
⎧2 ⎪⎨π A02 ⎪⎩0,
A02 − x2 ,
随机信号分析(常建平,李林海)课后习题答案第二章习题讲解
A与 B独立 , f AB (a, b) f A (a) fB (b)
X (t) A Bt Y(t) A
A Y(t) X (t) Y (t)
B t
01 J1 1 1
t tt
1
xy 1
xy
f XY (x, y; t ) J f AB (a,b) t f AB ( y, t ) t f A ( y) f B ( t )
E X (t) E A cost XH cost EA XH
D X (t) E X 2 (t ) E2 X (t )
方法 2:
D X (t)
D Acost XH D Acost cos2 t DA cos2 t
12
D XH
公式: D aX+ bY a2 D X b2 D Y 2abC XY
RX (t1, t2 )=E Acost1 XH A cost2 XH
f X (x1;0)
1
x12 e 2,
2Байду номын сангаас
A
1
X (t)
~ N (0, )
t 30
2
4
f X ( x2; 3
)=
0
2 2
e
2
x2
2
,
X (t) t
=0,
f ( x3;2
)
0
20
( x3)
(离散型随机变量分布律 )
2-2 如图 2.23 所示,已知随机过程 X (t) 仅由四条样本函数组
成,出现的概率为
数 RX (t1, t2 ) ?②若已知随机变量相 A, B 互独立,
它们的概率密度分别为 f A (a) 和 f B (b) ,求 X (t) 的一
北邮随机信号分析与处理第2章习题解答_2
不满足严格平稳。
思考:是否满足广义平稳?
3
2.17
随机过程由下述三个样本函数组成,且等概率发生:
X (t, e1 ) 1, X (t, e2 ) sin t, X (t, e3 ) cos t (1)计算均值 mX (t ) 和自相关函数 RX (t1 , t2 );
(2)该过程是否为平稳随机过程? 解: 1 1 1
ftp服务器地址
ftp://10.108.142.57
用户名和密码均为:sjxhfx
包括每次课的课件和部分习题解答
1
2.14
广义平稳随机过程 Y (t ) 的自相关矩阵如下,试确定矩阵中用 表示的元素。 2 1.3 0.4 2 1.2 0.8 RY 0.4 1.2 1.1 0.9 2 解:由自相关函数的性质
2
2.15
根据掷骰子试验,定义随机过程为
K X (t ) cos t ( K 1, 2,3, 4,5,6) 3 (1)求 X (1) 、X (2) 的概率密度; (2) X (t ) 是否为平稳随机过程?
解:
1/ 2, K 1,5 1/ 2, K 2, 4 K X (1) cos 1, K 3 3 1, K 6
E[ A(t1 ) A(t2 )cos t1 cos t2 ] E[ A(t1 ) B(t2 )cos t1 sin t2 ] E[ B(t1 ) A(t2 )sin t1 cos t2 ] E[ B(t1 ) B(t2 )sin t1 sin t2 ] RA (t1, t2 )cos t1 cos t2 RB (t1, t2 )sin t1 sin t2 R( )cos t1 cos t2 R( )sin t1 sin t2 R( )cos(t1 t2 ) R( )cos( )
随机信号分析中文版答案
1≤ y ≤ 6
1 b−a
+∞ −∞
X 1 ⋅⋅⋅ X n 相互独立
φ X (ω ) = ∫
i
f X ( xi )e jω xi dxi
=∫
b
a
1 jω xi 1 1 jωb e dxi = (e − e jω a ) b−a b − a jω
(b+ a ) ⎛ (b − a )ω ⎞ jω 2 = Sa ⎜ ⎟e 2 ⎝ ⎠
π
