初中数学选择填空解题技巧+模拟考试题50练)
中考数学选择题、填空题、压轴题解题技巧
初中数学选择题、填空题、压轴题解题技巧!含例题分析01选择题解题技巧▼ 方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
▼方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
▼方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
▼方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元▼方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
▼方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。
▼方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
▼方法八:枚举法列举所有可能的情况,然后作出正确的判断。
例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。
▼方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
初中数学解题技巧(史上最全)
初中数学解题技巧(史上最全)初中数学解题技巧(史上最全)目录一选择填空题解题技巧(一)二选择填空题解题技巧(二)三初中数学常用十大解题技巧举例四数学思想在初中数学解题中的应用选择题与填空题解题技巧(一)选择题和填空题是中考中必考的题目,主要考查对概念、基础知识的理解、掌握及其应用.填空题所占的比例较大,是学生得分的重要来源.近几年,随着中考命题的创新、改革,相继推出了一些题意新颖、构思精巧、具有一定难度的新题型.这就要求同学切实抓好基础知识的掌握,强化训练,提高解题的能力,才能在中考中减少失误,有的放矢,从容应对.解题规律:要想迅速、正确地解选择题、填空题,除了具有准确计算能力、严密的推理能力外,还要有解选择题、填空题的方法与技巧.常用方法有以下几种:(1)直接推演法:直接从命题给出的条件出发,运用概念,公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法.(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代人条件中去验证,找出正确答案.此法称为验证法(也称代入法).当遇到定量命题时,常用此法.(3)特值法:用合适的特殊元素(如数或图形)代人题设条件或结论中去,从而获得解答.这种方法叫特殊元素法.(4)排除、筛选法;对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法.(5)分析法:直接通过对选择题的条件和结论,作详尽地分析、归纳和判断,从而选出正确的结果,称为分析法.(7)下列命题中,真命题的个数为()如果四边形的两条对角线互相垂直,那么它的面积等于两条对角线长的积的一半,③,3,圆心距为2 A.1B.2C.3D.4与的值为()A.2006 B.2007 C.2008D.20093.(图解法)已知二次函数的图象过点A(1,2),B(3,2), C(5,7).若点M(-2,y1),N(-1,y2),K(8,y3)也在二次函数<y2 B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2轴上方的一部分,对于这段图象与最C.D.)已知:二次函数的值为()A.-1 B .1 C. -3D,∠A=90°从点D出发,以1cm/s的速度向点A运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.(s)的函数图象大致是(7.(分析法)已知α为锐角,则m=sinα+cosα的值()A.m=1 C.验证法:)下列命题:①若;②若,则一元二次方程有两个不相等的实数根;③若,则一元二次方程有两个不相等的实数根;④若,则二次函数的图像与坐标轴的公共点的个数是2或3.其中正确的是().A.只有①②③B.只有①③④C.只有①④D.只有②③④.(图2)的形状、大小完全相同.ww(1;④点图1。
初中全年级数学选择填空题解题技巧
初中全年级数学选择填空题解题技巧一.选择题观察法:观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
1.下列比较大小正确的是()A.0<﹣1B.2<﹣3C.−23<−34D.−13<−0.33【分析】根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,进而分析得出答案.【解答】解:A、0>﹣1,故此选项错误;B、2>﹣3,故此选项错误;C、−23>−34,故此选项错误;D、−13<−0.33,正确.故选:D.直接求解法:直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做选择题时大部分都是采用这种方法。
2.用四舍五入法将0.0257精确到0.001结果是()A.0.03B.0.026C.0.025D.0.0257【分析】把万分位上的数字7进行四舍五入即可求解.【解答】解:0.0257≈0.026(精确到0.001).故选:B.观察法:观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
3.若x表示一个一位数,y表示一个两位数,小明把x放在y的右边来组成一个三位数,你认为下列表达式中能表示这个数的是()A.yx B.x+y C.10y+x D.10x+y 【分析】根据x表示一个一位数,y表示一个两位数,把x放在y的右边,即y扩大了10倍,x不变,即可得出答案.【解答】解:用x、y来组成一个三位数,且把x放在y的右边,则这个三位数上个位数是x,则这个三位数可以表示成:10y+x.故选:C.直接求解法:直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做选择题时大部分都是采用这种方法。
4.如果某台家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么这台电冰箱冷冻室的温度为()A.﹣26℃B.﹣22℃C.﹣18℃D.﹣16℃【答案】C【解析】∵4−22=−18,∴这台电冰箱冷冻室的温度为−18℃.故选:C.直接求解法:直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
初中数学解题技巧(史上最全)
初中数学解题技巧(史上最全)初中数学选择题、填空题解题技巧(完美版) 选择题目在初中数学试题中所占的比重不是很大,但是又不能失去这些分数,还要保证这些分数全部得到。
因此,要特别掌握初中数学选择题的答题技巧,帮助我们更好的答题,选择填空题与大题有所不同,只求正确结论,不用遵循步骤。
我们从日常的做题过程中得出以下答题技巧,跟同学们分享一下。
1.排除选项法:选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
2.赋予特殊值法:即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
3.通过猜想、测量的方法,直接观察或得出结果:这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
4、直接求解法:有些选择题本身就是由一些填空题,判断题,解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元5、数形结合法:解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
6、代入法:将选择支代入题干或题代入选择支进行检验,然后作出判断。
7、观察法:观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
8、枚举法:列举所有可能的情况,然后作出正确的判断。
例如,把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )(A)5种(B)6种(C)8种(D)10种。
初中数学各种题型解题技巧与分析及练习题(含答案解析)
初中数学各种题型解题技巧与分析及练习题(含答案解析)选择题法大全方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。
方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
方法八:枚举法列举所有可能的情况,然后作出正确的判断。
例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。
方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
初中数学填空题答题技巧
初中数学填空题答题技巧初中数学填空题是数学考试中常见的一种题型,它主要考查学生的基础知识掌握程度和解决问题的能力。
填空题的特点是题量多、覆盖面广、答题时间短。
因此,掌握一定的答题技巧对提高答题效率和准确率非常有帮助。
以下是一些初中数学填空题的答题技巧:一、认真审题,明确题意在做填空题时,首先要认真阅读题目,确保理解题目的要求。
注意题目中的关键词和特殊符号,如“不等于”、“大于等于”等,避免因为粗心大意而失分。
二、掌握基础知识,熟练运用公式填空题涉及的知识点较多,要求学生对基础知识有较好的掌握。
在平时的学习中,要熟练掌握各种数学公式、定理和性质,以便在考试时能够迅速运用。
三、合理运用代入法当遇到一些难以直接求解的填空题时,可以尝试代入法。
将可能的答案逐一代入题目中,验证其是否符合题意。
这种方法尤其在选择题中较为有效。
四、注意排除法在填空题中,有时可以通过排除法来确定答案。
根据题目信息,排除不符合题意的选项,从而缩小答案范围,提高答题准确率。
五、仔细检查,确保无误在完成填空题后,要留出一定的时间进行检查。
检查时要注意以下几点:1.确认答案是否符合题意;2.检查计算过程是否有误;3.仔细核对符号、数字等,避免因粗心大意而失分。
六、合理安排时间,注意答题顺序在考试过程中,要合理安排时间,不要在某个难题上耗费过多时间。
遇到暂时无法解决的题目,可以先跳过,待完成其他题目后再回来解决。
同时,注意填空题的答题顺序,先易后难,提高答题效率。
总之,初中数学填空题的答题技巧主要包括认真审题、掌握基础知识、合理运用代入法和排除法、仔细检查以及合理安排时间和答题顺序。
初中数学选择填空大题压轴题技巧及练习
