Identification of N-(4-Piperidinyl)-肝癌-CDK2
关于肝癌的文献
关于肝癌的文献
关于肝癌的文献非常广泛,涵盖了肝癌的流行病学、病因学、病理学、诊断、治疗以及预后等多个方面。
以下是一些肝癌相关的重要文献:
1.《晚期肝细胞癌的全身治疗进展》:这篇文章全面介绍了晚期肝
细胞癌(HCC)的分子机制、致癌驱动因素、分子和免疫分类、全身治疗进展以及临床研究热点等内容。
文章强调了肝癌治疗的挑战和近年来取得的重要进展,为肝癌的研究和治疗提供了新的思路和方向。
2.《基于网络药理学和文献探讨异喹啉类生物碱抗肝癌研究进展》:
这篇文章利用网络药理学和文献探讨的方法,研究了五种异喹啉类生物碱抗肝癌的作用机制。
文章指出,这些生物碱可能通过调控PI3K-Akt通路等,对肝癌产生治疗作用,为肝癌的治疗提供了新的候选药物和研究方向。
此外,还有许多关于肝癌的流行病学调查、病因学研究、病理学分析、诊断技术改进以及临床治疗方案优化等方面的文献。
这些文献对于深入了解肝癌的发病机制、提高诊断准确性和治疗效果具有重要意义。
总之,肝癌的研究涉及多个领域和方面,需要综合运用多种方法和手段进行深入探讨。
通过不断积累和研究,相信未来会有更多的突破和进展,为肝癌患者带来更好的治疗效果和生活质量。
莫博赛替尼化学结构
莫博赛替尼化学结构
莫博赛替尼是一种抗癌药物,其化学名称为N-(4-((3-(2-amino-4-pyrimidinyl)-2-pyridinyl)oxy)phenyl)-4-(4-methyl-2-thiazolyl)-2-pyrimidinamine。
其化学结构可以描述为一种含有嘧啶和吡啶环的有机化合物。
具体来说,它包括一个苯基环和两个嘧啶环,其中一个嘧啶环连接着一个吡啶环。
此外,它还含有一个氨基和一个硫代咪唑基团。
这些结构特征赋予了莫博赛替尼其特定的生物活性和抗癌作用。
从结构角度来看,莫博赛替尼的苯基环和嘧啶环可能与靶标蛋白发生相互作用,从而影响癌细胞的生长和增殖。
其嘧啶环的存在也表明了其可能与DNA或RNA发生相互作用,从而影响癌细胞的遗传物质合成和复制。
此外,硫代咪唑基团的存在可能赋予了莫博赛替尼一些特殊的化学性质,使其在生物体内表现出特定的药理学效应。
总的来说,莫博赛替尼的化学结构为其在抗癌治疗中的作用提供了重要的基础,对于研究其药理学效应和与靶标蛋白的相互作用具有重要意义。
通过深入了解其化学结构,可以更好地理解莫博赛替尼在抗癌治疗中的作用机制,为其临床应用提供理论支持。
世界卫生组织国际癌症研究机构致癌物清单.之欧阳育创编
Auramine production
金胺制造
2012
14
Azathioprine
硫唑嘌呤
2012
15
Benzene
苯
2012
16
Benzidine
对二氨基联苯
2012
17
Benzidine, dyes metabolized to
联苯胺、染料代谢
2012
18
Benzo[ a ]pyrene
苯并芘
二氯甲基醚;一氯甲基醚(技术等级)
2012
23
Busulfan
白消安
2012
24
1,3-Butadiene
1,3-丁二烯
2012
25
Cadmium and cadmium compounds
镉及镉化合物
2012
26
Chlorambucil
苯丁酸氮芥
2012
27
Chlornaphazine
萘氮芥
2012
家庭燃烧的煤,室内排放
2012
33
Coal-tar distillation
煤焦油蒸馏
2012
34
Coal-tar pitch
煤焦油沥青
2012
35
Coke production
焦炭制造
2012
36
Cyclophosphamide
环磷酰胺
2012
37
Cyclosporine
环孢霉素
2012
38
