(精品)小学奥数4-2-5 平移、旋转、割补.专项练习

合集下载

小学奥数:不规则图形的面积.专项练习及答案解析

小学奥数:不规则图形的面积.专项练习及答案解析

本讲主要通过求一些不规则图形的面积,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,让学生体会求面积的技巧,提高学生的观察能力、动手操作能力、综合运用能力.【例 1】 你有什么好的方法计算所给图形的面积呢?(单位:厘米)3994399439943994图1 图2 图3 【考点】不规则图形的面积 【难度】1星 【题型】解答 【解析】 (方法一)采用分割法,可给原图分成两个长方形,(图1或图2)两个长方形的总面积就是所求的面积.图1的面积是: 4(93)9375⨯++⨯=(平方厘米).图2的面积是:(94)39475+⨯+⨯=(平方厘米).(方法二)采用补图法,如果补上一个边长是9厘米的正方形(图3),就成了一个面积是:(49)(93)156+⨯+=(平方厘米)的大长方形.因此用这个长方形的面积减去所补正方形的面积,就是要求的图形面积(49)(93)9975+⨯+-⨯=(平方厘米). 【答案】75平方厘米【巩固】如图是学校操场一角,请计算它的面积(单位:米)30203040例题精讲4-2-6.不规则图形的面积【解析】 这是一个不规则图形,怎样使它能转化为我们熟悉的基本图形呢?可以在图中添上一条辅助线,把多边形切割成上下两个长方形或左右两个长方形;也可以把多边形补充完整,成为一个长方形;302030403020304030203040图一 图二 图三方法一:如图一,3040203040120014002600⨯+⨯+=+=()(平方米) 方法二:如图二,203040203060020002600⨯+⨯+=+=()(平方米) 方法三:如图三,40302030303035009002600+⨯+-⨯=-=()()(平方米)【答案】2600平方米【巩固】如右图所示,图中的ABEFGD 是由一个长方形ABCD 及一个正方形CEFG 拼成的,线段的长度如图所示(单位:厘米),求ABEFGD 的周长和面积.F【考点】不规则图形的面积 【难度】1星 【题型】解答 【解析】 方法一:如果求出长方形的宽及正方形的边长,则图形ABEFGD 的周长和面积可以求出.而正方形的边长1046GC DC DG AB DG =-=-=-=(厘米),长方形的宽1064BE CE =-=-=(厘米),所求图形的周长102624440=⨯+⨯++=(厘米) 面积1046676CEFG ABCD S S =+=⨯+⨯=正方形长方形(平方厘米)方法二:可以将线段GF 、DG 向外平移,得一个新的图形ABEH ,因为DG HF =,GF DH =,所以图形ABEH 的周长就是图形ABEFGD 的周长.而10AB BE ==(厘米),所以图形ABEH 是边长为10厘米的正方形. 所求图形的周长=正方形ABEH 的周长10440=⨯=(厘米) 面积10106476ABEH DGFH S S =-=⨯-⨯=正方形长方形(平方厘米)【总结】方法一是利用基本图形的周长及面积公式求解,因此首先要知道长方形的长、宽及正方形的边长.方法二是利用转化的思想方法,将较复杂图形转化为基本图形,图形转化前后的周长不变,面积增加了,在计算时应减去增加的面积. 【答案】76【巩固】求图中五边形的面积.6453【解析】由图可见五边形为矩形切去一角得来,把切去的角补出来,它的一条直角边长633-=,斜边等于5,所以另一直角边为4,所以矩形的长为448+=,五边形面积16843422⨯-⨯⨯=.【答案】42【例 2】这是一个楼梯的截面图,高280厘米,每级台阶的宽和高都是20 厘米.问,此楼梯截面的面积是多少?【考点】不规则图形的面积【难度】2星【题型】解答【关键词】华杯赛、口试【解析】如果把楼梯截面补成右图所示的长方形,那么此长方形高280厘米.宽300厘米,它的面积恰好是所求截面的2倍.所以楼梯截面面积为280300242000⨯÷=()(平方厘米).【答案】42000【巩固】如图是一个楼梯的截面图,每级台阶的宽和高都是20厘米.这楼梯的截面积是多少平方厘米?【考点】不规则图形的面积【难度】2星【题型】解答【解析】先求出大三角形的两条直角边都是208160⨯=(厘米),因此大三角形的面积为160160212800⨯÷=(平方厘米);8个小三角形的面积为2020281600⨯÷⨯=(平方厘米);因此这楼梯的截面积为12800160014400+=(平方厘米).【答案】14400【例 3】有一块菜地长16米,宽8米,菜地中间留了宽2米的路,把菜地平均分成四块,每一块地的面积是多少?【考点】不规则图形的面积【难度】2星【题型】解答【解析】方法一:可以直接求出每小块菜地的长和宽,从而求出每小块菜地的面积;每一块地的面积是:[1622][822]7321-÷⨯-÷=⨯=()()(平方米)方法二:也可以求出这块地的总面积,再减去道路的面积,然后把剩余的面积四等分求出每小块菜地的面积;每一块地的面积是:[1682168222]412844421⨯-⨯+⨯-⨯÷=-÷=()()(平方米)方法三:还可以运用平移的方法,将道路移到菜地的边沿,先求出四个小长方形组成的长方形面积,再求出其中每一小块菜地的面积.如图所示:[16282]484421-⨯-÷=÷=()()(平方米) 【答案】21【例 4】 有10张长3厘米,宽2厘米的纸片,将它们按照下图的样子摆放在桌面上,那么这10张纸片所盖住的桌面的面积是多少平方厘米?【考点】不规则图形的面积 【难度】3星 【题型】解答 【解析】 通过操作,一张一张的添加,可以发现每多盖一张,遮住的面积增加21⨯平方厘米,所以这10张纸片盖住的面积是:3221924⨯+⨯⨯=(平方厘米).【答案】24【例 5】 下图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积.【考点】不规则图形的面积 【难度】3星 【题型】解答 【解析】 所求面积等于图中阴影部分的面积,为2052082140-+⨯÷=()(平方厘米). 【答案】140【巩固】两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积.FBA【考点】不规则图形的面积 【难度】3星 【题型】解答 【解析】 阴影部分是一个高为3厘米的直角梯形,然而它的上底与下底都不知道,因而不能直接求出它的面积.因为三角形ABC 与三角形DEF 完全相同,都减去三角形DOC 后,根据差不变性质,差应相等,即阴影部分与直角梯形OEFC 面积相等,所以求阴影部分的面积就转化为求直角梯形OEFC 的面积.直角梯形OEFC 的上底为1037-=(厘米),面积为7102217+⨯÷=()(厘米2). 所以,阴影部分的面积是17平方厘米。

小学奥数 几何类 几何图形周长和面积的基本计算 平移、旋转、割补.题库版

小学奥数  几何类  几何图形周长和面积的基本计算    平移、旋转、割补.题库版

图形变换,是指不改变图形的大小、形状,只通过位置关系的改变(旋转、平移、折叠等),构成新的图形. 【例 1】 右图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,它们的宽都是2,求草地部分的面积(阴影部分)有多大?【考点】平移、旋转、割补 【难度】2星 【题型】解答 【解析】 如图所示,将道路平移后的()()162102112-⨯-=。

【答案】112【例 2】 如图所示,一个正十二边形的边长是1厘米,空白部分是等边三角形,一共有12个.请算出阴影部分的面积.1cm【考点】平移、旋转、割补 【难度】3星 【题型】解答【解析】 如图,将阴影部分分割成一个正六边形和12个小三角形,再把正六边形分割成6个正三角形,由于正十二边形的每个内角为()180********︒⨯-÷=︒,所以阴影小三角形的顶角等于15060230︒-︒⨯=︒,每个顶角的两边和与其相邻的正三角形的底边所成的角都是306090︒+︒=︒,所以通过如右上图所示的平移可以组成6个边长为1厘米的正方形,所以所求阴影部分面积为2166⨯=平方厘米.【答案】6【例 3】 如图所示,梯形ABCD 中,AB 平行于CD ,又4BD =,3AC =,5AB CD +=.试求梯形ABCD 的面积.D CBAEDCBA【考点】平移、旋转、割补 【难度】3星 【题型】解答【解析】 如右图,将AB 沿AC 平移至CE ,连接BE ,在三角形BDE 中,有4BD =,3BE AC ==,5DE AB CD =+=,有222BD BE DE +=,所以三角形BDE 为直角三角形.由于ABD ABC BCE S S S ∆∆∆==,所以梯形ABCD 的面积与三角形BDE 的面积相等,为13462⨯⨯=.例题精讲4-2-5.平移、旋转、割补【例 4】 如下图,六边形ABCDEF 中,AB ED =,AF CD =,BC EF =,且有AB 平行于ED ,AF 平行于CD ,BC 平行于EF ,对角线FD 垂直于BD ,已知24FD =厘米,18BD =厘米,请问六边形ABCDEF 的面积是多少平方厘米?FD BAGFE DCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 如图,我们将BCD ∆平移使得CD 与AF 重合,将DEF ∆平移使得ED 与AB 重合,这样EF 、BC 都重合到图中的AG 了.这样就组成了一个长方形BGFD ,它的面积与原六边形的面积相等,显然长方形BGFD 的面积为2418432⨯=平方厘米,所以六边形ABCDEF 的面积为432平方厘米.【答案】432【例 5】 如图2,六边形ABCDEF 为正六边形,P 为对角线CF 上一点,若PBC 、PEF 的面积为3与4,则正六边形ABCDEF 的面积是.E【考点】平移、旋转、割补 【难度】4星 【题型】解答 【关键词】2007年,迎春杯、中年级、初赛、7题【解析】 这是一道几何问题,考察同学们对常见图形性质的认识.正六边形的六条边都相等,每个角都是,每一组对边都互相平行,正六边形可以看作是由六个正三角形拼成的(如图(1)).其中正六边形的面积是正三角形面积的6倍.每相邻两个正三角形拼成的是一个平行四边形.如图(2),连结BF ,三角形ABF 的面积是平行四边形ABFO 面积的一半.六边形ABCDEF 的面积是平行四边形ABFO 的3倍,故六边形ABCDEF 的面积是三角形ABF 的面积的6倍. 如图(3),连结BF ,CE ,三角形BCP 的面积与三角形EFP 的面积和是平行四边形BFEC 面积的一半.而六边形ABCDEF 的面积是平行四边形BFEC 的1.5倍,故六边形ABCDEF 的面积是三角形BCP 的面积与三角形EFP 的面积和的3倍.图(1)OAB CDEF图(2)OB ACDEF图(3)E所以,由PBC △、PEF △的面积分别为3与4, 可知正六边形ABCDEF 的面积是(34)321+⨯=.【例 6】 正六边形A1A2A3A4A5A6的面积是2009平方厘米,B1,B2,B3,B4,B5,B6分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.A 3【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】2009年、迎春杯、六年级、初赛、14题【解析】 如图,设62B A 与13B A 的交点为O ,则图中空白部分由6个与23A OA △一样大小的三角形组成,只要求出了23A OA △的面积,就可以求出空白部分面积,进而求出阴影部分面积.4A 3A 654连接63A A 、61B B 、63B A设116A B B △的面积为“1”,则126B A B △面积为“1”,126A AB △面积为“2”,那么636A A B △面积为126A A B △的2倍,为“4”,梯形1236A A A A 的面积为224212⨯+⨯=,263A B A △的面积为“6”,123BAA △的面积为2 根据蝴蝶定理,1263261316B A B A A B B O A O S S ===△△∶∶,故21233612167A OAB A A S S ==+△△, 所以231236A A A A 121277A OA S S =△梯形∶∶∶1∶,即23A OA △的面积为梯形1236A A A A 面积的17,故为六边形123456A A A A A A 面积的114,那么空白部分的面积为正六边形面积的136147⨯=,所以阴影部分面积为32009111487⎛⎫⨯-= ⎪⎝⎭(平方厘米).【答案】1148【例 7】 按照图中的样子,在一平行四边形纸片上割去了甲、乙两个直角三角形.已知甲三角形两条直角边分别为2cm 和4cm ,乙三角形两条直角边分别为3cm 和6cm ,求图中阴影部分的面积.【考点】平移、旋转、割补 【难度】3星 【题型】解答【解析】 如右图,我们将三角形甲与乙进行平移,就会发现平行四边形面积等于平移后两个长方形面积之和.所以阴影部分面积为:2346236242211cm ⨯+⨯-⨯÷+⨯÷=()()【答案】11【例 8】在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几.【考点】平移、旋转、割补 【难度】3星 【题型】解答 【解析】 阴影总值是一个梯形.我们用三种方法解答.⑴ 割补法从顶点作底边上的高,得到两个相同的直角三角形.将这两个直角三角形拼成一个长方形(见下图).显然,阴影部分正好是长方形的13,所以原题阴影部分占整个图形面积的13.⑵ 拼补法将两个这样的三角形拼成一个平行四边形(下页左上图).显然,图中阴影面积占平行四边形面积的13.根据商不变性质,将阴影面积和平行四边形面积同时除以2,商不变.所以原题阴影部分占整个图形面积的13.⑶ 等分法将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形,所以阴影部分占整个图形面积的3193=. 注意,后两种方法对任意三角形都适用.也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立. 【答案】13【例 9】 如下左图,有两个大小相同的完全重叠在一起的正方形,现在以点P 为中心转动一个正方形.当5AB =厘米,13BC =厘米,12CA =厘米时(如下右图),求右图中的两个正方形相重叠部分的面积(注意,图的尺寸不一定准确).P【考点】平移、旋转、割补 【难度】3星 【题型】解答【解析】 右图由左图旋转而得,则右图中的8个空白小三角形都是完全相同的,右图中重叠部分的面积等于正方形面积减去4个小三角形的面积,从右图中可以看出正方形的边长为5131230++=厘米,所以重叠部分的面积为:2304(5122)780-⨯⨯÷=(平方厘米).【答案】780【例 10】 如图,在直角三角形中有一个正方形,已知10BD =厘米,7DC =厘米,求阴影部分的面积.【考点】平移、旋转、割补 【难度】4星 【题型】解答【解析】 绕D 点逆时针旋转CED ∆,使E 与F 重合,则C 点落在AB 边上的'C 点处,且'C D CD =.则阴影部分面积转化为直角三角形'BC D 的面积,所以阴影部分的面积为107235⨯÷=平方厘米.【答案】35【例 11】 四边形ABCD 中,AB =30,AD =48,BC =14,CD =40.又已知∠ABD +∠BDC =900,求四边形ABCD 的面积.DBA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 如下图,以BD 的垂直平分线为对称轴L ,做△ABD 关于L 的对称图形△A 'BD .连接A 'C .A 1IABCD因为∠ABD +∠BDC =9000而∠ABD =∠A 'DB =900,所以有∠A 'DB +∠BDC =900. 那么A 'CD 为直角三角形,由勾股定理知2A C '=22AB CD +=2500,所以50A C '=.而在△A 'BC 中,有A 'B =AD =48,有482+142=2500,即A 'B 2+BC 2=A 'C 2,即△A 'BC 为直角三角形. 有A CD A BCSS''+130402=⨯⨯114489362+⨯⨯=. 而|ABCDS 四边形A CD A BC S S ''=+936=.评注:Ⅰ.本题以∠ABC +∠BDC =900突破口,通过对称变换构造出与原图形相关的角三角形Ⅱ.对于这道题我们还可以将△BCD 作L 的对称图形.如下:C 1lABCD【答案】936【例 12】 如图,在三角形ABD 中,当AB 和CD 的长度相等时,请求出“?”所示的角是多少度,给出过程.DCAB?30°40°【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 因为AB =CD ,于是可以将三角形ABC 的边BA 边与CD 对齐,如下图. 在下图中有∠BCA =110°,所以∠ACD =70°于是∠AC C '=∠ACD +∠DC C '=∠ACD +∠ABC =70°+40°=110°;A 1D C 1CB 1BA即∠AC C '=110°=∠CC D ';又因为C A ''只是CA 移动的变化,所以C A ''=CA ;则A B CA ''是一等腰梯形.于是,∠ADC '=180°-110°=70°;又∠CDC '=30°,所以∠ADC =70°-30°=40°.【答案】40°【例 13】 如图所示的四边形的面积等于多少?DB13131212【考点】平移、旋转、割补 【难度】4星 【题型】解答【解析】 题目中要求的四边形既不是正方形也不是长方形,难以运用公式直接求面积.我们可以利用旋转的方法对图形实施变换:把三角形OAB 绕顶点O 逆时针旋转,使长为13的两条边重合,此时三角形OAB 将旋转到三角形OCD 的位置.这样,通过旋转后所得到的新图形是一个边长为12的正方形,且这个正方形的面积就是原来四边形的面积.因此,原来四边形的面积为1212144⨯=.(也可以用勾股定理)【答案】144【例 14】 如图,三角形ABC 是等腰直角三角形,P 是三角形外的一点,其中90BPC ∠=︒,10cm AP =,求四边形ABPC 的面积.P DCBAP'PDCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 因为BAC ∠和BPC ∠都是直角,和为180︒,所以ABP ∠和ACP ∠的和也为180︒,可以旋转三角形APC ,使AC 和AB 重合,则四边形的面积转化为等腰直角三角形'AP P ,面积为1010250⨯÷=平方厘米.【答案】50【例 15】 如图所示,ABC ∆中,90ABC ∠=︒,3AB =,5BC =,以AC 为一边向ABC ∆外作正方形ACDE ,中心为O ,求OBC ∆的面积.【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】2008年、武汉明心奥数【解析】 如图,将OAB ∆沿着O 点顺时针旋转90︒,到达OCF ∆的位置.由于90ABC ∠=︒,90AOC ∠=︒,所以180OAB OCB ∠+∠=︒.而OCF OAB ∠=∠, 所以180OCF OCB ∠+∠=︒,那么B 、C 、F 三点在一条直线上.由于OB OF =,90BOF AOC ∠=∠=︒,所以BOF ∆是等腰直角三角形,且斜边BF 为538+=,所以它的面积为218164⨯=.根据面积比例模型,OBC ∆的面积为516108⨯=.【答案】10【例 16】 如图,直角梯形ABCD 中,AD BC ∥,AB BC ⊥,2AD =,3BC =,将腰CD 以D 为中心逆时针旋转90︒至ED ,连接AE 、CE ,则ADE ∆的面积是 .ED CBAH FEDCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】2008年、武汉明心奥数【解析】 如图所示,将ADE ∆以D 为中心顺时针旋转90︒,到FDC ∆的位置.延长FD 与BC 交于H .由于ABCD 是直角梯形,AD 与FD 垂直,则四边形ADHB 是长方形,则BH AD =.由于ADE ∆与FDC ∆面积相等,而FDC ∆的底边2FD AD ==,高321CH BC BH =-=-=,所以FDC ∆的面积为2121⨯÷=,那么ADE ∆的面积也为1.【答案】1【例 17】 如图,正方形ABCD 和DEFG 有一个公共点D ,试比较三角形ADG 和三角形CDE 的面积.GFEDC BAA'GFEDCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 因为ADC ∠和GDE ∠是直角,所以ADG ∠和CDE ∠是互补角,将三角形ADG 顺时针旋转90︒到达'A DE ∆的位置,则'A 、D 、C 在同一条直线上,且'A D AD CD ==,即D 是'A C 的中点,所以三角形CDE 和三角形'A DE 面积相等,则三角形CDE 和三角形ADG 面积相等.【答案】相等【例 18】 如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,AC 、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE的面积.F【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】2008年、资优杯【解析】 如图,连接DE ,以A 点为中心,将ADE ∆顺时针旋转90︒到ABF ∆的位置.那么90EAF EAB BAF EAB DAE ∠=∠+∠=∠+∠=︒,而AEB ∠也是90︒,所以四边形AFBE 是直角梯形,且3AF AE ==,所以梯形AFBE 的面积为:()1353122+⨯⨯=(2cm ).又因为ABE ∆是直角三角形,根据勾股定理,222223534AB AE BE =+=+=,所以21172ABD S AB ∆==(2cm ).那么()17125BDE ABD ABE ADE ABD AFBE S S S S S S ∆∆∆∆∆=-+=-=-=(2cm ),所以12.52OBE BDE S S ∆∆==(2cm ).【答案】2.5【例 19】 如图,已知4cm AB AE ==,BC DC =,90BAE BCD ∠=∠=︒,10cm AC =,则S ABC ACE CDE S S ∆∆∆++= 2cm .EDCBADEC 'A 'CBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】2008年、迎春杯、高年级、复赛、10题【解析】 将三角形ABC 绕A 点和C 点分别顺时针和逆时针旋转90,构成三角形'AEC 和'A DC ,再连接''A C ,显然'AC AC ⊥,'AC A C ⊥,''AC A C AC ==,所以''ACA C 是正方形.三角形'AEC 和三角形'A DC 关于正方形的中心O 中心对称,在中心对称图形''ACA C 中有如下等量关系: ''AEC A DC S S ∆∆=;''AEC A DC S S ∆∆=;'CED C DE S S ∆∆=.所以2'''11101050cm 22ABC ACE CDE AEC ACE CDE ACA C S S S S S S S ∆∆∆∆∆∆++=++==⨯⨯=.【答案】50【例 20】 如图所示的四边形ABCD 中,45A C ∠=∠=°,105ABC ∠=°,15AB CD ==厘米,连接对角线BD ,30ABD ∠=︒.求四边形ABCD 的面积.DCB A DECBA【考点】平移、旋转、割补 【难度】4星 【题型】解答 【关键词】第八届、华杯总决赛【解析】 由45A ∠=°,30ABD ∠=︒,可得1804530105ADB ∠=︒-︒-︒=︒,1053075DBC ∠=︒-︒=︒.将DBC ∆剪下来,翻转,再贴在BD 边上,即将B 点粘在D 点上,D 点粘在B 点上,如右上图所示.则C 点在E 点的位置.由于10575180ADB EDB ∠+∠=︒+︒=︒,所以A 、D 、E 三点在同一条直线上.由于45A E C ∠=∠=∠=°,所以90ABE ∠=︒,即ABE ∆是等腰直角三角形,它的面积就等于四边形ABCD 的面积,所以四边形ABCD 的面积为1515112.52⨯=平方厘米.【答案】112.5【例 21】 如图,在ABD ∆中,AB CD =,求“?”的度数.40°30°?DCBAD【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 如图,由于AB CD =,可以将ABC ∆移动到DCE ∆,由于180(3040)110AC B ∠=︒-︒+︒=︒,18011070ACD ∠=︒-︒=︒,所以7040110ACE ∠=︒+︒=︒,又110CED ∠=︒,而AC DE =,所以四边形ACED 是等腰梯形,有180********ADE CED ∠=︒-∠=︒-︒=︒,703040ADC ∠=︒-︒=︒.点评:通过构造全等三角形来转化.【答案】40°【例 22】 下图三角形ABC 是等腰三角形,AB AC =,120BAC ∠=︒.三角形ADE 是正三角形,点D 在BC边上,:2:3BD DC =.当三角形ABC 的面积是250cm 时,三角形ADE 的面积是多少?EDCB AGP R Q F EDCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 以点A 为中心,由三个三角形ABC 可拼成右图:连结QE 、RF 、GD ,则DEQFRG 是一个正六边形.连结RD 、DQ 、RQ ,显然RDQ 是一个等边三角形,并且它的面积是正六边形面积的一半,所以是三角形ADE 的面积的3倍.由于23150cm PBC ABC S S ∆∆=⨯=,根据“鸟头定理”,22336cm 3223DQC PBC S S ∆∆=⨯⨯=++, 所以2342cm RDQ PBC DQC S S S ∆∆∆=-⨯=,则2342314cm ADE RDQS S ∆∆=÷=÷=.【答案】14【例 23】 如图,正方形PQRS 有三个顶点分别在ABC ∆的三条边上,BQ QC =.求正方形PQRS 的面积.【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 如下图,我们设ABC ∆的面积为1,有161279341()122132111311143a e c db =---+=-⨯-⨯-⨯=,所以682143a e ==,751143bcd a ++=-=, 所以6875a b c d =++.如下图左,将三角形c 和三角形d 分别以P 、R 为中心按箭头方向旋转90︒,形成由两个直角三角形连在一起的一个四边形,如下图右,b 、c 、d 被虚线分成两个直角三角形,它们的面积之和为:276292230cm b c d ++=⨯÷+⨯÷=,所以2683027.2(cm )75a =⨯=.【答案】27.2【例 24】 如下图,△ABC 是边长为1的等边三角形,△BCD 是等腰三角形BD =CD ,顶角∠BDC =1200,∠MDN =600,求△AMN 的周长.120°60°M BD CNA【考点】平移、旋转、割补 【难度】4星 【题型】解答 【解析】 如下图, 延长AC 至P ,使CP =MB ,连接DP .120°60°M BD C NA则有∠MBD =600+1163ADEDQRDEQSRT SS S ==正六边形01801202-=∠PCD ;CP =BM ;BD =CD ,所以有△MBD ≌△PCD .于是∠MDC =∠PDC ;又因为∠MDB +∠NDC =600,所以∠PDC +∠NDC =∠NDP =600; MD =PD ,在△MDN 、△PND 中,∠NDM =∠NDP ,ND =ND ,MD =PD ,于是△MND ≌△PND .有MN =PN .因为NP =NP =NC +CP ,而AM =AB -MB =AB -CP , 所以AM +AN +MN =(AB -CP )+AN +(NC +CP )=AB +AN +NC =2.即△AMN 的周长为2.【答案】2【例 25】若干个大小相同的正五边形如右图排成环状,下图中所示的只是3个五边形.那么要完成这一圈共需个正五边形.【考点】平移、旋转、割补 【难度】4星 【题型】解答 【关键词】2009年、迎春杯、六年级、初赛、5题【解析】 如图,设O 为圆心,A 、B 、C 、D 为五边形的顶点,连接OA 、OB 、OC .DC BAO从图中可以看出,OAB △和OBC △是完全相同的,所以OBA OBC ∠=∠,又五边形内角和为540°,所以正五边形的每个内角都为5405108÷=°°,即108ABD CBD ∠=∠=°, 那么3601082144ABC ∠=︒-︒⨯=︒,则144272OBA ∠=÷=°°, 又OAB OBA ∠=∠,所以18072236AOB ∠=︒-︒⨯=︒ 所以要用3603610+=°°个正五边形才能围成一圈.【答案】10【例 26】 如图,ABCD 是矩形,BC =6cm , AB=10cm ,AC 和BD 是对角线,图中的阴影部分以C 为轴旋转一周,则阴影部分扫过的立体的体积是多少立方厘米?(π取3.14)【考点】平移、旋转、割补 【难度】3星 【题型】解答 【关键词】2006年,第十一届、华杯赛、决赛、第11题【解析】 ①设三角形BCO 以CD 为轴旋转一周所得到的立体的体积是s ,S 等于高为10厘米,底面半径是6厘米的圆锥的体积减去2个高为5厘米,底面半径是3厘米的圆锥的体积。