第1讲选择压轴题专练--代数证明巩固训练1.有依次排列的3个正整数:x ,y ,z ,且y z x >>,现规定:对任相邻的两个数,都用右边的数减去左边的数,所得的差写在这两个数之间,可产生一个新数串:x ,()y x -,y ,()z y -,z ,这称为第一次操作;做第二次同样的操作后可产生又一个新数串,……,继续依次操作下去.下列说法:①第一次操作后,所有数之和为:2z y +.②第二次同样操作后的数串是:x ,()2y x -,()y x -,x ,y ,()2z y -,()z y -,y ,z .③第n 次同样操作后,所有数之和为:()x y z n z x +++-.其中正确的个数是()A .0B .1C .2D .32.有依次排列的3个整式:,6,3x x x +-,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串.例如:,6,6,9,3x x x +--,我们称它为整式串1;将整式串1按上述方式再做一次操作,可以得到整式串2;以此类推.通过实际操作,得出以下结论:①整式串2为:,6,6,,6,15,9,6,3x x x x x x x -+---+-;②整式串3的所有整式的和比整式串2的所有整式的和大3;③整式串5共67个整式;④整式串2022的所有整式的和为36063x -;上述四个结论正确的有()个.A .1B .2C .3D .4第2讲填空压轴题专练--材料阅读(新定义)知识储备:有理数的混合运算,绝对值的意义、列代数式、整式的加减、二元一次方程组的应用、不等式组的整数解、实数的运算、不定方程的应用、乘法公式、因式分解的运用、数的整除、分类讨论思想等——代数综合题型,考察代数综合能力!类型一:整除1、如果一个三位数m 满足各个数位上的数字互不相同,且都不为零,那么称这个三位数为“互异数”.将“互异数”m 的个位数字去掉,得到一个两位数m ',将其与m 的个位数字的差记为()F m ,将m 的十位数字与个位数字的差记为()G m .已知一个三位正整数()20512m x y =++(其中x 、y 都是整数,且19,19x y ≤≤≤≤)是“互异数”,()()F m G m 为整数且能被13整除,则满足条件的“互异数”m 的最大值___________.2、把一个四位数N 的各个数位上的数字(均不为零)之和记为()G N ,把N 的千位数字与百位数字的乘积记为()P N ,十位数字与个位数字的乘积记为()Q N ,称()()()G N P N Q N -为N 的“乐育天下值”.(1)8253的“乐育天下值”为______;(2)若N 的千位与个位数字之和能被8整除,且()15G N =,N 的“乐育天下值”为3,则满足条件的N 的最大值是______.3.材料一:对于一个三位正整数,若百位数字与个位数字之和减去十位数字的差为3,则称这个三位数为“尚美数”,例如:234,因为2433+-=,所以234是“尚美数”;材料二:若t abc =(19a ≤≤,09b ≤≤,09c ≤≤,且a ,b ,c 均为整数),记()2F t a c =-.已知12t yz =,2t myn =是两个不同的“尚美数(18y ≤≤,19z ≤≤,19m n ≤<≤且y ,z ,m ,n 均为整数),且()()1224F t F t n ++能被13整除,则1t 的值为______.类型二:特殊数型1、如果一个四位自然数t 的各个数位上的数字均不为0,且满足千位数字与十位数字的和为9,百位数字与个位数字的差为1,那么称t 为“九一数”.把t 的千位数字的2倍与个位数字的和记为()P t ,百位数字的2倍与十位数字的和记为()Q t ,令()()()2P t G t Q t =,当()G t 为整数时,则称t 为“整九一数”.若2000100010010M a b c d =++++(其中14a ≤≤,19b ≤≤,19c ≤≤,19d ≤≤且a 、b 、c 、d 均为整数)是“整九一数”,则满足条件的M 的最大值为______.2.对于一个各数位数字均不为零的四位自然数m ,若千位与百位数字之和等于十位与个数位数字之和,则称m 为“一致数”.设一个“一致数”m abcd =满足8a ≤且1d =,将m 的千位与十位数字对调,百位与个位数字对调得到新数m ',并记()101m m F m '+=;一个两位数102N a b =+,将N 的各个数位数字之和记为()G N ;当2()()43F m G N a k --=+(k 为整数)时,则所有满足条件的“一致数”m 中,满足()G N 为偶数时,k 的值为______,m 的值为______.3、一个各位数字都不为0的四位正整数m ,若千位与个位数字相同,百位与十位数字相同,则称这个数m 为“双胞蛋数”,将千位与百位数字交换,十位与个位数字交换,得到一个新的“双胞蛋数”m ',并规定()11m m F m '-=.若已知数m 为“双胞蛋数”,设m 的千位数字为a ,百位数字为b ,且a b ¹,若()54F m 是一个完全平方数,则a b -=__________,满足条件的m 的最小值为__________.4、若一个四位正整数abcd 满足:a c b d +=+,我们就称该数是“交替数”,则最小的“交替数”是______;若一个“交替数”m 满足千位数字与百位数字的平方差是15,且十位数字与个位数的和能被5整除.则满足条件的“交替数”m 的最大值为______.类型三:给定等量关系(方程)1、对任意一个四位数m ,如果m 各个数位上的数字都不为零且互不相同,满足个位与千位的和等于十位与百位的和,那么称这个数为“镜面数”,将一个“镜面数”个位与千位两个数位对调后得到一个新的四位数1m ,将它的十位与百位两个数位对调后得到另一个新四位数2m ,记F (m )=121111m m +.例如1234m =,对调个位与千位上的数字得到14321=m ,对调十位与百位上的数字得到21324m =,这两个四位数的和为12432113245555+=+=m m ,所以()1255551234511111111+===m m F ,若s ,t 都是“镜面数”,其中100010032,150010s x y t e f=++=++(19,19,1919,,,,x y e ,f x y e f ≤≤≤≤≤≤≤≤都是正整数),规定:()=()F S K F t ,当()()19F s F t +=时,k 的最大值为k =________..2、对于任意一个四位数m ,若它的千位数字与百位数字的和等于十位数字与个位数字的和,则称这个四位数m 为“天平数”,记()F m 为m 的各个数位上的数字之和.例如:1432m =,1432+=+ ,1432∴是“天平数”,()1432143210F =+++=;6397m =,6397+≠+ ,6397∴不是“天平数”.求出()5234F ______;已知M ,N 均为“天平数”,其中1000100320M x b y =+++,(19x ≤≤,06b ≤≤,09y ≤≤,x ,b ,y 是整数),200010010N a b c d =+++,(14a ≤≤,06b ≤≤,09c ≤≤,09d ≤≤,a ,b ,c ,d 是整数),若()()264F M F N ⋅=,求出满足条件的M 的最大值______.类型四:构造(转化思想)1、若一个两位数N 满足N ab a b =++,其中a 、b 均为正整数,则称N 为好数,那么最大的好数是________;若a 、b 同时还满足3ab a b=+或4,则称N 为绝对好数,那么绝对好数的个数为________.第3讲解答压轴题专练--几何证明【高频考点一】中点证明【高频考点二】线段关系猜想与证明及系数构造1、(BZ )在Rt ABC ∆中,90CAB ∠=︒,点D 是边AB 的中点,连接CD ,点E 在边BC 上,且AE CD ⊥交CD 于点F .(1)如图1,当60ACB ∠=︒时,若CD =AF 的长;(2)如图2,当45ACB ∠=︒时,连接BF ,求证:CD DF AF +=;(3)如图3,当75ACB ∠=︒时,直接写出FA CF 的值.2、(YZ )在ABC 和ADE V 中,90BAC ADE ∠=∠=︒,AB AC =,DE DA =,且AB AD >.(1)如图1,当点D 在线段AB 上时,连接EC ,若AC =,3AE =,求线段EC 的长;(2)如图2,将图1中ADE V 绕着点A 逆时针旋转,使点D 在ABC 的内部,连接BD ,CD .线段AE ,BD 相交于点F ,当DCB DAC ∠=∠时,求证:BF DF =;线段关系猜想与证明3、(BSBS)在平行四边形ABCD中,AC=BC,BE⊥AC分别交直线AC、AD于点E、F.点G是BC上一点,连接EG,过点G作GQ⊥AB分别交BF、AB于点P、Q.(1)如图1,若AB=AC,BE=3,求AF的长度.(2)如图2,若PG=2BQ,请探究EG、BG、CG的数量关系,并说明理由.【实战演练】1.(NK )如图,在平行四边形ABCD 中,AE 平分BAD ∠,交BC 于点E ,点F 是线段BE 上一点,连接AF ,点G 是线段AB 上一点,连接EG ,交AF 于点N .(1)如图1,若45B ∠=︒,AB =,求ABE 的面积;(2)如图2,点H 是线段AF 的中点,连接EH ,若B BEH AEG ∠=∠=∠,求证:CD BF BG =+;2.(BS )ABC 中,AB AC =,D 为BC 上一点.(1)如图1,若30C ∠=︒,2AB AD CD ⊥=,,求BC .(2)如图2,点E 为ABC 外一点,且满足BD CE =,连接AE ,点F 为AC 上一点,连接BF 交AD 于点M ,若180CBF AEC ACE ACB ∠=∠∠+∠=︒,,求证:AM DM =.3.(BZ )如图,在ABC 中,90BAC ∠=︒,AB AC =,D ,E 分别为BC 上两动点,BD CE =.(1)如图1,若EH AD ⊥于H 交AB 于K ,求证:AE EK =;(2)如图2,若EF AD ∥交AC 于F ,GF AG ⊥,AG GF =,求证:AD EF +=;第4讲解答压轴题专练--几何最值瓜豆原理(主从联动)最值问题【模型总结】运动轨迹为直线问题1:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?问题2:如图,点C为定点,点P、Q为动点,CP=CQ,且∠PCQ为定值,当点P在直线AB上运动,Q的运动轨迹是?模型总结条件:主动点、从动点与定点连线的夹角是定量;主动点、从动点到定点的距离之比是定量.结论:①主动点、从动点的运动轨迹是同样的图形;②主动点路径做在直线与从动点路径所在直线的夹角等于定角③当主动点、从动点到定点的距离相等时,从动点的运动路径长等于主动点的运动路径长;【例题精讲】【例1】.如图,在平面直角坐标系中,A(-3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.变式训练【变式1-1】.如图,△APQ是等腰直角三角形,∠PAQ=90°,当点P在线段BC上运动时,画出点Q的运动轨迹.【变式1-2】.如图,等边△ABC中,AB=BC=AC=6,点M是BC边上的高AD所在直线上的点,以BM为边作等边△BMN,连接DN,则DN的最小值为.【变式1-3】.如图,已知点A(﹣3,0),B(0,3),C(﹣1,4),动点P在线段AB 上,点P、C、M按逆时针顺序排列,且∠CPM=90°,CP=MP,当点P从点A运动到点B时,则点M运动的路径长为.【例2】.如图,边长为5的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A.B.1C.2D.变式训练【变式2-1】.如图,等边△ABC的边长为4,点D是边AC上的一动点,连接BD,以BD为斜边向上作等腰Rt△BDE,连接AE,则AE的最小值为()A.1B.C.2D.2【变式2-2】.