01顺序结构的线性表插入删除查找
线性表 知识点总结
线性表知识点总结线性表的特点:1. 有序性:线性表中的元素是有序排列的,每个元素都有唯一的前驱和后继。
2. 可变性:线性表的长度是可变的,可以进行插入、删除操作来改变表的元素数量。
3. 线性关系:线性表中的元素之间存在明确的前驱和后继关系。
4. 存储结构:线性表的存储结构有顺序存储和链式存储两种方式。
线性表的操作:1. 查找操作:根据元素的位置或值来查找线性表中的元素。
2. 插入操作:将一个新元素插入到线性表中的指定位置。
3. 删除操作:将线性表中的某个元素删除。
4. 更新操作:将线性表中的某个元素更新为新的值。
线性表的顺序存储结构:顺序存储结构是将线性表的元素按照其逻辑顺序依次存储在一块连续的存储空间中。
线性表的顺序存储结构通常采用数组来实现。
数组中的每个元素都可以通过下标来访问,因此可以快速的进行查找操作。
但是插入和删除操作会导致元素位置的变动,需要进行大量数据搬移,效率较低。
线性表的链式存储结构:链式存储结构是将线性表的元素通过指针相连,形成一个链式结构。
每个元素包含数据和指向下一个元素的指针。
链式存储结构不需要连续的存储空间,可以动态分配内存,适合插入和删除频繁的场景。
但是链式结构的元素访问不如顺序结构高效,需要通过指针来逐个访问元素。
线性表的应用场景:1. 线性表适用于数据元素之间存在明确的前后关系,有序排列的场景。
2. 顺序存储结构适用于元素的插入和删除操作较少,对元素的随机访问较频繁的场景。
3. 链式存储结构适用于插入和删除操作较频繁的场景,对元素的随机访问较少。
线性表的操作的时间复杂度:1. 查找操作:顺序存储结构的时间复杂度为O(1),链式存储结构的时间复杂度为O(n)。
2. 插入和删除操作:顺序存储结构的时间复杂度为O(n),链式存储结构的时间复杂度为O(1)。
线性表的实现:1. 顺序存储结构的实现:使用数组来存储元素,通过下标来访问元素。
2. 链式存储结构的实现:使用链表来实现,每个元素包含数据和指向下一个元素的指针。
实验01 线性表的基本操作
实验01 线性表的基本操作一、实验目的1. 了解线性表的结构特点及有关概念;2. 理解线性表的存储结构;3. 掌握顺序表及单链表的基本操作算法。
二、实验内容1、编写程序实现顺序表的各种基本运算:初始化、插入、删除、取表元素、求表长、输出表、销毁、判断是否为空表、查找元素。
在此基础上设计一个主程序完成如下功能:(1)初始化顺序表L;(2)依次在表尾插入a,b,c,d,e五个元素;(3)输出顺序表L;(4)输出顺序表L的长度;(5)判断顺序表L是否为空;(6)输出顺序表L的第4个元素;(7)输出元素c的位置;(8)在第3个位置上插入元素f,之后输出顺序表L;(9)删除L的第2个元素,之后输出顺序表L;(10)销毁顺序表L。
2、编写程序实现单链表的各种基本运算:初始化、插入、删除、取表元素、求表长、输出表、销毁、判断是否为空表、查找元素。
在此基础上设计一个主程序完成如下功能:(1)初始化单链表L;(2)依次在表尾插入a,b,c,d,e五个元素;(3)输出单链表L;(4)输出单链表L的长度;(5)判断单链表L是否为空;(6)输出单链表L的第4个元素;(7)输出元素c的位置;(8)在第3个位置上插入元素f,之后输出单链表L;(9)删除L的第2个元素,之后输出单链表L;(10)销毁单链表L。
三、实验要点及说明一.顺序表1.顺序表初始化:(1)为顺序表L动态分配一个预定大小的数组空间,使elem 指向这段空间的基地址。
(2)将表的当前长度设为0.2.顺序表的取值:(1)判断指定的位置序号i值是否合理(1<=i<=L.length),若不合理则返回ERROR.(2)若i值合理,则将i个数据元素L.elem[i]赋给参数e,通过e返回第i个数据元素的传值。
3.顺序表的查找:(1)从第一个元素起,依次和e相比较,若找到与e相等的元素L.elem[i],则查找成功,返回该元素的序号i+1.(2)若查遍整个顺序表都没要找到,则查找失败,返回0.4.顺序表的插入:(1)判断插入位置i是否合法(i值的合法范围是1<=i<=n+1),若不合法则返回值ERROR.(2)判断顺序表的存储空间是否已满,若满则返回值ERROR(3)将第n个至第i个位置的元素依次向后移动一个位置,空出第i个位置(i=n+1时无需移动)。
数据结构实验-实验指导书
实验一线性表操作一、实验目的1熟悉并掌握线性表的逻辑结构、物理结构。
2熟悉并掌握顺序表的存储结构、基本操作和具体的函数定义。
3熟悉VC++程序的基本结构,掌握程序中的用户头文件、实现文件和主文件之间的相互关系及各自的作用。
4熟悉VC++操作环境的使用以及多文件的输入、编辑、调试和运行的全过程。
二、实验要求1实验之前认真准备,编写好源程序。
2实验中认真调试程序,对运行结果进行分析,注意程序的正确性和健壮性的验证。
3不断积累程序的调试方法。
三、实验内容基本题:1对元素类型为整型的顺序存储的线性表进行插入、删除和查找操作。
加强、提高题:2、编写一个求解Josephus问题的函数。
用整数序列1, 2, 3, ……, n表示顺序围坐在圆桌周围的人。
然后使用n = 9, s = 1, m = 5,以及n = 9, s = 1, m = 0,或者n = 9, s = 1, m = 10作为输入数据,检查你的程序的正确性和健壮性。
最后分析所完成算法的时间复杂度。
定义JosephusCircle类,其中含完成初始化、报数出圈成员函数、输出显示等方法。
(可以选做其中之一)加强题:(1)采用数组作为求解过程中使用的数据结构。
提高题:(2)采用循环链表作为求解过程中使用的数据结构。
运行时允许指定任意n、s、m数值,直至输入n = 0退出程序。
实验二栈、队列、递归应用一、实验目的1熟悉栈、队列这种特殊线性结构的特性2熟练掌握栈、队列在顺序存储结构和链表存储结构下的基本操作。
