2018年高考全国卷理科数学一题多解

合集下载

2018高考数学全国卷含答案解析

2018高考数学全国卷含答案解析
则 .
从而 ,故MA,MB的倾斜角互补,所以 .
综上, .
20.(12分)
解:(1)20件产品中恰有2件不合格品的概率为 .因此
.
令 ,得 .当 时, ;当 时, .
所以 的最大值点为 .
(2)由(1)知, .
(i)令 表示余下的180件产品中的不合格品件数,依题意知 , ,即 .
所以 .
(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若 , 满足约束条件 ,则 的最大值为_____________.
14.记 为数列 的前 项和.若 ,则 _____________.
15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)
建设前经济收入构成比例建设后经济收入构成比例
则下面结论中不正确的是
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
4.记 为等差数列 的前 项和.若 , ,则
A. B. C. D.
解:(1)在 中,由正弦定理得 .
由题设知, ,所以 .
由题设知, ,所以 .
(2)由题设及(1)知, .
在 中,由余弦定理得
.
所以 .
18.(12分)
解:(1)由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF.
又 平面ABFD,所以平面PEF⊥平面ABFD.
(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.

2018年高考全国1卷理科数学试题及答案

2018年高考全国1卷理科数学试题及答案

理科数学试题 第1页(共9页)2018年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C .{|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC -B .1344AB AC -。

2018年高考全国卷理科数学一题多解

2018年高考全国卷理科数学一题多解

2018年高考全国卷理科数学一题多解(总26页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2018年高考全国卷理科数学一题多解1、(2018年天津高考真题理科和文科第13题)已知R b a ∈,,且063=+-b a ,则ba 812+的最小值为 . 思路一:基本不等式ab b a 2≥+解析一:由于063=+-b a ,可得63-=-b a , 由基本不等式可得,412222222222281236333=⨯===•≥+=+-----b a b a b a b a , 当且仅当⎩⎨⎧=+-=-063223b a b a ,即⎩⎨⎧=-=13b a 时等号成立。

故b a 812+的最小值为41。

思路二:轮换对称法(地位等价法)方法二:轮换对称性:因为b a 3,-的地位是样的,当取最值时,b a 3,-在相等的时候取到:33-=-=b a ,得1,3=-=b a ,4181281213=+=+-b a 所以最小值为41 思路三:换元+等价转化 方法三:令x a =2,y b=81,则x a 2log =,y b 2log 3=-, 则已知问题可以转化为:已知06log log 22=++y x ,则y x +的最小值为 . 已知06log log 22=++y x ,可得62-=xy ,412223=•=≥+-xy y x , 当且仅当y x =,⎪⎩⎪⎨⎧=+-=063812b a ba ,即⎩⎨⎧=-=13b a 时取得等号, 故b a 812+的最小值为41。

2、【2018课标2卷理12】已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ).A .23B .12C .13D .14解法一:由题意:(,0),(2),A a P c -所以026AP k c a -==+,即4a c =,所以14e =,选D . 解法二:由题可得PA的方程为)y x a =+,2PF的方程为)y x c =-,可求解6,)5p p a c x y a c +==+,又22(,0),PF F c k -=所以)565a c a c c +=++ 解得14e =,选D 解法三:在2ΔAF P 三角形中,由余弦定理可得:则PA ==22tan PAF PAF ∠=∠==又22PF c = 在212Δ,ΔAPF PF F 中利用等高建立等式,2c ==, 所以14e =,选D解法四:因为12ΔPF F 为等腰三角形,12120F F P ∠=,所以2122PF F F c ==,由余弦定理可知:1PF =,因为11111sin sin(),sin 1313APF PAF AF P PAF PAF ∠=∠+∠∠=∠=,所以1sin 26APF ∠=,在1ΔAPF 中,由正弦定理可知:1111sin sin AF PF APF PAF =∠∠=所以离心率为14,选D . 解法五:因为12ΔPF F 为等腰三角形,12120F F P ∠= ,所以2122PF F F c ==, 由AP2tan PAF ∠=,所以22sin PAF PAF ∠=∠=由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以2225sin()3c a c PAF ===+-∠ 所以4a c =,解得14e =,选D .3、(2018全国理科第16题)已知函数()sin sin 2f x x x =+,则()f x 的最小值为___________解法一2()sin sin 22sin (1cos )4sin cos 2cos 222x x xf x x x x x =+=+=⨯()[]32262()64sin cos 641,sin 0,1222x x x f x t t t ⎛⎫==-=∈ ⎪⎝⎭()()433264643t 11127()6413t 13344+-+-+-⎛⎫=-=⋅-≤= ⎪⎝⎭t t t f x t t t 当且仅当14t =时,2max 27()4f x = 此时211sin ,sin 2422==-x x,min ()f x = 考点:四元均值不等式,三角恒等变换解法二:先求()f x 的最大值,设sin 0,cos 0x x >>()2sin 2sin cos =+=f x x x x ()22222211112sin 2sin cos sin sin cos ⎛⎫+≤+++ ⎪⎝⎭a xb x x a x b x x a b a b222211sin cos a b x x a b ⎛⎫=+++ ⎪⎝⎭,2,23a b ⎛== ⎝⎭即22()2sin 2sin cos f x x x x x x =+≤=,3x π⎛⎫= ⎪⎝⎭ 故根据()()f x f x -=-奇函数知,min ()f x =解法三:求导法.()()2cos 2cos22(2cos 1)cos 1f x x x x x '=+=-+当0,,()03x f x π⎛⎫'∈> ⎪⎝⎭;5,,()033x f x ππ⎛⎫'∈< ⎪⎝⎭;5,2,()03x f x ππ⎛⎫'∈> ⎪⎝⎭∴min 5()()3f x f π==解法四:()f x 为奇函数,可考虑x 为锐角,由琴生不等式等2()sin sin sin(22)3sin()3++-=++-≤=x x x f x x x x ππ()≥f x 解法五 ()sin sin 2f x x x =+,()2sin (1cos )=+f x x x 设cos ,sin ==m x n x ,则221+=m n ,2(m 1)=+t n ,2(m 1)=+tn ,设两曲线切于,x y,则有22212(1)2(1)⎧⎪+=⎪⎪=⎨+⎪⎪-=⎪+⎩x y t y x t x,解得2=±t,()[22∈-f x解法六柯西不等式法()sin sin2f x x x=+,22()2=⋅f x xxcosx22223sin+≤x27=16,()[∈f x解法七:构造单位圆中的正三角形,单位圆中的正三角形面积最大(1,0),(cos sin),(cos,0)D(cos,0)-A B x x C x x,,,1|2sin(1cos)|2∆=⋅+≤ABCS x x解法七万能代换:()sin sin2f x x x=+为奇函数,不妨设,0>x02tan>=xt。

2018年高考理科数学全国卷3(含答案与解析)

2018年高考理科数学全国卷3(含答案与解析)