如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB 边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为()A.0.5B.2.5C.D.1【变式2-3】.如图,等腰Rt△ABC中,斜边AB的长为4,O为AB的中点,P为AC 边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C 时,点M所经过的路线长为.【实战演练】1.(BZ )如图,在ABC 中,90BAC ∠=︒,AB AC =,D ,E 分别为BC 上两动点,BD CE =.(1)如图1,若EH AD ⊥于H 交AB 于K ,求证:AE EK =;(2)如图2,若EF AD ∥交AC 于F ,GF AG ⊥,AG GF =,求证:AD EF +=;(3)如图3,若4AB =,将AE 绕点E 顺时针旋转90︒得EM ,N 为BM 中点,当1AN+AM 2取得最小值时,请直接写出ACD 的面积.2.(BS )ABC 中,AB AC =,D 为BC 上一点.(1)如图1,若30C ∠=︒,2AB AD CD ⊥=,,求BC .(2)如图2,点E 为ABC 外一点,且满足BD CE =,连接AE ,点F 为AC 上一点,连接BF 交AD 于点M ,若180CBF AEC ACE ACB ∠=∠∠+∠=︒,,求证:AM DM =.(3)如图3,当AB =+,60BAC ∠=︒且D 为BC 中点时,E 为射线AD 上一动点,连接CE ,以CE 为边作等边CEF △,连接BF .EF 交BC 于点M ,当满足BF BM =时,N 为FM 上一点,且1FN 2=,作NH CM ∥交CF 于点H ,将CFM △绕点C 顺时针旋转()0360αα︒≤<得CF M '' ,N 、H 的对应点分别为N H ''、,直接写出整个旋转过程中ABH ' 面积的最小值.3.(NK )如图,在平行四边形ABCD 中,AE 平分BAD ∠,交BC 于点E ,点F 是线段BE 上一点,连接AF ,点G 是线段AB 上一点,连接EG ,交AF 于点N .(1)如图1,若45B ∠=︒,AB =,求ABE 的面积;(2)如图2,点H 是线段AF 的中点,连接EH ,若B BEH AEG ∠=∠=∠,求证:CD BF BG =+;(3)如图3,若=60B ∠︒,AG BF =,24BE EC ==,4ANG EAF ∠=∠,将ANG绕着点A 旋转,得到''AN G .连接'N D .点O 是线段'N D 的中点,连接CO .请直接写出线段CO 长度的最小值.。
初中数学选择填空题解题技巧、模拟考试题50练
初中数学选择填空题解题技巧、模拟考试题50练姓名:__________指导:__________日期:__________一、填空题十一个基本解法方法一:直接法方法二:特例法方法三:数形结合法方法四:猜想法方法五:整体法方法六:构造法方法七:图解法方法八:等价转化法方法九:观察法方法十:减少失误法例l二、选择题解法大全方法一:排除选项法选择题因其答案是四选一,我们可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元B、128元C 、120元D、88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。
方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
方法八:枚举法列举所有可能的情况,然后作出正确的判断。
例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。
初中数学解题技巧(史上最全)
初中数学选择题、填空题解题技巧(完美版) 选择题目在初中数学试题中所占的比重不是很大,但是又不能失去这些分数,还要保证这些分数全部得到。
因此,要特别掌握初中数学选择题的答题技巧,帮助我们更好的答题,选择填空题与大题有所不同,只求正确结论,不用遵循步骤。
我们从日常的做题过程中得出以下答题技巧,跟同学们分享一下。
1.排除选项法:选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
2.赋予特殊值法:即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
3.通过猜想、测量的方法,直接观察或得出结果:这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
4、直接求解法:有些选择题本身就是由一些填空题,判断题,解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
如:商场促销活动中,将标价为200元的商品,在打8 折的基础上,再打8折销售, 现该商品的售价是( )A 、160 元B、128 元C 、120 元D、88 元5、数形结合法:解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
6、代入法:将选择支代入题干或题代入选择支进行检验,然后作出判断。
7 、观察法:观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
8 、枚举法:列举所有可能的情况,然后作出正确的判断。
例如,把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )(A)5 种(B)6 种(C)8 种(D)10 种。
初中数学选择题和填空题解题技巧…(附案例)
方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是()A、160元B、128元C、120元D、88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。
方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
方法八:枚举法列举所有可能的情况,然后作出正确的判断。
例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。
方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
方法十:不完全归纳法当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。
初中数学选择填空题等基本题型答题技巧
初中数学选择填空题等基本题型答题技巧1、选择题答题技巧大全方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元B、128元C 、120元D、88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。
方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
方法八:枚举法列举所有可能的情况,然后作出正确的判断。
例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( ) A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。
方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
初中数学选择题56道+填空50道+应用题的解题技巧(附带答案)
A(1-12)一、选择题(本题共12小题;第1~8题每小题2分,第9~12题每小题3分,共28分.每小题只有一个选项是正确的)1. 某市今年1月份某一天的最高气温是3℃,最低气温是—4℃,那么这一天的最高气温比最低气温高A .—7℃B .7℃C .—1℃D .1℃ 2. 64的立方根等于A .4B . —4C . 8D . —8 3. 已知∠α=35°19′,则∠α的余角等于A . 144°41′B . 144°81′C . 54°41′D . 54°81′ 4. 根据国家信息产业部2006年5月21日的最新统计,截至2006年4月底,全国电话用户超过7.7亿户.将7.7亿用科学记数法表示为 A . 7.7³1011B . 7.7³1010C . 7.7³109D . 7.7³1085. 如图,AB ∥CD ,直线EF 分别交AB ,CD 于E ,F 两点,∠BEF 的平分线交CD 于点G ,若∠EFG =72°,则∠EGF 等于A . 36°B . 54°C . 72 °D . 108°数学试卷 第1页 (共86. 某市对2400名年满15这一小组的频率为0.25,则该组的人数为A . 600人B . 150 人C .60人D . 15人7. 如图,已知P A 是⊙O 的切线,A 为切点,PC 与⊙O 相交于B .C 两点,PB =2㎝,BC=8㎝,则P A 的长等于 A . 4㎝ B . 16㎝ C . 20㎝ D . 25㎝8. 二元二次方程组⎩⎨⎧-==+10,3xy y x 的解是A . ⎩⎨⎧-==⎩⎨⎧=-=5,22,52211y x y x B . ⎩⎨⎧==⎩⎨⎧==5,22,52211y x y xC . ⎩⎨⎧=-=⎩⎨⎧-==5,22,52211y x y x D . ⎩⎨⎧-=-=⎩⎨⎧-=-=5,22,52211y x y x 9.ABCD 的周长是28的周长是22A.6㎝ B . 12㎝ C .4㎝ D . 8㎝10. 如图为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A 的仰角为30°,沿CB 方向前进 12 m 到达D 处,在D 处测得建筑物顶端A 的仰角为 45°,则建筑物AB 的高度等于A .6(3+1)mB . 6 (3—1) mC . 12 (3+1) mD .12(3-1)m11. 已知圆锥侧面展开图的圆心角为90A . 1∶2 B . 2∶1 C . 1∶4 D .4∶112. 已知二次函数y =2 x 2+9x+34,当自变量x 取两个不同的值x 1、x 2时,函数值相等,则当自变量x 取x 1+x 2 时的函数值与A .x =1 时的函数值相等B . x =0时的函数值相等C . x =41时的函数值相等 D . x =-49时的函数值相等答案B(13-23)1.哈市4月份某天的最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是( ).A .-2℃B . 8℃C .一8℃D . 2℃ 2.下列运算中,正确的是( ).A .x 2+x 2=x 4B .x 2÷x =x 2C .x 3-x 2=xD .x ²x 2=x 3 3.在下列图形中,既是轴对称图形又是中心对称图形的是( ).4.右图是某一几何体的三视图,则这个几何体是( ). A .圆柱体 B .圆锥体 C .正方体 D .球体 5.9的平方根是( ).A .3B .±3C .一3D .816.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有( ).A .4种B .3种C .2种D .1种7.如图,圆锥形烟囱帽的底面直径为80cm ,母线长为50cm ,则这样的烟囱帽的侧面 积是( ).A .4000πcm 2B .3600πcm 2C .2000πcm 2D .1000πcm 28.