二、实验要求1实验之前认真准备,编写好源程序。
2实验中认真调试程序,对运行结果进行分析,注意程序的正确性和健壮性的验证。
3不断积累程序的调试方法。
三、实验内容基本题(必做):1分别就栈的顺序存储结构和链式存储结构实现栈的各种基本操作。
2、假设以带头结点的循环链表表示队列,并且只设一个指针指向对尾结点,不设头指针,试设计相应的置队空、入队和出队的程序。
加强题:3设线性表A中有n个字符,试设计程序判断字符串是否中心对称,例如xyzyx和xyzzyx都是中心对称的字符串。
《数据结构》实验指导
《数据结构》实验指导《数据结构》C语言版实验指导目录《数据结构》上机实验的目的和要求 (1)实验一顺序结构线性表的实现 (3)实验二单链表的插入和删除 (16)实验三栈的实现 (24)实验四二叉树操作实现 (30)实验五哈夫曼树的建立与编码实现 (39)实验六图的遍历操作 (50)实验七排序 (67)实验八查找 (83)《数据结构》课程设计 (95)《数据结构》上机实验的目的和要求通过上机实验加深对课程内容的理解,增加感性认识,提高软件设计、编写及调试程序的能力。
要求所编的程序能正确运行,并提交实验报告。
实验报告的基本要求为:1、需求分析:陈述程序设计的任务,强调程序要做什么,明确规定:(1)输入的形式和输出值的范围;(2)输出的形式;(3)程序所能达到的功能;(4)测试数据:包括正确的输入输出结果和错误的输入及输出结果。
2、概要设计:说明用到的数据结构定义、主程序的流程及各程序模块之间的调用关系。
3、详细设计:提交带注释的源程序或者用伪代码写出每个操作所涉及的算法。
4、调试分析:(1)调试过程中所遇到的问题及解决方法;(2)算法的时空分析;(3)经验与体会。
5、用户使用说明:说明如何使用你的程序,详细列出每一步操作步骤。
6、测试结果:列出对于给定的输入所产生的输出结果。
若有可能,测试随输入规模的增长所用算法的实际运行时间的变化。
实验一顺序结构线性表的实现一、目的:掌握顺序表的表示方法,存储结构及其基本操作的实现。
二、要求:建立一顺序表,实现其基本操作。
三、示例程序:说明:一个完整的程序是由输入,处理,输出三部分组成的,每个部分还可以分为若干小部分,如输入,又可以分为声明,初始化变量,接收数据,预处理数据等。
书上列出的算法是解决问题的基本思路,也可以是解决问题的处理过程,并未给出详细的输入与输出,这一部分需要在练习过程中加入,在解决实际问题时,还需要做灵活的处理。
C语言本身有自身的特点,其基本思想是与机器的指令码相关的。
实习01_线性表的顺序存储和操作(有序表的合并)
实验一线性表的顺序存储和操作(有序表的合并)1.目的用顺序表(SqList)类型实现书上算法2.1和2.2,了解线性表及在计算机中的两类不同的存储结构;熟练掌握线性表的查找、插入和删除等算法并灵活运用这些算法。
2.要求用C语言编写程序,其中Lb={2,4,6,8,10} La={1,2,3,4,5},①算法2.1执行后,得到的new La = 1,2,3,4,5,6,8,10②修改Lb=2,6,8,9,11,15,20,并利用新生成的La,得到合并后的Lc,Lc= 1,2,2,3,4,5,6,6,8,8,9,10,11,15,203、预习要求:1、复习书上第20页的例2-1和例2-2;2、复习算法2.3,理解如何构造线性表;3、复习算法2.7,理解算法的执行步骤和含义;4、项目介绍:前面的课程已经学习了如何用C语言描述顺序表、如何初始化顺序表、以及如何在顺序表中插入和删除数据元素。
现在通过两个顺序表的合并的实验,加深对顺序表的理解,熟悉如何将逻辑上的数学模型转化为计算机能够理解的指令代码。
该实验是数据结构课程的第一个实验,实验的目标除了加深理解课堂内容外,还对学生的动手能力提出了更高的要求,锻炼学生动手的能力。
5、算法设计#include <stdio.h>#include <stdlib.h>#include <malloc.h># define TRUE 1# define ERROR 0# define OK 1# define OVERFLOW -2# define FALSE 0# define LIST_INIT_SIZE 10# define LISTINCREMENT 5void main(){List La,Lb,Lc;int j,b[7]={2,6,8,9,11,15,20};InitList(La); // 创建空表La。
如不成功,则会退出程序的运行for(j=1;j<=5;j++) // 在表La中插入5个元素,依次为1、2、3、4、5 ListInsert(La,j,j);printf("La= ");ListTraverse(La,printer); // 输出表La的内容InitList(Lb); // 创建空表Lbfor(j=1;j<=5;j++) // 在表Lb中插入5个元素,依次为2、4、6、8、10 ListInsert(Lb,j,2*j);printf("Lb= ");ListTraverse(Lb,printer); // 输出表Lb的内容Union(La,Lb); // 调用算法2.1,将Lb中满足条件的元素插入La(不改变Lb) printf("new La= ");ListTraverse(La,printer); // 输出新表La的内容ClearList(Lb); // 清空表Lbfor(j=1;j<=7;j++) // 在表Lb中重新依次插入数组b[]的7个元素ListInsert(Lb,j,b[j-1]);printf("Lb= ");ListTraverse(Lb,printer); // 输出表Lb的内容MergeList(La,Lb,Lc); // 调用算法2.2,生成新表Lc(不改变表La和表Lb)printf("Lc= ");ListTraverse(Lc,printer); // 输出表Lc的内容}6.小结线性表是软件设计中最基础的数据结构。