1,2-Dichloropropane
赤铁矿矿业(地下)
2012
54
<i>Helicobacter pylori</i> (infection with)
肝癌早期检测的生物标志物筛选与实验研究
肝癌早期检测的生物标志物筛选与实验研究肝癌是世界上最常见的恶性肿瘤之一,其高度侵袭性和易转移性使之成为难治性疾病。
据统计,全球每年约有75万人死于肝癌,我国更是肝癌的高发地区之一。
与许多其他癌症一样,肝癌早期发现和治疗是预防和控制该疾病的关键。
因此,研究肝癌早期检测的生物标志物是当前的热点和难点问题之一。
生物标志物是指能够说明生物体内某种生理或病理状态的物质或指标。
在肝癌的早期检测中,生物标志物可以作为一个重要的参考。
目前,临床上用于肝癌早期筛查的生物标志物有AFP、PIVKA-II、ALT、AST、GGT、TB、ALB等。
然而,这些检测指标的特异性和敏感性都存在较大的局限,存在误诊和漏诊的风险。
在分子生物学技术不断更新的今天,通过对患者血液样本、组织样本和体液样本中生物标志物的高通量筛选,以发现能够早期和准确诊断肝癌的生物标志物,已成为研究的重点和热点。
以下将介绍目前常用的一些生物标志物筛选技术和肝癌生物标志物的研究情况。
一、基因芯片技术基因芯片技术是一种高通量筛选生物标志物的方法,其通过分析组织或细胞中的RNA或DNA来获取分子水平的信息。
通过将数以万计的基因序列固定在一个晶片上,检测样本中的RNA或DNA与芯片上的基因序列的杂交程度,可以快速地得到许多生物标志物的表达情况,为寻找肝癌早期生物标志物提供了重要的依据。
目前,该技术已被广泛应用于肝癌的研究,如对比肝癌与正常肝组织的基因表达谱、对比不同肝癌患者的基因表达谱、对比肝癌早期与晚期患者的基因表达谱等。
例如,研究表明,在肝癌组织中,FAM19A4、TMEM106B、AP1S2、IGHG1等基因的表达显著下调,而DSC2、SLC25A13、KRT6C等基因的表达显著上调,这些基因可以作为评估肝癌预后和治疗效果的生物标志物。
二、蛋白质芯片技术蛋白质芯片技术是一种用于分析大量蛋白质表达水平的高通量生物芯片技术。
该技术通过将数千个蛋白质固定在晶片上,将样本中的蛋白质与晶片上的蛋白质发生特异性的相互作用,以确定不同生物样本中的蛋白质表达量和表达模式,可以为肝癌早期诊断和治疗提供重要的生物标志物。
药物设计的基本原理和方法
[3] Mayr, L. M.; Bojanic, D. Novel trends in high-throughput screening. Curr Opin Pharmacol 2009,9 (5): 580-588.
周期蛋白依赖激酶(CDK) 1 和 2 在细胞周期和分裂增殖方面发挥着重要作用, 是一个潜在的抗肿瘤靶点。Astex 公司采用 X-单晶衍射技术对约 1000 个类药 性片段进行了筛选,从中发现吲唑片段能够与 CDK2 结合。通过对吲唑片段 进行不断的结构改造,进一步提高整体分子的抗肿瘤活性、选择性和药代动 力学性质。目前优选出AT7517已成了临床 I 期试验,用于治疗多种实体瘤和 淋巴瘤(图 1)。
Abbott 公司对抗肿瘤靶点 Bcl-XL进行了基于核磁共振技术的片段筛选。此前,对 该靶点进行了高通量筛选,并没有发现有价值的先导物。通过基于 NMR技术的 片段筛选,发现四氢萘酚片段和联苯羧酸片段能够结合在 Bcl-XL蛋白的不同活性 口袋表面。以基于结构的药物设计为基础,采用磺酰胺基团将两个片段连接, 并进行结构改造,最终优化出ABT-263进行临床开发。目前ABT-263处于临床试验 II 期,用于口服治疗非小细胞肺癌和其它一些实体瘤(图 2)。
当导致疾病的病理过程中由某个环节或靶点 被抑制或切断,即达到治疗的目的。所以靶 点的选择是新药的起点。但如何利用分子生 物学来发现诸如酶和受体等新靶点,就显得 十分重要。