已知反比例函数y =2k x-的图象位于第一、第三象限,则k 的取值范围是( ).A .k >2B . k ≥2C .k ≤2D . k <29.小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,那么小亮行走过的路程S (米)与他行走的时间t (分)之间的函数关系用图象表示正确的是( ).10.如图,将边长为8cm 的正方形纸片ABCD 折叠,使点D 落在BC 边中点E 处,点A 落在点F 处,折痕为MN ,则线段CN 的长是( ). A .3cm B .4cm C .5cmD .6cm答案: 1.B 2.D 3.C4.A 5.B 6.B 7.C 8.A 9.D 10.AC(24-34)1.2-的绝对值是( )A .2-B .2C .12D .12-2.化简()221a a -+-的结果是( ) A .41a --B .41a -C .1D.1-3.如图,直线m n ∥,︒∠1=55,︒∠2=45,则∠3的度数为( )A .80︒B .90︒C .100︒D .110︒ 4.方程组233x y x y -=⎧⎨+=⎩,的解是( )A .12x y =⎧⎨=⎩,.B .21x y =⎧⎨=⎩,.C .11x y =⎧⎨=⎩,.D .23x y =⎧⎨=⎩,.5.在下列四种图形变换中,本题图案不包含的变换是() A .位似 B .旋转 C .轴对称 D .平移6则这个队队员年龄的众数和中位数分别是( )A .1516,B .1515,C .1515.5,D .1615, 7.如图,已知A B A D =,那么添加下列一个条件后, 仍无法判定A B C A D C △≌△的是( )A .CBCD = B .B A C D A C =∠∠C .B C AD C A =∠∠ D .90B D ==︒∠∠ 8.在数轴上,点A 所表示的实数为3,点B 所表示的实数为a ,A 的半径为2.下列说法中不正确...的是( ) A .当5a <时,点B 在A 内 B .当15a <<时,点B 在A 内C .当1a <时,点B 在A 外D .当5a >时,点B 在A 外9.如图,分别是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则组成这个几何体的小正方体的个数是( )A .2个或3个B .3个或4个C .4个或5个D .5个或6个10.为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为x ,则可列方程( )3mn2 1(第3题)ABCD(第7题)(第5题)主视图俯视图(第9题)A .()60.051263%x +=B .()60.051263x +=C .()260.05163%x += D .()260.05163x +=答案D(35-45)1.|65-|=( )A .65+B .65-C .-65-D .56-2.如果一个四边形ABCD 是中心对称图形,那么这个四边形一定是( ) A .等腰梯形 B .矩形 C .菱形 D .平行四边形 3. 下面四个数中,最大的是( )A .35-B .sin88°C .tan46°D .215-4.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是( ) A .4 B .5 C .6 D .10 5.二次函数y=(2x-1)2+2的顶点的坐标是( ) A .(1,2) B .(1,-2) C .(21,2) D .(-21,-2)6.足球比赛中,胜一场可以积3分,平一场可以积1分,负一场得0分,某足球队最后的积分是17分,他获胜的场次最多是( )A .3场B .4场C .5场D .6场7. 如图,四边形ABCD 的对角线AC 和BD 相交于点E ,如果△CDE 的面积为3,△BCE 的面积为4,△AED 的面积为6,那么△ABE 的面积为( )A .7B .8C .9D .108. 如图,△ABC 内接于⊙O,AD 为⊙O 的直径,交BC 于点E ,若DE =2,OE =3,则tanC·tanB = ( )A .2B .3C .4D .5答案:1.D; 2.D ; 3.C ;4.C;5.C; 6.C ;7.B;8.C .E(46-56)1. 当x =1时,代数式2x +5的值为( ▲ )A .3 B. 5 C. 7 D. -2 2.直角坐标系中,点P (1,4)在( ▲ )A. 第一象限B.第二象限C.第三象限D.第四象限3.我省各级人民政府非常关注“三农问题”.截止到2005年底,我省农村居民人均纯收入已连续二十一年位居全国各省区首位,据省统计局公布的数据,2005年底我省农村居民人均收入约6600元,用科学记数法表示应记为( ▲ )A .0.66³104B. 6.6³103C.66³102D .6.6³1044.下图所示的几何体的主视图是( ▲ )A. B. C. D.5.下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( ▲ )A. B. C. D.6.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( ▲ ) A. 相离 B. 外切 C. 内切 D.相交7.不等式组⎨⎧≤≥+4235x x 的解是( ▲ ) A. -2 ≤x ≤2 B. x ≤2 C. x ≥-2 D. x <2 8.将叶片图案旋转180°后,得到的图形是( ▲ )叶片图案 A B C D9.下图能说明∠1>∠2的是( ▲ )A B C D10.二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论: ①a >0; ②c >0; ③b 2-4a c >0, 其中正确的个数是( ▲ )A. 0个B. 1个C. 2个D. 3个一. 选择题(本题共10小题,每小题4分,共40分)A(1-6)填空题 11.在函数61-=x y 的表达式中,自变量x 的取值范围是 ▲ .12.分解因式:2x 2+4x +2= ▲ .13.一射击运动员在一次射击练习中打出的成绩如下表所示:这次成绩的众数是 ▲ .14.如图,已知AB ∥CD ,直线EF 分别交 AB 、CD 于点 E ,F ,EG 平分∠BEF 交CD 于点G ,如果∠1=50°,那么∠2的度数是 ▲ 度.第14题 第15题 第16题15.如图,在菱形ABCD 中,已知AB =10,AC =16,那么菱形ABCD 的面积为 ▲ .16.如图,点M 是直线y =2x +3上的动点,过点M 作MN 垂直于x 轴于点N ,y 轴上是否存在点P ,使△MNP 为等腰直角三角形.小明发现:当动点M 运动到(-1,1)时,y 轴上存在点P (0,1),此时有MN =MP ,能使△NMP 为等腰直角三角形.那么,在y 轴和直线上是否还存在符合条件的点P 和点M 呢?请你写出其它符合条件的点P 的答案:11.X ≠6 12.2()21+x ; 13.8; 14.65° 15.96 ;16.(0,0),(0,43),(0,-3)B(7-14)9.写出一条经过第一、二、四象限,且过点(1-,3)的直线解析式 .10.一元二次方程x2=5x的解为 .11. 凯恩数据是按照某一规律排列的一组数据,它的前五个数是:269,177,21,53,31,按照这样的规律,这个数列的第8项应该是 .12.一个四边形中,它的最大的内角不能小于 .13.某学习小组中共有12名同学,其中男生有7人.现在要从这12名同学中抽调两名同学去参加数学知识竞赛,抽调的两名同学都是男生的概率是 .14. 如图,△ABC 中,BD 和CE 是两条高,如果∠A =45°,则BCDE = .15.如图,已知A 、B 、C 、D 、E 均在⊙O 上,且AC 为 ⊙O 的直径,则∠A +∠B +∠C =__________度.16.如图,矩形ABCD 的长AB =6cm ,宽AD =3cm. O 是AB 的中点,OP ⊥AB ,两半圆的直径分别为AO 与OB .抛物线y=ax2经过C 、D 两点,则图中阴影部分 的面积是 cm 2.答案:9.y=-x+2等; 10.x1=0,x2=5; 11.133; 12.90°; 13.227;14.21 15.90;16.π49C AC(15-20)11.写出一个大于1且小于4的无理数 .12.选做题(从下面两题中只选做一题,如果做了两题的,只按第(........................1.)题评分....). (Ⅰ)方程0251x =.的解是 .3142.≈ .(结果保留三个有效数字)13.用直径为80cm 的半圆形铁皮围成一个圆锥的侧面(不计接缝部分),则此圆锥的底面半径是 cm .14.不等式组23732x x +>⎧⎨->-⎩,的解集是 .15.如图,一活动菱形衣架中,菱形的边长均为16cm ,若墙上钉子间的距离16cm AB BC ==,则1=∠ 度.16.函数()()1240y x x y x x==>≥0,的图象如图所示,则结论:①两函数图象的交点A 的坐标为()22,; ②当2x >时,21y y >; ③当1x =时,3B C =;④当x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小.其中正确结论的序号是 . 答案:11.如π等 12.(Ⅰ)4x =;(Ⅱ)0.46413.20 14.25x << 15.120 16.①③④(说明:1。
初二数学易错型选择与填空的解技巧
初二数学易错型选择与填空的解技巧初二数学易错型选择与填空的解题技巧在初二数学的学习中,选择和填空题往往是容易出错但又能快速考查知识点掌握程度的题型。
掌握一些解题技巧,可以帮助我们提高解题的准确性和效率。
一、选择题解题技巧1、仔细审题这是解题的第一步,也是最关键的一步。
要认真阅读题目,理解题目所表达的意思,注意关键词、限定词和条件。
比如“下列选项中,正确的是()”“错误的是()”“一定”“可能”等词汇,明确题目要求我们选择的是正确答案还是错误答案。
2、排除法当面对一些复杂的选择题时,可以先从选项入手,逐一分析每个选项。
对于那些明显错误或者不符合题目条件的选项,先予以排除。
这样可以缩小选择范围,提高正确答案的命中率。
例如,如果题目中给出一个函数图像,要求判断其对应的函数关系式,我们可以根据函数的性质,如单调性、奇偶性、定义域、值域等,先排除不符合这些性质的选项。
3、特殊值法对于一些具有一般性结论的选择题,可以通过代入特殊值来进行验证。
选取的特殊值要简单易算,能够快速判断选项的正确性。
比如,在判断一个关于代数式的取值范围的选择题时,可以选取一些特殊的数值代入代数式,看看哪个选项符合。
4、图形结合法许多数学问题都可以通过图形来直观地表示。
在选择题中,如果涉及到几何图形、函数图像等问题,可以通过画出图形来帮助理解和分析。
例如,在判断两个三角形是否全等的选择题中,可以根据题目所给条件画出图形,直观地判断是否符合全等的条件。
5、逻辑推理法运用数学的基本概念、定理和公式,进行逻辑推理和分析。
从已知条件出发,逐步推导出结论,从而判断选项的正确性。
比如,在判断一个关于不等式的选择题时,可以根据不等式的性质进行推理和计算。
二、填空题解题技巧1、看清题目要求填空题的答案要求通常比较严格,要注意题目中的单位、精确度、取值范围等要求。
比如,“保留两位小数”“化简”“用科学计数法表示”等。