数据结构线性表ppt课件
01
02
03
04
插入操作
在链表的指定位置插入一个新 节点,需要修改相邻节点的指
针。
删除操作
删除链表的指定节点,需要修 改相邻节点的指针。
查找操作
从链表的头节点开始,顺序遍 历链表,直到找到目标元素或
遍历到链表末尾。
遍历操作
从链表的头节点开始,顺序访 问每个节点,直到遍历到链表
末尾。
04 线性表应用举例 与问题分析
多项式表示与计算问题
01
02
03
多项式表示方法
数组表示法和链表表示法 。
数组表示法
将多项式的系数按次序存 放在一个数组中,通过下 标表示对应的幂次。
链表表示法
每个节点包含系数和指数 两个数据域,以及一个指 向下一个节点的指针域。
一元多项式相加算法设计
• 算法思想:将两个多项式中的同类项系数相加,得到新的 多项式。
删除操作
删除指定位置i的元素,需要将i之后的元素都向前移动 一个位置。
03 链式存储结构及 其实现
链式存储结构原理及特点
链式存储结构原理
使用一组任意的存储单元存储线 性表的数据元素(这组存储单元 可以是连续的,也可以是不连续 的)。
链式存储结构特点
逻辑上相邻的元素在物理位置上 不一定相邻,元素之间的逻辑关 系是通过指针链接来表示的。
...,an组成的有序序列。
性质
集合中必存在唯一的一个“第一元素 ”。
集合中必存在唯一的一个“最后元素 ”。
除最后元素之外,均有唯一的后继。
除第一元素之外,均有唯一的前驱。
线性表与数组关系
数组是线性表的一种表现和实现形式。
线性表更侧重于逻辑概念,而数组则是这种逻辑概念在计算机中的一种存储方式。
《数据结构》课程标准
01
分支限界策略
类似于回溯法,但在搜索过程中通过 剪枝等操作来减少搜索空间,提高效 率。
05
03
贪心策略
每一步都采取当前状态下最好或最优 的选择,从而希望导致结果是全局最 好或最优的。
04
回溯策略
通过探索所有可能的解来求解问题, 当发现当前路径无法得到解时,回溯 到上一步重新选择。
05
排序与查找算法专题
《数据结构》课程标准
目录
• 课程概述与目标 • 基本数据类型与操作 • 复杂数据类型与操作 • 算法设计与分析基础 • 排序与查找算法专题 • 文件组织与处理技术 • 实验环节与项目实践指导
01
课程概述与目标
数据结构定义及重要性
数据结构定义
数据结构是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关 系的数据元素的集合。
01
02
03
时间复杂度
衡量算法执行时间随问题 规模增长的速度,常用大 O表示法。
空间复杂度
衡量算法执行过程中所需 额外空间的数量级,也常 用大O表示法。
其他指标
包括算法的稳定性、可读 性、可维护性等。
典型算法设计策略
分治策略
将原问题分解为若干个子问题,分别 求解后再合并结果。
02
动态规划
通过保存子问题的解,避免重复计算, 提高效率。
06
文件组织与处理技术
文件概念及分类方法
文件定义
文件是存储在外部介质上的数据集合, 通常以记录为单位进行组织。
文件分类
根据文件的性质和记录的组织方式,文 件可分为顺序文件、索引文件、散列文 件和链式文件等。
顺序文件组织方式
顺序文件的定义
顺序文件是按照某种顺序 (如记录的逻辑顺序或物 理顺序)进行组织的文件。
线性表实验报告
线性表实验报告一、实验目的本次实验的主要目的是深入理解线性表的基本概念和操作,通过实际编程实现线性表的存储和基本运算,掌握线性表在数据结构中的应用,提高对数据结构的理解和编程能力。
二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。
三、实验原理线性表是一种最基本、最简单的数据结构,它是由 n(n≥0)个数据元素组成的有限序列。
在这个序列中,每个数据元素的位置是按照其逻辑顺序排列的。
线性表有两种存储结构:顺序存储结构和链式存储结构。
顺序存储结构是用一组地址连续的存储单元依次存储线性表中的数据元素,使得逻辑上相邻的两个元素在物理位置上也相邻。
其优点是可以随机访问表中的任意元素,时间复杂度为 O(1);缺点是插入和删除操作需要移动大量元素,时间复杂度为 O(n)。
链式存储结构是通过指针将各个数据元素链接起来,每个数据元素由数据域和指针域组成。
其优点是插入和删除操作不需要移动大量元素,时间复杂度为 O(1);缺点是不能随机访问表中的元素,需要从头指针开始遍历,时间复杂度为 O(n)。
四、实验内容本次实验实现了顺序表和链表的基本操作,包括创建、插入、删除、查找、遍历等。
1、顺序表的实现定义顺序表的结构体,包括数据存储数组和表的长度。
实现顺序表的初始化函数,将表的长度初始化为 0。
实现顺序表的插入函数,在指定位置插入元素,如果插入位置非法或表已满,则返回错误。
实现顺序表的删除函数,删除指定位置的元素,如果删除位置非法,则返回错误。
实现顺序表的查找函数,查找指定元素,如果找到则返回元素的位置,否则返回-1。
实现顺序表的遍历函数,输出表中的所有元素。
2、链表的实现定义链表的结构体,包括数据域和指向下一个节点的指针域。
实现链表的创建函数,创建一个空链表。
实现链表的插入函数,在指定位置插入元素,如果插入位置非法,则返回错误。
实现链表的删除函数,删除指定位置的元素,如果删除位置非法,则返回错误。
数据结构实验,线性表的插入和删除,单链表操作,Huffman编码树
{ int i,j,k,x1,x2,m1,m2;
for(i=1;i<(2*n);i++)
{ t[i].pa=t[i].lc=t[i].rc=0;
if(i<=n)
t[i].data=w[i];
else
t[i].data=0;
}
for(i=1;i<n;i++)
{ m1=m2=MAX;
x1=x2=0;
for(j=1;j<(n+i);j++)
ListCount=0;