世界卫生组织国际癌症研究机构致癌物清单(收藏)
世界卫生组织国际癌症研究机构致癌物清单(收藏)中国食品药品检定研究院安全评价研究所根据世界卫生组织国际癌症研究机构2017年10月27日公布的致癌物清单初步整理,仅供参考。
一类致癌物清单一类致癌物清单共120种,对人是确定致癌物。
1与酒精饮料摄入有关的乙醛2与职业暴露有关的艾其逊法(用电弧炉制碳化矽)3强无机酸雾4黄曲霉毒素5含酒精饮料6铝生产74-氨基联苯8槟榔果9马兜铃酸10含马兜铃酸的植物11砷和无机砷化合物12石棉(各种形式,包括阳起石、铁石绵、直闪石、温石棉、青石棉、透闪石)13金胺生产14硫唑嘌呤15苯16联苯胺17染料代谢产生的联苯胺18苯并[a]芘19铍和铍化合物20含烟草的槟榔嚼块21不含烟草的槟榔嚼块22双(氯甲基)醚;氯甲基甲基醚(工业级)23白消安24 1,3-丁二烯25镉及镉化合物26苯丁酸氮芥27萘氮芥28铬(6价)化合物29华支睾吸虫(感染)30煤炭气化31家庭烧煤室内排放32煤焦油蒸馏33煤焦油沥青34焦炭生产35环磷酰胺36环孢菌素37 1,2-二氯丙烷38己烯雌酚39柴油发动机排气40爱泼斯坦-巴尔病毒41毛沸石42绝经后雌激素治疗43雌激素-孕激素更年期治疗(合用)44雌激素-孕激素口服避孕药(合用)45含酒精饮料中的乙醇46环氧乙烷47依托泊苷48依托泊苷与顺铂和博来霉素合用49裂变产物,包括锶- 9050氟代-浅闪石纤维状角闪石51甲醛52赤铁矿开采(地下)53幽门螺杆菌(感染)54乙型肝炎病毒(慢性感染)55丙型肝炎病毒(慢性感染)56人免疫缺陷病毒I型(感染)57人乳头瘤病毒16,18,31,33,35,39,45,51,52,56,58,59型58人嗜T淋巴细胞病毒I型59电离辐射(所有类型)60钢铁铸造(职业暴露)61使用强酸生产异丙醇62卡波氏肉瘤疱疹病毒63皮革粉末64林丹(参见六氯环己烷)65品红生产66美法仑67花椒毒素(8-甲氧基补骨脂素)伴紫外线A辐射68 4,4'-亚甲基二(2-氯苯胺)(MOCA)69未经处理或轻度处理矿物油70 MOPP(氮芥、长春新碱、甲基苄肼、强的松)及其他含烷化剂的联合化疗71 2-萘胺72中子辐射73镍化合物74N'-亚硝基降烟碱(NNN)和4-(N-甲基亚硝胺基)-1-(3-吡啶基)-1-丁酮(NNK)75麝后睾吸虫(感染)76室外空气污染77含颗粒物的室外空气污染78画家,油漆工,粉刷工等(职业暴露)79 3,4,5,3',4'-五氯联苯(PCB-126)80 2,3,4,7,8-五氯二苯并呋喃81五氯苯酚(参见聚氯苯酚)82非那西汀83含非那西汀的止痛剂混合物84磷-32,磷酸盐形式85钚86多氯联苯87类二恶英多氯联苯,具有WHO毒性当量因子(TEF)(多氯联苯 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, 189)88加工过的肉类(摄入)89放射性碘,包括碘-13190放射性核素,α粒子放射,内部沉积91放射性核素,β粒子放射,内部沉积92镭- 224及其衰变产物93镭- 226及其衰变产物94镭- 228及其衰变产物95氡- 222及其衰变产物96橡胶制造业97中式咸鱼98埃及血吸虫(感染)99司莫司汀[1-(2-氯乙基)-3-(4-甲基环己基)-1-亚硝基脲,甲基-环已亚硝脲]100页岩油101石英或方石英形式的晶状硅尘102太阳辐射103煤烟(烟囱清洁工的职业暴露))104硫芥子气105他莫昔芬1062,3,7,8-四氯二苯并对二恶英107三胺硫磷108钍-232及其衰变产物109二手烟草烟雾110吸烟111无烟烟草112邻-甲苯胺113曲奥舒凡114三氯乙烯115紫外发光日光浴设备116紫外线辐射(波长100-400 nm,包括UVA、UVB和UVC)117氯乙烯118焊接烟尘119木尘120X射线和伽马射线辐射二类致癌物清单二类致癌物清单共380种,含2A类81种,2B类299种。