【精编】奥数精编训练-平移、旋转、割补

【精编】奥数精编训练-平移、旋转、割补

图形变换,是指不改变图形的大小、形状,只通过位置关系的改变(旋转、平移、折叠等),构成新的图形.【例1】右图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,它们的宽都是2,求草地部分的面积(阴影部分)有多大?【例2】如图所示,一个正十二边形的边长是1厘米,空白部分是等边三角形,一共有12个.请算出阴影部分的面积.1cm1cm【例3】如图所示,梯形ABCD中,AB平行于CD,又4BD=,3AC=,5AB CD+=.试求梯形ABCD的面积.D CBAEDCBA【例4】如下图,六边形ABCDEF中,AB ED=,AF CD=,BC EF=,且有AB平行于ED,AF平行于CD,BC平行于EF,对角线FD垂直于BD,已知24FD=厘米,18BD=厘米,请问六边形ABCDEF的面积是多少平方厘米?例题精讲4-2-5.平移、旋转、割补FE DC BAGFE DC BA【例5】如图2,六边形ABCDEF为正六边形,P为对角线CF上一点,若PBC、PEF的面积为3与4,则正六边形ABCDEF的面积是.E【例6】正六边形A1A2A3A4A5A6的面积是2009平方厘米,B1,B2,B3,B4,B5,B6分别是正六边形各边的中点;那么图中阴影六边形的面积是平方厘米.A3【例7】按照图中的样子,在一平行四边形纸片上割去了甲、乙两个直角三角形.已知甲三角形两条直角边分别为2cm和4cm,乙三角形两条直角边分别为3cm和6cm,求图中阴影部分的面积.【例 8】 在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几.【例 9】 如下左图,有两个大小相同的完全重叠在一起的正方形,现在以点P 为中心转动一个正方形.当5AB =厘米,13BC =厘米,12CA =厘米时(如下右图),求右图中的两个正方形相重叠部分的面积(注意,图的尺寸不一定准确).P【例 10】 如图,在直角三角形中有一个正方形,已知10BD =厘米,7DC =厘米,求阴影部分的面积.【例 11】 四边形ABCD 中,AB =30,AD =48,BC =14,CD =40.又已知∠ABD +∠BDC =900,求四边形ABCD 的面积.DBA【例 12】 如图,在三角形ABD 中,当AB 和CD 的长度相等时,请求出“?”所示的角是多少度,给出过程.DCAB?30°40°【例 13】 如图所示的四边形的面积等于多少?DB13131212【例 14】 如图,三角形ABC 是等腰直角三角形,P 是三角形外的一点,其中90BPC ∠=︒,10cm AP =,求四边形ABPC 的面积.PDCBAP'PDCBA【例 15】 如图所示,ABC ∆中,90ABC ∠=︒,3AB =,5BC =,以AC 为一边向ABC ∆外作正方形ACDE ,中心为O ,求OBC ∆的面积.【例 16】 如图,直角梯形ABCD 中,AD BC ∥,AB BC ⊥,2AD =,3BC =,将腰CD 以D 为中心逆时针旋转90︒至ED ,连接AE 、CE ,则ADE ∆的面积是 .ED CBAH FEDCBA【例 17】 如图,正方形ABCD 和DEFG 有一个公共点D ,试比较三角形ADG 和三角形CDE 的面积.GEDCBAA'GFEDC BA【例 18】 如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,AC 、BD交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE 的面积.F【例 19】 如图,已知4cm AB AE ==,BC DC =,90BAE BCD ∠=∠=︒,10cm AC =,则S ABC ACE CDE S S ∆∆∆++=2cm .EDCBADEC 'A 'CBA【例 20】 如图所示的四边形ABCD 中,45A C ∠=∠=°,105ABC ∠=°,15AB CD ==厘米,连接对角线BD ,30ABD ∠=︒.求四边形ABCD 的面积.DCB A DECBA【例 21】 如图,在ABD ∆中,AB CD =,求“?”的度数.40°30°?DCBA【例 22】 下图三角形ABC 是等腰三角形,AB AC =,120BAC ∠=︒.三角形ADE 是正三角形,点D 在BC 边上,:2:3BD DC =.当三角形ABC 的面积是250cm 时,三角形ADE 的面积是多少?EDCBAGP R Q F EDCBA【例 23】 如图,正方形PQRS 有三个顶点分别在ABC ∆的三条边上,BQ QC =.求正方形PQRS的面积.【例 24】 如下图,△ABC 是边长为1的等边三角形,△BCD 是等腰三角形BD =CD ,顶角∠BDC =1200,∠MDN =600,求△AMN 的周长.120°60°M BD CNA【例 25】 若干个大小相同的正五边形如右图排成环状,下图中所示的只是3个五边形.那么要完成这一圈共需个正五边形.【例26】如图,ABCD是矩形,BC=6cm, AB=10cm,AC和BD是对角线,图中的阴影部分以C为轴旋转一周,则阴影部分扫过的立体的体积是多少立方厘米?(π取3.14)【例27】一个半径为1厘米的圆盘沿着一个半径为4厘米的圆盘外侧做无滑动的滚动,当小圆盘的中心围绕大圆盘中心转动90度后(如图2),小圆盘运动过程中扫出的面积是()平方厘米。

五年级奥数专题 等积变换、切割、平移、旋转(学生版)

五年级奥数专题 等积变换、切割、平移、旋转(学生版)

学科培优数学等积变换、切割、平移、旋转学生姓名授课日期教师姓名授课时长知识定位本讲是几何知识体系中的一个基石同时也是一个升华,等积变换试平面几何的基础,解决三角形问题几乎无处不在,切割、平移、旋转是解决个性问题的个性思想,在几何中举足轻重,能使复杂的问题巧妙化解。

所以本讲是非常重要的一讲,也是竞赛常考的知识板块。

重点难点:1. 等积变换中等地等高三角形的寻找。

2.化未知图形为已知图形。

3. 合理做辅助线4. 平移、旋转、切割等知识的适用范围主要考点:1. 面积和边的比例关系2. 利用平移、旋转解复杂问题知识梳理常见图形面积的解题方法我们已经知道三角形面积的计算公式:三角形面积=底×高÷2从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小);如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的1/3,则三角形面积与原来的一样。

这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.在实际问题的研究中,我们还会常常用到以下结论: 1、等底等高的两个三角形面积相等.2、若两个三角形的高相等,其中一个三角形的底是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.若两个三角形的底相等,其中一个三角形的高是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍. 3、夹在一组平行线之间的等积变形,如下图,和夹在一组平行线之间,且有公共底边那么;反之,如果,则可知直线平行于。

4、把未知图形转化为三角形、长方形、正方形来求解。

(完整版)平移与旋转练习题精选(有答案)

(完整版)平移与旋转练习题精选(有答案)

22 、如下图, E 是正方形 ABCD 中 CD 边上任一点,以点 A 为中心,把△ ADE 顺时针旋转 90°,在给出图
形中画出旋转后的图形,并完成下列填空. ( 1)因为点 A 是对称中心,所以它的对应点是 (
);
( 2 )正方形 ABCD 中, AD=AB ,∠ DAB=90° ,所以旋转后点 D 与点 (
)重合.
23 、如图所示, E、 F 分别是△ ABC 的边 AB 、 AC 的两定点,在 BC 上求一点 M ,使△ MEF 的周长最短。
26、如图:若∠ AOD= ∠ BOC=60 °,A 、O、C 三点在同一条线上,△
求:( 1)旋转中心, ( 2)旋转角度数,
( 3)图中经过旋转后能重合的三角形共有几对?若
( 3)∵∠ FDE=45° ,∠ ADC=9°0 ,∴∠ ADF+ ∠ EDC=9°0 -45°=45°,∵∠ GDF= ∠ GDA+ ∠ADF,∠ GDA= ∠EDC, ∴∠ GDF= ∠EDC+ ∠ADF=45° .
26 、( 1) .O 点 (2).60 度 (3).3 对,成立,因为角 AOD为 60 度,角 DOC为 120 度,向加 180 度,所以成立 (4).90 因为角 BOC=角 AOD=45度,所以应旋转 90 度 (5).120 度
二、填空题
11、 O 12 、C
∠ EOB 顺时针
AO=DO 90°
∠ AOD= ∠BOE .
13 、由图可知, OB 、OD 是对应边,∠ BOD 是旋转角,所以,旋转角∠ BOD= ∠AOD- ∠AOB=127° -90 °=37 度
14 、解:∵ AD∥ BC,∠ EFB=65°,∴ DEF=65° ,又∵∠ DEF= ∠ D′ EF,∴∠ D′ EF=65°,∴∠ AED′ =50°

小学奥数教程之 图形的平移、旋转、割补计算题

小学奥数教程之 图形的平移、旋转、割补计算题

图形变换,是指不改变图形的大小、形状,只通过位置关系的改变(旋转、平移、折叠等),构成新的图形. 【例 1】 右图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,它们的宽都是2,求草地部分的面积(阴影部分)有多大?【考点】平移、旋转、割补 【难度】2星 【题型】解答 【解析】 如图所示,将道路平移后的()()162102112-⨯-=。