2、准确计算填空题往往需要我们进行计算得出答案,所以计算过程要认真仔细,避免粗心导致的错误。
八年级数学下册 期中选择填空必刷(压轴15考点51题)(解析版)
专题09期中选择填空必刷(压轴15考点51题)一.分式的基本性质(共1小题)1.若=2,则=.【答案】见试题解答内容【解答】解:由=2,得x+y=2xy则===.故答案为.二.分式的加减法(共1小题)2.自然数a,b,c,d满足=1,则等于()A.B.C.D.【答案】D【解答】解:=1,只有a、b、c、d自然数都相等的时候,等式才成立,即:a=b=c=d=2;将a、b、c、d结果代入=.故选:D.三.分式的化简求值(共1小题)3.若==,则=或﹣5.【答案】见试题解答内容【解答】解:∵=,∴ac+a2=b2+bc,∴若a﹣b≠0,那么﹣c=a+b,∴原式===;∵当a=b=c时,已知条件是成立的,∴原式==﹣5.故答案是或﹣5.四.分式方程的解(共5小题)4.已知关于x的分式方程的解为正数,关于y的不等式组,恰好有三个整数解,则所有满足条件的整数a的和是()A.1B.3C.4D.6【答案】C【解答】解:关于x的分式方程解为x=2a﹣1,∵x解为正数,∴2a﹣1>0,∴a>,关于y的不等式组解为,∵y恰有三个整数解,∴0<≤1,∴﹣1<a≤3,分式方程中,x≠3,∴2a﹣1≠3,∴a≠2,综上所述:<a≤3,∴满足条件的整数a为:1、3,则所有满足条件的整数a的和是4.故选:C.5.已知关于x的分式方程的解是非负数,则m的取值范围是()A.m≤5且m≠﹣3B.m≥5且m≠﹣3C.m≤5且m≠3D.m≥5且m≠3【答案】C【解答】解:原分式方程可化为:﹣2=,去分母,得1﹣m﹣2(x﹣1)=﹣2,解得x=,∵分式方程解是非负数,∴≥0,且≠1,∴m的取值范围是:m≤5且m≠3,故选:C.6.若关于x的分式方程无解,则m的值为()A.﹣3或﹣B.﹣或﹣C.﹣3或﹣或﹣D.﹣3或﹣【答案】C【解答】解:当(x+3)(x﹣3)=0时,x1=3或x2=﹣3,原分式方程可化为:=1﹣,去分母,得x(x+3)=(x+3)(x﹣3)﹣(mx﹣2),整理得(3+m)x=﹣7,∵分式方程无解,∴3+m=0,∴m=﹣3,把x1=3或x2=﹣3,分别代入(3+m)x=﹣7,得m=﹣或m=﹣,综上所述:m的值为m=﹣或m=﹣或m=﹣3,故选:C.7.若数m使关于x的不等式组有解且至多有3个整数解,且使关于x的分式方程有整数解,则满足条件的所有整数m的个数是()A.5B.4C.3D.2【答案】C【解答】解:,解不等式①得:x≥﹣1,∴﹣1≤x<,∵不等式组有解且至多3个整数解,∴﹣1<≤2,∴﹣3<m≤6,分式方程两边都乘以(x﹣1)得:mx﹣2﹣3=2(x﹣1),∴x=,∵x﹣1≠0,∴x≠1,∴≠1,∴m≠5,∵方程有整数解,∴m﹣2=±1,±3,解得:m=3,1,5,﹣1,∵m≠5,﹣3<m≤6,∴m=3,1,﹣1,故选:C.8.若关于x的方程有正整数解,且关于x的不等式组有且只有3个整数解,则符合条件的所有整数a的和为﹣4.【答案】﹣4.【解答】解:方程的解为x=,根据题意,得,解得a<1,a为奇数且a≠﹣5.∵不等式的解集为﹣5≤x<,且只有3个整数解,∴﹣3<≤﹣2,解得﹣7<a≤1.综上:﹣7<a<1,a为奇数且a≠﹣5,∴a=﹣3,﹣1.∵﹣3﹣1=﹣4,∴符合条件的所有整数a的和为﹣4故答案为:﹣4.五.分式方程的增根(共1小题)9.若关于x的分式方程=有增根,则实数m的值是5.【答案】见试题解答内容【解答】解:去分母得:3x+2=m,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:3+2=m,解得:m=5,故答案为:5.六.三角形中位线定理(共2小题)10.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有4005个三角形,则n的值是()A.1002B.1001C.1000D.999【答案】A【解答】解:分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1﹣3;图②中三角形的个数为5=4×2﹣3;图③中三角形的个数为9=4×3﹣3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,第n个图形中共有三角形的个数为4n﹣3,即4n﹣3=4005,n=1002,故选:A.11.如图,△ABC中,∠A=60°,AC>AB>6,点D,E分别在边AB,AC上,且BD=CE=6,连接DE,点M是DE的中点,点N是BC的中点,线段MN的长为3.【答案】3.【解答】解:如图,作CH∥AB,连接DN,延长DN交CH于H,连接EH,作CJ⊥EH 于J.∵BD∥CH,∴∠B=∠NCH,∵BN=CN,∠DNB=∠KNC,∵△DNB≌△HNC(ASA),∴BD=CH,DN=NH,∵BD=EC=6,∴EC=CH=6,∵∠A+∠ACH=180°,∠A=60°,∴∠ECH=120°,∵CJ⊥EH,∴EJ=JH=EC•cos30°=3,∴EH=2EJ=6,∵DM=ME,DN=NH,∴MN=EH=3.故答案为:3.七.平行四边形的性质(共2小题)12.如图,将一个平行四边形(如图①)作如下操作:第一次,连接对边的中点(如图②),此时共有9个平行四边形;第二次,将图②中左上角的平行四边形连接对边的中点(如图③),此时共有17个平行四边形;第三次,将图③中左上角的平行四边形连接对边的中点(如图④),此时共有25个平行四边形……此后每一次部将左上角的平行四边形进行如上操作,第()次操作后,共有4041个平行四边形.A.1010B.505C.705D.805【答案】B【解答】解:由n次可得(8n+1)个正方形,则:8n+1=4041,解得n=505;∴第505次划分后能有4041个正方形.故选:B.13.如图,在▱ABCD中,∠C=120°,AD=2AB=8,点H,G分别是边CD,BC上的动点,连接AH,HG,点E为AH的中点,点F为GH的中点,连接EF,则EF的最大值与最小值的差为.【答案】.【解答】解:如图:取AD的中点M,连接CM、AG、AC,过点A作AN⊥BC于点N,∴AM=DM=AD=×8=4,∵四边形ABCD是平行四边形,∠BCD=120°,AD=2AB=8,∴∠D=180°﹣∠BCD=60°,AB=CD=AD=×8=4,∴AM=DM=DC=4,∴△CDM是等边三角形,∴∠DMC=∠MCD=60°,AM=MC,∴∠MAC=∠MCA=∠DMC=×60°=30°,∴∠ACD=∠MCA+∠MCD=30°+60°=90°,在Rt△ACD中,由勾股定理得:AC===4,在Rt△ACN中,∠ACN=∠BCD﹣∠ACD=120°﹣90°=30°,∴AN=AC=×4=2,∵AE=EH,GF=FH,∴EF是△AHG的中位线,∴EF=AG,∵AG的最大值为AC的长,最小值为AN的长,∴AG的最大值为4,最小值为2,∴EF的最大值为2,最小值为,∴EF的最大值与最小值的差为2﹣=,故答案为:.八.矩形的性质(共6小题)14.如图,在矩形ABCD中,AB=3,AD=4,P是AD上不与A和D重合的一个动点,过点P分别作AC和BD的垂线,垂足为E,F.则PE+PF的值为()A.2.5B.3C.2.4D.4.8【答案】C【解答】解:如图所示,连接OP,过点A作AG⊥BD于G,∵AB=3,AD=4,=AB•AD=BD•AG,∴由勾股定理可得BD==5,S△ABD即×3×4=×5×AG,解得:AG=,在矩形ABCD中,OA=OD,=OA•PE+OD•PF=OD•AG,∵S△AOD∴PE+PF=AG=.故PE+PF==2.4.故选:C.15.如图,在长方形ABCD中,AB=10cm,点E在线段AD上,且AE=6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上.以v cm/s 的速度由点B向点C运动,当△EAP与△PBQ全等时,v的值为()A.2B.4C.4或D.2或【答案】D【解答】解:当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP(SAS),∵AB=10cm,AE=6cm,∴BP=AE=6cm,AP=4cm,∴BQ=AP=4cm;∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,∴点P和点Q的运动时间为:4÷2=2s,∴v的值为:4÷2=2cm/s;②当AP=BP时,△AEP≌△BQP(SAS),∵AB=10cm,AE=6cm,∴AP=BP=5cm,BQ=AE=6cm,∵5÷2=2.5s,∴2.5v=6,∴v=.故选:D.16.如图,∠MON=90°,矩形ABCD在∠MON的内部,顶点A,B分别在射线OM,ON 上,AB=4,BC=2,则点D到点O的最大距离是()A.B.C.D.【答案】A【解答】解:如图,取AB中点E,连接OE、DE、OD,∵∠MON=90°,∴OE=AB=2.∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC=2,∵点E是AB的中点,∴AE=AB=2,在Rt△DAE中,DE===2,在△ODE中,根据三角形三边关系可知DE+OE>OD,∴当O、E、D三点共线时,OD最大为OE+DE=2+2.故选:A.17.在矩形ABCD中,过AC的中点O作EF⊥AC,交BC于E,交AD于F,连接AE、CF.若AB=°,则EF的长为()A.2B.3C.D.【答案】A【解答】解:∵四边形ABCD是矩形∴AD∥BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO=CO,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴OE=OF,又∵EF⊥AC,∴四边形AECF是菱形,∵∠DCF=30°,∴∠ECF=90°﹣30°=60°,∴△CEF是等边三角形,∴EF=CF,∵AB=,∴CD=AB=,∵∠DCF=30°,∴CF=÷=2,∴EF=2.故选:A.18.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(30,0)(0,12),点D是OA的中点,点P在BC上运动,当△ODP是腰长为15的等腰三角形时,点P 的坐标为(9,12)或(6,12)或(24,12).【答案】(9,12)或(6,12)或(24,12).【解答】解:由题意,当△ODP是腰长为15的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=15,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=12.在Rt△PDE中,由勾股定理得:DE===9,∴OE=OD﹣DE=15﹣9=6,∴此时点P坐标为(6,12);(2)如答图②所示,OP=OD=15.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE===9,∴此时点P坐标为(9,12);(3)如答图③所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===9,∴OE=OD+DE=15+9=24,∴此时点P坐标为(24,12).综上所述,点P的坐标为:(9,12)或(6,12)或(24,12);故答案为:(9,12)或(6,12)或(24,12).19.