2018年高考理科数学全国卷3(含答案与解析) 数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{10}A x x =-∣≥,{0,1,2}B =,则A B = ( )A .{0}B .{1}C .{1,2}D .{0,1,2} 2.()(1i 2i)+-=( )A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )ABC D 4.若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-5.252()x x+的展开式中4x 的系数为( )A .10B .20C .40D .806.直线2=0x y ++分别与x 轴,y 交于A ,B 两点,点P 在圆22(2)=2x y -+上,则ABP △面积的取值范围是( )A .[2,6 ]B .[4,8]C .[2,3 2 ]D [ 22,32] 7.函数422y x x =-++的图象大致为( )ABCD8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数, 2.4DX =,()6(4)P X P X ==<,则p =( )A .0.7B .0.6C .0.4D .0.39.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC △的面积为2224,则C = ( )A .π2B .π3C .π4D .π6毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .54311.设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1||6||PF OP =,则C 的离心率为 ( )A .5B .2C .3D .2 12.设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .ab a b +<<0C .0a b ab +<<D .0ab a b +<<第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量2)(1,=a ,)2(2,=-b ,),(1λ=c .若2()+∥c a b ,则=λ . 14.曲线)e (1xy ax =+在点(0,1)处的切线的斜率为2-,则a = .15函数π()cos(3)6f x x =+在[0,π]的零点个数为 .16.已知点1()1,M -和抛物线C :²4y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=,则k = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分. 17.(12分)等比数列{}n a 中,11a =,534a a =. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高,并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()(a b)(c d)(a c)(b d)n ad bc K -=++++,2()P K k ≥0.050 0.010 0.001k3.841 6.635 10.82819.(12分)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------2018年高考理科数学全国卷3(含答案与解析)数学试卷 第5页(共20页) 数学试卷 第6页(共20页)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB 的中点为(1,)()M m m >0.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB成等差数列,并求该数列的公差. 21.(12分)已知函数22()()ln(1)2f x a x x x x +=-++.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若=0x 是()f x 的极大值点,求a .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O 的参数方程为cos ,sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,2)且倾斜角为α的直线l 与O 交于A ,B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.23.[选修4—5:不等式选讲](10分) 设函数()211f x x x =++-. (1)画出() y f x =的图象;(2)当[ 0),x ∈+∞,()b x f ax +≤,求a b +的最小值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】∵={1}A x x |≥,{0,1,2}B =,∴={1,2}A B ,故选C .2.【答案】D【解析】21i 2i)(2i 2i i 3i )(+-=-+-=+,故选D . 3.【答案】A【解析】两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A .故选A . 4.【答案】B 【解析】由1sin 3α=,得22127cos212sin 12()=1=399αα=-=-⨯-.故选B .5.【答案】C【解析】252()x x+的展开式的通项251103155()(2)2r r r r r r r T C x x C x ---+==,令1034r -=,得2r =,所以4x 的系数为225240C ⨯=.故选C . 6.【答案】A【解析】由圆22(2)=2x y -+可得圆心坐标(2,0),半径r =ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有12S AB d =.易知AB =maxd ==min d =所以26S ≤≤,故选A .7.【答案】D【解析】∵42()2f x x x =-++,∴3()42f x x x '=-+,令()0f x '>,解得x <或x 0<此时,()f x 递增;令()0f x '<,解得x <0或x ,此时,()f x 递减.由此可得()f x 的大致图象.故选D . 8.【答案】B【解析】由题知~1()0,X B p ,则(101 2.4)DX p p =⨯⨯-=,解得0.4p =或0.6.又∵()6(4)P X P X ==<,即446664221010(1)(1)(1)0.5C P p C P p p p p --⇒-⇒<<>,∴0.6p =,故选B .9.【答案】C【解析】根据余弦定理得2222cos a b c ab C +-=,因为2224ABCa Sbc +-=△,所以c 42os ABC ab C S =△,又1sin 2ABC S ab C =△,所以tan 1C =,因为π()0,C ∈,所以4C π=.故选C .10.【答案】B【解析】设ABC △的边长为a ,则1sin60=932ABC S a a =△,解得6a =(负值舍去).ABC △的外接圆半径r 满足62sin60r=,得r =球心到平面ABC 的距离为2=.所以点D 到平面ABC 的最大距离为246+=,所以三棱锥DABC -体积的最大值为163⨯=故选B .11.【答案】C【解析】点2(,0)F c 到渐近线b y x a =的距离2(0)PF b b ==>,而2OF c =,所以在2Rt OPF △中,由勾股定理可得OP a ,所以1PF ==.在2Rt OPF △中,222cos PF b PF O OF c∠==,在12F F P△中,2222222121221246cos 22PF F F PF b c a PF O PF F F b c+-+-∠==⋅⋅2,所以222222463464b b c a b c a c bc +-=⇒=-,则有22223()46c a c a -=-值舍去),即e =.故选C .2018年高考理科数学全国卷3(含答案与解析)数学试卷 第9页(共20页) 数学试卷 第10页(共20页)12.【答案】B【解析】解法一:∵0.20.2log 0.3log 1=0a =>,22log 0.3log 1=0b =<,∴0ab <,排除C . ∵0.20.20log 0.3log 0.2=1<<,22log 0.3log 0.5=1-<,即01a <<,1b <-,∴0a b +<,排除D .∵220.2log 0.3lg0.2log 0.2log 0.3lg 2b a ===,∴2223log 0.3log 0.2log 12b b a -=-=<,∴1bb ab a b a+⇒+<<,排除A .故选B . 解法二:易知01a <<,1b -<,∴0ab <,0a b +<, ∵0.30.30.311log 0.2log 2log 0.41a b +=+=<, 即1a bab+<,∴a b ab +>, ∴0ab a b +<<.故选B .第Ⅱ卷二、填空题13.【答案】12【解析】由已知得2(4,2)+=a b .又,()1c λ=,2()+∥c a b ,所以42=0λ-,解得12λ=. 14.【答案】3-【解析】设(e ))1(x f x ax =+,则()()1e x f x ax a '=++,所以曲线在点(0,1)处的切线的斜率(0)12k f a '==+=-,解得3a =-. 15.【答案】3【解析】令()0f x =,得πcos(3)6x +,解得ππ+()39k x k =∈Z .当0k =时,π9x =;当1k =时,4π9x =;当2k =时,7π9x =,又[ 0,π]x ∈,所以满足要求的零点有3个.16.【答案】2【解析】解法一:由题意可知C 的焦点坐标为(1,0),所以过焦点(1,0),斜率为k 的直线方程为1y x k =+,设111,y A y k ⎛⎫+ ⎪⎝⎭,221,y B y k ⎛⎫+ ⎪⎝⎭,将直线方程与抛物线方程联立得21,4,y x k y x ⎧=+⎪⎨⎪=⎩整理得2440y y k --=,从而得124y y k +=,124y y =-.∵1()1,M -,90AMB ∠=,∴0MA MB =,即1212(2)(2)(1)(1)0y yy y k k+++--=,即2440k k -+=,解得2k =.解法二:设11A(,)x y ,22(),B x y ,则2112224,4,y x y x ⎧=⎨=⎩①②②-①得2221214()y y x x -=-,从而2121124y y x x k y y --+==.设AB 的中点为M ',连接MM '.∵直线AB 过抛物线24y x =的焦点,∴以线段AB 为直径的M '⊙与准线:1l x =-相切.∵1()1,M -,90AMB ∠=,∴点M 在准线:1l x =-上,同时在M '⊙上,∴准线l 是M '⊙的切线,切点M ,且MM l '⊥,即MM '与x 轴平行,∴点M '的纵坐标为1,即1212221y y y y =⇒++=,故124422y y k =+==. 故答案为:2. 三、解答题17.【答案】(1)解:设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.数学试卷 第11页(共20页) 数学试卷 第12页(共20页)由63m S =得(2)188m -=-.此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =. 综上,6m =.【解析】(1)解:设{}n a 的公比为q ,由题设得1n n a q-=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m -=-。