【答案】112【例 2】 如图所示,一个正十二边形的边长是1厘米,空白部分是等边三角形,一共有12个.请算出阴影部分的面积.1cm【考点】平移、旋转、割补 【难度】3星 【题型】解答【解析】 如图,将阴影部分分割成一个正六边形和12个小三角形,再把正六边形分割成6个正三角形,由于正十二边形的每个内角为()180********︒⨯-÷=︒,所以阴影小三角形的顶角等于15060230︒-︒⨯=︒,每个顶角的两边和与其相邻的正三角形的底边所成的角都是306090︒+︒=︒,所以通过如右上图所示的平移可以组成6个边长为1厘米的正方形,所以所求阴影部分面积为2166⨯=平方厘米.【答案】6【例 3】 如图所示,梯形ABCD 中,AB 平行于CD ,又4BD =,3AC =,5AB CD +=.试求梯形ABCD 的面积.D CBAEDBA【考点】平移、旋转、割补 【难度】3星 【题型】解答 【解析】 如右图,将AB 沿AC 平移至CE ,连接BE ,在三角形BDE 中,有4BD =,3BE AC ==,5DE AB CD =+=,有222BD BE DE +=,所以三角形BDE 为直角三角形.由于ABD ABC BCE S S S ∆∆∆==,所以梯形ABCD 的面积与三角形BDE 的面积相等,为13462⨯⨯=.【答案】6【例 4】 如下图,六边形ABCDEF 中,AB ED =,AF CD =,BC EF =,且有AB 平行于ED ,AF 平行于CD ,BC 平行于EF ,对角线FD 垂直于BD ,已知24FD =厘米,18BD =厘米,请问六边形例题精讲4-2-5.平移、旋转、割补ABCDEF 的面积是多少平方厘米?FD BAGFE DCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【解析】 如图,我们将BCD ∆平移使得CD 与AF 重合,将DEF ∆平移使得ED 与AB 重合,这样EF 、BC 都重合到图中的AG 了.这样就组成了一个长方形BGFD ,它的面积与原六边形的面积相等,显然长方形BGFD 的面积为2418432⨯=平方厘米,所以六边形ABCDEF 的面积为432平方厘米.【答案】432【例 5】 如图2,六边形ABCDEF 为正六边形,P 为对角线CF 上一点,若PBC 、PEF 的面积为3与4,则正六边形ABCDEF 的面积是.E【考点】平移、旋转、割补 【难度】4星 【题型】解答 【关键词】迎春杯、中年级、初赛、7题 【解析】 这是一道几何问题,考察同学们对常见图形性质的认识.正六边形的六条边都相等,每个角都是,每一组对边都互相平行,正六边形可以看作是由六个正三角形拼成的(如图(1)).其中正六边形的面积是正三角形面积的6倍.每相邻两个正三角形拼成的是一个平行四边形.如图(2),连结BF ,三角形ABF 的面积是平行四边形ABFO 面积的一半.六边形ABCDEF 的面积是平行四边形ABFO 的3倍,故六边形ABCDEF 的面积是三角形ABF 的面积的6倍. 如图(3),连结BF ,CE ,三角形BCP 的面积与三角形EFP 的面积和是平行四边形BFEC 面积的一半.而六边形ABCDEF 的面积是平行四边形BFEC 的1.5倍,故六边形ABCDEF 的面积是三角形BCP 的面积与三角形EFP 的面积和的3倍.图(1)OAB CDEF图(2)OB ACDEF图(3)E所以,由PBC △、PEF △的面积分别为3与4, 可知正六边形ABCDEF 的面积是(34)321+⨯=.【答案】21【例 6】 正六边形A1A2A3A4A5A6的面积是2009平方厘米,B1,B2,B3,B4,B5,B6分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.4A 3【考点】平移、旋转、割补 【难度】5星 【题型】解答【关键词】迎春杯、六年级、初赛、14题 【解析】 如图,设62B A 与13B A 的交点为O ,则图中空白部分由6个与23A OA △一样大小的三角形组成,只要求出了23A OA △的面积,就可以求出空白部分面积,进而求出阴影部分面积.4A 3A 654连接63A A 、61B B 、63B A设116A B B △的面积为“1”,则126B A B △面积为“1”,126A A B △面积为“2”,那么636A A B △面积为126A A B △的2倍,为“4”,梯形1236A A A A 的面积为224212⨯+⨯=,263A B A △的面积为“6”,123B A A △的面积为2根据蝴蝶定理,1263261316B A B A A B B O A O S S ===△△∶∶,故21233612167A OAB A A S S ==+△△, 所以231236A A A A 121277A OA S S =△梯形∶∶∶1∶,即23A OA △的面积为梯形1236A A A A 面积的17,故为六边形123456A A A A A A 面积的114,那么空白部分的面积为正六边形面积的136147⨯=,所以阴影部分面积为32009111487⎛⎫⨯-= ⎪⎝⎭(平方厘米).【答案】1148【例 7】 按照图中的样子,在一平行四边形纸片上割去了甲、乙两个直角三角形.已知甲三角形两条直角边分别为2cm 和4cm ,乙三角形两条直角边分别为3cm 和6cm ,求图中阴影部分的面积.【考点】平移、旋转、割补 【难度】3星 【题型】解答【解析】 如右图,我们将三角形甲与乙进行平移,就会发现平行四边形面积等于平移后两个长方形面积之和.所以阴影部分面积为:2346236242211cm ⨯+⨯-⨯÷+⨯÷=()()【答案】11【例 8】在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几.【考点】平移、旋转、割补 【难度】3星 【题型】解答 【解析】 阴影总值是一个梯形.我们用三种方法解答.⑴ 割补法从顶点作底边上的高,得到两个相同的直角三角形.将这两个直角三角形拼成一个长方形(见下图).显然,阴影部分正好是长方形的13,所以原题阴影部分占整个图形面积的13.⑵ 拼补法将两个这样的三角形拼成一个平行四边形(下页左上图).显然,图中阴影面积占平行四边形面积的13.根据商不变性质,将阴影面积和平行四边形面积同时除以2,商不变.所以原题阴影部分占整个图形面积的13.⑶ 等分法将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形,所以阴影部分占整个图形面积的3193=. 注意,后两种方法对任意三角形都适用.也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立. 【答案】13【例 9】 如下左图,有两个大小相同的完全重叠在一起的正方形,现在以点P 为中心转动一个正方形.当5AB =厘米,13BC =厘米,12CA =厘米时(如下右图),求右图中的两个正方形相重叠部分的面积(注意,图的尺寸不一定准确).P【考点】平移、旋转、割补 【难度】3星 【题型】解答 【解析】 右图由左图旋转而得,则右图中的8个空白小三角形都是完全相同的,右图中重叠部分的面积等于正方形面积减去4个小三角形的面积,从右图中可以看出正方形的边长为5131230++=厘米,所以重叠部分的面积为:2304(5122)780-⨯⨯÷=(平方厘米).【答案】780【例 10】 如图,在直角三角形中有一个正方形,已知10BD =厘米,7DC =厘米,求阴影部分的面积.【考点】平移、旋转、割补 【难度】4星 【题型】解答 【解析】 绕D 点逆时针旋转CED ∆,使E 与F 重合,则C 点落在AB 边上的'C 点处,且'C D CD =.则阴影部分面积转化为直角三角形'BC D 的面积,所以阴影部分的面积为107235⨯÷=平方厘米.【答案】35【例 11】 四边形ABCD 中,AB =30,AD =48,BC =14,CD =40.又已知∠ABD +∠BDC =900,求四边形ABCD 的面积.DBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【解析】 如下图,以BD 的垂直平分线为对称轴L ,做△ABD 关于L 的对称图形△A 'BD .连接A 'C .A 1IABCD因为∠ABD +∠BDC =9000而∠ABD =∠A 'DB =900,所以有∠A 'DB +∠BDC =900.那么A 'CD 为直角三角形,由勾股定理知2A C '=22AB CD +=2500,所以50A C '=.而在△A 'BC 中,有A 'B =AD =48,有482+142=2500,即A 'B 2+BC 2=A 'C 2,即△A 'BC 为直角三角形.有A CD A BCSS''+130402=⨯⨯114489362+⨯⨯=. 而|ABCD S 四边形A CD A BC S S ''=+936=.评注:Ⅰ.本题以∠ABC +∠BDC =900突破口,通过对称变换构造出与原图形相关的角三角形Ⅱ.对于这道题我们还可以将△BCD 作L 的对称图形.如下:C 1lABCD【答案】936【例 12】 如图,在三角形ABD 中,当AB 和CD 的长度相等时,请求出“?”所示的角是多少度,给出过程.DCAB?30°40°【考点】平移、旋转、割补 【难度】5星 【题型】解答 【解析】 因为AB =CD ,于是可以将三角形ABC 的边BA 边与CD 对齐,如下图. 在下图中有∠BCA =110°,所以∠ACD =70°于是∠AC C '=∠ACD +∠DC C '=∠ACD +∠ABC =70°+40°=110°;A 1D C 1C B 1BA即∠AC C '=110°=∠CC D ';又因为C A ''只是CA 移动的变化,所以C A ''=CA ;则ABC A ''是一等腰梯形.于是,∠ADC '=180°-110°=70°;又∠CDC '=30°,所以∠ADC =70°-30°=40°.【答案】40°【例 13】 如图所示的四边形的面积等于多少?DB13131212【考点】平移、旋转、割补 【难度】4星 【题型】解答 【解析】 题目中要求的四边形既不是正方形也不是长方形,难以运用公式直接求面积.我们可以利用旋转的方法对图形实施变换:把三角形OAB 绕顶点O 逆时针旋转,使长为13的两条边重合,此时三角形OAB 将旋转到三角形OCD 的位置.这样,通过旋转后所得到的新图形是一个边长为12的正方形,且这个正方形的面积就是原来四边形的面积.因此,原来四边形的面积为1212144⨯=.(也可以用勾股定理)【答案】144【例 14】 如图,三角形ABC 是等腰直角三角形,P 是三角形外的一点,其中90BPC ∠=︒,10cm AP =,求四边形ABPC 的面积.P DCBAP'PDCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【解析】 因为BAC ∠和BPC ∠都是直角,和为180︒,所以ABP ∠和ACP ∠的和也为180︒,可以旋转三角形APC ,使AC 和AB 重合,则四边形的面积转化为等腰直角三角形'AP P ,面积为1010250⨯÷=平方厘米.【答案】50【例 15】 如图所示,ABC ∆中,90ABC ∠=︒,3AB =,5BC =,以AC 为一边向ABC ∆外作正方形ACDE ,中心为O ,求OBC ∆的面积.【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】武汉明心奥数 【解析】 如图,将OAB ∆沿着O 点顺时针旋转90︒,到达OCF ∆的位置.由于90ABC ∠=︒,90AOC ∠=︒,所以180OAB OCB ∠+∠=︒.而OCF OAB ∠=∠, 所以180OCF OCB ∠+∠=︒,那么B 、C 、F 三点在一条直线上.由于OB OF =,90BOF AOC ∠=∠=︒,所以BOF ∆是等腰直角三角形,且斜边BF 为538+=,所以它的面积为218164⨯=.根据面积比例模型,OBC ∆的面积为516108⨯=.【答案】10【例 16】 如图,直角梯形ABCD 中,AD BC ∥,AB BC ⊥,2AD =,3BC =,将腰CD 以D 为中心逆时针旋转90︒至ED ,连接AE 、CE ,则ADE ∆的面积是 .ED CBAH FEDCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】武汉明心奥数 【解析】 如图所示,将ADE ∆以D 为中心顺时针旋转90︒,到FDC ∆的位置.延长FD 与BC 交于H .由于ABCD 是直角梯形,AD 与FD 垂直,则四边形ADHB 是长方形,则BH AD =.由于ADE ∆与FDC ∆面积相等,而FDC ∆的底边2FD AD ==,高321CH BC BH =-=-=,所以FDC ∆的面积为2121⨯÷=,那么ADE ∆的面积也为1.【答案】1【例 17】 如图,正方形ABCD 和DEFG 有一个公共点D ,试比较三角形ADG 和三角形CDE 的面积.GFEDCBAA'GFEDCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【解析】 因为ADC ∠和GDE ∠是直角,所以ADG ∠和CDE ∠是互补角,将三角形ADG 顺时针旋转90︒到达'A DE ∆的位置,则'A 、D 、C 在同一条直线上,且'A D AD CD ==,即D 是'A C 的中点,所以三角形CDE 和三角形'A D E 面积相等,则三角形CDE 和三角形ADG 面积相等.【答案】相等【例 18】 如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,AC 、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE的面积.F【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】资优杯 【解析】 如图,连接DE ,以A 点为中心,将ADE ∆顺时针旋转90︒到ABF ∆的位置.那么90EAF EAB BAF EAB DAE ∠=∠+∠=∠+∠=︒,而AEB ∠也是90︒,所以四边形AFBE 是直角梯形,且3AF AE ==,所以梯形AFBE 的面积为:()1353122+⨯⨯=(2cm ).又因为ABE ∆是直角三角形,根据勾股定理,222223534AB AE BE =+=+=,所以21172ABD S AB ∆==(2cm ).那么()17125BDE ABD ABE ADE ABD AFBE S S S S S S ∆∆∆∆∆=-+=-=-=(2cm ),所以12.52OBE BDE S S ∆∆==(2cm ).【答案】2.5【例 19】 如图,已知4cm AB AE ==,BC DC =,90BAE BCD ∠=∠=︒,10cm AC =,则S ABC ACE CDE S S ∆∆∆++=2cm .EDCBADEC 'A 'CBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】迎春杯、高年级、复赛、10题 【解析】 将三角形ABC 绕A 点和C 点分别顺时针和逆时针旋转90,构成三角形'AEC 和'A DC ,再连接''A C ,显然'AC AC ⊥,'AC A C ⊥,''AC A C AC ==,所以''ACA C 是正方形.三角形'AEC 和三角形'A DC 关于正方形的中心O 中心对称,在中心对称图形''ACA C 中有如下等量关系: ''AEC A DC S S ∆∆=;''AEC A DC S S ∆∆=;'CED C DE S S ∆∆=.所以2'''11101050cm 22ABC ACE CDE AEC ACE CDE ACA C S S S S S S S ∆∆∆∆∆∆++=++==⨯⨯=.【答案】50【例 20】 如图所示的四边形ABCD 中,45A C ∠=∠=°,105ABC ∠=°,15AB CD ==厘米,连接对角线BD ,30ABD ∠=︒.求四边形ABCD 的面积.DCB A DECBA【考点】平移、旋转、割补 【难度】4星 【题型】解答 【关键词】第八届、华杯总决赛 【解析】 由45A ∠=°,30ABD ∠=︒,可得1804530105ADB ∠=︒-︒-︒=︒,1053075DBC ∠=︒-︒=︒.将DBC ∆剪下来,翻转,再贴在BD 边上,即将B 点粘在D 点上,D 点粘在B 点上,如右上图所示.则C 点在E 点的位置.由于10575180ADB EDB ∠+∠=︒+︒=︒,所以A 、D 、E 三点在同一条直线上.由于45A E C ∠=∠=∠=°,所以90ABE ∠=︒,即ABE ∆是等腰直角三角形,它的面积就等于四边形ABCD 的面积,所以四边形ABCD 的面积为1515112.52⨯=平方厘米.【答案】112.5【例 21】 如图,在ABD ∆中,AB CD =,求“?”的度数.40°30°?DCBAD【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 如图,由于AB CD =,可以将ABC ∆移动到D C E ∆,由于180(3040)110A C B ∠=︒-︒+︒=︒,18011070ACD ∠=︒-︒=︒,所以7040110ACE ∠=︒+︒=︒,又110CED ∠=︒,而AC DE =,所以四边形ACED 是等腰梯形,有180********ADE CED ∠=︒-∠=︒-︒=︒,703040ADC ∠=︒-︒=︒. 点评:通过构造全等三角形来转化.【答案】40°【例 22】 下图三角形ABC 是等腰三角形,AB AC =,120BAC ∠=︒.三角形ADE 是正三角形,点D 在BC边上,:2:3BD DC =.当三角形ABC 的面积是250cm 时,三角形ADE 的面积是多少?ECBAGP R Q F EDCA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【解析】 以点A 为中心,由三个三角形ABC 可拼成右图:连结QE 、RF 、GD ,则DEQFRG 是一个正六边形.连结RD 、DQ 、RQ ,显然RDQ 是一个等边三角形,并且它的面积是正六边形面积的一半,所以是三角形ADE 的面积的3倍.由于23150cm PBC ABC S S ∆∆=⨯=,根据“鸟头定理”,22336cm 3223DQC PBC S S ∆∆=⨯⨯=++,所以2342cm RDQ PBC DQC S S S ∆∆∆=-⨯=,则2342314cm ADE RDQ S S ∆∆=÷=÷=. 【答案】14【例 23】 如图,正方形PQRS 有三个顶点分别在ABC ∆的三条边上,BQ QC =.求正方形PQRS 的面积.【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 如下图,我们设ABC ∆的面积为1,有161279341()122132111311143a e c db =---+=-⨯-⨯-⨯=,所以682143a e ==,751143bcd a ++=-=, 所以6875a b c d =++.如下图左,将三角形c 和三角形d 分别以P 、R 为中心按箭头方向旋转90︒,形成由两个直角三角形连在一起的一个四边形,如下图右,b 、c 、d 被虚线分成两个直角三角形,它们的面积之和为:276292230cm b c d ++=⨯÷+⨯÷=,所以2683027.2(cm )75a =⨯=.【答案】27.2【例 24】 如下图,△ABC 是边长为1的等边三角形,△BCD 是等腰三角形BD =CD ,顶角∠BDC =1200,∠MDN =600,求△AMN 的周长.120°60°M BD CNA【考点】平移、旋转、割补 【难度】4星 【题型】解答 【解析】 如下图, 延长AC 至P ,使CP =MB ,连接DP .120°60°M BD C NA则有∠MBD =600+1163ADEDQRDEQSRT SS S ==正六边形01801202-=∠PCD ;CP =BM ;BD =CD ,所以有△MBD ≌△PCD .于是∠MDC =∠PDC ;又因为∠MDB +∠NDC =600,所以∠PDC +∠NDC =∠NDP =600; MD =PD ,在△MDN 、△PND 中,∠NDM =∠NDP ,ND =ND ,MD =PD ,于是△MND ≌△PND .有MN =PN .因为NP =NP =NC +CP ,而AM =AB -MB =AB -CP , 所以AM +AN +MN =(AB -CP )+AN +(NC +CP )=AB +AN +NC =2.即△AMN 的周长为2.【答案】2【例 25】 若干个大小相同的正五边形如右图排成环状,下图中所示的只是3个五边形.那么要完成这一圈共需个正五边形.【考点】平移、旋转、割补 【难度】4星 【题型】解答 【关键词】迎春杯、六年级、初赛、5题 【解析】 如图,设O 为圆心,A 、B 、C 、D 为五边形的顶点,连接OA 、OB 、OC .DC B A O从图中可以看出,OAB △和OBC △是完全相同的,所以OBA OBC ∠=∠,又五边形内角和为540°,所以正五边形的每个内角都为5405108÷=°°,即108ABD CBD ∠=∠=°,那么3601082144ABC ∠=︒-︒⨯=︒,则144272OBA ∠=÷=°°,又OAB OBA ∠=∠,所以18072236AOB ∠=︒-︒⨯=︒所以要用3603610+=°°个正五边形才能围成一圈.【答案】10【例 26】 如图,ABCD 是矩形,BC =6cm , AB=10cm ,AC 和BD 是对角线,图中的阴影部分以C 为轴旋转一周,则阴影部分扫过的立体的体积是多少立方厘米?(π取3.14)【考点】平移、旋转、割补 【难度】3星 【题型】解答【关键词】华杯赛、决赛、第11题【解析】 ①设三角形BCO 以CD 为轴旋转一周所得到的立体的体积是s ,S 等于高为10厘米,底面半径是6厘米的圆锥的体积减去2个高为5厘米,底面半径是3厘米的圆锥的体积。