如图,在矩形ABCD中,AB=2,AD=4,E为AD的中点,F为线段EC上一动点,P为BF中点,连接PD,则线段PD长的取值范围是2≤PD≤.【答案】2≤PD≤.【解答】解:如图:当点F与点C重合时,点P在点P1处,CP1=BP1,当点F与点E重合时,点P在点P2处,EP2=BP2,∴P1P2∥EC且P1P2=CE,当点F在EC上除点C、E的位置处时,有BP=FP,由中位线定理可知:P1P∥CF且P1P=CF,∴点P的运动轨迹是线段P1P2,∵矩形ABCD中,AB=2,AD=4,E为AD的中点,∴△ABE,△BEC、△DCP1为等腰直角三角形,∴∠ECB=45°,∠DP1C=45°,∵P1P2∥EC,∴∠P2P1B=∠ECB=45°,∴∠P2P1D=90°,∴DP的长DP1最小,DP2最大,∵CD=CP1=DE=2,∴DP1=2,CE=2,∴P1P2=,∴DP2==,故答案为:2≤PD≤.九.矩形的判定与性质(共1小题)20.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于点E,PF⊥AC于点F,则EF的最小值为()A.5B.4C.D.3【答案】C【解答】解:连接AP,∵AB=6,AC=8,BC=10,∴AB2+AC2=62+82=100,BC2=102=100,∴AB2+AC2=BC2,∴△ABC是直角三角形,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴∠PEA=∠PFA=90°,∴四边形AEPF是矩形,∴AP=EF,∴当AP⊥BC时,AP有最小值,即EF有最小值,∵△ABC的面积=BC•AP=AB•AC,∴BC•AP=AB•AC,∴10AP=6×8,∴AP=,∴AP=EF=,∴EF的最小值为,故选:C.一十.正方形的性质(共14小题)21.青苗小组的同学在探究的结果时,发现可以进行如下操作:如图,将边长为1的大正方形纸片进行分割,①的面积为大正方形面积的一半,即;②的面积为①的面积的一半,即;③的面积为②的面积的一半,即;…由此得到结论:.这种探究问题的方法体现了()A.方程思想B.分类讨论思想C.模型思想D.数形结合思想【答案】D【解答】解:将边长为1的大正方形纸片进行分割,①的面积为大正方形面积的一半,即;②的面积为①的面积的一半,即;③的面积为②的面积的一半,即;…由此得到结论:.这种探究问题的方法体现了数形结合思想,故选:D.22.如图,有六根长度相同的木条,小明先用四根木条制作了能够活动的菱形学具,他先将该活动学具调成图1所示菱形,测得∠B=60°,对角线AC=10cm,接着将该活动学具调成图2所示正方形,最后用剩下的两根木条搭成了如图3所示的图形,连接BE,则图3中△BCE的面积为()A.cm2B.50cm2C.cm2D.25cm2【答案】D【解答】解:图1连接AC,∵菱形ABCD中,AB=BC,∵∠B=60°,∴△ABC是等边三角形,∵对角线AC=10cm,∴BC=10cm,∴CE=BC=10cm,图3过点E作EH⊥BC,交BC的延长线于点H,∵△DCE是等边三角形,∴∠DCE=60°,∴∠ECH=30°,∴EH=CE=5cm,∴△BCE的面积===25(cm2),故选:D.23.如图,边长为5的大正方形ABCD是由四个全等的直角三角形和一个小正方形EFGH组成,连结AF并延长交CD于点M.若AH=GH,则CM的长为()A.B.C.1D.【答案】D【解答】解:过点M作MN⊥FC于点N,设FA与GH交于点K,如图,∵四边形EFGH是正方形,∴HE=HG=GF=EF,AH∥GF,∵AH=GH,∴AH=HE=GF=EF.由题意得:Rt△ABE≌Rt△BCF≌Rt△ADH≌Rt△CDG,∴BE=CF=AH=DG,∠BAE=∠DCG.∴BE=EF=GF=FC.∵AE⊥BF,∴AB=AF,∴∠BAE=∠FAE,∴∠DCG=∠FAE,∵AE∥GC,∴∠FAE=∠GFK.∵∠GFK=∠CFM,∴∠CFM=∠DCG,∴MF=MC,∵MN⊥FC,∴FN=NC=FC.延长BF交CD于点P,如图,∵PF∥MN,∴MN为△CFP的中位线,∴CM=CP,同理:PF为△CGD的中位线,∴CP=CD,∴CM=CD,∴CM=.解法二:过点M作MN⊥FC于点N,设FA与GH交于点K,如图,∵四边形EFGH是正方形,∴HE=HG=GF=EF,AH∥GF,∵AH=GH,∴AH=HE=GF=EF.由题意得:Rt△ABE≌Rt△BCF≌Rt△ADH≌Rt△CDG,∴BE=CF=AH=DG,∠BAE=∠DCG.∴BE=EF=GF=FC.∵AE⊥BF,∴AB=AF,∴∠BAE=∠FAE,∴∠DCG=∠FAE,∵AE∥GC,∴∠FAE=∠GFK.∵∠GFK=∠CFM,∴∠CFM=∠DCG,∴MF=MC,设MF=MC=x,则AM=5+x,DM=5﹣x,在Rt△ADM中,由勾股定理得:52+(5﹣x)2=(5+x)2,解得:x=.∴CM=.故选:D.24.如图,P是边长为1的正方形ABCD内的一个动点,且满足∠PBC+∠PDC=45°,则CP的最小值是()A.B.C.D.【答案】D【解答】解:∵四边形ABCD是正方形,∴∠BCD=90°,在凹四边形BCDP中,∵∠BCD=90°,∠PBC+∠PDC=45°,∴∠BPC+∠CPD=360°﹣∠BCD﹣(∠PBC+∠PDC)=225°,∴∠BPD=360°﹣(∠BPC+∠CPD)=135°,得点P在运动过程中,使得∠BPD=135°,即点P在正方形ABCD内,以A为圆心,AB为半径的圆弧上,由图可得AP+CP≥AC,当点A、P、C三点共线时,CP取得最小值,最小值为AC﹣AP,在Rt△ABC中,∵AB=BC=1,∴AC==,∵AP=AB=1,∴CP=AC﹣AP=.故选:D.25.在正方形ABCD中,对角线AC、BD交于点O,∠ADB的平分线交AB于点E,交AC 于点G.过点E作EF⊥BD于点F,∠EDM交AC于点M.下列结论:①AD=(+1)AE;②四边形AEFG是菱形;③BE=2OG;④若∠EDM=45°,则GF=CM.其中正确的个数有()A.4个B.3个C.2个D.1个【答案】A【解答】解:∵DE平分∠ADB,EF⊥BD,AE⊥AD,∴AE=EF,∵四边形ABCD是正方形,∴∠ABD=45°,∴EF=BF,设AE=x,则BE=x,∴AD=AB=AE+BE=(+1)x=(+1)AE,故①正确;在△AEG和△FEG中,,∴△AEG≌△FEG(SAS),∴AG=FG,∠AEG=∠FEG,∵AG∥EF,∴∠FEG=∠AGE,∴∠AGE=∠AEG,∴AE=AG,∴四边形AEFG是菱形,故②正确;由①②知,AG=x,AB=(+1)x,∴AO==(+1)x,∴OG=AO﹣AG=x=BE,故③正确;∵BD=AC=2OA=(+2)x,EF=BF=AE=x,∴DF=(+1)x=CD,∵四边形AEFG是菱形,∴∠EFG=∠BAC=45°,∴∠DFG=45°=∠DCM,∵∠EDM=45°=∠ODC,∴∠GDF=∠MDC,∴△GDF≌△MDC(ASA),∴GF=CM,故④正确.26.如图,在正方形ABCD中,AB=6,E为CD上一动点,AE交BD于F,过F作FH⊥AE交BC于点H,过H作GH⊥BD于G,连结AH.以下四个结论中:①AF=HE;②∠HAE=45°;③;④△CEH的周长为12.正确的结论有()A.1个B.2个C.3个D.4个【答案】B【解答】解:①连接FC,延长HF交AD于点L,如图1,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF(SAS).∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF,∴FH<EH,∴AF<EH,故①错误;∵FH⊥AE,FH=AF,∴∠HAE=45°,故②正确;∵F是动点,∴FG的长度不是定值,不可能,故③错误;④延长AD至点M,使AD=DM,过点C作CI∥HL,如图2,则四边形LHCI为平行四边形,∴LI=HC,∵HL⊥AE,CI∥HL,∴AE⊥CI,∴∠DIC+∠EAD=90°,∵∠EAD+∠AED=90°,∴∠DIC=∠AED,∵ED⊥AM,AD=DM,∴EA=EM,∴∠AED=∠MED,∴∠DIC=∠DEM,∴180°﹣∠DIC=180°﹣∠DEM,∴∠CIM=∠CEM,∵CM=MC,∠ECM=∠CMI=45°,∴△MEC≌△CIM(AAS),∵E,F,H共圆,∠HFE=90°,∴HE为直径,∵∠HCF=90°,∴点C在以HE为直径的圆上,∴∠FHE=∠FCE,∵∠FCE=∠FAD,∴∠FAD=∠FHE,∵∠AFL=∠HFE,AF=HF,∴△AFL≌△FHE(ASA),∴AL=HE,∴HE+HC+EC=AL+LI+IM=AM=12.故△CEH的周长为12,④正确.综上所述,②④正确.故选:B.27.如图,在正方形ABCD外取一点E,连接AE、BE、DF.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=,下列结论:①△APD≌△AEB;②EB⊥ED;③点B+S△APB=1+.其中正确结论的序号是()到直线AE的距离为;④S△APDA.①②③B.①②④C.②③①D.①③④【答案】A【解答】解:①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=∠PAD,又∵AE=AP,AB=AD,∵在△APD和△AEB中,,∴△APD≌△AEB(SAS);故此选项正确;②∵△APD≌△AEB,∴∠APD=∠AEB,∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°,∴EB⊥ED;故此选项正确;③过B作BF⊥AE,交AE的延长线于F,∵AE=AP,∠EAP=90°,∴∠AEP=∠APE=45°,又∵③中EB⊥ED,BF⊥AF,∴∠FEB=∠FBE=45°,又∵BE===,∴BF=EF=,∴点B到直线AE的距离为.故此选项正确;④如图,连接BD,在Rt△AEP中,∵AE=AP=1,∴EP=,又∵PB=,∴BE=,∵△APD≌△AEB,∴PD=BE=,+S△ADP=S△ABD﹣S△BDP=S正方形ABCD﹣×DP×BE=×(4+)﹣×∴S△ABP×=+.故此选项不正确.∴正确的有①②③,故选:A.28.如图.正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是4,则AB的长为()A.4B.2C.D.【答案】A【解答】解:过点O作OE⊥AD于点E,OF⊥CD于点F,则:∠OEM=∠OFN=∠OFD=90°,∵正方形ABCD,∴OA=OD=OC,∠ADC=90°,∴,四边形OEDF为矩形,∴四边形OEDF为正方形,∴OE=OF,∠EOF=90°,∵ON⊥OM,∴∠MON=90°=∠EOF,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴正方形OFDE的面积等于四边形MOND的面积,∴DE2=4,∴DE=2(负值已舍掉);∴AB=AD=2DE=4;故选:A.29.如图,已知正方形ABCD的边长为4,点P是对角线BD上一点,PE⊥BC于点E,PF ⊥CD于点F,连接AP,EF.给出下列结论:①PD=2EC;②四边形PECF的周长为8;③AP⊥EF;④AP=EF;⑤EF的最小值为2.其中正确结论的序号为()A.①②③⑤B.②③④C.②③④⑤D.