int nOperateState;
while(TRUE)
{
printf( "选择你要操作的方法,1为插入,2为删除,3为查询!4为退出\r\n ");
scanf("%d",&nOperateState);
switch(nOperateState)
{
case 1:
InsertInfo();
{
printf("请不要重复插入相同学号的信息\r\n");
LocalFree(Info);
return;
}
ptemp=ptemp->pNext;
}
}
if (ListHead)
{
if (ListCount==1)
{
ListTail=Info;
ListTail->pNext=NULL;
ListHead->pNext=ListTail;
temp->stu_num,temp->stu_age,temp->stu_english_grade);
顺序表的初始化及基本操作Word版
顺序表的初始化及基本操作Word版顺序表是一种线性表的存储结构,它是一种物理上连续的存储空间用于存储相同数据类型的元素。
顺序表的基本操作包括初始化、插入、删除、查找和修改等。
顺序表的应用广泛,常用于各种数据结构和算法的实现中顺序表的初始化顺序表的初始化是指创建一个空的顺序表,为其分配存储空间并进行初始化。
初始化顺序表的步骤包括定义表的存储空间、设置表的长度为0,即表中无元素二、顺序表的插入顺序表的插入是指在表中的指定位置上插入一个元素。
插入操作需要将插入位置之后的元素依次后移,为插入元素腾出空间。
插入操作有两种情况:在表的末尾插入元素和在表的中间插入元素。
三、顺序表的删除顺序表的删除是指删除表中指定位置上的元素。
删除操作需要将删除位置之后的元素依次前移,覆盖被删除的元素。
删除操作有两种情况:删除表的末尾元素和删除表的中间元素四、顺序表的查找顺序表的查找是指在表中查找指定元素的位置。
查找操作可以按照元素值进行查找,也可以按照元素位置进行查找。
顺序表的查找操,作可以采用顺序查找和二分查找等算法五、顺序表的修改顺序表的修改是指修改表中指定位置上的元素的值。
修改操作可以直接修改元素的值,也可以通过删除和插入操作实现。
顺序表的应用:1.顺序表可以用于实现栈和队列等数据结构。
栈是一种先进后出的数据结构,可以使用顺序表的插入和删除操作实现。
队列是一种先进先出的数据结构,可以使用顺序表的插入和删除操作实现2.顺序表可以用于实现线性表,如数组和矩阵等。
数组是一种具有相同数据类型的元素按照一定顺序排列的数据结构,可以使用顺序表的插入、删除、查找和修改操作实现。
矩阵是一种二维数组,可以使用顺序表的插入、删除、查找和修改操作实现。
3.顺序表可以用于实现排序和查找算法。
排序算法可以使用顺序表的插入和删除操作实现,如插入排序和冒泡排序等。
查找算法可以使用顺序表的查找操作实现,如顺序查找和二分查找等4.顺序表可以用于存储和处理大量的数据,如学生信息管理系统和图书馆管理系统等。
数据结构顺序表的基本操作
数据结构顺序表的基本操作
数据结构顺序表是一种线性表的实现方式,它通过一段连续的内存空间存储线性表的元素,支持快速的随机访问。
顺序表的基本操作包括插入、删除、查找、遍历等。
下面分别介绍这些操作:
1. 插入操作:顺序表的插入操作需要考虑插入位置、插入元素和数组容量等因素。
如果插入位置在数组范围内,则需要将插入位置及之后的元素向后移动一位,以给插入元素腾出空间。
如果数组容量已满,则需要动态扩容,重新分配一段更大的内存空间。
2. 删除操作:顺序表的删除操作需要考虑删除位置和数组容量等因素。
如果删除位置在数组范围内,则需要将删除位置及之后的元素向前移动一位,填补删除位置的空缺。
如果数组元素数量较少,可以考虑动态缩容,释放一部分内存空间。
3. 查找操作:顺序表的查找操作可以通过遍历整个数组进行线性查找,也可以通过二分查找等算法提高查找效率。
需要注意的是,顺序表的元素必须是有序的才能使用二分查找。
4. 遍历操作:顺序表的遍历操作可以通过循环遍历整个数组进行,也可以通过迭代器等方式简化遍历操作。
以上是顺序表的基本操作,需要根据具体的应用场景和需求进行选择和实现。
在实现过程中,需要注意数组下标越界、插入删除元素时的内存管理等问题。
- 1 -。
数据结构-线性表输入,输出,插入,删除,查找
创建一个线性表实现输入,输出,插入,删除,定位。
(注意:不论在调用哪个函数前,都要先使=a,就是使指针elem回到数组a的首地址。
)#include<>#include<>#include<>#define LIST_INIT_SIZE 100 //线性表存储空间的初始分配量#define LISTINCREMENT 10 //线性表存储空间的分配增量#define OK 1#define ERROR 0#define OVERFLOW -2typedef int ElemType; //接下来ElemType代表的就是inttypedef int Status; //Status也代表intint i,*p,*q; //p,q都是指针类型ElemType e;typedef struct{ElemType *elem; //定义成指针类型 //存储空间基址int length; //当前长度int listsize; //当前分配的存储容量(以sizeof(ElemType)为单位)}SqList;//***********************构建空的线性表*************************//Status InitList_Sq(SqList &L) //构建一个空的线性表L{=(ElemType *)malloc(LIST_INIT_SIZE*sizeof(ElemType));if(! exit(OVERFLOW); //存储分配失败=0; //空表长度为0=LIST_INIT_SIZE; //初始存储容量return