索拉非尼的药物研究
索拉非尼的药物研究索拉非尼是一种小分子抗癌药物,主要用于治疗肝癌、肾癌和胰腺癌等恶性肿瘤。
这种药物的研究从20世纪90年代开始,经过多年努力,终于于2005年获得了美国FDA的批准上市。
本文将从索拉非尼的化学结构、药理学作用机制、药物安全性和临床应用等方面进行介绍。
一、化学结构索拉非尼(Sorafenib)是一种有机分子化合物,化学名为4-(4-(苯氨基)苯基)-1H-吡咯并[3,4-d]吡咯-2(1H)-酮,其分子式为C21H16ClF3N4O3。
索拉非尼结构中含有苯环、吡咯环和氟、氯等卤素原子,能够有效干扰肿瘤细胞的信号传导通路,抑制其生长和扩散。
二、药理学作用机制索拉非尼的药理学作用机制主要包括抑制肿瘤细胞增殖、诱导肿瘤细胞凋亡、抑制肿瘤血管生成和干扰肿瘤细胞信号通路等。
具体的作用机制如下:1. 抑制肿瘤细胞增殖:索拉非尼能够抑制Raf-1和B-Raf蛋白的活性,抑制MAPK/ERK和JNK信号通路的活化,阻断肿瘤细胞细胞周期的G1/S转换,从而减少肿瘤细胞的增殖。
2. 诱导肿瘤细胞凋亡:索拉非尼能够诱导肿瘤细胞内部的氧化应激反应,增加ROS积累,损伤肿瘤细胞的DNA和蛋白质等生物分子结构,导致肿瘤细胞自我凋亡。
3. 抑制肿瘤血管生成:索拉非尼能够通过抑制VEGFR、PDGFR 等受体的活性,干扰血管生成过程,减少肿瘤的供血,并增加肿瘤细胞的缺血和缺氧状态。
4. 干扰肿瘤细胞信号通路:索拉非尼能够抑制mTOR和AKT等信号通路的活性,干扰肿瘤细胞的代谢、生长和凋亡。
三、药物安全性索拉非尼作为抗癌药物,具有一定的副作用和安全性问题。
常见的副作用包括手足综合征、皮疹、高血压、腹泻、乏力等。
严重的副作用包括心肌梗死、肝损害、出血等。
因此,在治疗过程中,必须严格掌握患者的生命体征和药物剂量等,以避免不良反应的发生。
四、临床应用索拉非尼已经被广泛用于肝癌、肾癌和胰腺癌等恶性肿瘤的治疗中。
在肝癌治疗中,索拉非尼具有显著的效果,能够减缓肿瘤的生长和扩散,延长患者的生存期。
肝癌的生物标记物及其临床意义
肝癌的生物标记物及其临床意义肝癌是一种高度恶性的肿瘤,其发病率和死亡率在全球范围内都居高不下。
由于肝癌早期症状不明显,往往被忽视或误诊,导致大多数患者在确诊时已经处于晚期,治疗难度和预后较差。
因此,寻找肝癌的生物标记物具有重要的临床意义,可以帮助早期诊断、评估预后以及监测治疗效果。
一、AFP(甲胎蛋白)AFP是目前临床上最常用的肝癌生物标记物之一。
AFP是一种胎儿期间产生的蛋白质,在胎儿发育完全后,其浓度会显著下降。
然而,在肝癌患者中,AFP的水平往往会显著升高。
尽管AFP的敏感性和特异性不高,但它仍然是许多临床医生用于早期肝癌筛查和监测治疗效果的重要指标。
二、AFP-L3(甲胎蛋白-Ⅲ型)AFP-L3是AFP的一种亚型,其在肝癌患者中的比例通常较低。
研究表明,AFP-L3的升高与肝癌的恶性程度密切相关。
因此,AFP-L3可以作为肝癌的进展和预后的重要指标。
临床上,通过测定AFP-L3与总AFP的比例,可以更准确地评估肝癌的恶性程度和预后。
三、DCP(脂肪酸结合蛋白)DCP是一种肝癌特异性标志物,其在肝癌患者中的表达水平显著升高。
与AFP相比,DCP具有更高的敏感性和特异性,尤其在早期肝癌的诊断中表现出更好的效果。
因此,DCP被广泛应用于肝癌的早期筛查和诊断。
四、miRNA(微小RNA)miRNA是一类长度约为22个核苷酸的小分子RNA,可以调控基因的表达。
研究发现,肝癌患者体内的特定miRNA表达水平与肝癌的发生和发展密切相关。