2018年高考全国一卷理科数学答案及解析(可编辑修改word版)

2018年高考全国一卷理科数学答案及解析(可编辑修改word版)

2018 年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有 12 小题,每小题 5 分,共 60 分。

1、设 z= ,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得z =( - i )+ 2i 【考点定位】复数= i ,所以|z|=12、已知集合 A={x|x 2-x-2>0},则 A =A 、{x|-1<x<2}B 、{x|-1 x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x2}【答案】B【解析】由题可得 C R A={x|x 2-x-2≤0},所以{x|-1 x2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。

B 、新农村建设后,其他收入增加了一倍以上。

C 、新农村建设后,养殖收入增加了一倍。

D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。

【答案】A【解析】由题可得新农村建设后,种植收入 37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前 n 项和,若 3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=( a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0 ; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数 f(x)=x3+(a-1)x2+ax,若 f(x)为奇函数,则曲线 y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有 f(x)+f(-x)=0 整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=A、- -B、- -C、- +D 、-【答案】A1【解析】AD 为 BC 边∴上的中线 AD= 2 1 AB +11 AC2 1 E 为 AD 的中点∴AE= AD = 21 AB + AC4 4 1 3 1EB=AB-AE= = AB -( 4 AB + AC )= 4AB - AC4 4 【考点定位】向量的加减法、线段的中点7、某圆柱的高为 2,底面周长为 16,其三视图如右图,圆柱表面上的点 M 在正视图上的对应点为 11A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N的路径中,最短路径的长度为A 、B 、C 、3D 、2 【答案】B1 【解析】将圆柱体的侧面从 A 点展开:注意到 B 点在 圆周处。

高考全国甲卷:《理科数学》2018年考试真题与答案解析

高考全国甲卷:《理科数学》2018年考试真题与答案解析

高考精品文档高考全国甲卷理科数学·2018年考试真题与答案解析同卷地区贵州省、四川省、云南省西藏自治区、广西自治区高考全国甲卷:《理科数学》2018年考试真题与答案解析一、选择题本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合,,则( )A .B .C .D .答案:C2.( )A .B .C .D .答案:D3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ){}|10A x x =-≥{}012B =,,A B = {}0{}1{}12,{}012,,()()1i 2i +-=3i--3i-+3i-3i+A .B .C .D .答案:A4.若,则()A.B .C .D .答案:B 1sin 3α=cos 2α=897979-89-5.的展开式中的系数为( )A .10B .20C .40D .80答案:C6.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是( )A .B .C .D .答案:A7.函数的图像大致为( )A.B.522x x ⎛⎫+ ⎪⎝⎭4x 20x y ++=x y A B P ()2222x y -+=ABP △[]26,[]48,⎡⎣422y x x =-++C.D.答案:D8.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则( )。

A .0.7B .0.6C .0.4D .0.3答案:B9.的内角的对边分别为,,,若的面积为,则( )A .B .C .D .p X 2.4DX =()()46P X P X =<=p =ABC △A B C ,,a b c ABC △2224a b c +-C =π2π3π4π610.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为则三棱锥体积的最大值为A .B .C .D .答案:B11.设是双曲线()的左,右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若的离心率为AB .2CD答案:C12.设,,则A .B .C .D .A B C D ,,,ABC △D ABC -12F F ,22221x y C a b-=:00a b >>,O 2F C P 1PF =C 0.2log 0.3a =2log 0.3b =0a b ab +<<0ab a b <+<0a b ab+<<0ab a b<<+二、填空题本题共4小题,每小题5分,共20分。

2018年全国卷一 理科数学(精品解析版)

2018年全国卷一 理科数学(精品解析版)
为 (2, 0) . (1)当 l 与 x 轴垂直时,求直线 AM 的方程; (2)设 O 为坐标原点,证明: OMA OMB .
20.(12 分)某工厂的某种产品成箱包装,每箱 200 件,每一箱产品在交付用户之前要对产品作 检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取 20 件作检验,再根 据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为 p(0 p 1) , 且各件产品是否为不合格品相互独立. (1)记 20 件产品中恰有 2 件不合格品的概率为 f ( p) ,求 f ( p) 的最大值点 p0 .
A.
3
AB
1
AC
C.
4 3
4
AB
4 1
4
AC
B.
1
AB
3
AC
4
D.
1 4
AB
4 3
4
AC
7.某圆柱的高为 2,底面周长为 16,其三视图如图。圆柱表面上的点 M 在正视图上的对应点为 A ,
圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N 的路径中,最短
C.1 )
B.x 1 x 2
D. 2
C.x | x 1 x | x 2
D.x | x 1 x | x 2
3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地 区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如 下饼图:
建设前经济收入构成比例
18.(12 分)如图,四边形 ABCD 为正方形, E, F 分别为 AD, BC 的中点,以 DF 为折痕把△DFC 折起,使点 C 到达点 P 的位置,且 PF BF . (1)证明:平面 PEF 平面 ABFD ; (2)求 DP 与平面 ABFD 所成角的正弦值.

2018年高考全国卷1理科数学(含答案)

2018年高考全国卷1理科数学(含答案)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)(2018•新课标Ⅰ)设z=+2i,则|z|=()A.0 B.C.1 D.2.(5分)(2018•新课标Ⅰ)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)(2018•新课标Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)(2018•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.125.(5分)(2018•新课标Ⅰ)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)(2018•新课标Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)(2018•新课标Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2 C.3 D.28.(5分)(2018•新课标Ⅰ)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5 B.6 C.7 D.89.(5分)(2018•新课标Ⅰ)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)(2018•新课标Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311.(5分)(2018•新课标Ⅰ)已知双曲线C:﹣y2=1,O为坐标原点,F为C 的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2 D.412.(5分)(2018•新课标Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

理科数学试题 第4页(共17页)
2018 年普通高等学校招生全国统一考试(全国卷Ⅰ) 理科数学试题答案(详细解析版)
一、选择题 1.【答案】C 【解析】分析:首先根据复数的运算法则,将其化简得到 正确结果.
,根据复数模的公式,得到
详解:因为

,从而选出
所以பைடு நூலகம்
,故选 C.
点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得
每件不合格品支付 25 元的赔偿费用. (ⅰ)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为
X,求 EX; (ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产
品作检验?
21.(12 分)
已知函数 f (x) 1 x a ln x . x
(1)讨论 f (x) 的单调性;
所以所求的最短路径的长度为
,故选 B.
点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两
个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平
面图形的相关特征求得结果.
8.【答案】D
【解析】分析:首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程
.
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必 考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
(一)必考题:共 60 分。 17.(12 分)
在平面四边形 ABCD 中, ADC 90 , A 45 , AB 2 , BD 5 . (1)求 cosADB ; (2)若 DC 2 2 ,求 BC .