②③⑤【答案】C【解答】解:①∵四边形ABCD为正方形,∴∠CDB=∠CBD=45°,∵PF⊥CD,∴PD=PF.∵PE⊥BC,PF⊥CD,∠C=90°,∴四边形PECF为矩形,∴PF=EC,∴PD=EC.∴①的结论不正确;②∵∠CDB=∠CBD=45°,PE⊥BC,PF⊥CD,∴△PBE和△PDF为等腰直角三角形,∴PE=BE,PF=DF∴四边形PECF的周长=EC+CF+PF+PE=EC+BE+CF+DF=BC+CD=4+4=8,∴②的结论正确;③延长AP交EF于点H,延长FP交AB于点G,如图,∵四边形ABCD为正方形,∴∠ABD=∠CBD=45°,∠ABC=90°,∵PE⊥BC,PG⊥AB,∴四边形GBEP为正方形,∴PG=PE=BG,∠GPE=90°,∴∠APG+∠EPH=90°.∵FG=BC,BC=AB,∴FG=AB.∴FG﹣PG=AB﹣BG,∴AG=PF.在△AGP和△FPE中,,∴△AGP≌△FPE(SAS),∴∠APG=∠FEP.∴∠FEP+∠HPE=90°,∴∠PHE=90°.∴AP⊥EF.∴③的结论正确;④连接PC,如图,∵四边形ABCD为正方形,∴∠ADP=∠CDP=45°,AD=BC,在△ADP和△CDP中,,∴△ADP≌△CDP(SAS).∴AP=PC.由①知:四边形PECF为矩形,∴EF=PC,∴AP=EF.∴④的结论正确;⑤由④知:AP=EF,∴当AP取最小值时,EF取得最小值,∵点P是对角线BD上一点,∴当AP⊥BD,即点P为对角线的中点时,AP的值最小,此时AP=AB=2,∴EF的最小值为2,∴⑤的结论正确,综上,正确结论的序号为:②③④⑤,故选:C.30.如图,正方形ABCD边长为1,点E,F分别是边BC,CD上的两个动点,且BE=CF,连接BF,DE,则BF+DE的最小值为()A.B.C.D.【答案】C【解答】解:连接AE,如图1,∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°.又BE=CF,∴△ABE≌△BCF(SAS).∴AE=BF.所以BF+DE最小值等于AE+DE最小值.作点A关于BC的对称点H点,如图2,连接BH,则A、B、H三点共线,连接DH,DH与BC的交点即为所求的E点.根据对称性可知AE=HE,所以AE+DE=DH.在Rt△ADH中,AD=1,AH=2,∴DH==,∴BF+DE最小值为.故选:C.31.如图,在正方形ABCD中,AB=4,E为对角线AC上与A,C不重合的一个动点,过点E作EF⊥AB于点F,EG⊥BC于点G,连接DE,FG,下列结论:①DE=FG;②∠BFG=∠ADE;③DE⊥FG;④FG的最小值为2.其中正确结论的有①②③④.(填序号)【答案】①②③④.【解答】解:如图所示,连接BE,交FG于点O,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°,∵∠ABC=90°,∴四边形EFBG为矩形,∴FG=BE,OB=OF=OE=OG,∵四边形ABCD为正方形,∴AB=AD,∠BAC=∠DAC=45°,在△ABE和△ADE中,,∴△ABE≌△ADE(SAS),∴BE=DE,∴DE=FG,即①正确;∵△ABE≌△ADE,∴∠ABE=∠ADE,∵OB=OF,∴∠OFB=∠ABE,∴∠BFG=∠ADE,即②正确,延长DE,交FG于M,交FB于点H,由①得,∠ABE=∠ADE,∵OB=OF,∴∠OFB=∠ABE,∴∠OFB=∠ADE,∵∠BAD=90°,∴∠ADE+∠AHD=90°,∴∠OFB+∠AHD=90°,即∠FMH=90°,∴DE⊥FG,即③正确;∵E为对角线AC上的一个动点,∴当DE⊥AC时,DE最小,∵AB=AD=CD=4,∠ADC=90°,∴AC==4,∴DE=AC=2,由①知,FG=DE,∴FG的最小值为2,即④正确,综上,①②③④正确,故答案为:①②③④.32.如图,四边形ABCD和四边形CEFG都是正方形,E是DC延长线上一个动点,点G 在射线CB上(不与点C重合),H是DF的中点,连接GH.若AD=4,则GH的最小值为.【答案】.【解答】解:如图,延长GH交DE于M,∵四边形CEFG是正方形,∴FG∥DE,FG=CE,∴∠GFH=∠CDH,∵H是DF的中点,∴DH=FH,∵∠GHF=∠DHM,∴△GHF≌△MHD(ASA),∴FG=DM,GH=MH,设正方形CEFG的边长为x,则DM=x,CM=4﹣x,∵四边形ABCD是正方形,∴∠BCD=90°,∴CG2+CM2=GM2,∴x2+(4﹣x)2=GM2,∴GM2=2x2﹣8x+16=2(x﹣2)2+8,∴GM的最小值是=2,∴GH的最小值是.故答案为:.33.如图,正方形ABCD的对角线相交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长都等于2,无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积都不变,则这两个正方形重叠部分的面积为1.【答案】1.【解答】解:∵四边形ABCD是正方形,∴∠OAB=∠OBC=45°,∠AOB=90°,AO=AC,BO=BD,AC=BD,∴OA=OB,∵四边形A1OC1B1是正方形,∴∠A1OC1=90°,∴∠A1OC1=∠AOB=90°,∴∠A1OC1﹣∠A1OB=∠AOB﹣∠A1OB,∴∠BOF=∠AOE,∴△AOE≌△BOF(ASA),∴四边形EOFB的面积=△EOB的面积+△BOF的面积=△EOB的面积+△AOE的面积=△AOB的面积=正方形ABCD的面积=×22=1,∴这两个正方形重叠部分的面积为1,故答案为:1.34.如图,E为边长为2的正方形ABCD的对角线BD上的一点,且BE=BC,P为CE 上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是2.【答案】见试题解答内容【解答】解:过E点作EH⊥BC于H点,根据正方形的性质可知△BEH是等腰直角三角形,BE=BC=2,∴EH=2.∴△BEC的面积为×BC×EH=.连接BP,则△BPE面积+△BPC面积=2,即×BE×PR+×BC×PQ=2,∴×(PR+PQ)=2,解得PR+PQ=2.故答案为2.一十一.旋转的性质(共7小题)35.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再将较小的两个正方形分别绕直角三角线斜边上的两顶点旋转得到图2,则图2中阴影部分面积等于()A.直角三角形的面积B.最小正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【答案】C【解答】解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c2=a2+b2,阴影部分的面积=c2﹣b2﹣a(c﹣b)=a2﹣ac+ab=a(a+b﹣c),较小两个正方形重叠部分的宽=a﹣(c﹣b),长=a,则较小两个正方形重叠部分底面积=a(a+b﹣c),∴阴影部分的面积=较小两个正方形重叠部分的面积,故选:C.36.如图,在边长为的等边△ABC中,D为BC边的中点,E为直线AD上一动点,连接CE,将线段CE绕点C逆时针旋转60°,得到线段CF,连接DF,则线段DF长的最小值为()A.2B.C.D.3【答案】B【解答】解:连接BF,如图:∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∵线段CE绕点C逆时针旋转60°,得到线段CF,∴∠ECF=60°,CE=CF,∴∠ACB=∠ECF,∴∠ACE=∠BCF,∴△ACE≌△BCF(SAS),∴∠EAC=∠FBC,∵D为BC边的中点,∴∠EAC=∠BAC=30°=∠FBC,∴点F在BC下方,与BC成30°角的直线BF上,∴当DF⊥BF时,DF最小,∵BD=BC=2,∴DF=BD=,故选:B.37.如图,在正方形ABCD中,AB=4,E为AB边上一点,点F在BC边上,且BF=1,将点E绕着点F顺时针旋转90°得到点G,连接DG,则DG的长的最小值为()A.2B.2C.3D.【答案】C【解答】解:过点G作GH⊥BC,垂足为H,∴∠GHF=90°,∵四边形ABCD是正方形,∴AB=CD=4,∠B=90°,∴∠B=∠GHF=90°,由旋转得:EF=FG,∠EFG=90°,∴∠EFB+∠GFH=90°,∵∠BEF+∠BFE=90°,∴∠BEF=∠GFH,∴△EBF≌△FHG(AAS),∴BF=GH=1,∴点G在与BC平行且与BC的距离为1的直线上,∴当点G在CD边上时,DG最小且DG=4﹣1=3,∴DG的最小值为3,故选:C.38.如图,点P是在正△ABC内一点.PA=3,PB=4,PC=5,将线段AP绕点A逆时针旋转60°得到线段AP',连结.P'P,P'C,下列结论中正确的是()①△AP'C可以由△APB绕点A逆时针旋转60°得到;②线段PP'=3;③四边形APCP'的面积为6+3;④S△APB+S△BPC=6+4.A.①②③B.①②④C.①③④D.②③④【答案】B【解答】解:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵线段AP绕点A逆时针旋转60°得到线段AP',∴AP=AP′,∠PAP′=60°,∴△AP'C可以由△APB绕点A逆时针旋转60°得到,所以①正确;∴△APP′为等边三角形,∴∠AP′P=60°,PP′=PA=AP′=3,所以②正确;∵△APB绕点A逆时针旋转60°得到△AP'C,∴CP′=BP=4,在△PP′C中,∵PP′=3,CP′=4,PC=5,∴PP′2+CP′2=CP2,∴△PP′C为直角三角形,∠CP′P=90°,+S△PP′C,∵四边形APCP'的面积=S△APP′∴四边形APCP'的面积=×32+×3×4=+6,所以③错误;过A点作AH⊥CP′于H点,如图,∵∠AP′C=∠AP′P+∠CP′P=60°+90°=150°,∴∠AP′H=30°,∴AH=AP′=,∴P′H=AH=,∴AC2=AH2+CH2=()2+(4+)2=25+12,=AC2=(25+12)=+9,∴S△ABC=AH•CP′=××4=3,∵S△ACP′=四边形APCP'的面积﹣S△ACP′=+6﹣3=+3,∴S△APC+S△BPC=S△ABC﹣S△APC=+9﹣(+3)=4+6,所以④正确.∴S△APB故选:B.39.如图,在△ABC中,BC=1,AB=3,以AC为边向上作等边△ACD,连接DB,当∠ABC=120°时,BD最大,最大值为4.【答案】见试题解答内容【解答】解:如图,以点D为中心,将△BCD按顺时针旋转,使得DC与DA重合,得到△B'AD,连接BB',∴DB'=BD,AD=CD,AB'=BC=1,∠BDC=∠B'DA,∴∠ADC=∠B'DB,∵△ACD为等边三角形,∴∠B'DB=60°,∴△B'DB为等边三角形,∴BD=BB',在△ABB'中,AB=3,AB'=BC=1,∴BB'<3+1=4,∴当A、B、B'三点共线时,∠ABC=120°,BB'最大,最大值为4,即当∠ABC=120°时,BD最大,最大值为4,故答案为:120°;4.40.如图,在矩形ABCD中、AB=5,BC=5,点P在线段BC上运动(含B、C两点),连接AP,以点A为旋转中心,将线段AP逆时针旋转60°到AQ,连接DQ,则线段DQ的最小值为.【答案】.【解答】解:如图,以AB为边向右作等边△ABF,作射线FQ交AD于点E,过点D作DH⊥QE于H.