通过检测这些miRNA的表达水平,可以为肝癌的早期诊断和预后评估提供重要依据。
五、其他标志物除了上述提到的标志物外,还有许多其他生物标记物在肝癌的诊断和预后评估中也显示出潜力。
例如,GPC3(胶质细胞瘤相关蛋白3)、AFP-M2(甲胎蛋白亚型M2)、HCCR(人肝癌细胞周期调控基因)等。
这些标志物的研究仍在不断深入,有望为肝癌的早期诊断和治疗提供更多选择。
总结起来,肝癌的生物标记物在早期诊断、预后评估和治疗监测中具有重要的临床意义。
多纳非尼 靶点
多纳非尼靶点多纳非尼(Donafenib)是一种多靶点的小分子抗癌药物,主要治疗肝癌和胆囊癌。
它通过不同的机制影响多种信号通路,从而抑制肿瘤的生长和扩散。
本文将介绍多纳非尼的分子结构、药理作用和临床应用。
1. 分子结构多纳非尼的化学名为N-(2,4-dimethylphenyl)-N’-(4-(3-pyridinyl)-2-pyrimidinyl)urea,其分子式为C18H18N6O,分子量为346.38。
它的结构可以分为苯、嘧啶和吡啶三部分,其中苯环和嘧啶环通过脲键连接,吡啶环位于嘧啶环上方。
多纳非尼的化学结构使其能够与多个蛋白分子发生相互作用,从而表现出多靶点的药理活性。
2. 药理作用多纳非尼的药理作用非常复杂,主要包括以下几个方面:(1)抑制血管生成多纳非尼能够抑制内皮细胞生长因子受体(VEGFR)、血小板衍化生长因子受体(PDGFR)和基因突变的表皮生长因子受体(EGFR)等受体的激活,从而阻断细胞增殖和血管生成。
(2)抑制免疫逃逸多纳非尼能够通过抑制转录因子NF-κB的激活,阻止肿瘤细胞释放炎症因子和趋化因子,从而增强免疫细胞的杀伤作用,促进肿瘤的免疫清除。
(3)促进细胞凋亡多纳非尼能够通过激活c-Jun N-端激酶(JNK)和钙蛋白依赖性激酶(Cdk)等激酶,诱导细胞凋亡并增强化疗药物的敏感性。
(4)抑制肿瘤细胞迁移多纳非尼能够抑制磷酸肌醇3激酶(PI3K)/蛋白激酶B(Akt)通路的激活,从而减少胞外基质(ECM)降解酶的表达,阻止肿瘤细胞向周围组织扩散和转移。
3. 临床应用多纳非尼目前主要用于治疗原发性肝癌和胆囊癌。
一项随机对照试验表明,多纳非尼在治疗肝癌方面的疗效明显优于索拉非尼(Sorafenib),可延长患者的生存期和缓解疾病症状。
此外,多纳非尼对于肝癌转移和复发的预防效果也令人期待。
在胆囊癌的治疗中,多纳非尼也取得了一定的疗效。
不过,多纳非尼也存在一些副作用,包括胃肠道反应、皮疹、手足综合征、高血压等。
驱动基因阴性晚期NSCLC一线免疫治疗
驱动基因阴性晚期NSCLC 一线免疫治疗肺癌作为发病率第一的肿瘤,严重威胁人们的健康。
近年来,肺癌的诊疗从化疗到靶向治疗再到免疫治疗,引领肿瘤的精准治疗模式。
对于驱动基因阴性晚期非小细胞肺癌 ( non-small-cell lung cancer,NSCLC) 患者,多种程序性死亡受体 1( programmed death 1,PD-1) 和程序性死亡配体 1( programmed death-ligand 1,PD-L1) 抑制剂取得显著疗效,在晚期NSCLC 一线、二线治疗中获得适应证,并丰富了从单药治疗到联合治疗的格局,使得“chemo- free”有望成为可能。
免疫治疗为肺癌治疗模式带来改变的同时,也对肺癌治疗方案、生物标志物的选择和相关不良反应的治疗带来一定的挑战。
20n 年 Nature 发表的《Cancer immunotherapy comes of age》点燃了免疫治疗的燎原之火,众多研究陆续推出,主要集中于程序性死亡受体1( programmed death 1,PD-1) 、程序性死亡配体1( programmed death-ligand 1 PD-L1)和细胞毒性 T 淋巴细胞相关抗原-4( cytotoxic T lympho- cyte-associated antigen 4,CTLA-4) 抑制剂。