2018年全国统一高考数学试卷理科新课标Ⅰ

2018年全国统一高考数学试卷理科新课标Ⅰ

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案一、选择题:1.C2.B3.A4.B5.D6.A7.B8.D9.C10.A11.B12.A二、填空题:13.614.-6315.1616.三、解答题:17.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.18.【解答】(1)证明:由题意,点E、F分别是AD、BC的中点,则,,由于四边形ABCD为正方形,所以EF⊥BC.由于PF⊥BF,EF∩PF=F,则BF⊥平面PEF.又因为BF⊂平面ABFD,所以:平面PEF⊥平面ABFD.(2)在平面DEF中,过P作PH⊥EF于点H,连接DH,由于EF为面ABCD和面PEF的交线,PH⊥EF,则PH⊥面ABFD,故PH⊥DH.在三棱锥P﹣DEF中,可以利用等体积法求PH,因为DE∥BF且PF⊥BF,所以PF⊥DE,又因为△PDF≌△CDF,所以∠FPD=∠FCD=90°,所以PF⊥PD,由于DE∩PD=D,则PF⊥平面PDE,=,故V F﹣PDE因为BF∥DA且BF⊥面PEF,所以DA⊥面PEF,所以DE⊥EP.设正方形边长为2a,则PD=2a,DE=a在△PDE中,,所以,=,故V F﹣PDE又因为,所以PH==,所以在△PHD中,sin∠PDH==,即∠PDH为DP与平面ABFD所成角的正弦值为:.19.【解答】解:(1)c==1,∴F(1,0),∵l与x轴垂直,∴x=1,由,解得或,∴A(1.),或(1,﹣),∴直线AM的方程为y=﹣x+,y=x﹣,证明:(2)当l与x轴重合时,∠OMA=∠OMB=0°,当l与x轴垂直时,OM为AB的垂直平分线,∴∠OMA=∠OMB,当l与x轴不重合也不垂直时,设l的方程为y=k(x﹣1),k≠0,A(x1,y1),B(x2,y2),则x1<,x2<,直线MA,MB的斜率之和为k MA,k MB之和为k MA+k MB=+,由y1=kx1﹣k,y2=kx2﹣k得k MA+k MB=,将y=k(x﹣1)代入+y2=1可得(2k2+1)x2﹣4k2x+2k2﹣2=0,∴x1+x2=,x1x2=,∴2kx1x2﹣3k(x1+x2)+4k=(4k3﹣4k﹣12k3+8k3+4k)=0从而k MA+k MB=0,故MA,MB的倾斜角互补,∴∠OMA=∠OMB,综上∠OMA=∠OMB.20.【解答】解:(1)记20件产品中恰有2件不合格品的概率为f(p),则f(p)=,∴=,令f′(p)=0,得p=0.1,当p∈(0,0.1)时,f′(p)>0,当p∈(0.1,1)时,f′(p)<0,∴f (p)的最大值点p0=0.1.(2)(i)由(1)知p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y,∴E(X)=E(40+25Y)=40+25E(Y)=40+25×180×0.1=490.(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,∵E(X)=490>400,∴应该对余下的产品进行检验.21.【解答】解:(1)函数的定义域为(0,+∞),函数的导数f′(x)=﹣﹣1+=﹣,设g(x)=x2﹣ax+1,当a≤0时,g(x)>0恒成立,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,当a>0时,判别式△=a2﹣4,①当0<a≤2时,△≤0,即g(x)>0,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,②当a>2时,x,f′(x),f(x)的变化如下表:x(0,)(,)(,+∞)f′(x)﹣0+0﹣f(x)递减递增递减综上当a≤2时,f(x)在(0,+∞)上是减函数,当a>2时,在(0,),和(,+∞)上是减函数,则(,)上是增函数.(2)由(1)知a>2,0<x1<1<x2,x1x2=1,则f(x1)﹣f(x2)=(x2﹣x1)(1+)+a(lnx1﹣lnx2)=2(x2﹣x1)+a(lnx1﹣lnx2),则=﹣2+,则问题转为证明<1即可,即证明lnx1﹣lnx2>x1﹣x2,则lnx1﹣ln>x1﹣,即lnx1+lnx1>x1﹣,即证2lnx1>x1﹣在(0,1)上恒成立,设h(x)=2lnx﹣x+,(0<x<1),其中h(1)=0,求导得h′(x)=﹣1﹣=﹣=﹣<0,则h(x)在(0,1)上单调递减,∴h(x)>h(1),即2lnx﹣x+>0,故2lnx>x﹣,则<a﹣2成立.(2)另解:注意到f()=x﹣﹣alnx=﹣f(x),即f(x)+f()=0,由韦达定理得x1x2=1,x1+x2=a>2,得0<x1<1<x2,x1=,可得f(x2)+f()=0,即f(x1)+f(x2)=0,要证<a﹣2,只要证<a﹣2,即证2alnx2﹣ax2+<0,(x2>1),构造函数h(x)=2alnx﹣ax+,(x>1),h′(x)=≤0,∴h(x)在(1,+∞)上单调递减,∴h(x)<h(1)=0,∴2alnx﹣ax+<0成立,即2alnx2﹣ax2+<0,(x2>1)成立.即<a﹣2成立.选考题:22.【解答】解:(1)曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.转换为直角坐标方程为:x2+y2+2x﹣3=0,转换为标准式为:(x+1)2+y2=4.(2)由于曲线C1的方程为y=k|x|+2,则:该射线关于y轴对称,且恒过定点(0,2).由于该射线与曲线C2的极坐标有且仅有三个公共点.所以:必有一直线相切,一直线相交.则:圆心到直线y=kx+2的距离等于半径2.故:,或解得:k=或0,(0舍去)或k=或0经检验,直线与曲线C2没有公共点.故C1的方程为:.23.【解答】解:(1)当a=1时,f(x)=|x+1|﹣|x﹣1|=,由f(x)>1,∴或,解得x>,故不等式f(x)>1的解集为(,+∞),(2)当x∈(0,1)时不等式f(x)>x成立,∴|x+1|﹣|ax﹣1|﹣x>0,即x+1﹣|ax﹣1|﹣x>0,即|ax﹣1|<1,∴﹣1<ax﹣1<1,∴0<ax<2,∵x∈(0,1),∴a>0,∴0<x<,∴a<∵>2,∴0<a≤2,故a的取值范围为(0,2].更多内容请您关注101教育高考网:https:///。