OK;}//**************************线性表输入函数*********************//void input(SqList &L) //输入函数{scanf("%d",; //要先输入一个,不然一开始就是0,无法进行循环while(* // 加*是因为elem是指针,加之后才代表值{++; //输入后指针后移++; //表长加1scanf("%d",; //循环中也要再输入}}//**************************线性表打印函数********************// void print(SqList &L) //输出函数{int n;for(n=0;n<;n++){printf("%d\t",*;++; //输出后指针后移}}//***********线性表插入函数(在第i个位置插入一个数据e)*************//Status ListInsert_Sq(SqList &L,int i,ElemType e)//插入函数{//在顺序线性表L中第i个位置之前插入新的元素e//i的合法值为1<=i<=(L)+1Status *newbase;指针类型。
数据结构实验报告顺序表
数据结构实验报告顺序表数据结构实验报告:顺序表摘要:顺序表是一种基本的数据结构,它通过一组连续的存储单元来存储线性表中的数据元素。
在本次实验中,我们将通过实验来探索顺序表的基本操作和特性,包括插入、删除、查找等操作,以及顺序表的优缺点和应用场景。
一、实验目的1. 理解顺序表的概念和特点;2. 掌握顺序表的基本操作;3. 了解顺序表的优缺点及应用场景。
二、实验内容1. 实现顺序表的初始化操作;2. 实现顺序表的插入操作;3. 实现顺序表的删除操作;4. 实现顺序表的查找操作;5. 对比顺序表和链表的优缺点;6. 分析顺序表的应用场景。
三、实验步骤与结果1. 顺序表的初始化操作在实验中,我们首先定义了顺序表的结构体,并实现了初始化操作,即分配一定大小的存储空间,并将表的长度设为0,表示表中暂时没有元素。
2. 顺序表的插入操作接下来,我们实现了顺序表的插入操作。
通过将插入位置后的元素依次向后移动一位,然后将新元素插入到指定位置,来实现插入操作。
我们测试了在表中插入新元素的情况,并验证了插入操作的正确性。
3. 顺序表的删除操作然后,我们实现了顺序表的删除操作。
通过将删除位置后的元素依次向前移动一位,来实现删除操作。
我们测试了在表中删除元素的情况,并验证了删除操作的正确性。
4. 顺序表的查找操作最后,我们实现了顺序表的查找操作。
通过遍历表中的元素,来查找指定元素的位置。
我们测试了在表中查找元素的情况,并验证了查找操作的正确性。
四、实验总结通过本次实验,我们对顺序表的基本操作有了更深入的了解。
顺序表的插入、删除、查找等操作都是基于数组的操作,因此在插入和删除元素时,需要移动大量的元素,效率较低。
但是顺序表的优点是可以随机访问,查找效率较高。
在实际应用中,顺序表适合于元素数量不变或变化不大的情况,且需要频繁查找元素的场景。
综上所述,顺序表是一种基本的数据结构,我们通过本次实验对其有了更深入的了解,掌握了顺序表的基本操作,并了解了其优缺点及应用场景。
数据结构实验报告1线性表的顺序存储结构
数据结构实验报告1线性表的顺序存储结构一、实验目的本次实验的主要目的是深入理解线性表的顺序存储结构,并通过编程实现其基本操作,包括创建线性表、插入元素、删除元素、查找元素以及输出线性表等。
通过实际操作,掌握顺序存储结构的特点和优势,同时也了解其在不同情况下的性能表现。
二、实验环境本次实验使用的编程语言为C++,编译环境为Visual Studio 2019。
三、实验原理1、线性表的定义线性表是由 n(n≥0)个数据元素组成的有限序列。
在顺序存储结构中,线性表的元素存储在一块连续的存储空间中,通过数组来实现。
2、顺序存储结构的特点存储密度高,无需额外的指针来表示元素之间的关系。
可以随机访问表中的任意元素,时间复杂度为 O(1)。
插入和删除操作需要移动大量元素,平均时间复杂度为 O(n)。
四、实验内容及步骤1、定义线性表的数据结构```cppdefine MAX_SIZE 100 //定义线性表的最大长度typedef struct {int dataMAX_SIZE; //存储线性表元素的数组int length; //线性表的当前长度} SeqList;```2、初始化线性表```cppvoid InitList(SeqList L) {L>length = 0; //初始时线性表长度为 0}```3、判断线性表是否为空```cppbool ListEmpty(SeqList L) {return (Llength == 0);}```4、求线性表的长度```cppint ListLength(SeqList L) {return Llength;}```5、按位查找操作```cppint GetElem(SeqList L, int i) {if (i < 1 || i > Llength) {printf("查找位置不合法!\n");return -1;}return Ldatai 1;}```6、按值查找操作```cppint LocateElem(SeqList L, int e) {for (int i = 0; i < Llength; i++){if (Ldatai == e) {return i + 1;}}return 0; //未找到返回 0}```7、插入操作```cppbool ListInsert(SeqList L, int i, int e) {if (L>length == MAX_SIZE) {//表已满printf("表已满,无法插入!\n");return false;}if (i < 1 || i > L>length + 1) {//插入位置不合法printf("插入位置不合法!