2
−2+
π2
8
2 2 2 ∴ D [ x] = σ X =E⎡ ⎣x ⎤ ⎦ − E [ x] 2 =σy =
π
2
−2+
π2
8
−
π2
16
=
π2
16
+
π
2
−2
(4)
Rxy = E [ xy ]
π 1 π 2 2 xy sin ( x + y ) dxdy 2 ∫0 ∫0 π π ⎤ 1 π ⎡ = ∫ 2 x ⎢ − y cos ( x + y ) 02 + sin ( x + y ) 02 ⎥ dx 2 0 ⎣ ⎦
5
《随机信号分析》 课后习题答案
武汉理工大学信息工程学院
cx1x 2 = rx1x 2 − mx1mx 2 cx1x 2 ⎞ ⎛10 2 ⎞ ⎛c cx ( x1, x 2) = ⎜ x1x1 ⎟=⎜ ⎟ ⎝ cx 2 x1 cx 2 x 2 ⎠ ⎝ 2 10 ⎠
1 − f x ( x1 , x2 ) = e 192π
1.8 解: C XY = E[( x − mx )( y − m y )] = E[ XY ] − mx m y = m11 − mx m y
《现代数字信号处理》第2章习题答案
∞
∞
1 1− z
1 2 −1
+
1 3 1 −1 = ⋅ 1 1 −1 1− 2 z 4 (1 − 2 z )(1 − 1 2 z)
−1 1 (1 − 1 3 1 3 1 2 z ) (1 − 2 z ) = ⋅ ⋅ ⋅ = ⋅ −1 1 −1 1 1 −1 1 1 4 (1 − 2 z )(1 − 2 z ) (1 − 3 z ) (1 − 3 z ) 4 (1 − 3 z )(1 − 1 3 z )
1 1− ∑ a (k ) z
k =1 2 v p
−k
2 2 , Px ( z ) =H ( z ) H * (1/ z * ) σ w =σw
1 1− ∑ a (k ) e
k =1 p
2
− jkω
(b) Pz ( z ) = Px ( z ) + σ
2.4 设给定一个线性移不变系统,其系统函数为 H ( z ) = (1 −
σ ∑⎢ ⎣
i =1
N
⎡
2 x
−
2 2 1 2⎤ σx + σx ⎥ N N ⎦
=
N −1 2 σx N
(b) E
{(σ
2
x
− E {σ x }
2
)}
2
⎧⎛ 2 N − 1 2 ⎞ 2 ⎪ ⎫ ⎧ N − 1 2 2 ( N − 1) 2 4 ⎫ ⎪ ˆx − = E ⎨⎜ σ σ x ⎟ ⎬ = E ⎨σ x4 − 2 σ xσ x + σx ⎬ 2 N N N ⎝ ⎠ ⎩ ⎭ ⎪ ⎪ ⎩ ⎭
{ }
N
( N − 1) 2 4 σx N2
− x)
(I)
随机信号分析与处理习题解答_罗鹏飞
P{X = m} = Cnm p m (1 − p)n−m , m = 0,1, 2,....n
n
∑ 所以 X = Xi 服从参数为 n,p 的二项分布。 i =1
且有 E( Xi ) = 1⋅ P{Xi = 1}+ 0 ⋅ P{Xi = 0} = p ,
E
(
X
2 i
)
= 12
⋅
P{ X i
= 1}+
函数 g(x) 的图像如下
解法一:根据概率分布函数的定义计算。
当 y ≤ 0 时, FY ( y) = P{Y ≤ y} = P{X < x0} + P{X > x1} = P{X < x0}+1− P{X < x1} = F (x0 ) +1− F (x1)
当 y ≤ A 时, FY ( y) = P{Y ≤ y} = P{x0 < X < x1} = FX (x1) − FX (x0 )
所以 Y 的概率分布函数为
FY ( y) = [1− FX (x1) + FX (x0 )]U ( y) + [FX (x1) − FX (x0 )]U ( y − A)