2018年全国高考理科数学(全国一卷)试题及参考答案(2021年整理)

2018年全国高考理科数学(全国一卷)试题及参考答案(2021年整理)

(完整word)2018年全国高考理科数学(全国一卷)试题及参考答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)2018年全国高考理科数学(全国一卷)试题及参考答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)2018年全国高考理科数学(全国一卷)试题及参考答案(word版可编辑修改)的全部内容。

2018年全国普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。

) 1、设z=,则∣z ∣=()A 。

0B.C.1D.2、已知集合A={x|x 2-x —2>0},则A =()A 、{x |-1〈x 〈2}B 、{x |—1≤x ≤2}C 、{x |x<-1}∪{x |x>2}D 、{x|x ≤-1}∪{x |x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=()建设前经济收入构成比例 建设后经济收入构成比例A、—12B、—10C、10D、125、设函数f(x)=x3+(a—1)x2+ax。

2018年全国高考新课标1卷理科数学试题(解析版)

2018年全国高考新课标1卷理科数学试题(解析版)

2018年普通高等学校招生全国统一考试新课标1卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设z=1-i1+i +2i ,则|z|=A .0B .12 C .1 D .2 解析:选C z=1-i1+i +2i=-i+2i=i 2.已知集合A={x|x 2-x-2>0},则∁R A =A .{x|-1<x<2}B .{x|-1≤x ≤2}C .{x|x<-1}∪{x|x>2}D .{x|x ≤-1}∪{x|x ≥2} 解析:选B A={x|x<-1或x>2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:选A4.设S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5= A .-12B .-10C .10D .12解析:选 ∵3(3a 1+3d)=(2a 1+d )+(4a 1+6d) a 1=2 ∴d=-3 a 5=-105.设函数f(x)=x 3+(a-1)x 2+ax ,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为 A .y=-2xB .y=-xC .y=2xD .y=x解析:选D ∵f(x)为奇函数 ∴a=1 ∴f(x)=x 3+x f′(x)=3x 2+1 f′(0)=1 故选D 6.在ΔABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →= A .34AB → - 14AC →B . 14AB → - 34AC →C .34AB → + 14AC →D . 14AB → + 34AC →解析:选A 结合图形,EB →=- 12(BA →+BD →)=- 12BA →-14BC →=- 12BA →-14(AC →-AB →)=34AB → - 14AC → 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .2 5C .3D .2解析:选B 所求最短路径即四份之一圆柱侧面展开图对角线的长8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →= A .5B .6C .7D .8解析:选D F(1,0),MN 方程为y=23 (x+2),代入抛物线方程解得交点M(1,2),N(4,4),则FM →=(0,2),FN →=(3,4) ∴FM→·FN →=8 9.已知函数f(x)= ⎩⎪⎨⎪⎧e x , x ≤0lnx ,x>0,g(x)=f(x)+x+a .若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)解析:选C g(x)=0即f(x)=-x-a ,即y=f(x)图象与直线y=-x-a 有2个交点,结合y=f(x)图象可知-a<110.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p1,p2,p3,则A .p1=p2B .p1=p3C .p2=p3D .p1=p2+p3解析:选A ∵AC=3,AB=4,∴BC=5,∴12AC=32,12AB=2 , 12BC=52∴以AC 和AB 为直径的两个半圆面积之和为12×π×(32)2+12×π×22=258π∴以BC 为直径的半圆面积与三角形ABC 的面积之差为12×π×(52)2- 12×3×4=258π-6; ∴两个月牙形(图中阴影部分)的面积之和等于258π-(258π-6)=6=ΔABC 面积 ∴p1=p211.已知双曲线C :x 23 - y 2 =1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N.若ΔOMN 为直角三角形,则|MN|= A .32B .3C .2 3D .4解析:选B 依题F(2,0),曲线C 的渐近线为y=±33x,MN 的斜率为3,方程为y=3(x-2),联立方程组解得M(32,- 32),N(3,3),∴|MN|=312.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 A .334B .233C .324D .32解析:选A 如图正六边形与正方体每条棱缩成角相等。

2018年高考全国卷1理科数学(含答案)

2018年高考全国卷1理科数学(含答案)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)(2018•新课标Ⅰ)设z=+2i,则|z|=()A.0 B.C.1 D.2.(5分)(2018•新课标Ⅰ)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2} B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2} D.{x|x≤﹣1}∪{x|x≥2}3.(5分)(2018•新课标Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)(2018•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.125.(5分)(2018•新课标Ⅰ)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)(2018•新课标Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)(2018•新课标Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2 C.3 D.28.(5分)(2018•新课标Ⅰ)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5 B.6 C.7 D.89.(5分)(2018•新课标Ⅰ)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)(2018•新课标Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311.(5分)(2018•新课标Ⅰ)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2 D.412.(5分)(2018•新课标Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为() A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

2018全国一卷理科数学高考真题及答案

2018全国一卷理科数学高考真题及答案

2018年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合{}220A x x x =-->,则A =RA .{}12x x -<<B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。

为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例 则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则=5a A .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+。

若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .28.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .89.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |= A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A 33B 23C 32D 3二、填空题:本题共4小题,每小题5分,共20分。

2018年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2018年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2018年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2} 2.(5分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.4.(5分)若sinα=,则cos2α=()A.B.C.﹣D.﹣5.(5分)(x2+)5的展开式中x4的系数为()A.10B.20C.40D.806.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3] 7.(5分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.<P(X=6),则p=()9.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.10.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.(5分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2C.D.12.(5分)设a=log2A.a+b<ab<0B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b 二、填空题:本题共4小题,每小题5分,共20分。

2018年高考理科数学试题及答案详细解析(全国卷1、2、3卷)

2018年高考理科数学试题及答案详细解析(全国卷1、2、3卷)