\n");return false;}for (int j = L>length; j >= i; j) {//移动元素L>dataj = L>dataj 1;}L>datai 1 = e; //插入元素L>length++;//表长加 1return true;}```8、删除操作```cppbool ListDelete(SeqList L, int i) {if (L>length == 0) {//表为空printf("表为空,无法删除!\n");return false;}if (i < 1 || i > L>length) {//删除位置不合法printf("删除位置不合法!\n");return false;}for (int j = i; j < L>length; j++){//移动元素L>dataj 1 = L>dataj;}L>length; //表长减 1return true;}```9、输出线性表```cppvoid PrintList(SeqList L) {for (int i = 0; i < Llength; i++){printf("%d ", Ldatai);}printf("\n");}```10、测试用例```cppint main(){SeqList L;InitList(&L);ListInsert(&L, 1, 10);ListInsert(&L, 2, 20);ListInsert(&L, 3, 30);ListInsert(&L, 4, 40);ListInsert(&L, 5, 50);printf("线性表的长度为:%d\n", ListLength(L));printf("查找第 3 个元素:%d\n", GetElem(L, 3));int loc = LocateElem(L, 30);if (loc) {printf("元素 30 的位置为:%d\n", loc);} else {printf("未找到元素 30\n");}ListDelete(&L, 3);printf("删除第 3 个元素后的线性表:");PrintList(L);return 0;}```五、实验结果及分析1、实验结果成功创建并初始化了线性表。
实验一数据结构顺序表的插入和删除
实验一顺序表的操作1.实验题目:顺序表的操作2.实验目的和要求:1)了解顺序表的基本概念、顺序表结构的定义及在顺序表上的基本操作(插入、删除、查找以及线性表合并)。
2) 通过在Turbo C(WinTc,或visual stdio6)实现以上操作的C语言代码。
3)提前了解实验相关的知识(尤其是C语言)。
3.实验内容:(二选一)1) 顺序表的插入算法,删除算法,顺序表的合并算法2) 与线性表应用相关的实例(自己选择具体实例)4.部分参考实验代码:⑴顺序表结构的定义:#include <stdio.h>#define MAXLEN 255typedef int ElemType;typedef struct{ ElemType elem[MAXLEN];int length;}sqList;⑵顺序表前插(在第i号元素前插入一个新的元素)int ListInsert(sqList *la,int i,int x){ int j;if(i<0||i>la-> length +1){ printf(“\n the value of i is wrong!”);return 0;}if(la-> length +1>=MAXLEN){ printf(“\n overflow!”);return 0;}. for(j=la-> length;j>=i;j--)la->list[j+1]=la->list[j];la->list[i]=x;la-> length ++;return 1;}⑶顺序表删除int ListDelete(sqList *la,int i){ if(i<0||i>la-> length){ printf(“\n the position is wrong!\n”);return 0;}for(i;i<la-> length;i++)la->list[i-1]=la->list[i];la-> length --;return 1;}5.附录:实验预备知识:⑴复习C语言中数组的用法。
数据结构(第二章 线性表)
2.2 线性表的顺序存储和实现
顺序表-顺序表定义
由上可知,数据的存储逻辑位置由数组的下标决定。 所以相邻的元素之间地址的计算公式为(假设每个数 据元素占有d个存储单元): LOC(ai)=LOC(ai-1)+d 对线性表的所有数据元素,假设已知第一个数据元 素a0的地址为LOC(a0) ,每个结点占有d个存储 单元, 则第i个数据元素ai的地址为: LOC(ai)=LOC(a0)+i*d 线性表的第一个数据元素的位置通常称做起始位置 或基地址。 在使用一维数组时,数组的下标起始位置根据给定 的问题确定,或者根据实际的高级语言的规定确定。
2.1 线性表抽象数据类型
线性表的分类
顺序存储结构 (元素连续存储、 随机存取结构) 线性表 ADT 链式存储结构 (元素分散存储) 继承 顺序表类 排序顺序表类 继承 单链表类 循环单链表 双链表 继承 排序循环双链表类 排序单链表类
单链表
双链表
循环双链表类
线性表的存储结构
2.2 线性表的顺序存储和实现
线性表的基本操作 求长度:求线性表的数据元素个数。 访问:对线性表中指定位置的数据元素进行存取、替 换等操作。 插入:在线性表指定位置上,插入一个新的数据元素, 插入后仍为一个线性表。 删除:删除线性表指定位置的数据元素,同时保证更 改后的线性表仍然具有线性表的连续性。 复制:重新复制一个线性表。 合并:将两个或两个以上的线性表合并起来,形成一 个新的线性表。 查找:在线性表中查找满足某种条件的数据元素。 排序:对线性表中的数据元素按关键字值,以递增或 递减的次序进行排列。 遍历:按次序访问线性表中的所有数据元素,并且每 个数据元素恰好访问一次。