∵四边形ABCD是矩形,∴∠ABP=∠BAD=90°,∵△ABF,△APQ都是等边三角形,∴∠BAF=∠PAQ=60°,BA=FA,PA=QA,∴∠BAP=∠FAQ,在△BAP和△FAQ中,,∴△BAP≌△FAQ(SAS),∴∠ABP=∠AFQ=90°,∵∠FAE=90°﹣60°=30°,∴∠AEF=90°﹣30°=60°,∵AB=AF=5,AE=AF÷cos30°=,∴点Q在射线FE上运动,∵AD=BC=5,∴DE=AD﹣AE=,∵DH⊥EF,∠DEH=∠AEF=60°,∴DH=DE•sin60°=×=.根据垂线段最短可知,当点Q与H重合时,DQ的值最小,最小值为.故答案为:.41.如图,在△ABC中,AB=8,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,则阴影部分面积为16.【答案】16.【解答】解:过A作AD⊥A1B于D,如图:在△ABC中,AB=8,将△ABC绕点B按逆时针方向旋转30°后得到△A1BC1,∴△ABC≌△A1BC1,∴A1B=AB=8,∴△A1BA是等腰三角形,∠A1BA=30°,∵AD⊥A1B,∴AD=AB=4,∴S△A1BA=×8×4=16,又∵S阴影=S△A1BA+S△A1BC1﹣S△ABC,且S△A1BC1=S△ABC,∴S阴影=S△A1BA=16,故答案为:16.一十二.中心对称(共1小题)42.如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→菱形→平行四边形→矩形B.平行四边形→正方形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形【答案】A【解答】解:画图如下,,由图可知最后会与原有矩形重合,∴四边形AECF形状的变化依次为平行四边形→菱形→平行四边形→矩形,故选:A.一十三.频数(率)分布表(共1小题)43.对一批衬衣进行抽检,得到合格衬衣的频数表如下,若出售1200件衬衣,则其中次品的件数大约是()抽取件数(件)501001502005008001000合格频数4898144193489784981A.12B.24C.1188D.1176【答案】B【解答】解:1200×(1﹣)=27,27比较接近24,故选:B.一十四.扇形统计图(共2小题)44.某学校准备为七年级学生开设A,B,C,D,E,F共6门选修课,选取了若干学生进行了我最喜欢的一门选修课调查,将调查结果绘制成了如图所示的统计图表(不完整).选修课A B C D E F人数4060100下列说法不正确的是()A.这次被调查的学生人数为400人B.E对应扇形的圆心角为80°C.喜欢选修课F的人数为72人D.喜欢选修课A的人数最少【答案】B【解答】解:60÷15%=400人,因此选项A正确,C对应的人数为400×12%=48人,F对应的人数为400×18%=72人,E对应的人数为400﹣40﹣60﹣100﹣48﹣72=80人,因此C、D都正确;360°×=72°,因此B是错误的,故选:B.45.如图所示是小刚一天中的作息时间分配的扇形统计图,如果小刚希望把自己每天的阅读时间调整为2.5小时,那么他的阅读时间需增加()A.48分钟B.60分钟C.90分钟D.105分钟【答案】C【解答】解:24×=1小时,2.5﹣1=1.5小时=90分钟,故选:C.一十五.利用频率估计概率(共6小题)46.为了估计水塘中的鱼数,养鱼者先从鱼塘中捕获30条鱼,在每一条鱼身上做好标记后把这些鱼放归鱼塘,再从鱼塘中打捞鱼.通过多次实验后发现捕捞的鱼中有作记号的频率稳定在2.5%左右,则鱼塘中鱼的条数估计为()A.600条B.1200条C.2200条D.3000条【答案】B【解答】解:30÷2.5%=1200条故选:B.47.下列说法正确的是()A.事件“在一张纸上随意画两个直角三角形,这两个直角三角形相似”是确定事件B.如果一组数据为4、a、5、3、8,其平均数为a,那么这组数据的方差为C.事件“若△ABC的面积是12,则它的一边长a与这边上的高h的函数关系式为”是随机事件D.从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球符合如图所示的“用频率估计概率”的实验得出的频率分布折线图(如图)【答案】D【解答】解:A、错误.事件“在一张纸上随意画两个直角三角形,这两个直角三角形相似”是随机事件.B、错误,由题意(4+a+5+3+8)=a,解得a=5,方差=[(4﹣5)2+0+0+(5﹣3)2+(8﹣5)2]=.C、错误.事件“若△ABC的面积是12,则它的一边长a与这边上的高h的函数关系式为”是不可能事件,因为a=.D、正确.从一个装有2个红球和1个黑球的袋子中任取一球,取到的是黑球的概率是,符合题意.故选:D.48.在一个不透明的塑料袋中装有红色球、白色球共40个,除颜色外其他都相同.小明通过多次摸球试验后发现,摸到红色球的频率稳定在20%左右,则塑料袋中红色球可能有()A.6个B.7个C.8个D.9个【答案】C【解答】解:由题意知,塑料袋中红色球可能有40×20%=8(个),故选:C.49.某学习小组做抛掷一枚纪念币的实验,整理的实验数据如下表:累计抛掷的次数501002003005001000200030005000正面朝上的次数2854106158264527105615872650正面朝上的频率0.56000.54000.53000.52670.52800.52700.52800.52900.5300下面有三个推断:①通过上述实验的结果,可以推断这枚纪念币有很大可能性不是质地均匀的;②如果再做此实验,仍按上表抛掷的次数统计,那么数据表中,“正面朝上”的频率有更大的可能仍会在0.53左右摆动;③根据表格中的信息,估计抛掷这样一枚纪念币,落地后正面朝上的概率约为0.53.其中正确的推断有()A .0个B .1个C .2个D .3个【答案】D【解答】解:①通过上述实验的结果,可以推断这枚纪念币有很大可能性不是质地均匀的,正确;②如果再做此实验,仍按上表抛掷的次数统计,那么数据表中,“正面朝上”的频率有更大的可能仍会在0.53左右摆动,正确;③根据表格中的信息,估计抛掷这样一枚纪念币,落地后正面朝上的概率约为0.53,正确.故选:D .50.某种麦粒在相同条件下进行发芽试验,结果如下表所示:试验的麦粒数n 100200500100020005000发芽的粒数m 9318847395419064748发芽的频率0.930.940.9460.9540.9530.9496则任取一粒麦粒,估计它能发芽的概率约为()(结果精确到0.01)A .0.93B .0.94C .0.95D .0.96【答案】C【解答】解:由表格可得:随着实验麦粒数的增加,其发芽的频率稳定在0.95左右,故选:C .51.一个不透明的口袋中装有n 个白球,为了估计白球的个数,向口袋中加入3个红球,它们除颜色外其它完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在10%附近,则n 的值为()A .27B .30C .33D .36【答案】A【解答】解:由题意知,袋中球的总个数约为3÷10%=30(个),所以袋中白球的个数n=30﹣3=27,故选:A.。
初中数学选择填空解题技巧+基础题50练
初中数学选择填空解题技巧+基础题50练姓名:__________指导:__________日期:__________l例13.一个圆柱的底面半径为1米,它的高为2米,则这个圆柱的侧面积为平方米。
(精确到0.1平方米)。
有的考生直接把求出的4 π作为结果而致错误,正确答案应当是12.6。
其次,若题干没有附加条件,则按具体情况与常规解题。
第二,应认真分析题目的隐含条件。
方法十一:隐含条件法例14.等腰三角形的一边等于4,一边等于9,则它的周长等于。
个别考生认为9和4都可以作为腰长,而出现两个答案22和17,这是他们忽视了“三角形二边之和应大于第三边”这个隐含条件,应填22。
二、选择题解法大全方法一:排除选项法选择题因其答案是四选一,我们可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元B、128元C 、120元D、88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。
初中数学选择填空题技巧
初中数学选择填空题技巧选择题答题技巧大全方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。
方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
方法八:枚举法列举所有可能的情况,然后作出正确的判断。
例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。
方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
方法十:不完全归纳法当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学选择填空解题技巧+模拟考试
题50练)
姓名:__________
指导:__________
日期:__________
一、填空题十一个基本解法方法一:直接法
方法二:特例法
方法三:数形结合法
方法四:猜想法
方法五:整体法
方法六:构造法
方法七:图解法
方法八:等价转化法
方法九:观察法
方法十:减少失误法
例l二、选择题解法大全
方法一:排除选项法
选择题因其答案是四选一,我们可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
方法二:赋予特殊值法
即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
方法三:通过猜想、测量的方法,直接观察或得出结果
这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
方法四:直接求解法
有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元B、128元C 、120元D、88元
方法五:数形结合法
解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
方法六:代入法
将选择支代入题干或题代入选择支进行检验,然后作出判断。
方法七:观察法
观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
方法八:枚举法
列举所有可能的情况,然后作出正确的判断。
例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )
A.5种
B.6种
C.8种
D.10种
分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。
方法九:待定系数法
要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解
方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
方法十:不完全归纳法
当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。
真题50练习。