旋转与平移练习题

旋转与平移练习题

旋转与平移练习题旋转与平移练习题旋转与平移是数学中常见的几何变换操作,它们在解决实际问题和培养学生的空间想象力方面起着重要的作用。

在学习过程中,通过练习题的形式,学生可以更好地理解和掌握旋转与平移的概念和运算方法。

本文将通过一些具体的练习题,帮助读者更好地理解旋转与平移。

1. 旋转练习题题目一:将一个正方形顺时针旋转90度,求旋转后的图形。

解析:正方形的每个顶点都会按照相同的角度进行旋转。

顺时针旋转90度意味着每个顶点都向右移动一个单位,并且顺序变为右上、右下、左下、左上。

因此,旋转后的图形是一个新的正方形,其顶点为(1, 1)、(1, -1)、(-1, -1)、(-1, 1)。

题目二:将一个长方形逆时针旋转45度,求旋转后的图形。

解析:逆时针旋转45度意味着每个顶点都向左上移动一个单位,并且顺序变为左上、左下、右下、右上。

因此,旋转后的图形是一个新的长方形,其顶点为(-√2, √2)、(-√2, -√2)、(√2, -√2)、(√2, √2)。

2. 平移练习题题目一:将一个三角形向右平移3个单位,向上平移2个单位,求平移后的图形。

解析:平移操作是将图形的每个点都按照相同的位移向某个方向移动。

向右平移3个单位意味着每个点的x坐标都增加3,向上平移2个单位意味着每个点的y坐标都增加2。

因此,平移后的三角形的顶点坐标分别为(3, 2)、(4, 2)、(3, 3)。

题目二:将一个矩形向左平移5个单位,向下平移4个单位,求平移后的图形。

解析:向左平移5个单位意味着每个点的x坐标都减少5,向下平移4个单位意味着每个点的y坐标都减少4。

因此,平移后的矩形的顶点坐标分别为(-5, -4)、(-5, -6)、(-3, -6)、(-3, -4)。

通过以上练习题,我们可以看到旋转与平移的基本原理。

旋转是将图形绕某个点旋转一定角度,而平移是将图形沿着某个方向移动一定距离。

在实际应用中,旋转与平移常常用于建筑设计、机械制造、计算机图形学等领域。

小学二年级奥数题《图形的平移题目大全及答案》题库大全

小学二年级奥数题《图形的平移题目大全及答案》题库大全

小学二年级奥数题《图形的平移题目大全及答案》题库大全姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分评卷人得分1、下面的图形,平移哪些线段,就可以变成长方形,用笔画出来。

答案与解析:2、飞禽馆长颈鹿馆大象馆熊猫馆猴山(1)从入口向右平移5格是猴山。

(2)从猴山向上平移4格是熊猫馆。

(3)从熊猫馆向右平移3格是飞禽馆,再向右平移3格是长颈鹿馆。

(4)从长颈鹿馆向下平移6格是大象馆。

答案与解析:“略”3、电梯上下移动是()现象。

水龙头开关的转动是()现象。

(平移或旋转)答案与解析:平移;旋转4、画出平移后的图形。

答案与解析:5;5、请在()里填上“平移”或“旋转”(1)(2)(3)答案与解析:(1)平移;旋转;旋转(2)旋转;平移(3)旋转;旋转;平移;平移6、分别画出将向下平移3格和向右平移5格后得到的图形。

答案与解析:7、画出下图向左平移6格后的图形。

答案与解析:“略”8、画出下图向右平移8格得到的图形。

答案与解析:9、钟面上的指针是()现象。

(填“平移”或“旋转”)答案与解析:旋转10、把图案平移后的图形画出来。

答案与解析:“略”11、连线旋转平移答案与解析:旋转;平移12、把向左平移6格后得到的涂上颜色。

答案与解析:“略”13、下面的图形是平移的填“”,是旋转的填“○”。

(1)(2)(3)()()()(4)(5)(6)()()()(7)(8)(9)()()()答案与解析:(1)○;(2);(3)○;(4);(5)○;(6)○;(7);(8);(9)14、分别画出将凸向右平移5格,向下平移3格后得到的图形。

答案与解析:“略”15、下面现象中是平移的在()里打“”,是旋转的画“○”。

(1)建筑工地的升降机。

(2)直升机的螺旋桨。

()()(3)工作中的排气扇。

(4)行进中的滑雪板。

()()答案与解析:(1);(2)○;(3)○;(4)16、把可以平移到1号小鱼位置的小鱼涂上颜色。

小学奥数4-2-5 平移、旋转、割补.专项练习及答案解析

小学奥数4-2-5 平移、旋转、割补.专项练习及答案解析

图形变换,是指不改变图形的大小、形状,只通过位置关系的改变(旋转、平移、折叠等),构成新的图形.【例 1】 右图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,它们的宽都是2,求草地部分的面积(阴影部分)有多大?【考点】平移、旋转、割补 【难度】2星 【题型】解答 【解析】 如图所示,将道路平移后的()()162102112-⨯-=。

【答案】112【例 2】 如图所示,一个正十二边形的边长是1厘米,空白部分是等边三角形,一共有12个.请算出阴影部分的面积.1cm【考点】平移、旋转、割补 【难度】3星 【题型】解答【解析】 如图,将阴影部分分割成一个正六边形和12个小三角形,再把正六边形分割成6个正三角形,由于正十二边形的每个内角为()180********︒⨯-÷=︒,所以阴影小三角形的顶角等于15060230︒-︒⨯=︒,每个顶角的两边和与其相邻的正三角形的底边所成的角都是306090︒+︒=︒,所以通过如右上图所示的平移可以组成6个边长为1厘米的正方形,所以所求阴影部分面积为2166⨯=平方厘米.【答案】6例题精讲4-2-5.平移、旋转、割补【例 3】 如图所示,梯形ABCD 中,AB 平行于CD ,又4BD =,3AC =,5AB CD +=.试求梯形ABCD 的面积.D CBAEDCBA【考点】平移、旋转、割补 【难度】3星 【题型】解答【解析】 如右图,将AB 沿AC 平移至CE ,连接BE ,在三角形BDE 中,有4BD =,3BE AC ==,5DE AB CD =+=,有222BD BE DE +=,所以三角形BDE 为直角三角形.由于A B D A B C B C ES S S ∆∆∆==,所以梯形ABCD 的面积与三角形BDE 的面积相等,为13462⨯⨯=. 【答案】6【例 4】 如下图,六边形ABCDEF 中,AB ED =,AF CD =,BC EF =,且有AB 平行于ED ,AF 平行于CD ,BC 平行于EF ,对角线FD 垂直于BD ,已知24FD =厘米,18BD =厘米,请问六边形ABCDEF 的面积是多少平方厘米?FD CBAGF EDCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 如图,我们将BCD ∆平移使得CD 与AF 重合,将DEF ∆平移使得ED 与AB 重合,这样EF 、BC 都重合到图中的AG 了.这样就组成了一个长方形BGFD ,它的面积与原六边形的面积相等,显然长方形BGFD 的面积为2418432⨯=平方厘米,所以六边形ABCDEF 的面积为432平方厘米.【答案】432【例 5】 如图2,六边形ABCDEF 为正六边形,P 为对角线CF 上一点,若PBC 、PEF的面积为3与4,则正六边形ABCDEF 的面积是 .E【考点】平移、旋转、割补 【难度】4星 【题型】解答 【关键词】迎春杯、中年级、初赛、7题【解析】 这是一道几何问题,考察同学们对常见图形性质的认识.正六边形的六条边都相等,每个角都是,每一组对边都互相平行,正六边形可以看作是由六个正三角形拼成的(如图(1)).其中正六边形的面积是正三角形面积的6倍.每相邻两个正三角形拼成的是一个平行四边形.如图(2),连结BF ,三角形ABF 的面积是平行四边形ABFO 面积的一半.六边形ABCDEF 的面积是平行四边形ABFO 的3倍,故六边形ABCDEF 的面积是三角形ABF 的面积的6倍. 如图(3),连结BF ,CE ,三角形BCP 的面积与三角形EFP 的面积和是平行四边形BFEC 面积的一半.而六边形ABCDEF 的面积是平行四边形BFEC 的1.5倍,故六边形ABCDEF 的面积是三角形BCP 的面积与三角形EFP 的面积和的3倍.图(1)OAB CDEF图(2)OB ACDEF图(3)E所以,由PBC △、PEF △的面积分别为3与4, 可知正六边形ABCDEF 的面积是(34)321+⨯=.【答案】21【例 6】 正六边形A1A2A3A4A5A6的面积是2009平方厘米,B1,B2,B3,B4,B5,B6分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.A 3【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】迎春杯、六年级、初赛、14题【解析】 如图,设62B A 与13B A 的交点为O ,则图中空白部分由6个与23A OA △一样大小的三角形组成,只要求出了23A OA △的面积,就可以求出空白部分面积,进而求出阴影部分面积.43A 654连接63A A 、61B B 、63B A设116A B B △的面积为“1”,则126B A B △面积为“1”,126A A B △面积为“2”,那么636A AB △面积为126A A B △的2倍,为“4”,梯形1236A A A A 的面积为224212⨯+⨯=,263A B A △的面积为“6”,123B A A △的面积为2根据蝴蝶定理,1263261316B A B A A B B O A O S S ===△△∶∶,故21233612167A OAB A A S S ==+△△, 所以231236A A A A 121277A OA S S =△梯形∶∶∶1∶,即23A OA △的面积为梯形1236A A A A 面积的17,故为六边形123456A A A A A A 面积的114,那么空白部分的面积为正六边形面积的136147⨯=,所以阴影部分面积为32009111487⎛⎫⨯-= ⎪⎝⎭(平方厘米).【答案】1148【例 7】 按照图中的样子,在一平行四边形纸片上割去了甲、乙两个直角三角形.已知甲三角形两条直角边分别为2cm 和4cm ,乙三角形两条直角边分别为3cm 和6cm ,求图中阴影部分的面积.【考点】平移、旋转、割补 【难度】3星 【题型】解答【解析】 如右图,我们将三角形甲与乙进行平移,就会发现平行四边形面积等于平移后两个长方形面积之和.所以阴影部分面积为:2346236242211cm ⨯+⨯-⨯÷+⨯÷=()()【答案】11【例8】在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几.【考点】平移、旋转、割补【难度】3星【题型】解答【解析】阴影总值是一个梯形.我们用三种方法解答.⑴割补法从顶点作底边上的高,得到两个相同的直角三角形.将这两个直角三角形拼成一个长方形(见下图).显然,阴影部分正好是长方形的13,所以原题阴影部分占整个图形面积的13.⑵拼补法将两个这样的三角形拼成一个平行四边形(下页左上图).显然,图中阴影面积占平行四边形面积的13.根据商不变性质,将阴影面积和平行四边形面积同时除以2,商不变.所以原题阴影部分占整个图形面积的13.⑶等分法将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形,所以阴影部分占整个图形面积的31 93 =.注意,后两种方法对任意三角形都适用.也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立.【答案】1 3【例9】如下左图,有两个大小相同的完全重叠在一起的正方形,现在以点P为中心转动一个正方形.当5AB=厘米,13BC=厘米,12CA=厘米时(如下右图),求右图中的两个正方形相重叠部分的面积(注意,图的尺寸不一定准确).P【考点】平移、旋转、割补 【难度】3星 【题型】解答【解析】 右图由左图旋转而得,则右图中的8个空白小三角形都是完全相同的,右图中重叠部分的面积等于正方形面积减去4个小三角形的面积,从右图中可以看出正方形的边长为5131230++=厘米,所以重叠部分的面积为:2304(5122)780-⨯⨯÷=(平方厘米).【答案】780【例 10】 如图,在直角三角形中有一个正方形,已知10BD =厘米,7DC =厘米,求阴影部分的面积.【考点】平移、旋转、割补 【难度】4星 【题型】解答【解析】 绕D 点逆时针旋转CED ∆,使E 与F 重合,则C 点落在AB 边上的'C 点处,且'C D CD =.则阴影部分面积转化为直角三角形'BC D 的面积,所以阴影部分的面积为107235⨯÷=平方厘米.【答案】35【例 11】 四边形ABCD 中,AB =30,AD =48,BC =14,CD =40.又已知∠ABD +∠BDC =900,求四边形ABCD 的面积.DBA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 如下图,以BD 的垂直平分线为对称轴L ,做△ABD 关于L 的对称图形△A 'BD .连接A 'C .A 1IABCD因为∠ABD +∠BDC =9000而∠ABD =∠A 'DB =900,所以有∠A 'DB +∠BDC =900.那么A 'CD 为直角三角形,由勾股定理知2A C '=22AB CD +=2500,所以50A C '=.而在△A 'BC 中,有A 'B =AD =48,有482+142=2500,即A 'B 2+BC 2=A 'C 2,即△A 'BC 为直角三角形.有A CD A BCSS''+130402=⨯⨯114489362+⨯⨯=. 而|ABCD S 四边形A CDA BCSS''=+936=.评注:Ⅰ.本题以∠ABC +∠BDC =900突破口,通过对称变换构造出与原图形相关的角三角形Ⅱ.对于这道题我们还可以将△BCD 作L 的对称图形.如下:C 1lABCD【答案】936【例 12】 如图,在三角形ABD 中,当AB 和CD 的长度相等时,请求出“?”所示的角是多少度,给出过程.DCAB?30°40°【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 因为AB =CD ,于是可以将三角形ABC 的边BA 边与CD 对齐,如下图. 在下图中有∠BCA =110°,所以∠ACD =70°于是∠AC C '=∠ACD +∠DC C '=∠ACD +∠ABC =70°+40°=110°;A 1D C 1C B 1BA即∠AC C '=110°=∠CC D ';又因为C A ''只是CA 移动的变化,所以C A ''=CA ;则ABC A ''是一等腰梯形.于是,∠ADC '=180°-110°=70°;又∠CDC '=30°,所以∠ADC =70°-30°=40°.【答案】40°【例 13】 如图所示的四边形的面积等于多少?DB13131212【考点】平移、旋转、割补 【难度】4星 【题型】解答【解析】 题目中要求的四边形既不是正方形也不是长方形,难以运用公式直接求面积.我们可以利用旋转的方法对图形实施变换:把三角形OAB 绕顶点O 逆时针旋转,使长为13的两条边重合,此时三角形OAB 将旋转到三角形OCD 的位置.这样,通过旋转后所得到的新图形是一个边长为12的正方形,且这个正方形的面积就是原来四边形的面积.因此,原来四边形的面积为1212144⨯=.(也可以用勾股定理)【答案】144【例 14】 如图,三角形ABC 是等腰直角三角形,P 是三角形外的一点,其中90BPC ∠=︒,10cm AP =,求四边形ABPC 的面积.PDCBAP'PDCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 因为BAC ∠和BPC ∠都是直角,和为180︒,所以ABP ∠和ACP ∠的和也为180︒,可以旋转三角形APC ,使AC 和AB 重合,则四边形的面积转化为等腰直角三角形'AP P ,面积为1010250⨯÷=平方厘米.【答案】50【例 15】 如图所示,ABC ∆中,90ABC ∠=︒,3AB =,5BC =,以AC 为一边向ABC∆外作正方形ACDE ,中心为O ,求OBC ∆的面积.【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】武汉明心奥数【解析】 如图,将OAB ∆沿着O 点顺时针旋转90︒,到达OCF ∆的位置.由于90ABC ∠=︒,90AOC ∠=︒,所以180OAB OCB ∠+∠=︒.而OCF OAB ∠=∠, 所以180OCF OCB ∠+∠=︒,那么B 、C 、F 三点在一条直线上.由于OB OF =,90BOF AOC ∠=∠=︒,所以BOF ∆是等腰直角三角形,且斜边BF 为538+=,所以它的面积为218164⨯=.根据面积比例模型,OBC ∆的面积为516108⨯=.【答案】10【例 16】 如图,直角梯形ABCD 中,AD BC ∥,AB BC ⊥,2AD =,3BC =,将腰CD以D 为中心逆时针旋转90︒至ED ,连接AE 、CE ,则AD E ∆的面积是 .ED CBAH FEDCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】武汉明心奥数【解析】 如图所示,将AD E ∆以D 为中心顺时针旋转90︒,到FDC ∆的位置.延长FD 与BC 交于H .由于ABCD 是直角梯形,AD 与FD 垂直,则四边形ADHB 是长方形,则BH AD =. 由于A D E ∆与FDC ∆面积相等,而FDC ∆的底边2F D A D ==,高321C H B CB H =-=-=,所以FDC ∆的面积为2121⨯÷=,那么AD E ∆的面积也为1.【答案】1【例 17】 如图,正方形ABCD 和DEFG 有一个公共点D ,试比较三角形ADG 和三角形CDE 的面积.GFEDCBAA'GFEDC BA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 因为ADC ∠和GDE ∠是直角,所以ADG ∠和CDE ∠是互补角,将三角形ADG 顺时针旋转90︒到达'A DE ∆的位置,则'A 、D 、C 在同一条直线上,且'A D AD CD ==,即D 是'A C 的中点,所以三角形CDE 和三角形'A D E 面积相等,则三角形CDE 和三角形ADG 面积相等.【答案】相等【例 18】 如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,AC 、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE 的面积.F【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】资优杯【解析】 如图,连接DE ,以A 点为中心,将AD E ∆顺时针旋转90︒到ABF ∆的位置. 那么90EAF EAB BAF EAB DAE ∠=∠+∠=∠+∠=︒,而AEB ∠也是90︒,所以四边形AFBE 是直角梯形,且3AF AE ==,所以梯形AFBE 的面积为:()1353122+⨯⨯=(2cm ). 又因为ABE ∆是直角三角形,根据勾股定理,222223534AB AE BE =+=+=,所以21172ABD S AB ∆==(2cm ). 那么()17125BDE ABD ABE ADE ABD AFBE S S S S S S ∆∆∆∆∆=-+=-=-=(2cm ),所以12.52OBE BDE S S ∆∆==(2cm ).【答案】2.5【例 19】 如图,已知4cm AB AE ==,BC DC =,90BAE BCD ∠=∠=︒,10cm AC =,则S ABC ACE CDE S S ∆∆∆++= 2cm .EDCBADEC 'A 'CBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】迎春杯、高年级、复赛、10题【解析】 将三角形ABC 绕A 点和C 点分别顺时针和逆时针旋转90,构成三角形'AEC 和'A DC ,再连接''A C ,显然'AC AC ⊥,'AC A C ⊥,''AC A C AC ==,所以''ACA C 是正方形.三角形'AEC 和三角形'A DC 关于正方形的中心O 中心对称,在中心对称图形''ACA C 中有如下等量关系: ''AEC A DC S S ∆∆=;''AEC A DC S S ∆∆=;'CED C DE S S ∆∆=.所以2'''11101050cm 22ABC ACE CDE AEC ACE CDE ACA C S S S S S S S∆∆∆∆∆∆++=++==⨯⨯=. 【答案】50【例 20】 如图所示的四边形ABCD 中,45A C ∠=∠=°,105ABC ∠=°,15AB CD ==厘米,连接对角线BD ,30ABD ∠=︒.求四边形ABCD 的面积.DCB A DCBA【考点】平移、旋转、割补 【难度】4星 【题型】解答 【关键词】第八届、华杯总决赛【解析】 由45A ∠=°,30ABD ∠=︒,可得1804530A D B ∠=︒-︒-︒=︒,1053075DBC ∠=︒-︒=︒.将DBC ∆剪下来,翻转,再贴在BD 边上,即将B 点粘在D 点上,D 点粘在B 点上,如右上图所示.则C 点在E 点的位置.由于10575180ADB EDB ∠+∠=︒+︒=︒,所以A 、D 、E 三点在同一条直线上.由于45A E C ∠=∠=∠=°,所以90ABE ∠=︒,即ABE ∆是等腰直角三角形,它的面积就等于四边形ABCD 的面积,所以四边形ABCD 的面积为1515112.52⨯=平方厘米. 【答案】112.5【例 21】 如图,在ABD ∆中,AB CD =,求“?”的度数.40°30°?DCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 如图,由于AB CD =,可以将ABC ∆移动到D C E ∆,由于180(3040)110ACB ∠=︒-︒+︒=︒,18011070ACD ∠=︒-︒=︒,所以7040110ACE ∠=︒+︒=︒,又110CED ∠=︒,而AC DE =,所以四边形ACED 是等腰梯形,有180********ADE CED ∠=︒-∠=︒-︒=︒,703040ADC ∠=︒-︒=︒.点评:通过构造全等三角形来转化.【答案】40°【例 22】 下图三角形ABC 是等腰三角形,AB AC =,120BAC ∠=︒.三角形ADE 是正三角形,点D 在BC 边上,:2:3BD DC =.当三角形ABC 的面积是250cm 时,三角形ADE 的面积是多少?EDCBAGR Q F EDCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 以点A 为中心,由三个三角形ABC 可拼成右图:连结QE 、RF 、GD ,则DEQFRG 是一个正六边形.连结RD 、DQ 、RQ ,显然RDQ 是一个等边三角形,并且它的面积是正六边形面积的一半,所以是三角形ADE 的面积的3倍. 由于23150cm PBC ABC S S ∆∆=⨯=,根据“鸟头定理”,22336cm 3223DQC PBC S S ∆∆=⨯⨯=++, 所以2342cm RDQ PBC DQC S S S ∆∆∆=-⨯=,则2342314cm ADE RDQ S S ∆∆=÷=÷=. 【答案】14【例 23】 如图,正方形PQRS 有三个顶点分别在ABC ∆的三条边上,BQ QC =.求正方形PQRS 的面积.【考点】平移、旋转、割补 【难度】5星 【题型】解答 【解析】 如下图,我们设ABC∆的面积为1,有161279341()122132111311143a e c db =---+=-⨯-⨯-⨯=, 所以682143a e ==,751143b c d a ++=-=, 所以6875a b c d =++.如下图左,将三角形c 和三角形d 分别以P 、R 为中心按箭头方向旋转90︒,形成由两个直角三角形连在一起的一个四边形,如下图右,b 、c 、d 被虚线分成两个直角三角形,它们的面积之和为:276292230cm b c d ++=⨯÷+⨯÷=,所以2683027.2(cm )75a =⨯=.【答案】27.2【例 24】 如下图,△ABC 是边长为1的等边三角形,△BCD 是等腰三角形BD =CD ,顶角∠BDC =1200,∠MDN =600,求△AMN 的周长.120°60°M BD CNA【考点】平移、旋转、割补 【难度】4星 【题型】解答 【解析】 如下图, 延长AC 至P ,使CP =MB ,连接DP .120°60°M BD PC NA则有∠MBD =600+1163ADEDQRDEQSRT SS S ==正六边形001801202-=∠PCD ;CP =BM ;BD =CD ,所以有△MBD ≌△PCD .于是∠MDC =∠PDC ;又因为∠MDB +∠NDC =600,所以∠PDC +∠NDC =∠NDP =600;MD =PD ,在△MDN 、△PND 中,∠NDM =∠NDP ,ND =ND ,MD =PD ,于是△MND ≌△PND .有MN =PN .因为NP =NP =NC +CP ,而AM =AB -MB =AB -CP , 所以AM +AN +MN =(AB -CP )+AN +(NC +CP )=AB +AN +NC =2.即△AMN 的周长为2. 【答案】2【例 25】 若干个大小相同的正五边形如右图排成环状,下图中所示的只是3个五边形.那么要完成这一圈共需 个正五边形.【考点】平移、旋转、割补 【难度】4星 【题型】解答 【关键词】迎春杯、六年级、初赛、5题【解析】 如图,设O 为圆心,A 、B 、C 、D 为五边形的顶点,连接OA 、OB 、OC .DC BAO从图中可以看出,OAB △和OBC △是完全相同的,所以OBA OBC ∠=∠,又五边形内角和为540°,所以正五边形的每个内角都为5405108÷=°°,即108ABD CBD ∠=∠=°, 那么3601082144ABC ∠=︒-︒⨯=︒,则144272OBA ∠=÷=°°, 又OAB OBA ∠=∠,所以18072236AOB ∠=︒-︒⨯=︒ 所以要用3603610+=°°个正五边形才能围成一圈. 【答案】10【例 26】 如图,ABCD 是矩形,BC =6cm , AB=10cm ,AC 和BD 是对角线,图中的阴影部分以C 为轴旋转一周,则阴影部分扫过的立体的体积是多少立方厘米?(π取3.14)【考点】平移、旋转、割补 【难度】3星 【题型】解答 【关键词】华杯赛、决赛、第11题【解析】 ①设三角形BCO 以CD 为轴旋转一周所得到的立体的体积是s ,S 等于高为10厘米,底面半径是6厘米的圆锥的体积减去2个高为5厘米,底面半径是3厘米的圆锥的体积。