2018年普通高等学校招生全国统一考试全国卷1 理科数学本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1、本试卷分为第Ⅰ卷(选择题)和第II 卷(非选择题)两部分.第Ⅰ卷1至3页,第II卷3至5页.2、答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3、全部答案在答题卡上完成,答在本试题上无效.4、考试结束后,将本试题和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设121iz i i-=++,则z = A. 0 B. 12C. 1D.解析:2(1)22i z i i -=+=,所以|z |1=,故答案为C.2. 已知集合{}220A x x x =-->,则R C A = A. {}12x x -<<B. {}12x x -≤≤ C.}{}{2|1|>⋃-<x x x xD.}{}{2|1|≥⋃-≤x x x x解析:由220x x -->得(1)(2)0x x +->,所以2x >或1x <-,所以R C A ={}12x x -≤≤,故答案为B.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:由已知条件经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,37%274%⨯=,所以尽管种植收入所占的比例小了,但比以往的收入却是增加了.故答案为A.4. 设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A. 12- B. 10- C. 10 D. 12解析:由323s s s =+得3221433(32=2242222d d d ⨯⨯⨯⨯+⨯++⨯+)即3(63)127d d +=+,所以3d =-,52410a d =+=- 52410a d =+=-,故答案为B.5. 设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为A. 2y x =-B. y x =-C. 2y x =D. y x =解析:由()f x 为奇函数得1a =,2()31,f x x '=+所以切线的方程为y x =.故答案为D. 6. 在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=A.AC AB 4143- B. AC AB 4341- C.AC AB 4143+ D.AC AB 4341+ 解析:11131()22244EB AB AE AB AD AB AB AC AB AC=-=-=-⋅+=-故答案为A.7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A. 172B.52C. 3D. 2解析:如图画出圆柱的侧面展开图,在展开图中线段MN 的长度52即为最短长度,故答案为B.8.设抛物线x y C 4:2=的焦点为F ,过点()0,2-且斜率为32的直线与C 交于N M ,两点,则=⋅A. 5B.6C. 7D. 8解析:联立直线与抛物线的方程得M(1,2),N(4,4),所以=⋅FN FM 8,故答案为D.9.已知函数(),0,ln ,0,x e x f x x x ⎧≤=⎨>⎩,()()g x f x x a =++.若()g x 存在2个零点,则a 的取值范围是 A.[)1,0-B.[)0,+∞C.[)1,-+∞D.[)1,+∞解析:∵()()g x f x x a =++存在2个零点,即()y f x =与y x a =--有两个交点,)(x f 的图象如图,要使得y x a =--与)(x f 有两个交点,则有1a -≤即1a ≥-,故答案为 C.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AC AB ,.ABC ∆的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为321,,p p p ,则 A. 21p p = B.31p p = C. 32p p = D. 321p p p +=解析:取2AB AC ==,则BC =∴区域Ⅰ的面积为112222S =⨯⨯=,区域Ⅲ的面积为231222S ππ=⋅-=-, 区域Ⅱ的面积为22312S S π=⋅-=,故12p p =.故答案为A.11.已知双曲线13:22=-y x C ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为N M ,.若OMN ∆为直角三角形,则=MN A.23B. 3C. 32D. 4解析:渐近线方程为:2203x y -=,即y x =,∵OMN ∆为直角三角形,假设2ONM π∠=,如图,∴NM k =,直线MN方程为2)y x =-.联立32)y x y x ⎧=-⎪⎨⎪=-⎩∴3(,)22N -,即ON =,∴3M O N π∠=,∴3MN =,故答案为B.12. 已知正方体的棱长为1,每条棱所在的直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A.433 B.332 C.423 D. 23解析:由于截面与每条棱所成的角都相等,所以平面α中存在平面与平面11AB D 平行(如图),而在与平面11AB D 平行的所有平面中,面积最大的为由各棱的中点构成的截面EFGHMN ,而平面EFGHMN的面积162S =⨯.故答案为A.第II 卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_______________.解析:画出可行域如图所示,可知目标函数过点(2,0)时取得最大值,max 32206z =⨯+⨯=.故答案为6.14.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_______________.解析:由已知得1121,21,n n n n S a S a ++=+⎧⎨=+⎩作差得12n n a a +=,所以{}n a 为公比为2的等比数列,又因为11121a S a ==+,所以11a =-,所以12n n a -=-,所以661(12)6312S -⋅-==--,故答案为-63.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有__________种。

2018年全国卷1理科数学试题详细解析

2018年全国卷1理科数学试题详细解析

2017年普通高等学校招生全国统一考试(全国I 卷)理科数学解析人 李跃华注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、 选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合{}{}131x A x x B x =<=<,,则()A .{}0=<AB x x B .A B =RC .{}1=>A B x xD .A B =∅【答案】A【解析】{}1A x x =<,{}{}310xB x x x =<=<∴{}0A B x x =<,{}1A B x x =<,选A2. 如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A .14B .π8C .12D .π4【答案】B【解析】设正方形边长为2,则圆半径为1则正方形的面积为224⨯=,圆的面积为2π1π⨯=,图中黑色部分的概率为π2则此点取自黑色部分的概率为ππ248=故选B3. 设有下面四个命题()1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12z z ,满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .A .13p p ,B .14p p ,C .23p p ,D .24p p ,【答案】B【解析】1:p 设z a bi =+,则2211a bi z a bi a b-==∈++R ,得到0b =,所以z ∈R .故1P 正确; 2:p 若z =-21,满足2z ∈R ,而z i =,不满足2z ∈R ,故2p 不正确;3:p 若1z 1=,2z 2=,则12z z 2=,满足12z z ∈R ,而它们实部不相等,不是共轭复数,故3p 不正确;4:p 实数没有虚部,所以它的共轭复数是它本身,也属于实数,故4p 正确;4. 记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为() A .1B .2C .4D .8【答案】C【解析】45113424a a a d a d +=+++=61656482S a d ⨯=+= 联立求得11272461548a d a d +=⎧⎪⎨+=⎪⎩①②3⨯-①②得()211524-=d624d =4d =∴ 选C5. 函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤的x 的取值范围是()A .[]22-,B .[]11-,C .[]04,D .[]13,【答案】D【解析】因为()f x 为奇函数,所以()()111f f -=-=,于是()121f x --≤≤等价于()()()121f f x f --≤≤| 又()f x 在()-∞+∞,单调递减 121x ∴--≤≤3x ∴1≤≤ 故选D6. ()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为A .15B .20C .30D .35【答案】C.【解析】()()()66622111+1111x x x x x ⎛⎫+=⋅++⋅+ ⎪⎝⎭对()61x +的2x 项系数为2665C 152⨯==对()6211x x⋅+的2x 项系数为46C =15, ∴2x 的系数为151530+=故选C7. 某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为A .10B .12C .14D .16【答案】B【解析】由三视图可画出立体图该立体图平面内只有两个相同的梯形的面 ()24226S =+⨯÷=梯6212S =⨯=全梯 故选B8. 右面程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+ 【答案】D【答案】因为要求A 大于1000时输出,且框图中在“否”时输出∴“”中不能输入A 1000> 排除A 、B又要求n 为偶数,且n 初始值为0, “”中n 依次加2可保证其为偶 故选D9. 已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+ ⎪⎝⎭,则下面结论正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C 【答案】D【解析】1:cos C y x =,22π:sin 23⎛⎫=+ ⎪⎝⎭C y x首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224⎛⎫⎛⎫⎛⎫=+−−−−−−−−−→=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原y x y x x 点横标缩来 2ππsin 2sin 233⎛⎫⎛⎫−−→=+=+ ⎪ ⎪⎝⎭⎝⎭y x x .注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.10. 已知F 为抛物线C :24y x =的交点,过F 作两条互相垂直1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D ,E 两点,AB DE +的最小值为()A .16B .14C .12D .10【答案】A 【解析】设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直x 轴 易知11cos 22⎧⎪⋅+=⎪⎪=⎨⎪⎛⎫⎪=--= ⎪⎪⎝⎭⎩AF GF AK AK AF P P GP Pθ(几何关系)(抛物线特性)cos AF P AF θ⋅+=∴同理1cos P AF θ=-,1cos PBF θ=+∴22221cos sin P PAB θθ==- 又DE 与AB 垂直,即DE 的倾斜角为π2θ+2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭而24y x =,即2P =.∴22112sin cos AB DE P θθ⎛⎫+=+ ⎪⎝⎭2222sin cos 4sin cos θθθθ+=224sin cos θθ=241sin 24=θ 21616sin 2θ=≥,当π4θ=取等号 即AB DE +最小值为16,故选A11. 设x ,y ,z 为正数,且235x y z ==,则()A .235x y z <<B .523z x y <<C .352y z x<< D .325y x z <<【答案】D【答案】取对数:ln 2ln3ln5x y ==.ln33ln 22x y => ∴23x y > ln2ln5x z = 则ln55ln 22x z =< ∴25x z <∴325y x z <<,故选D12. 几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是02,接下来的两项是02,12,在接下来的三项式62,12,22,依次类推,求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( ) A .440 B .330 C .220 D .110 【答案】A【解析】设首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推.设第n 组的项数为n ,则n 组的项数和为()12n n +由题,100N >,令()11002n n +>→14n ≥且*n ∈N ,即N 出现在第13组之后第n 组的和为122112nn -=--n 组总共的和为()2122212n nn n --=---若要使前N 项和为2的整数幂,则()12n n N +-项的和21k -应与2n --互为相反数即()*21214k n k n -=+∈N ,≥ ()2log 3k n =+→295n k ==,则()2912954402N ⨯+=+=故选A二、 填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高考全国卷理科数学一题多解1、(2018年天津高考真题理科和文科第13题)已知R b a ∈,,且063=+-b a ,则b a812+的最小值为 . 思路一:基本不等式ab b a 2≥+解析一:由于063=+-b a ,可得63-=-b a , 由基本不等式可得,412222222222281236333=⨯===•≥+=+-----b a b a b a ba, 当且仅当⎩⎨⎧=+-=-063223b a b a ,即⎩⎨⎧=-=13b a 时等号成立。