解法二:从概率密度 fY ( y) 入手求概率分布函数 FY ( y) 。 由图可知 g(x) 的取值只可能为 0 或 A,求Y 的概率分布函数,也就是对 g(x) 取 0 或 A
<
X
≤
x2 )
=
P{Y ≤ y, x1 < X ≤ x2} P{x1 < X ≤ x2}
=
y x2 f (x, y)dxdy
−∞ x1
FX (x2 ) − FX (x1 )
信号分析第二章答案
信号分析第二章答案第二章习题参考解答2.1求下列系统的阶跃响应和冲激响应。
(1)y(n)y(n1)某(n)3h(n1)(n)3解当激励为(n)时,响应为h(n),即:h(n)由于方程简单,可利用迭代法求解:h(0)h(1)(0)13,h(1)111h(0)(1)h(0)333,2111h(2)h(1)(2)h(1)333…,由此可归纳出h(n)的表达式:h(n)()n(n)3利用阶跃响应和冲激响应的关系,可以求得阶跃响应:11()n11311(n)h(k)()k[()n](n)1223kk0313nn(2)y(n)y(n2)某(n)4解(a)求冲激响应11h(n2)(n),当n0时,h(n)h(n2)0。
44111特征方程20,解得特征根为1,2所以:42211h(n)C1()nC2()n…(2.1.2.1)2211通过原方程迭代知,h(0)h(2)(0)1,h(1)h(1)(1)0,代入式44h(n)(2.1.2.1)中得:C1C2111C1C2022信号分析与处理的课后习题答案是高等教育出版社的教科书解得C11C22,代入式(2.1.2.1):h(n)12(12)n12(12)n,n0…(2.1.2.2)可验证h(0)满足式(2.1.2.2),所以:h(n)1[(1)n(1222)n](n)(b)求阶跃响应通解为11c(n)C1(2)nC2(2)n特解形式为1p(n)K,p(n2)K,代入原方程有K4K1,完全解为(n)1 14c(n)p(n)C1(2)nC2(2)n3通过原方程迭代之(0)1,(1)1,由此可得C41C23112C1412C231解得C1112,C26。
所以阶跃响应为:(n)h(k)[41111k032(2)n(6)(2)n](n)(3)y(n)某(n)2某(n1)某(n2)解h(n)(n)2(n1)(n2)n(n)h(k)(n)2(n1)(n2)k0(4)dy(t)dt5y(t)某(t)解dh(t)dt5h(t)(t)当t>0时,原方程变为:dh(t)dt5h(t)0。
随机信号分析与处理答案(罗鹏飞,张文明编著)
H( f )
2 2
f 图 ( 利 用 w 2 f , 得 到
2
4 2si nT)f ( ) H( f ) (注意图中要标出最大值及所对应的频率,且
为正数) 4.
(2)
R(0,1) E[ X (0) X (1)] E[2 cos 2 cos(2 )] 4 E[cos cos ] 1 1 4 [(cos 2 0) (cos 2 ) ] 2 2 2 1 4 2 2
5. P85:2.6 问题还需增加“求均值,自相关函数及验证平稳性”
作业一的参考答案 1. P28:1.10
f XY ( x, y ) fY ( y )
1 0
解:利用 f X /Y ( x / y )
fY ( y )
所以
f XY ( x, y)dx
2ax 2by a 2by dx ab ab
f X /Y ( x / y )
解: (1)
互相关系数 XY
Cov( X , Y ) 2 3 D( X ) D(Y )
CZW Cov(2 X Y , X 2Y )
(2)
E[(2 X Y )( X 2Y )] E (2 X Y ) E ( X 2Y ) 2
(3)
因为 X , Y 为高斯随机变量 所以
解:
因为 A , B 为独立的高斯随机变量 所以
E( AB) E( A) E( B) 0 E[ X ] E( A)cos wt E( B)cos wt 0
通信原理第六版习题答案