平移与旋转的练习题

平移与旋转的练习题

平移与旋转的练习题平移与旋转的练习题平移和旋转是几何学中常见的基本操作,它们在解决各种问题时起着重要作用。

本文将给出一些关于平移和旋转的练习题,以帮助读者更好地理解和掌握这两个概念。

一、平移练习题1. 将一个正方形沿着横轴向右平移3个单位,再向上平移4个单位,最后沿着纵轴向下平移2个单位。

求平移后正方形的坐标。

2. 已知点A(2, 3)和B(-1, 5),将线段AB沿着横轴向右平移5个单位,再向上平移2个单位。

求平移后线段AB的两个端点坐标。

3. 将一个三角形ABC沿着纵轴向下平移3个单位,再向右平移4个单位。

已知点A(1, 2),B(3, 4),C(5, 6),求平移后三角形ABC的三个顶点坐标。

二、旋转练习题1. 将一个正方形绕原点逆时针旋转90°,再沿着横轴向右平移2个单位。

已知正方形的一个顶点坐标为(1, 1),求旋转后正方形的四个顶点坐标。

2. 将一个矩形绕点(2, 3)逆时针旋转180°,再沿着纵轴向下平移4个单位。

已知矩形的四个顶点坐标分别为A(1, 2),B(3, 2),C(3, 4),D(1, 4),求旋转后矩形的四个顶点坐标。

3. 将一个三角形绕点(0, 0)逆时针旋转60°,再沿着横轴向右平移3个单位。

已知三角形的三个顶点坐标为A(1, 1),B(2, 3),C(3, 2),求旋转后三角形的三个顶点坐标。

通过以上练习题,我们可以巩固平移和旋转的基本概念,并理解它们在几何学中的应用。

平移是指将图形在平面上沿着指定的方向移动一定的距离,而旋转是指将图形围绕某一点旋转一定角度。

这两个操作在计算机图形学、机器人控制、航空航天等领域都有广泛的应用。

在解决实际问题时,我们需要根据具体情况确定平移和旋转的坐标变换公式,以便准确地描述和计算图形的位置和形状变化。

通过练习题的训练,我们可以提高对平移和旋转的理解和运用能力,为解决更复杂的几何问题打下基础。

需要注意的是,在进行平移和旋转操作时,我们要注意坐标系的选择和变换的顺序,以确保结果的准确性。

六年级下册奥数试题——平移、旋转、割补(含答案)人教版

六年级下册奥数试题——平移、旋转、割补(含答案)人教版

【例 11】 (武汉明心奥数挑战赛)如图所示,ABC 中,ABC 90 , AB 3 , BC 5 ,以 AC 为一边 向 ABC 外作正方形 ACDE ,中心为 O ,求 OBC 的面积.
E
E
D O
D O
A
A
3
3
B
5
C
B
5
C
F
【解析】如图,将 OAB 沿着 O 点顺时针旋转 90 ,到达 OCF 的位置. 由于 ABC 90 , AOC 90 ,所以 OAB OCB 180 .而 OCF OAB , 所以 OCF OCB 180 ,那么 B 、 C 、 F 三点在一条直线上. 由于 OB OF , BOF AOC 90 ,所以 BOF 是等腰直角三角形,且斜边 BF 为 5 3 8 ,所
那么 EAF EAB BAF EAB DAE 90 ,而 AEB 也是 90 ,所以四边形 AFBE 是直角梯 形,且 AF AE 3 ,
所以梯形 AFBE 的面积为:
3 5 3 1 12 ( cm2 ).
2
又因为 ABE 是直角三角形,根据勾股定理, AB2 AE2 BE2 32 52 34 ,所以
平移、旋转、割补
例题精讲
图形变换,是指不改变图形的大小、形状,只通过位置关系的改变(旋转、平移、折叠等),构成新的图形.
【例 1】 如下图,六边形 ABCDEF 中,AB ED ,AF CD ,BC EF ,且有 AB 平行于 ED ,AF 平行于 CD , BC 平行于 EF ,对角线 FD 垂直于 BD ,已知 FD 24厘米,BD 18 厘米,请问六边形 ABCDEF 的 面积是多少平方厘米?

F
E
E
A
D

图形的平移与旋转练习题

图形的平移与旋转练习题

图形的平移与旋转练习题图形的平移与旋转练习题在数学中,平移与旋转是两种常见的图形变换方式。

通过平移和旋转,我们可以改变图形的位置和方向,使其更加多样化和有趣。

下面,我们将通过一些练习题来巩固和加深对图形平移与旋转的理解。

练习题一:平移1. 将一个正方形沿着x轴正方向平移3个单位,结果是什么?解答:平移是指将图形沿着指定的方向移动一定的距离。

对于正方形,沿着x轴正方向平移3个单位,意味着将正方形的每个顶点都向右移动3个单位。

因此,结果是一个新的正方形,其每个顶点的坐标都比原来的正方形的坐标大3。

2. 如果将一个长方形沿着y轴负方向平移5个单位,结果是什么?解答:这个问题和上一个问题类似,只是平移的方向和距离不同。

沿着y轴负方向平移5个单位,意味着将长方形的每个顶点都向下移动5个单位。

因此,结果是一个新的长方形,其每个顶点的y坐标都比原来的长方形的y坐标小5。

练习题二:旋转1. 将一个正方形绕原点逆时针旋转90度,结果是什么?解答:旋转是指将图形绕着指定的中心点旋转一定的角度。

对于正方形,绕原点逆时针旋转90度,意味着将正方形的每个顶点按照逆时针方向旋转90度。

因此,结果是一个新的正方形,其每个顶点的坐标都发生了变化,但是仍然是一个正方形。

2. 如果将一个长方形绕坐标轴上的一点顺时针旋转45度,结果是什么?解答:这个问题和上一个问题类似,只是旋转的方向和角度不同。

绕坐标轴上的一点顺时针旋转45度,意味着将长方形的每个顶点按照顺时针方向旋转45度。

因此,结果是一个新的长方形,其每个顶点的坐标都发生了变化,但是仍然是一个长方形。

通过以上练习题,我们可以看到平移和旋转对于图形的变化有着重要的作用。

通过平移,我们可以改变图形的位置,使其在平面上的不同位置出现;通过旋转,我们可以改变图形的方向,使其变得更加灵活和多样化。

这些变换不仅在数学中有着重要的应用,还在日常生活和工程设计中发挥着重要的作用。

总结起来,图形的平移与旋转是数学中常见的图形变换方式。

小学平移旋转练习题

小学平移旋转练习题

小学平移旋转练习题平移和旋转是小学数学中的重要概念和技能,通过练习题的形式,可以帮助学生更好地理解和掌握这两个概念。

下面是一些小学平移旋转练习题,帮助学生巩固相关知识。

题目一:平移1. 将点A(-2, 3)通过向右平移5个单位得到点B,求点B的坐标。

2. 已知正方形ABCD,其中A的坐标为(2, 3),经过平移得到正方形A'B'C'D',求A'的坐标。

3. 将线段AB,其中A(1, 2),B(4, 5),通过平移向右移动3个单位得到线段A'B',求线段A'B'的坐标。

题目二:旋转1. 将点A(3, 2)绕原点逆时针旋转90度,求旋转后的点坐标。

2. 已知正方形ABCD,其中A的坐标为(2, 3),经过绕原点逆时针旋转180度得到正方形A'B'C'D',求A'的坐标。

3. 将线段AB,其中A(1, 2),B(4, 5),绕原点逆时针旋转45度得到线段A'B',求线段A'B'的坐标。

题目三:综合练习1. 平面图形P的顶点坐标为A(2, 3),B(-1, 4),C(0, -2),D(3, -1)。

分别进行以下操作:a) 将图形P向右平移5个单位;b) 将图形P绕点(-1, 2)顺时针旋转90度。

求操作完成后图形P各顶点的坐标。

2. 已知点A(3, 4)、B(6, 1),C(10, 2),D(7, 5)连成了一个四边形。

分别进行以下操作:a) 将四边形ABCD向下平移3个单位;b) 将四边形ABCD绕原点逆时针旋转60度。

求操作完成后四边形ABCD各顶点的坐标。

以上是一些小学平移旋转练习题,通过解答这些题目,学生可以更好地理解平移和旋转的概念,并提升相关技能。

希望这些练习能够对学生的数学学习有所帮助。

小学奥数 巧求周长 精选例题练习习题(含知识点拨)

小学奥数  巧求周长  精选例题练习习题(含知识点拨)

4-2-2.巧求周长知识点拨一、基本概念①周长:封闭图形一周的长度就是这个图形的周长.②面积:物体的表面或封闭图形的大小,叫做它们的面积.二、基本公式:①长方形的周长2(长宽),面积长宽.②正方形的周长4边长,正方形的面积边长边长.三、常用方法:(1)对于基本的长方形和正方形图形,可以直接用公式求出它们的周长和面积,对于一些不规则的比较复杂的几何图形,我们可以采用转化的数学思想方法割补成基本图形,利用长方形、正方形周长及面积计算的公式求解.(2)转化是一种重要的数学思想方法,在转化过程中要抓住“变”与“不变”两个部分.转化后的图形虽然形状变了,但其周长和面积不应该改变,所以在求解过程中不能遗漏掉某些线段的长度或某部分图形的面积.转化的目标是将复杂的图形转化为周长或面积可求的图形.(3)寻求正确有效的解题思路,意味着寻找一条摆脱困境、绕过障碍的途径.因此,我们在解决数学问题时,思考的着重点就是要把所需解决的问题转化为已经能够解决的问题.也就是说,在直接求解不容易或很难找到解题途径的问题时,我们往往转化问题的形式,从侧面或反面寻找突破口,知道最终把它转化成一个或若干个能解决的问题.这种解决问题的思想在数学中叫“化归”,它是数学思维中重要的思想和方法.(4)在几何中,有许多图形是由一些基本图形组合、拼凑而成的.这样的图形我们称为不规则图形.不规则图形的面积往往无法直接应用公式计算.那么,不规则图形的面积怎样去计算呢?对称、旋转、平移这几种几何变换就是解决这类面积问题的手段.四、几个重要的解题思想(1)平移在平面图形的计算中,常常要将一个平面图形移动到平面上的另一个位置进行计算.其中,将图形沿一个固定方向的移动叫做平移,一个图形经过平行移动不改变其形状与大小,所以图形面积是保持不变的.利用图形的平移,可以使面积计算问题的解法简捷明快,颇有新意.(2)割补割补法在我国古代叫“出入相补原理”,我国古代魏晋时期著名的数学家刘徽在《九章算术注》中就明确地提出“出入相补,各从其类”的出入相补原理.这个原理的内容是几何图形经过分、合、移、补所拼凑成的新图形,它的面积不变.(3)旋转在平面图形的割补中,有时要将一个图形绕定点旋转到一个新的位置,产生一种新的图形结构,图形在转动过程中形状大小不发生改变.利用这种新的图形结构可以帮我们解决面积的计算问题.(4)对称平面图形中有许多简单漂亮的图形都是轴对称图形.轴对称图形沿对称轴折叠,轴两侧可以完全重合.也就是说,如果一个图形是轴对称图形,那么对称轴平分这个图形的面积.熟悉轴对称图形这个性质,对面积计算会有很大帮助.(5)代换在几何计算中,对有关数量进行适当的等量代换也是解决问题的已知技巧.小结:本讲主要通过求一些不规则图形的周长,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,让学生体会求周长的技巧,提高学生的观察能力、动手操作能力、综合运用能力.例题精讲模块一、图形的周长和面积——割补法【例1】求图中所有线段的总长(单位:厘米)4312A B C D E【例2】如图所示,点B是线段AD的中点,由A、B、C、D四个点所构成的所有线段的长度均为整数,若这些线段的长度之积为10500,则线段AB的长度是。