数据结构对元素类型为整型的顺序存储的线性表进行插入、删除和查找操作
#include<iostream>using namespace std; const int stackIncreament=20;class SeqStack{private:int *elements;int top;int maxSize;void overflowProcess();//栈的溢出处理public:SeqStack(int sz=50);~SeqStack(){delete[]elements;}void Push(const int& x);bool Pop(int& x);bool getTop(int& x);bool IsEmpty()const {return (top==1)?true:false;}bool IsFull()const {return (top==maxSize-1)?true:false;}int getSize()const{return top+1;}void MakeEmpty(){top=-1;}friend ostream& operator<<(ostream& os,SeqStack& s){os<<"top="<<s.top<<endl;for(int i=0;i<=s.top;i++)os<<i<<":"<<s.elements[i]<<endl;return os;}};SeqStack::SeqStack(int sz):top(-1),maxSize(sz){elements=new int[maxSize];}void SeqStack::overflowProcess(){//私有函数:扩充栈的存储空间int *newArray=new int[maxSize+stackIncreament];for(int i=0;i<=top;i++)newArray[i]=elements[i];maxSize=maxSize+stackIncreament;delete[]elements;elements=newArray;}void SeqStack::Push(const int& x){if(IsFull()==true)overflowProcess();//栈满则溢出处理elements[++top]=x;//栈顶指针先加1,再进栈}bool SeqStack::Pop(int& x){if(IsEmpty()==true)return false;x=elements[top--];return true;}bool SeqStack::getTop(int& x){if(IsEmpty()==true)return false;x=elements[top];return true;}void main(){SeqStack s;int n=20;for(int i=1;i<=n;i++)//推进20个数据s.Push(i);cout<<s;cout<<endl<<"退栈前元素个数:"<<s.getSize()<<endl;int x;if(s.Pop(x)); //栈顶元素退栈cout<<"退栈元素是:"<<x<<endl;cout<<endl<<"退栈后元素个数:"<<s.getSize()<<endl; }。
西北民族大学数据结构题库(1)
21.数据的存储结构通常包括数据的_________存储和_________存储。
22.数据的逻辑结构可形式地用一个二元组S=(D,R)来表示,其中D是__________,R是__________。
23.所有插入和删除都在表的一端进行的线性表称为。
C 、两个串的长度相等,并且两个串包含的字符相等。
D、 两个串的长度相等,并且对应位置上的字符相等。
19.已知广义表L=(a,(b,c)),其表头是( )。
A.aB.bC.(a,b)D.(c,d)
20.广义表((a,b),c,d)的表尾是( )。
A.aB.bC.(a,b)D.(c,d)
21.树最适合用来表示( )。
34.设广义表L=(a,(a,b),d,e,((i,(j)),k)),则L的深度是,表头为,表尾是。
35.空格串是指由__________符所组成的字符串。
36.数据结构包括_________三个方面。
37.当线性表的元素总数基本稳定,且很少进行插入和删除操作,但要求以最快的速度存取线性表中的元素时,应该采用__________存储结构
D.77
5.无向图G=(V,E),其中:V={(a,b),(a,e),(a,c),(b,e),(e,f),(f,d),(e,d)},在下面的5个序列中,符合深度优先遍历的序列有多少?()
(1)a e b d f c(2)a c f d e b(3)a e d f c b(4)a e f d c b(5)a e f d b c
C.p->next=p->next
D.p=p->next->next
3.设高度为15的二叉树上只有度为0和1的结点,则此类二叉树中所包含的结点数至少为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
//* * * * * * * * * * * * * * * * * * * * * * *
//PROGRAM NAME :顺序结构的线性表 *
//CONTENT :插入,删除,查找 *
//* * * * * * * * * * * * * * * * * * * * * * *
#include <dos.h>
#include <conio.h>
#include <stdio.h>
#define MAX 30 //定义线性表的最大长度
enum BOOL{False,True}; //定义BOOL型
typedef struct{
char elem[MAX]; //线性表