故b a812+的最小值为41。

思路二:轮换对称法(地位等价法)方法二:轮换对称性:因为b a 3,-的地位是样的,当取最值时,b a 3,-在相等的时候取到:33-=-=b a ,得1,3=-=b a ,4181281213=+=+-b a 所以最小值为41 思路三:换元+等价转化 方法三:令x a=2,y b =81,则x a 2log =,y b 2log 3=-, 则已知问题可以转化为:已知06log log 22=++y x ,则y x +的最小值为 . 已知06log log 22=++y x ,可得62-=xy ,412223=•=≥+-xy y x , 当且仅当y x =,⎪⎩⎪⎨⎧=+-=063812b a ba ,即⎩⎨⎧=-=13b a 时取得等号, 故b a812+的最小值为41。

2、【2018课标2卷理12】已知1F ,2F 是椭圆22221(0)x y C a b a b +=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ).A .23 B .12 C .13 D .14解法一:由题意:(,0),(2),A a P c -所以AP k ==,即4a c =,所以14e =,选D . 解法二:由题可得PA的方程为)y x a =+,2PF的方程为)y x c =-,可求解6,)5p p a c x y a c +==+,又22(,0),PF F c k -=,所以)5635a c a c c +=++ 解得14e =,选D 解法三:在2ΔAF P 三角形中,由余弦定理可得:则PA =22tan PAF PAF ∠=∠==又22PF c = 在212Δ,ΔAPF PF F 中利用等高建立等式,2c ==, 所以14e =,选D解法四:因为12ΔPF F 为等腰三角形,12120F F P ∠=,所以2122PF F F c ==,由余弦定理可知:1PF =,因为11111sin sin(),sin ,cos 1313APF PAF AF P PAF PAF ∠=∠+∠∠=∠=,所以1sin 26APF ∠=, 在1ΔAPF 中,由正弦定理可知:1111sin sin AF PF APF PAF =∠∠=所以离心率为14,选D . 解法五:因为12ΔPF F 错误!未找到引用源。

为等腰三角形,12120F F P ∠= 错误!未找到引用源。

,所以2122PF F F c ==,由AP 错误!未找到引用源。

斜率为6错误!未找到引用源。

得,2tan 6PAF ∠=,所以22sin PAF PAF ∠=∠=由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以2225sin()3c a c PAF ===+-∠ 所以4a c =,解得14e =,选D .3、(2018全国理科第16题)已知函数()sin sin 2f x x x =+,则()f x 的最小值为___________ 解法一2()sin sin 22sin (1cos )4sincos 2cos 222x x xf x x x x x =+=+=⨯ ()[]32262()64sin cos 641,sin 0,1222x x x f x t t t ⎛⎫==-=∈ ⎪⎝⎭()()433264643t 11127()6413t 13344+-+-+-⎛⎫=-=⋅-≤=⎪⎝⎭t t t f x t t t 当且仅当14t =时,2max 27()4f x = 此时211sin,sin 2422==-x x,min ()2f x =- 考点:四元均值不等式,三角恒等变换解法二:先求()f x 的最大值,设sin 0,cos 0x x >>()2sin 2sin cos =+=f x x x x ()22222211112sin 2sin cos sin sin cos ⎛⎫+≤+++ ⎪⎝⎭a xb x x a x b x x a b a b222211sin cos a b x x a b ⎛⎫=+++ ⎪⎝⎭,223a b ⎛== ⎝⎭即22()2sin 2sin cos f x x x x x x =+≤=,3x π⎛⎫= ⎪⎝⎭ 故根据()()f x f x -=-奇函数知,min ()2f x =-解法三:求导法.()()2cos 2cos22(2cos 1)cos 1f x x x x x '=+=-+当0,,()03x f x π⎛⎫'∈> ⎪⎝⎭;5,,()033x f x ππ⎛⎫'∈< ⎪⎝⎭;5,2,()03x f x ππ⎛⎫'∈> ⎪⎝⎭∴min 5()()32f x f π==- 解法四:()f x 为奇函数,可考虑x 为锐角,由琴生不等式等2()sin sin sin(22)3sin()32++-=++-≤=x x x f x x x x ππ()2≥-f x 解法五 ()sin sin 2f x x x =+,()2sin (1cos )=+f x x x设cos ,sin ==m x n x ,则221+=m n ,2(m 1)=+t n ,2(m 1)=+tn ,设两曲线切于,x y ,则有22212(1)2(1)⎧⎪+=⎪⎪=⎨+⎪⎪-=⎪+⎩x y ty x t x,解得2=±t,()[22∈-f x解法六柯西不等式法()sin sin2f x x x=+,22()2=⋅+f x xxcosx22223sin+≤x27=16,()[∈f x解法七:构造单位圆中的正三角形,单位圆中的正三角形面积最大(1,0),(cos sin),(cos,0)D(cos,0)-A B x x C x x,,,1|2sin(1cos)|2∆=⋅+≤ABCS x x解法七万能代换:()sin sin2f x x x=+为奇函数,不妨设,0>x02tan>=xt。