小学奥数:平移、旋转、割补.专项练习及答案解析

小学奥数:平移、旋转、割补.专项练习及答案解析

图形变换,是指不改变图形的大小、形状,只通过位置关系的改变(旋转、平移、折叠等),构成新的图形.【例 1】 右图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,它们的宽都是2,求草地部分的面积(阴影部分)有多大?【考点】平移、旋转、割补 【难度】2星 【题型】解答 【解析】 如图所示,将道路平移后的()()162102112-⨯-=。

【答案】112【例 2】 如图所示,一个正十二边形的边长是1厘米,空白部分是等边三角形,一共有12个.请算出阴影部分的面积.1cm1cm 1cm【考点】平移、旋转、割补 【难度】3星 【题型】解答 【解析】 如图,将阴影部分分割成一个正六边形和12个小三角形,再把正六边形分割成6个正三角形,由于正十二边形的每个内角为()180********︒⨯-÷=︒,所以阴影小三角形的顶角等于15060230︒-︒⨯=︒,每个顶角的两边和与其相邻的正三角形的底边所成的角都是306090︒+︒=︒,所以通过如右上图所示的平移可以组成6个边长为1厘米的正方形,所以所求阴影部分面积为2166⨯=平方厘米.【答案】6【例 3】 如图所示,梯形ABCD 中,AB 平行于CD ,又4BD =,3AC =,5AB CD +=.试求梯形ABCD 的面积.D CBAEDCBA【考点】平移、旋转、割补 【难度】3星 【题型】解答 【解析】 如右图,将AB 沿AC 平移至CE ,连接BE ,在三角形BDE 中,有4BD =,3BE AC ==,5DE AB CD =+=,有222BD BE DE +=,所以三角形BDE 为直角例题精讲4-2-5.平移、旋转、割补三角形.由于ABD ABC BCE S S S ∆∆∆==,所以梯形ABCD 的面积与三角形BDE 的面积相等,为13462⨯⨯=. 【答案】6【例 4】 如下图,六边形ABCDEF 中,AB ED =,AF CD =,BC EF =,且有AB 平行于ED ,AF 平行于CD ,BC 平行于EF ,对角线FD 垂直于BD ,已知24FD =厘米,18BD =厘米,请问六边形ABCDEF 的面积是多少平方厘米?FED CBAGFE DCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【解析】 如图,我们将BCD ∆平移使得CD 与AF 重合,将DEF ∆平移使得ED 与AB 重合,这样EF 、BC 都重合到图中的AG 了.这样就组成了一个长方形BGFD ,它的面积与原六边形的面积相等,显然长方形BGFD 的面积为2418432⨯=平方厘米,所以六边形ABCDEF 的面积为432平方厘米.【答案】432【例 5】 如图2,六边形ABCDEF 为正六边形,P 为对角线CF 上一点,若PBC 、PEF 的面积为3与4,则正六边形ABCDEF 的面积是 .E【考点】平移、旋转、割补 【难度】4星 【题型】解答 【关键词】迎春杯、中年级、初赛、7题 【解析】 这是一道几何问题,考察同学们对常见图形性质的认识.正六边形的六条边都相等,每个角都是,每一组对边都互相平行,正六边形可以看作是由六个正三角形拼成的(如图(1)).其中正六边形的面积是正三角形面积的6倍.每相邻两个正三角形拼成的是一个平行四边形.如图(2),连结BF ,三角形ABF 的面积是平行四边形ABFO 面积的一半.六边形ABCDEF 的面积是平行四边形ABFO 的3倍,故六边形ABCDEF 的面积是三角形ABF 的面积的6倍. 如图(3),连结BF ,CE ,三角形BCP 的面积与三角形EFP 的面积和是平行四边形BFEC 面积的一半.而六边形ABCDEF 的面积是平行四边形BFEC 的1.5倍,故六边形ABCDEF 的面积是三角形BCP 的面积与三角形EFP 的面积和的3倍.图(1)OAB CDEF图(2)OB ACDEF图(3)E所以,由PBC △、PEF △的面积分别为3与4,可知正六边形ABCDEF 的面积是(34)321+⨯=.【答案】21【例 6】 正六边形A1A2A3A4A5A6的面积是2009平方厘米,B1,B2,B3,B4,B5,B6分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.A 3【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】迎春杯、六年级、初赛、14题 【解析】 如图,设62B A 与13B A 的交点为O ,则图中空白部分由6个与23A OA △一样大小的三角形组成,只要求出了23A OA △的面积,就可以求出空白部分面积,进而求出阴影部分面积.43A 654连接63A A 、61B B 、63B A设116A B B △的面积为“1”,则126B A B △面积为“1”,126A A B △面积为“2”,那么636A A B △面积为126A A B △的2倍,为“4”,梯形1236A A A A 的面积为224212⨯+⨯=,263A B A △的面积为“6”,123B A A △的面积为2根据蝴蝶定理,1263261316B A B A A B B O A O S S ===△△∶∶,故21233612167A OAB A A S S ==+△△, 所以231236A A A A 121277A OA S S =△梯形∶∶∶1∶,即23A OA △的面积为梯形1236A A A A 面积的17,故为六边形123456A A A A A A 面积的114,那么空白部分的面积为正六边形面积的136147⨯=,所以阴影部分面积为32009111487⎛⎫⨯-= ⎪⎝⎭(平方厘米).【答案】1148【例 7】 按照图中的样子,在一平行四边形纸片上割去了甲、乙两个直角三角形.已知甲三角形两条直角边分别为2cm 和4cm ,乙三角形两条直角边分别为3cm 和6cm ,求图中阴影部分的面积.【考点】平移、旋转、割补【难度】3星【题型】解答【解析】如右图,我们将三角形甲与乙进行平移,就会发现平行四边形面积等于平移后两个长方形面积之和.所以阴影部分面积为:2346236242211cm⨯+⨯-⨯÷+⨯÷=()()【答案】11【例 8】在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几.【考点】平移、旋转、割补【难度】3星【题型】解答【解析】阴影总值是一个梯形.我们用三种方法解答.⑴割补法从顶点作底边上的高,得到两个相同的直角三角形.将这两个直角三角形拼成一个长方形(见下图).显然,阴影部分正好是长方形的13,所以原题阴影部分占整个图形面积的13.⑵拼补法将两个这样的三角形拼成一个平行四边形(下页左上图).显然,图中阴影面积占平行四边形面积的13.根据商不变性质,将阴影面积和平行四边形面积同时除以2,商不变.所以原题阴影部分占整个图形面积的13.⑶等分法将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形,所以阴影部分占整个图形面积的31 93 =.注意,后两种方法对任意三角形都适用.也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立.【答案】1 3【例 9】如下左图,有两个大小相同的完全重叠在一起的正方形,现在以点P为中心转动一个正方形.当5AB=厘米,13BC=厘米,12CA=厘米时(如下右图),求右图中的两个正方形相重叠部分的面积(注意,图的尺寸不一定准确).P【考点】平移、旋转、割补 【难度】3星 【题型】解答 【解析】 右图由左图旋转而得,则右图中的8个空白小三角形都是完全相同的,右图中重叠部分的面积等于正方形面积减去4个小三角形的面积,从右图中可以看出正方形的边长为5131230++=厘米,所以重叠部分的面积为:2304(5122)780-⨯⨯÷=(平方厘米).【答案】780【例 10】 如图,在直角三角形中有一个正方形,已知10BD =厘米,7DC =厘米,求阴影部分的面积.【考点】平移、旋转、割补 【难度】4星 【题型】解答 【解析】 绕D 点逆时针旋转CED ∆,使E 与F 重合,则C 点落在AB 边上的'C 点处,且'C D CD =.则阴影部分面积转化为直角三角形'BC D 的面积,所以阴影部分的面积为107235⨯÷=平方厘米.【答案】35【例 11】 四边形ABCD 中,AB =30,AD =48,BC =14,CD =40.又已知∠ABD +∠BDC =900,求四边形ABCD 的面积.DBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【解析】 如下图,以BD 的垂直平分线为对称轴L ,做△ABD 关于L 的对称图形△A 'BD .连接A 'C .A 1IABCD因为∠ABD +∠BDC =9000而∠ABD =∠A 'DB =900,所以有∠A 'DB +∠BDC =900.那么A 'CD 为直角三角形,由勾股定理知2A C '=22AB CD +=2500,所以50A C '=.而在△A 'BC 中,有A 'B =AD =48,有482+142=2500,即A 'B 2+BC 2=A 'C 2,即△A 'BC 为直角三角形.有A CD A BC S S ''+V V 130402=⨯⨯114489362+⨯⨯=. 而|ABCDS 四边形A CD A BC S S ''=+V V 936=.评注:Ⅰ.本题以∠ABC +∠BDC =900突破口,通过对称变换构造出与原图形相关的角三角形Ⅱ.对于这道题我们还可以将△BCD 作L 的对称图形.如下:C 1lABCD【答案】936【例 12】 如图,在三角形ABD 中,当AB 和CD 的长度相等时,请求出“?”所示的角是多少度,给出过程.DCAB?30°40°【考点】平移、旋转、割补 【难度】5星 【题型】解答 【解析】 因为AB =CD ,于是可以将三角形ABC 的边BA 边与CD 对齐,如下图. 在下图中有∠BCA =110°,所以∠ACD =70°于是∠AC C '=∠ACD +∠DC C '=∠ACD +∠ABC =70°+40°=110°;A 1D C 1C B 1BA即∠AC C '=110°=∠CC D ';又因为C A ''只是CA 移动的变化,所以C A ''=CA ;则ABC A ''是一等腰梯形.于是,∠ADC '=180°-110°=70°;又∠CDC '=30°,所以∠ADC =70°-30°=40°. 【答案】40°【例 13】 如图所示的四边形的面积等于多少?DB13131212【考点】平移、旋转、割补 【难度】4星 【题型】解答 【解析】 题目中要求的四边形既不是正方形也不是长方形,难以运用公式直接求面积.我们可以利用旋转的方法对图形实施变换:把三角形OAB 绕顶点O 逆时针旋转,使长为13的两条边重合,此时三角形OAB 将旋转到三角形OCD 的位置.这样,通过旋转后所得到的新图形是一个边长为12的正方形,且这个正方形的面积就是原来四边形的面积.因此,原来四边形的面积为1212144⨯=.(也可以用勾股定理)【答案】144【例 14】 如图,三角形ABC 是等腰直角三角形,P 是三角形外的一点,其中90BPC ∠=︒,10cm AP =,求四边形ABPC 的面积.P DCBAP'PDCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【解析】 因为BAC ∠和BPC ∠都是直角,和为180︒,所以ABP ∠和ACP ∠的和也为180︒,可以旋转三角形APC ,使AC 和AB 重合,则四边形的面积转化为等腰直角三角形'AP P ,面积为1010250⨯÷=平方厘米.【答案】50【例 15】 如图所示,ABC ∆中,90ABC ∠=︒,3AB =,5BC =,以AC 为一边向ABC ∆外作正方形ACDE ,中心为O ,求OBC ∆的面积.【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】武汉明心奥数 【解析】 如图,将OAB ∆沿着O 点顺时针旋转90︒,到达OCF ∆的位置.由于90ABC ∠=︒,90AOC ∠=︒,所以180OAB OCB ∠+∠=︒.而OCF OAB ∠=∠, 所以180OCF OCB ∠+∠=︒,那么B 、C 、F 三点在一条直线上.由于OB OF =,90BOF AOC ∠=∠=︒,所以BOF ∆是等腰直角三角形,且斜边BF 为538+=,所以它的面积为218164⨯=.根据面积比例模型,OBC ∆的面积为516108⨯=.【答案】10【例 16】 如图,直角梯形ABCD 中,AD BC ∥,AB BC ⊥,2AD =,3BC =,将腰CD 以D 为中心逆时针旋转90︒至ED ,连接AE 、CE ,则ADE ∆的面积是 .ED CBAH FEDCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】武汉明心奥数 【解析】 如图所示,将ADE ∆以D 为中心顺时针旋转90︒,到FDC ∆的位置.延长FD 与BC交于H .由于ABCD 是直角梯形,AD 与FD 垂直,则四边形ADHB 是长方形,则BH AD =. 由于ADE ∆与FDC ∆面积相等,而FDC ∆的底边2FD AD ==,高321CH BC BH =-=-=,所以FDC ∆的面积为2121⨯÷=,那么ADE ∆的面积也为1. 【答案】1【例 17】 如图,正方形ABCD 和DEFG 有一个公共点D ,试比较三角形ADG 和三角形CDE 的面积.GFEDCBAA'GFEDCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【解析】 因为ADC ∠和GDE ∠是直角,所以ADG ∠和CDE ∠是互补角,将三角形ADG 顺时针旋转90︒到达'A DE ∆的位置,则'A 、D 、C 在同一条直线上,且'A D AD CD ==,即D 是'A C 的中点,所以三角形CDE 和三角形'A DE 面积相等,则三角形CDE 和三角形ADG 面积相等.【答案】相等【例 18】 如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,AC 、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE 的面积.F【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】资优杯 【解析】 如图,连接DE ,以A 点为中心,将ADE ∆顺时针旋转90︒到ABF ∆的位置. 那么90EAF EAB BAF EAB DAE ∠=∠+∠=∠+∠=︒,而AEB ∠也是90︒,所以四边形AFBE 是直角梯形,且3AF AE ==, 所以梯形AFBE 的面积为:()1353122+⨯⨯=(2cm ).又因为ABE ∆是直角三角形,根据勾股定理,222223534AB AE BE =+=+=,所以21172ABD S AB ∆==(2cm ).那么()17125BDE ABD ABE ADE ABD AFBE S S S S S S ∆∆∆∆∆=-+=-=-=(2cm ),所以12.52OBE BDE S S ∆∆==(2cm ).【答案】2.5【例 19】 如图,已知4cm AB AE ==,BC DC =,90BAE BCD ∠=∠=︒,10cm AC =,则S ABC ACE CDE S S ∆∆∆++=2cm .EDCBADEC 'A 'CBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】迎春杯、高年级、复赛、10题 【解析】 将三角形ABC 绕A 点和C 点分别顺时针和逆时针旋转90o ,构成三角形'AEC 和'A DC ,再连接''A C ,显然'AC AC ⊥,'AC A C ⊥,''AC A C AC ==,所以''ACA C 是正方形.三角形'AEC 和三角形'A DC 关于正方形的中心O 中心对称,在中心对称图形''ACA C 中有如下等量关系:''AEC A DC S S ∆∆=;''AEC A DC S S ∆∆=;'CED C DE S S ∆∆=.所以2'''11101050cm 22ABC ACE CDE AEC ACE CDE ACA C S S S S S S S ∆∆∆∆∆∆++=++==⨯⨯=W .【答案】50【例 20】 如图所示的四边形ABCD 中,45A C ∠=∠=°,105ABC ∠=°,15AB CD ==厘米,连接对角线BD ,30ABD ∠=︒.求四边形ABCD 的面积.DCB A DECBA【考点】平移、旋转、割补 【难度】4星 【题型】解答 【关键词】第八届、华杯总决赛 【解析】 由45A ∠=°,30ABD ∠=︒,可得1804530105ADB ∠=︒-︒-︒=︒,1053075DBC ∠=︒-︒=︒.将DBC ∆剪下来,翻转,再贴在BD 边上,即将B 点粘在D 点上,D 点粘在B 点上,如右上图所示.则C 点在E 点的位置.由于10575180ADB EDB ∠+∠=︒+︒=︒,所以A 、D 、E 三点在同一条直线上.由于45A E C ∠=∠=∠=°,所以90ABE ∠=︒,即ABE ∆是等腰直角三角形,它的面积就等于四边形ABCD 的面积,所以四边形ABCD 的面积为1515112.52⨯=平方厘米.【答案】112.5【例 21】 如图,在ABD ∆中,AB CD =,求“?”的度数.40°30°?DCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【解析】 如图,由于AB CD =,可以将ABC ∆移动到DCE ∆,由于180(3040)110ACB ∠=︒-︒+︒=︒,18011070ACD ∠=︒-︒=︒,所以7040110ACE ∠=︒+︒=︒,又110CED ∠=︒,而AC DE =,所以四边形ACED 是等腰梯形,有180********ADE CED ∠=︒-∠=︒-︒=︒,703040ADC ∠=︒-︒=︒. 点评:通过构造全等三角形来转化.【答案】40°【例 22】 下图三角形ABC 是等腰三角形,AB AC =,120BAC ∠=︒.三角形ADE 是正三角形,点D 在BC 边上,:2:3BD DC =.当三角形ABC 的面积是250cm 时,三角形ADE 的面积是多少?EDCBAGP R Q F ECBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【解析】 以点A 为中心,由三个三角形ABC 可拼成右图:连结QE 、RF 、GD ,则DEQFRG是一个正六边形.连结RD 、DQ 、RQ ,显然RDQ 是一个等边三角形,并且它的面积是正六边形面积的一半,所以是三角形ADE 的面积的3倍. 由于23150cm PBC ABC S S ∆∆=⨯=,根据“鸟头定理”,22336cm 3223DQC PBC S S ∆∆=⨯⨯=++,所以2342cm RDQ PBC DQC S S S ∆∆∆=-⨯=,则2342314cm ADE RDQ S S ∆∆=÷=÷=.【答案】14【例 23】 如图,正方形PQRS 有三个顶点分别在ABC ∆的三条边上,BQ QC =.求正方形PQRS 的面积.【考点】平移、旋转、割补 【难度】5星 【题型】解答 【解析】 如下图,我们设ABC ∆的面积为1,有161279341()122132111311143a e c db =---+=-⨯-⨯-⨯=,所以682143a e ==,751143b c d a ++=-=, 所以6875a b c d =++.如下图左,将三角形c 和三角形d 分别以P 、R 为中心按箭头方向旋转90︒,形成由两个直角三角形连在一起的一个四边形,如下图右,b 、c 、d 被虚线分成两个直角三角形,它们的面积之和为:276292230cm b c d ++=⨯÷+⨯÷=,所以2683027.2(cm )75a =⨯=.【答案】27.2【例 24】 如下图,△ABC 是边长为1的等边三角形,△BCD 是等腰三角形BD =CD ,顶角∠BDC =1200,∠MDN =600,求△AMN 的周长.120°60°M BD CNA【考点】平移、旋转、割补 【难度】4星 【题型】解答 【解析】 如下图, 延长AC 至P ,使CP =MB ,连接DP .120°60°M BD PC NA则有∠MBD =600+1163ADEDQRDEQSRT S S S ==V V 正六边形001801202-=∠PCD ;CP =BM ;BD =CD , 所以有△MBD ≌△PCD .于是∠MDC =∠PDC ;又因为∠MDB +∠NDC =600,所以∠PDC +∠NDC =∠NDP =600; MD =PD ,在△MDN 、△PND 中,∠NDM =∠NDP ,ND =ND ,MD =PD ,于是△MND ≌△PND .有MN =PN .因为NP =NP =NC +CP ,而AM =AB -MB =AB -CP ,所以AM+AN+MN=(AB-CP)+AN+(NC+CP)=AB+AN+NC=2.即△AMN的周长为2.【答案】2【例 25】若干个大小相同的正五边形如右图排成环状,下图中所示的只是3个五边形.那么要完成这一圈共需个正五边形.【考点】平移、旋转、割补【难度】4星【题型】解答【关键词】迎春杯、六年级、初赛、5题【解析】如图,设O为圆心,A、B、C、D为五边形的顶点,连接OA、OB、OC.DCBAO从图中可以看出,OAB△和OBC△是完全相同的,所以OBA OBC∠=∠,又五边形内角和为540°,所以正五边形的每个内角都为5405108÷=°°,即108ABD CBD∠=∠=°,那么3601082144ABC∠=︒-︒⨯=︒,则144272OBA∠=÷=°°,又OAB OBA∠=∠,所以18072236AOB∠=︒-︒⨯=︒所以要用3603610+=°°个正五边形才能围成一圈.【答案】10【例 26】如图,ABCD是矩形,BC=6cm, AB=10cm,AC和BD是对角线,图中的阴影部分以C 为轴旋转一周,则阴影部分扫过的立体的体积是多少立方厘米?(π取3.14)【考点】平移、旋转、割补【难度】3星【题型】解答【关键词】华杯赛、决赛、第11题【解析】①设三角形BCO以CD为轴旋转一周所得到的立体的体积是s,S等于高为10厘米,底面半径是6厘米的圆锥的体积减去2个高为5厘米,底面半径是3厘米的圆锥的体积。