int last; //last指示当前线性表的长度
}sqlisttp;
void initial(sqlisttp &); //初始化线性表
BOOL insert(sqlisttp &,int,char); //在线性表中插入元素
BOOL del(sqlisttp&,int,char &); //在线性表中删除元素
int locate(sqlisttp,char); //在线性表中定位元素
void print(sqlisttp); //显示线性表中所有元素
void main()
{sqlisttp S; //S为一线性表
int loc,flag=1;
char j,ch;
BOOL temp;
textbackground(3); //设置屏幕颜色
textcolor(15);
clrscr();
//---------------------------程序解说--------------------------
printf("本程序用来实现顺序结构的线性表。
\n");
printf("可以实现查找、插入、删除等操作。
\n");
//-------------------------------------------------------------
initial(S); //初始化线性表
while(flag)
{ printf("请选择:\n");
printf("1.显示所有元素\n");
printf("2.插入一个元素\n");
printf("3.删除一个元素\n");
printf("4.查找一个元素\n");
printf("5.退出程序 \n");
scanf(" %c",&j);
switch(j)
{case '1':print(S); break; //显示所有元素
case '2':{printf("请输入要插入的元素(一个字符)和插入位置:\n");
printf("格式:字符,位置;例如:a,2\n");
scanf(" %c,%d",&ch,&loc); //输入要插入的元素和插入的位置
temp=insert(S,loc,ch); //插入
if(temp==False) printf("插入失败!\n"); //插入失败
else {printf("插入成功!\n"); print(S);} //插入成功 break;
}
case '3':{printf("请输入要删除元素的位置:");
scanf("%d",&loc); //输入要删除的元素的位置
temp=del(S,loc,ch); //删除
if(temp==True) printf("删除了一个元素:%c\n",ch); //删除成功
else printf("该元素不存在!\n"); //删除失败
print(S);
break;
}
case '4':{printf("请输入要查找的元素:");
scanf(" %c",&ch); //输入要查找的元素
loc=locate(S,ch); //定位
if(loc!=-1) printf("该元素所在位置:%d\n",loc+1); //显示该元素位置
else printf("%c 不存在!\n",ch);//当前元素不存在
break;
}
default:flag=0;printf("程序结束,按任意键退出!\n");
}
}
getch();
}
void initial(sqlisttp &v)
{//初始化线性表
int i;
printf("请输入初始线性表长度:n="); //输入线性表初始化时的长度
scanf("%d",&st);
printf("请输入从1到%d的各元素(字符),例如:abcdefg\n",st);
getchar();
for(i=0;i<st;i++) scanf("%c",&v.elem[i]); //输入线性表的各元素
}
BOOL insert(sqlisttp &v,int loc,char ch)
{//插入一个元素,成功返回True,失败返回False
int i;
if((loc<1)||(loc>st+1))
{printf("插入位置不合理!\n"); //位置不合理
return False;
}
else if(st>=MAX) //线性表已满
{printf("线性表已满!\n");
return False;
}
else {for(i=st-1;i>=loc-1;i--) v.elem[i+1]=v.elem[i];//其后元素依次后移 v.elem[loc-1]=ch; //插入元素
st++; //线性表长度加一
return True;
}
}
BOOL del(sqlisttp &v,int loc,char &ch)
{//删除一个元素,成功返回True,并用ch返回该元素值,失败返回False
int j;
if(loc<1||loc>st) //删除位置不合理
return False;
else {ch=v.elem[loc-1]; //ch取得该元素值
for(j=loc-1;j<st-1;j++) v.elem[j]=v.elem[j+1]; //其后元素依次前移 st--; //线性表长度减一
return True;
}
}
int locate(sqlisttp v,char ch)
{//在线性表中查找ch的位置,成功返回其位置,失败返回-1
int i=0;
while(i<st&&v.elem[i]!=ch) i++; //当前位置后移,直到找到为止
if(v.elem[i]==ch) //找到当前元素
return i;
else return(-1);
}
void print(sqlisttp v) //显示当前线性表所有元素
{int i;
for(i=0;i<st;i++) printf("%c ",v.elem[i]);
printf("\n");
}。