自 2013年美国《科学》杂志将癌症免疫治疗评为“重大突破”以来,PD-1/PD-L1抑制剂作为免疫治疗中的主力军,在癌症治疗领域备受瞩目。
2014 年美国食品药品监督管理局( Federal Food and Drug Adminstra- tion,FDA) 首先批准pembrolizumab 和nivolumab用于晚期黑色素瘤治疗,其适应证不扩大。
其中,对非小细胞肺癌(non-small-cell lung cancer NSCLC)治疗的不断探索:从二线到一线,从晚期到局部晚期再到早期,从单药到联合,从泛人群到精准治疗,使得免疫治疗遍地开花。
P4HA2通过激活PI3KAKTmTOR信号通路促进肝癌的发生和发展
肝细胞癌(HCC )近几十年来发病率上升,虽然在临床和实验性癌症治疗方面取得了很大进展,但由于术后肿瘤复发和转移率高,HCC 患者的总体预后较差[1-3]。
肝癌的发生发展可能是一个多因素、多步骤的过程[3],但目前关于其具体的分子机制尚不清楚。
因此,更好地了解HCC 发生发展的分子机制对肝癌靶向治疗具有重要意义。
细胞外基质(ECM )由多种大分子组成,包括胶原蛋白、纤维连接蛋白、弹性蛋白、层粘连蛋白、透明质酸和蛋白多糖[4]。
ECM 作为肿瘤微环境中含量最丰富的成分,可以调控肿瘤细胞行为和肿瘤进展,胶原蛋白是ECM 的主要成分,具有促进肿瘤发展的作用,例如IP4HA2promotes occurrence and progression of liver cancer by regulating the PI3K/Akt/mTOR signaling pathwaySHANG Ling 1,JIANG Wendi 1,ZHANG Junli 1,WU Wenjuan 1,21Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis,2Department of Biochemistry and Molecular Biology,School of Laboratory Medicine,Bengbu Medical College,Bengbu 233030,China摘要:目的探讨脯氨酸4-羟化酶II (P4HA2)在肝癌细胞发生发展中的作用及相关机制。
方法利用GEPIA 、Human Protein Atlas 数据库预测P4HA2在肝癌中的表达情况,利用K-M plotter 在线数据库分析P4HA2的表达情况与肝癌预后的关系,采用qRT-PCR 和Western blot 检测肝癌细胞和正常肝细胞中P4HA2的表达。
肝癌的分子生物学标记
肝癌的分子生物学标记肝癌是一种恶性肿瘤,发病率逐年增加,成为全球范围内最具破坏力的癌症之一。
传统的肝癌治疗方法包括手术切除、放射治疗、化学药物治疗等。
但这些治疗方法的效果并不理想,病人的生存期和治疗效果都受到了很大影响。
为解决这一问题,研究人员开始关注肝癌的分子生物学标记,试图通过标记物的检测来确定肝癌的阶段和治疗方案,以提高治疗效果。
一、肝癌的分子生物学标记1.肝癌的分子生物学特征肝癌是一种具有广泛异质性的癌症,不同的肝癌细胞之间存在很大区别。
对这些细胞进行分子生物学分析,可以找到一些共同的特征,这些特征成为肝癌研究的分子生物学标记。
2.甲基化标记DNA甲基化是指将甲基基团(CH3)加入DNA分子中的过程。
甲基化可以影响DNA的结构和功能,进而影响基因表达。
在肝癌中,一些重要的肿瘤抑制基因(如p16、RASSF1A等)常常被甲基化,导致其表达减少或失活,从而促进肿瘤的发生和发展。