四年级奥数旋转平移题目

四年级奥数旋转平移题目

四年级奥数旋转平移题目摘要:一、旋转与平移的基本概念1.旋转的定义与性质2.平移的定义与性质二、旋转与平移在奥数中的应用1.旋转在奥数中的应用2.平移在奥数中的应用三、四年级奥数旋转平移题目的解答技巧1.如何解决旋转题目2.如何解决平移题目3.旋转和平移的综合运用四、四年级奥数旋转平移题目的例题解析1.旋转题目例题解析2.平移题目例题解析3.旋转和平移的综合运用例题解析正文:一、旋转与平移的基本概念旋转是指将一个图形绕着一个定点旋转一定的角度,而平移是指将一个图形沿着一定的方向和距离移动。

这两种变换都不会改变图形的形状和大小,只会改变其位置。

二、旋转与平移在奥数中的应用在四年级的奥数中,旋转和平移常常被用来解决一些复杂的题目,比如在图形题中,通过旋转或平移可以使得原本复杂的图形变得简单,从而更容易进行计算。

三、四年级奥数旋转平移题目的解答技巧对于旋转题目,我们需要先确定旋转的中心和旋转的角度,然后根据旋转的性质,计算出旋转后图形的位置和大小。

对于平移题目,我们需要先确定平移的方向和距离,然后根据平移的性质,计算出平移后图形的位置和大小。

对于旋转和平移的综合运用题目,我们需要先确定旋转和平移的先后顺序,然后按照上述方法进行计算。

四、四年级奥数旋转平移题目的例题解析例如,一道旋转题可能是:“一个正方形,边长为4 厘米,绕其中心点逆时针旋转45 度后,求旋转后正方形的中心点到原正方形边界的距离。

”对于这类题目,我们需要先确定旋转的中心(即正方形的中心点),旋转的角度(即45 度),然后根据旋转的性质,计算出旋转后正方形的中心点到原正方形边界的距离。

再比如,一道平移题可能是:“一个长方形,长为6 厘米,宽为4 厘米,向右平移2 厘米,求平移后长方形的宽。

”对于这类题目,我们需要先确定平移的方向(即向右),平移的距离(即2 厘米),然后根据平移的性质,计算出平移后长方形的宽。

小学奥数4-2-5 平移、旋转、割补.专项练习及答案解析

小学奥数4-2-5 平移、旋转、割补.专项练习及答案解析

图形变换,是指不改变图形的大小、形状,只通过位置关系的改变(旋转、平移、折叠等),构成新的图形.【例 1】 右图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,它们的宽都是2,求草地部分的面积(阴影部分)有多大?【考点】平移、旋转、割补 【难度】2星 【题型】解答 【解析】 如图所示,将道路平移后的()()162102112-⨯-=。

【答案】112【例 2】 如图所示,一个正十二边形的边长是1厘米,空白部分是等边三角形,一共有12个.请算出阴影部分的面积.1cm【考点】平移、旋转、割补 【难度】3星 【题型】解答【解析】 如图,将阴影部分分割成一个正六边形和12个小三角形,再把正六边形分割成6个正三角形,由于正十二边形的每个内角为()180********︒⨯-÷=︒,所以阴影小三角形的顶角等于15060230︒-︒⨯=︒,每个顶角的两边和与其相邻的正三角形的底边所成的角都是306090︒+︒=︒,所以通过如右上图所示的平移可以组成6个边长为1厘米的正方形,所以所求阴影部分面积为2166⨯=平方厘米.【答案】6例题精讲4-2-5.平移、旋转、割补【例 3】 如图所示,梯形ABCD 中,AB 平行于CD ,又4BD =,3AC =,5AB CD +=.试求梯形ABCD 的面积.D CBAEDCBA【考点】平移、旋转、割补 【难度】3星 【题型】解答【解析】 如右图,将AB 沿AC 平移至CE ,连接BE ,在三角形BDE 中,有4BD =,3BE AC ==,5DE AB CD =+=,有222BD BE DE +=,所以三角形BDE 为直角三角形.由于A B D A B C B CS S S ∆∆∆==,所以梯形ABCD 的面积与三角形BDE 的面积相等,为13462⨯⨯=. 【答案】6【例 4】 如下图,六边形ABCDEF 中,AB ED =,AF CD =,BC EF =,且有AB 平行于ED ,AF 平行于CD ,BC 平行于EF ,对角线FD 垂直于BD ,已知24FD =厘米,18BD =厘米,请问六边形ABCDEF 的面积是多少平方厘米?FD CBAGF EDCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 如图,我们将BCD ∆平移使得CD 与AF 重合,将DEF ∆平移使得ED 与AB 重合,这样EF 、BC 都重合到图中的AG 了.这样就组成了一个长方形BGFD ,它的面积与原六边形的面积相等,显然长方形BGFD 的面积为2418432⨯=平方厘米,所以六边形ABCDEF 的面积为432平方厘米.【答案】432【例 5】 如图2,六边形ABCDEF 为正六边形,P 为对角线CF 上一点,若PBC 、PEF的面积为3与4,则正六边形ABCDEF 的面积是 .E【考点】平移、旋转、割补 【难度】4星 【题型】解答 【关键词】迎春杯、中年级、初赛、7题【解析】 这是一道几何问题,考察同学们对常见图形性质的认识.正六边形的六条边都相等,每个角都是,每一组对边都互相平行,正六边形可以看作是由六个正三角形拼成的(如图(1)).其中正六边形的面积是正三角形面积的6倍.每相邻两个正三角形拼成的是一个平行四边形.如图(2),连结BF ,三角形ABF 的面积是平行四边形ABFO 面积的一半.六边形ABCDEF 的面积是平行四边形ABFO 的3倍,故六边形ABCDEF 的面积是三角形ABF 的面积的6倍. 如图(3),连结BF ,CE ,三角形BCP 的面积与三角形EFP 的面积和是平行四边形BFEC 面积的一半.而六边形ABCDEF 的面积是平行四边形BFEC 的1.5倍,故六边形ABCDEF 的面积是三角形BCP 的面积与三角形EFP 的面积和的3倍.图(1)OAB CDEF图(2)OB ACDEF图(3)E所以,由PBC △、PEF △的面积分别为3与4, 可知正六边形ABCDEF 的面积是(34)321+⨯=.【答案】21【例 6】 正六边形A1A2A3A4A5A6的面积是2009平方厘米,B1,B2,B3,B4,B5,B6分别是正六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.A 3【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】迎春杯、六年级、初赛、14题【解析】 如图,设62B A 与13B A 的交点为O ,则图中空白部分由6个与23A OA △一样大小的三角形组成,只要求出了23A OA △的面积,就可以求出空白部分面积,进而求出阴影部分面积.43A 654连接63A A 、61B B 、63B A设116A B B △的面积为“1”,则126B A B △面积为“1”,126A A B △面积为“2”,那么636A AB △面积为126A A B △的2倍,为“4”,梯形1236A A A A 的面积为224212⨯+⨯=,263A B A △的面积为“6”,123B A A △的面积为2根据蝴蝶定理,1263261316B A B A A B B O A O S S ===△△∶∶,故21233612167A OAB A A S S ==+△△, 所以231236A A A A 121277A OA S S =△梯形∶∶∶1∶,即23A OA △的面积为梯形1236A A A A 面积的17,故为六边形123456A A A A A A 面积的114,那么空白部分的面积为正六边形面积的136147⨯=,所以阴影部分面积为32009111487⎛⎫⨯-= ⎪⎝⎭(平方厘米).【答案】1148【例 7】 按照图中的样子,在一平行四边形纸片上割去了甲、乙两个直角三角形.已知甲三角形两条直角边分别为2cm 和4cm ,乙三角形两条直角边分别为3cm 和6cm ,求图中阴影部分的面积.【考点】平移、旋转、割补 【难度】3星 【题型】解答【解析】 如右图,我们将三角形甲与乙进行平移,就会发现平行四边形面积等于平移后两个长方形面积之和.所以阴影部分面积为:2346236242211cm ⨯+⨯-⨯÷+⨯÷=()()【答案】11【例8】在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见右图),求图中阴影部分的面积占整个图形面积的几分之几.【考点】平移、旋转、割补【难度】3星【题型】解答【解析】阴影总值是一个梯形.我们用三种方法解答.⑴割补法从顶点作底边上的高,得到两个相同的直角三角形.将这两个直角三角形拼成一个长方形(见下图).显然,阴影部分正好是长方形的13,所以原题阴影部分占整个图形面积的13.⑵拼补法将两个这样的三角形拼成一个平行四边形(下页左上图).显然,图中阴影面积占平行四边形面积的13.根据商不变性质,将阴影面积和平行四边形面积同时除以2,商不变.所以原题阴影部分占整个图形面积的13.⑶等分法将原图等分成9个小三角形(见右上图),阴影部分占3个小三角形,所以阴影部分占整个图形面积的31 93 =.注意,后两种方法对任意三角形都适用.也就是说,将例题中的等腰三角形换成任意三角形,其它条件不变,结论仍然成立.【答案】1 3【例9】如下左图,有两个大小相同的完全重叠在一起的正方形,现在以点P为中心转动一个正方形.当5AB=厘米,13BC=厘米,12CA=厘米时(如下右图),求右图中的两个正方形相重叠部分的面积(注意,图的尺寸不一定准确).P【考点】平移、旋转、割补 【难度】3星 【题型】解答【解析】 右图由左图旋转而得,则右图中的8个空白小三角形都是完全相同的,右图中重叠部分的面积等于正方形面积减去4个小三角形的面积,从右图中可以看出正方形的边长为5131230++=厘米,所以重叠部分的面积为:2304(5122)780-⨯⨯÷=(平方厘米).【答案】780【例 10】 如图,在直角三角形中有一个正方形,已知10BD =厘米,7DC =厘米,求阴影部分的面积.【考点】平移、旋转、割补 【难度】4星 【题型】解答【解析】 绕D 点逆时针旋转CED ∆,使E 与F 重合,则C 点落在AB 边上的'C 点处,且'C D CD =.则阴影部分面积转化为直角三角形'BC D 的面积,所以阴影部分的面积为107235⨯÷=平方厘米.【答案】35【例 11】 四边形ABCD 中,AB =30,AD =48,BC =14,CD =40.又已知∠ABD +∠BDC =900,求四边形ABCD 的面积.DBA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 如下图,以BD 的垂直平分线为对称轴L ,做△ABD 关于L 的对称图形△A 'BD .连接A 'C .A 1IABCD因为∠ABD +∠BDC =9000而∠ABD =∠A 'DB =900,所以有∠A 'DB +∠BDC =900.那么A 'CD 为直角三角形,由勾股定理知2A C '=22AB CD +=2500,所以50A C '=.而在△A 'BC 中,有A 'B =AD =48,有482+142=2500,即A 'B 2+BC 2=A 'C 2,即△A 'BC 为直角三角形.有A CD A BCSS''+130402=⨯⨯114489362+⨯⨯=. 而|ABCD S 四边形A CDA BCSS''=+936=.评注:Ⅰ.本题以∠ABC +∠BDC =900突破口,通过对称变换构造出与原图形相关的角三角形Ⅱ.对于这道题我们还可以将△BCD 作L 的对称图形.如下:C 1lABCD【答案】936【例 12】 如图,在三角形ABD 中,当AB 和CD 的长度相等时,请求出“?”所示的角是多少度,给出过程.DCAB?30°40°【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 因为AB =CD ,于是可以将三角形ABC 的边BA 边与CD 对齐,如下图. 在下图中有∠BCA =110°,所以∠ACD =70°于是∠AC C '=∠ACD +∠DC C '=∠ACD +∠ABC =70°+40°=110°;A 1D C 1C B 1BA即∠AC C '=110°=∠CC D ';又因为C A ''只是CA 移动的变化,所以C A ''=CA ;则ABC A ''是一等腰梯形.于是,∠ADC '=180°-110°=70°;又∠CDC '=30°,所以∠ADC =70°-30°=40°.【答案】40°【例 13】 如图所示的四边形的面积等于多少?DB13131212【考点】平移、旋转、割补 【难度】4星 【题型】解答【解析】 题目中要求的四边形既不是正方形也不是长方形,难以运用公式直接求面积.我们可以利用旋转的方法对图形实施变换:把三角形OAB 绕顶点O 逆时针旋转,使长为13的两条边重合,此时三角形OAB 将旋转到三角形OCD 的位置.这样,通过旋转后所得到的新图形是一个边长为12的正方形,且这个正方形的面积就是原来四边形的面积.因此,原来四边形的面积为1212144⨯=.(也可以用勾股定理)【答案】144【例 14】 如图,三角形ABC 是等腰直角三角形,P 是三角形外的一点,其中90BPC ∠=︒,10cm AP =,求四边形ABPC 的面积.PDCBAP'PDCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 因为BAC ∠和BPC ∠都是直角,和为180︒,所以ABP ∠和ACP ∠的和也为180︒,可以旋转三角形APC ,使AC 和AB 重合,则四边形的面积转化为等腰直角三角形'AP P ,面积为1010250⨯÷=平方厘米.【答案】50【例 15】 如图所示,ABC ∆中,90ABC ∠=︒,3AB =,5BC =,以AC 为一边向ABC∆外作正方形ACDE ,中心为O ,求OBC ∆的面积.【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】武汉明心奥数【解析】 如图,将OAB ∆沿着O 点顺时针旋转90︒,到达OCF ∆的位置.由于90ABC ∠=︒,90AOC ∠=︒,所以180OAB OCB ∠+∠=︒.而OCF OAB ∠=∠, 所以180OCF OCB ∠+∠=︒,那么B 、C 、F 三点在一条直线上.由于OB OF =,90BOF AOC ∠=∠=︒,所以BOF ∆是等腰直角三角形,且斜边BF 为538+=,所以它的面积为218164⨯=.根据面积比例模型,OBC ∆的面积为516108⨯=. 【答案】10【例 16】 如图,直角梯形ABCD 中,AD BC ∥,AB BC ⊥,2AD =,3BC =,将腰CD以D 为中心逆时针旋转90︒至ED ,连接AE 、CE ,则AD E ∆的面积是 .ED CBAH FEDCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】武汉明心奥数【解析】 如图所示,将AD E ∆以D 为中心顺时针旋转90︒,到FDC ∆的位置.延长FD 与BC 交于H .由于ABCD 是直角梯形,AD 与FD 垂直,则四边形ADHB 是长方形,则BH AD =. 由于A D E ∆与FDC ∆面积相等,而FDC ∆的底边2F D A D ==,高321C H B CB H =-=-=,所以FDC ∆的面积为2121⨯÷=,那么AD E ∆的面积也为1.【答案】1【例 17】 如图,正方形ABCD 和DEFG 有一个公共点D ,试比较三角形ADG 和三角形CDE 的面积.GFEDCBAA'GFEDC BA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 因为ADC ∠和GDE ∠是直角,所以ADG ∠和CDE ∠是互补角,将三角形ADG 顺时针旋转90︒到达'A DE ∆的位置,则'A 、D 、C 在同一条直线上,且'A D AD CD ==,即D 是'A C 的中点,所以三角形CDE 和三角形'A D E 面积相等,则三角形CDE 和三角形ADG 面积相等.【答案】相等【例 18】 如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,AC 、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE 的面积.F【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】资优杯【解析】 如图,连接DE ,以A 点为中心,将AD E ∆顺时针旋转90︒到ABF ∆的位置. 那么90EAF EAB BAF EAB DAE ∠=∠+∠=∠+∠=︒,而AEB ∠也是90︒,所以四边形AFBE 是直角梯形,且3AF AE ==, 所以梯形AFBE 的面积为:()1353122+⨯⨯=(2cm ).又因为ABE ∆是直角三角形,根据勾股定理,222223534AB AE BE =+=+=,所以21172ABD S AB ∆==(2cm ). 那么()17125BDE ABD ABE ADE ABD AFBE S S S S S S ∆∆∆∆∆=-+=-=-=(2cm ),所以12.52OBE BDE S S ∆∆==(2cm ).【答案】2.5【例 19】 如图,已知4cm AB AE ==,BC DC =,90BAE BCD ∠=∠=︒,10cm AC =,则S ABC ACE CDE S S ∆∆∆++= 2cm .EDCBADEC 'A 'CBA【考点】平移、旋转、割补 【难度】5星 【题型】解答 【关键词】迎春杯、高年级、复赛、10题【解析】 将三角形ABC 绕A 点和C 点分别顺时针和逆时针旋转90,构成三角形'AEC 和'A DC ,再连接''A C ,显然'AC AC ⊥,'AC A C ⊥,''AC A C AC ==,所以''ACA C 是正方形.三角形'AEC 和三角形'A DC 关于正方形的中心O 中心对称,在中心对称图形''ACA C 中有如下等量关系: ''AEC A DC S S ∆∆=;''AEC A DC S S ∆∆=;'CED C DE S S ∆∆=.所以2'''11101050cm 22ABC ACE CDE AEC ACE CDE ACA C S S S S S S S∆∆∆∆∆∆++=++==⨯⨯=. 【答案】50【例 20】 如图所示的四边形ABCD 中,45A C ∠=∠=°,105ABC ∠=°,15AB CD ==厘米,连接对角线BD ,30ABD ∠=︒.求四边形ABCD 的面积.DCB A DECBA【考点】平移、旋转、割补 【难度】4星 【题型】解答【关键词】第八届、华杯总决赛【解析】 由45A ∠=°,30ABD ∠=︒,可得1804530105ADB ∠=︒-︒-︒=︒,1053075DBC ∠=︒-︒=︒.将DBC ∆剪下来,翻转,再贴在BD 边上,即将B 点粘在D 点上,D 点粘在B 点上,如右上图所示.则C 点在E 点的位置.由于10575180ADB EDB ∠+∠=︒+︒=︒,所以A 、D 、E 三点在同一条直线上.由于45A E C ∠=∠=∠=°,所以90ABE ∠=︒,即ABE ∆是等腰直角三角形,它的面积就等于四边形ABCD 的面积,所以四边形ABCD 的面积为1515112.52⨯=平方厘米. 【答案】112.5【例 21】 如图,在ABD ∆中,AB CD =,求“?”的度数.40°30°?DCBA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 如图,由于AB CD =,可以将ABC ∆移动到D C E ∆,由于180(3040)110ACB ∠=︒-︒+︒=︒,18011070ACD ∠=︒-︒=︒,所以7040110ACE ∠=︒+︒=︒,又110CED ∠=︒,而AC DE =,所以四边形ACED 是等腰梯形,有180********ADE CED ∠=︒-∠=︒-︒=︒,703040ADC ∠=︒-︒=︒. 点评:通过构造全等三角形来转化.【答案】40°【例 22】 下图三角形ABC 是等腰三角形,AB AC =,120BAC ∠=︒.三角形ADE 是正三角形,点D 在BC 边上,:2:3BD DC =.当三角形ABC 的面积是250cm 时,三角形ADE 的面积是多少?EDCBAGP R Q F EDCA【考点】平移、旋转、割补 【难度】5星 【题型】解答【解析】 以点A 为中心,由三个三角形ABC 可拼成右图:连结QE 、RF 、GD ,则DEQFRG 是一个正六边形.连结RD 、DQ 、RQ ,显然RDQ 是一个等边三角形,并且它的面积是正六边形面积的一半,所以是三角形ADE 的面积的3倍. 由于23150cm PBC ABC S S ∆∆=⨯=,根据“鸟头定理”,22336cm 3223DQC PBC S S ∆∆=⨯⨯=++, 所以2342cm RDQ PBC DQC S S S ∆∆∆=-⨯=,则2342314cm ADE RDQ S S ∆∆=÷=÷=. 【答案】14【例 23】 如图,正方形PQRS 有三个顶点分别在ABC ∆的三条边上,BQ QC =.求正方形PQRS 的面积.【考点】平移、旋转、割补 【难度】5星 【题型】解答 【解析】 如下图,我们设ABC∆的面积为1,有161279341()122132111311143a e c db =---+=-⨯-⨯-⨯=, 所以682143a e ==,751143b c d a ++=-=, 所以6875a b c d =++.如下图左,将三角形c 和三角形d 分别以P 、R 为中心按箭头方向旋转90︒,形成由两个直角三角形连在一起的一个四边形,如下图右,b 、c 、d 被虚线分成两个直角三角形,它们的面积之和为:276292230cm b c d ++=⨯÷+⨯÷=,所以2683027.2(cm )75a =⨯=.【答案】27.2【例 24】 如下图,△ABC 是边长为1的等边三角形,△BCD 是等腰三角形BD =CD ,顶角∠BDC =1200,∠MDN =600,求△AMN 的周长.120°60°M BD CNA【考点】平移、旋转、割补 【难度】4星 【题型】解答 【解析】 如下图, 延长AC 至P ,使CP =MB ,连接DP .120°60°M BD PC NA则有∠MBD =600+1163ADEDQRDEQSRT SS S ==正六边形001801202-=∠PCD ;CP =BM ;BD =CD ,所以有△MBD ≌△PCD .于是∠MDC =∠PDC ;又因为∠MDB +∠NDC =600,所以∠PDC +∠NDC =∠NDP =600;MD =PD ,在△MDN 、△PND 中,∠NDM =∠NDP ,ND =ND ,MD =PD ,于是△MND ≌△PND .有MN =PN .因为NP =NP =NC +CP ,而AM =AB -MB =AB -CP , 所以AM +AN +MN =(AB -CP )+AN +(NC +CP )=AB +AN +NC =2.即△AMN 的周长为2. 【答案】2【例 25】 若干个大小相同的正五边形如右图排成环状,下图中所示的只是3个五边形.那么要完成这一圈共需 个正五边形.【考点】平移、旋转、割补 【难度】4星 【题型】解答 【关键词】迎春杯、六年级、初赛、5题【解析】 如图,设O 为圆心,A 、B 、C 、D 为五边形的顶点,连接OA 、OB 、OC .DC BAO从图中可以看出,OAB △和OBC △是完全相同的,所以OBA OBC ∠=∠,又五边形内角和为540°,所以正五边形的每个内角都为5405108÷=°°,即108ABD CBD ∠=∠=°, 那么3601082144ABC ∠=︒-︒⨯=︒,则144272OBA ∠=÷=°°, 又OAB OBA ∠=∠,所以18072236AOB ∠=︒-︒⨯=︒ 所以要用3603610+=°°个正五边形才能围成一圈. 【答案】10【例 26】 如图,ABCD 是矩形,BC =6cm , AB=10cm ,AC 和BD 是对角线,图中的阴影部分以C 为轴旋转一周,则阴影部分扫过的立体的体积是多少立方厘米?(π取3.14)【考点】平移、旋转、割补 【难度】3星 【题型】解答 【关键词】华杯赛、决赛、第11题【解析】 ①设三角形BCO 以CD 为轴旋转一周所得到的立体的体积是s ,S 等于高为10厘米,底面半径是6厘米的圆锥的体积减去2个高为5厘米,底面半径是3厘米的圆锥的体积。