通信原理第六版习题答案【篇一:通信原理_(第六版)_(樊昌信)_课后答案完整版】db=10^(40/10)=10000 100%调制时制度增(2)(2)b=2*fh*(mf+1)=96mhz 输出信噪比so/no=40db=10^(40/10)=10000 制度(3)是不是很晕。
可以别理我上面那么规范的解题。
画个模型你就清楚了呵呵(4)发送端c---信道---带通滤波器---a解调器b(5)书上给出的公式si/ni是a处的,so/no是b处的这里要求的是发射功率,也就是c处的。
信号经过信道传输功率会衰减,所以只要求出解调器输入端的信号功率,乘上信道损耗就ok了第一章绪论第二章确定信号和随机信号分析【篇二:通信原理(第六版)课后答案】xt>通信原理第六版(樊昌信曹丽娜著)国防工业出版社课后答案第一章绪论第二章确定信号和随机信号分析【篇三:通信原理(第六版)课后思考题及习题答案】以无线广播和电视为例,说明图1-1模型中的信息源,受信者及信道包含的具体内容是什么在无线电广播中,信息源包括的具体内容为从声音转换而成的原始电信号,收信者中包括的具体内容就是从复原的原始电信号转换乘的声音;在电视系统中,信息源的具体内容为从影像转换而成的电信号。
收信者中包括的具体内容就是从复原的原始电信号转换成的影像;二者信道中包括的具体内容分别是载有声音和影像的无线电波1.2何谓数字信号,何谓模拟信号,两者的根本区别是什么数字信号指电信号的参量仅可能取有限个值;模拟信号指电信号的参量可以取连续值。
他们的区别在于电信号参量的取值是连续的还是离散可数的1.3何谓数字通信,数字通信有哪些优缺点传输数字信号的通信系统统称为数字通信系统;优缺点:1.抗干扰能力强;2.传输差错可以控制;3.便于加密处理,信息传输的安全性和保密性越来越重要,数字通信的加密处理比模拟通信容易的多,以话音信号为例,经过数字变换后的信号可用简单的数字逻辑运算进行加密,解密处理;4.便于存储、处理和交换;数字通信的信号形式和计算机所用的信号一致,都是二进制代码,因此便于与计算机联网,也便于用计算机对数字信号进行存储,处理和交换,可使通信网的管理,维护实现自动化,智能化;5.设备便于集成化、微机化。
随机信号分析第3版第二章 习题答案.pdf
k =0
k =0
如果将 4bit 串看作是一个随机向量,则随机向量的均值和方差为:
串平均: Ε ⎡⎣{B (n) , B (n +1) , B (n + 2) , B (n + 3)}⎤⎦ = {0.8, 0.8, 0.8, 0.8}
串方差:
Var ⎡⎣{B (n), B (n +1), B (n + 2) , B (n + 3)}⎤⎦ = {0.16, 0.16, 0.16, 0.16}
3
∑ 串(4bit 数据)为: X (n) = 2k B(n + k) ,其矩特性为: k =0
因为随机变量 B(n) 的矩为:
均值: E[B(n)] = 0× 0.2 +1× 0.8 = 0.8
{ } 方差:
Var
[
B(n)
]
=
Ε
⎡ ⎣
B
(
n
)2
⎤ ⎦
−
Ε ⎡⎣B (n)⎤⎦
2 = 02 × 0.2 +12 × 0.8 − 0.82
= E{[ X (s + a) − X (s)][X (t + a) − X (t)]} = E[ X (s + a) X (t + a)] − E[ X (s + a) X (t)] − E[ X (s) X (t + a)] + E[ X (s) X (t)] = RX (s + a, t + a) − RX (s + a, t) − RX ( s, t + a) + RX ( s, t)
P ⎡⎣{1011}⎤⎦ = P ⎡⎣B (n) = 1⎤⎦ × P ⎡⎣B (n) = 0⎤⎦ × P ⎡⎣B (n) = 1⎤⎦ × P ⎡⎣B (n) = 1⎤⎦