22222224t1t88()sin sin2(1)11111(1t)(t)333-=+=+==++++++t tf x x xt t≤=,当且仅当=t()[∈f x试题拓展:(1)(2016全国2)函数()cos26cos()2=+f x x xπ的最大值是_________(2)2013全国1)当=xθ时,函数()sin2cos=-f x x x取得最大值,则cos=θ_________(3)已知函数()2cosx sin2=+f x x,则()f x的最小值是_________(4)已知函数()2cosx sin2=+f x x,则()f x的最大值是_________(5)已知函数()sin cos sin cos=++f x x x x x,则()f x的最大值是_______(6)已知函数()sin sin2=f x x x,则()f x的最大值_________(7)已知函数()sin cos2=f x x x,则()f x的最大值__________(8),,A B C是∆ABC的一个三角形的内角,则(9)sin sinBsinC =y A 的最大值是_________sin sinB sinC =++y A 的最大值是________ cos cosBcosC =y A 的最大值是_________ cos +cosB+cosC =y A 的最大值是________(9) 函数3sin sin3=+y x x 的最大值是_______答案:1. 22311()2cos 6sin 12(cos )22=-++=--+f x x x x ,max cos 1,()5==x f x4、 ()sin 2cos ))=-==-f x x x x x x ϕ 其中cos==ϕ,因为当=x θ时,函数()f x 取得最大值,所以max ()())=-=f x f θθϕ,此时sin()1-=θϕ,2,()2-=+∈k k Z πθϕπ,2,(k Z)2=++∈k πθπϕ,所以cos cos(2k )sin2=++=-==πθπϕϕ解法二. ()sin 2cos ))=-==-f x x x x x x ϕ,其中tan 2=ϕ,由已知sin 2cos -=θθ,其中cos 0<θ,可知22sin 4sin cos 4cos 5-+=θθθθ,所以2222sin 4sin cos 4cos 5sin cos -+=+θθθθθθ,化简24tan 4tan 10++=θθ,所以,1tan 2=-θ,又cos 0<θ,所以cos=θ 解法三:()sin 2cos =-f x x x ,所以()cos +2sin '=f x x x 又当=x θ时,()f x 取得最大值()0'=f θ,即cos +2sin =0x x 解得1tan 2=-θ,因为tan 0<θ,所以θ是第二象限角可第四象限角,所以当θ第二象限角,此时cos==ϕ当θ第四象限角时,此时cos==ϕ,取得最小值 舍去,所以cos =θ解法四. 由柯西不等式,()sinx 2cos =-≤=f x x 当且仅当sin cos =12-x x 时,即当1tan 2=-x 时等号成立,()f x 取得最大值,又当=x θ时,()f x 取得最大值,所以()sin 2cos 0=->f θθθ 所以θ为第二象限角时,利用22sin cos 1+=θθ且1tan2=-x ,解得cos =θ 解法五. 由已知()sin 2cos =-f x x x ,令cos ,sin ==u x v x ,则221+=u v ,点(,)u v 在单位圆上,2=-+y u v 的几何意义为直线2=+v u y 的纵截距,当直线2=+v u y 与圆相切时,y 取得最大值. 此时直线的斜率为2,易得1tan()2-=πθ,即1tan 2=-θ此时所以θ为第二象限角时,()f x 取得最大值,,故可求得cos=θ4.(2018全国3卷16)已知点)1,1(-M 和抛物线x y C 4:2=,过C 的焦点且斜率为k 的直线与C 交于B A ,两点.若090=∠AMB ,则k =解法一:∵抛物线x y C 4:2=,的焦点)0,1(F , ∴过B A ,两点的直线方程为)1(-=x k y ,联立⎩⎨⎧-==)1(42x k y x y 可得0)2(22222=++-k x k x k设),(),,(2211y x B y x A ,则 2221)2(2kk x x +=+,121=x x , ∴kx x k y y 4)2(2121=-+=+,]1)([)1)(1(2121221221++-=--=x x x x k x x k y y 4-=, ∵)1,1(-M ,∴)1,1(11-+=y x MA ,)1,1(22-+=y x MB ,∵090=∠AMB ∴0=⋅MB MA ∴0)1)(1()1)(1(2121=--+++y y x x , 整理可得,02)()(21212121=++-+++y y y y x x x x ,∴02444212=+--++kk ,即0442=+-k k ,∴2=k . 解法二:设),(),,(2211y x B y x A ⎪⎩⎪⎨⎧==2212144x y x y ,)(4212221x x y y -=-,∴2121212121y 444+=--=--=y y y y y x x y y k ,取AB 的中点),(00y x N .分别过B A ,作准线1-=x 的垂线,垂足分别为B A '',,∵090=∠AMB ,所以|)||(|21||21||BF AF AB MN +==|)||(|21B B A A '+'=, 又因为点N 为AB 的中点,所以MN 平行于x 轴,所以10=y ,即221=+y y ,所以2=k .我们先证一个重要结论,然后利用这个结论,秒杀此题解法三:三角形MAB ∆称为阿基米德三角形,,MA MB 是弦的两条切线,推出M 点在准线上,且AB MF ⊥,MA MB ⊥,反之,若M 点在准线上,且AB MF ⊥,推出,MA MB 是弦的两条切线,MA MB ⊥ 若M 点在准线上,且MA MB ⊥,推出,MA MB 是弦的两条切线,且AB MF ⊥,设抛物线px y 22=上的焦点为)0,2(p F ,过F 的直线方程为2pmy x +=,联立方程 ⎪⎩⎪⎨⎧+==2p 22p my x xy ,可得02pm 22=--p y y ,∴pm y y 221=+,221p y y -= 设),(),,(2211y x B y x A ,过B A ,两点分别作px y 22=两条切线,切线方程分别为2211x x pyy +=,2222x x pyy +=, 设两切线的交点坐标),(00y x M , 则有⎪⎪⎩⎪⎪⎨⎧=+=-==pm y y y p p y y x 222210210∴m pp pm k MF -=--=22, 1-=⋅AB MF k k ,∴AB MF ⊥对于本题而言,相当于2=p ,120==m y ,21=∴m ,21==∴mk5、【2018课标1卷理1】12.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .334 B .233 C .324 D .32 【解析】法一:1.因为一组平行线与已知平面所成的角都相等,将每条棱与截面所成的角化归为同一顶点出发的三条棱与截面所成角。

相关文档
最新文档