(小学奥数)平移、旋转、割补

(小学奥数)平移、旋转、割补

圖形變換,是指不改變圖形的大小、形狀,只通過位置關係的改變(旋轉、平移、折疊等),構成新的圖形.【例 1】 右圖是一塊長方形草地,長方形的長是16,寬是10.中間有兩條道路,一條是長方形,一條是平行四邊形,它們的寬都是2,求草地部分的面積(陰影部分)有多大?【例 2】 如圖所示,一個正十二邊形的邊長是1釐米,空白部分是等邊三角形,一共有12個.請算出陰影部分的面積.1cm 1cm 1cm【例 3】 如圖所示,梯形ABCD 中,AB 平行於CD ,又4BD =,3AC =,5AB CD +=.試求梯形ABCD 的面積.例題精講4-2-5.平移、旋轉、割補D CB A E DC BA【例 4】 如下圖,六邊形ABCDEF 中,AB ED =,AF CD =,BC EF =,且有AB 平行於ED ,AF 平行於CD ,BC 平行於EF ,對角線FD 垂直於BD ,已知24FD =釐米,18BD =釐米,請問六邊形ABCDEF 的面積是多少平方釐米?FE D CB A G F ED C BA【例 5】 如圖2,六邊形ABCDEF 為正六邊形,P 為對角線CF 上一點,若PBC 、PEF 的面積為3與4,則正六邊形ABCDEF 的面積是 .E【例 6】 正六邊形A1A2A3A4A5A6的面積是2009平方釐米,B1,B2,B3,B4,B5,B6分別是正六邊形各邊的中點;那麼圖中陰影六邊形的面積是 平方釐米.4A 3【例 7】 按照圖中的樣子,在一平行四邊形紙片上割去了甲、乙兩個直角三角形.已知甲三角形兩條直角邊分別為2cm 和4cm ,乙三角形兩條直角邊分別為3cm 和6cm ,求圖中陰影部分的面積.【例 8】 在一個等腰三角形中,兩條與底邊平行的線段將三角形的兩條邊等分成三段(見右圖),求圖中陰影部分的面積占整個圖形面積的幾分之幾.【例 9】如下左圖,有兩個大小相同的完全重疊在一起的正方形,現在以點P為中心轉動一個正方形.當5CA=釐米時(如下右圖),AB=釐米,13BC=釐米,12求右圖中的兩個正方形相重疊部分的面積(注意,圖的尺寸不一定準確).ArrayP【例 10】如圖,在直角三角形中有一個正方形,已知10DC=釐米,求陰BD=釐米,7影部分的面積.【例 11】四邊形ABCD中,AB=30,AD=48,BC=14,CD=40.又已知∠ABD+∠BDC=900,求四邊形ABCD的面積.DC BA【例 12】 如圖,在三角形ABD 中,當AB 和CD 的長度相等時,請求出“?”所示的角是多少度,給出過程.DC AB ?30°40°【例 13】 如圖所示的四邊形的面積等於多少?D B 13131212【例 14】 如圖,三角形ABC 是等腰直角三角形,P 是三角形外的一點,其中90BPC ∠=︒,10cm AP =,求四邊形ABPC 的面積.PD C B A P'P D CB A【例 15】 如圖所示,ABC ∆中,90ABC ∠=︒,3AB =,5BC =,以AC 為一邊向ABC ∆外作正方形ACDE ,中心為O ,求OBC ∆的面積.【例 16】 如圖,直角梯形ABCD 中,AD BC ∥,AB BC ⊥,2AD =,3BC =,將腰CD 以D 為中心逆時針旋轉90︒至ED ,連接AE 、CE ,則ADE ∆的面積是 .ED CB A H FE DC B A【例 17】 如圖,正方形ABCD 和DEFG 有一個公共點D ,試比較三角形ADG 和三角形CDE 的面積.GFE DC B AA'G FE D C B A【例 18】 如圖,以正方形的邊AB 為斜邊在正方形內作直角三角形ABE ,90AEB ∠=︒,AC 、BD 交於O .已知AE 、BE 的長分別為3cm 、5cm ,求三角形OBE 的面積.F【例 19】 如圖,已知4cm AB AE ==,BC DC =,90BAE BCD ∠=∠=︒,10cm AC =,則S ABC ACE CDE S S ∆∆∆++=2cm .ED C B A D EC 'A 'CBA【例 20】 如圖所示的四邊形ABCD 中,45A C ∠=∠=°,105ABC ∠=°,15AB CD ==釐米,連接對角線BD ,30ABD ∠=︒.求四邊形ABCD 的面積.D C B A DECBA【例 21】 如圖,在ABD ∆中,AB CD =,求“?”的度數.40°30°?D C B AD【例 22】 下圖三角形ABC 是等腰三角形,AB AC =,120BAC ∠=︒.三角形ADE 是正三角形,點D 在BC 邊上,:2:3BD DC =.當三角形ABC 的面積是250cm 時,三角形ADE 的面積是多少?ED CB A G PR QFE D C B A【例 23】 如圖,正方形PQRS 有三個頂點分別在ABC ∆的三條邊上,BQ QC =.求正方形PQRS 的面積.【例 24】 如下圖,△ABC 是邊長為1的等邊三角形,△BCD 是等腰三角形BD =CD ,頂角∠BDC =1200,∠MDN =600,求△AMN 的周長.120°60°MBD C NA【例 25】若干個大小相同的正五邊形如右圖排成環狀,下圖中所示的只是3個五邊形.那麼要完成這一圈共需個正五邊形.【例 26】如圖,ABCD是矩形,BC=6cm, AB=10cm,AC和BD是對角線,圖中的陰影部分以C為軸旋轉一周,則陰影部分掃過的立體的體積是多少立方釐米?(π取3.14)【例 27】一個半徑為1釐米的圓盤沿著一個半徑為4釐米的圓盤外側做無滑動的滾動,當小圓盤的中心圍繞大圓盤中心轉動90度後(如圖2),小圓盤運動過程中掃出的面積是()平方釐米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形变换,是指不改变图形的大小、形状,只通过位置关系的改变(旋转、平移、折叠等),构成新的图形.
【例 1】 右图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是
长方形,一条是平行四边形,它们的宽都是2,求草地部分的面积(阴影部分)有多大?
【例 2】 如图所示,一个正十二边形的边长是1厘米,空白部分是等边三角形,一共有12
个.请算出阴影部分的面积.
1cm
【例 3】 如图所示,梯形ABCD 中,AB 平行于CD ,又4BD =,3AC =,5AB CD +=.试
求梯形ABCD 的面积.
D C
B
A
E
D
C
B
A
【例 4】 如下图,六边形ABCDEF 中,AB ED =,AF CD =,BC EF =,且有AB 平行
于ED ,AF 平行于CD ,BC 平行于EF ,对角线FD 垂直于BD ,已知24FD =厘
例题精讲
4-2-5.平移、旋转、割补
米,18BD 厘米,请问六边形ABCDEF 的面积是多少平方厘米?
F
D B
A
G
F E
D
C
B
A
【例 5】 如图2,六边形ABCDEF 为正六边形,P 为对角线CF 上一点,若PBC 、PEF 的
面积为3与4,则正六边形ABCDEF 的面积是 .
E
【例 6】 正六边形A1A2A3A4A5A6的面积是2009平方厘米,B1,B2,B3,B4,B5,B6分别是正
六边形各边的中点;那么图中阴影六边形的面积是 平方厘米.
4
A 3
【例 7】 按照图中的样子,在一平行四边形纸片上割去了甲、乙两个直角三角形.已知甲
三角形两条直角边分别为2cm 和4cm ,乙三角形两条直角边分别为3cm 和6cm ,求图中阴影部分的面积.
【例8】在一个等腰三角形中,两条与底边平行的线段将三角形的两条边等分成三段(见
.
右图),求图中阴影部分的面积占整个图形面积的几分之几
【例9】如下左图,有两个大小相同的完全重叠在一起的正方形,现在以点P为中心转动一个正方形.当5
CA=厘米时(如下右图),求右图
AB=厘米,13
BC=厘米,12
中的两个正方形相重叠部分的面积(注意,图的尺寸不一定准确).Array
P
【例10】如图,在直角三角形中有一个正方形,已知10
DC=厘米,求阴影
BD=厘米,7
部分的面积.
【例11】四边形ABCD中,AB=30,AD=48,BC=14,CD=40.又已知∠ABD+∠BDC=900,求四边形ABCD的面积.
D
B
A
【例 12】 如图,在三角形ABD 中,当AB 和CD 的长度相等时,请求出“?”所示的角是多少度,
给出过程.
D
C
A
B
?
30°40°
【例 13】 如图所示的四边形的面积等于多少?
D
B
13
13
12
12
【例 14】 如图,三角形ABC 是等腰直角三角形,P 是三角形外的一点,其中90BPC ∠=︒,
10cm AP =,求四边形ABPC 的面积.
P
D
C
B
A
P'
P
D
C
B
A
【例 15】 如图所示,ABC ∆中,90ABC ∠=︒,3AB =,5BC =,以AC 为一边向ABC ∆外
作正方形ACDE ,中心为O ,求OBC ∆的面积.
【例 16】 如图,直角梯形ABCD 中,AD BC ∥,AB BC ⊥,2AD =,3BC =,将腰CD 以
D 为中心逆时针旋转90︒至ED ,连接A
E 、CE ,则ADE ∆的面积是 .
E
D C
B
A
H F
E
D
C
B
A
【例 17】 如图,正方形ABCD 和DEFG 有一个公共点D ,试比较三角形ADG 和三角形
CDE 的面积.
G
F
E
D
C
B
A
A'G
F
E
D
C B
A
【例 18】 如图,以正方形的边AB 为斜边在正方形内作直角三角形ABE ,90AEB ∠=︒,
AC 、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ,求三角形OBE 的面积.
F
【例 19】 如图,已知4cm AB AE ==,BC DC =,90BAE BCD ∠=∠=︒,10cm AC =,则
S ABC ACE CDE S S ∆∆∆++=
2cm .
E
D
C
B
A
D
E
C '
A '
C
B
A
【例 20】 如图所示的四边形ABCD 中,45A C ∠=∠=°,105ABC ∠=°,15AB CD ==厘米,
连接对角线BD ,30ABD ∠=︒.求四边形ABCD 的面积.
D
C
B A D
E
C
B
A
【例 21】 如图,在ABD ∆中,AB CD =,求“?”的度数.
40°
30°
?D
C
B
A
D
【例 22】 下图三角形ABC 是等腰三角形,AB AC =,120BAC ∠=︒.三角形ADE 是正三
角形,点D 在BC 边上,:2:3BD DC =.当三角形ABC 的面积是250cm 时,三角形ADE 的面积是多少?
E
D
C
B
A
G
P R Q F E
D
C
A
【例 23】 如图,正方形PQRS 有三个顶点分别在ABC ∆的三条边上,BQ QC =.求正方形
PQRS 的面积.
【例 24】 如下图,△ABC 是边长为1的等边三角形,△BCD 是等腰三角形BD =CD ,顶角
∠BDC =1200,∠MDN =600
,求△AMN 的周长.
120°
60°M B
D C
N
A
【例 25】 若干个大小相同的正五边形如右图排成环状,下图中所示的只是3个五边形.那
么要完成这一圈共需
个正五边形.
【例 26】 如图,ABCD 是矩形,BC =6cm , AB=10cm ,AC 和BD 是对角线,图中的阴影部分以C
为轴旋转一周,则阴影部分扫过的立体的体积是多少立方厘米?(π取3.14)
【例 27】 一个半径为1厘米的圆盘沿着一个半径为4厘米的圆盘外侧做无滑动的滚动,当
小圆盘的中心围绕大圆盘中心转动90度后(如图2),小圆盘运动过程中扫出的面积是( )平方厘米。

(=3.14)。

相关文档
最新文档