因此,检测肝癌细胞中的DNA甲基化状态可以帮助诊断和治疗肝癌。
3.miRNA标记miRNA是一类短链非编码RNA,可以调节基因表达和蛋白质功能。
在肝癌中,miRNA的表达常常受到异常调节,导致一系列病理过程的发生。
例如,miRNA-21可促进肝癌细胞增殖和侵袭,miRNA-122可作为肝细胞的分子标记,miRNA-221可预测肝内再生细胞的增殖等。
因此,检测肝癌细胞中的miRNA表达水平可以帮助了解肝癌的病理特征和治疗效果。
4.蛋白质标记肝癌细胞中存在许多与肝癌发生和发展相关的蛋白质。
例如,AFP是肝癌常用的标记物之一,可以帮助鉴别肝癌的类型和纤维化程度。
除AFP外,CK19、CEA、GPC3、CD133等也被证明可以作为肝癌的标记物。
这些蛋白质的检测可以帮助诊断肝癌和评估治疗效果。
5.其他标记除了上述分子生物学标记外,还有许多其他标记物可以用于肝癌的诊断和治疗。
例如,肝细胞生长因子(HGF)和其受体c-Met在肝癌中表达水平升高,可以作为预后标记;LEF-1是与肝癌预后和转移有关的转录因子;NQO1是一个与肝癌敏感性和化疗反应相关的酶类等。
ING4基因及其抑癌作用的研究进展
ING4基因及其抑癌作用的研究进展116南昌大学(医学版)2010年第5O卷第6期JournalofNanchangUniversity(MedicalScience)2010,V o1.5ONo.6ING4基因及其抑癌作用的研究进展彭芳(综述),李里香(审校)(南昌大学a.研究生院医学部2008级;b.第二附属医院病理科,南昌330006)关键词:ING4;抑癌基因;肿瘤;基因治疗中图分类号:R349.6文献标志码:A文章编号:1000--2294(2010)06--o]16--02ING4基因是ShisekiM.等于2003年发现的抑癌基因ING家族的新成员,ING4基因位于染色体12pl3.3l,由8个外显子和7个内含子组成,跨越了13000个碱基对,编码248个氨基酸[2_3_.ING4基因编码的蛋白定位于细胞核内,ING4蛋白有植物同源结构域(planthomeodomain,PHD)和核定位信号(nuclearlocalizationsignal,NIS)区.PHD位于ING4蛋白的羧基端区域,PHD结构可以识别大分子,与DNA和RNA结合,发挥转录调节功能,同时ING4蛋白通过PHD乙酰化组蛋白H4的多个赖氨酸残基,从而改变染色体的空间结构^引.ING4蛋白的氨基端则主要与蛋白质的相互作用有关.ING4蛋白的NIS位于编码氨基酸序列中段.含有127~167位氨基酸,具有多个含正电荷的赖氨酸,对ING4蛋白的核内定位及与p53基因的相互作用关系密切].1ING4基因抑癌作用机制1.1抑制肿瘤血管增生血管增生是肿瘤恶变的重要因素.ING4蛋白通过与NF—KB的p65亚基相互作用来抑制IL一8的表达,减少肿瘤内血管生成,降低血管密度并使血管管径缩小[],因而抑制肿瘤生长.NF一B是广泛存在于各种类型细胞中的一种转录因子,调控包括IL一8在内的基因调控,它参与调节免疫应答,血管生成和细胞抗凋亡作用相关的基因的转录调控】.IL一8可诱导内皮细胞迁移和增生来介导肿瘤组织的血管的增生,从而促进肿瘤的发生]. GarkavtsevI.等发现在大脑胶质瘤中ING4的表达要比健康脑组织中的表达低得多,血管的密度及直径增加,而且随着ING4蛋白表达程度下降,肿瘤的等级依次增加.1.2增强p53基因的活性ING4蛋白可以通过NLS控制p53基因乙酰收稿日期:2010—04—02化状态来调节p53基因的功能,增强P53蛋白的转录活性【3],从而抑制肿瘤形成.p53基因是一种肿瘤抑制基因,由这种基因编码的蛋白质是一种转录因子,其控制着细胞周期的启动].ING4蛋白能增强P53蛋白的活性,打乱正常的细胞周期,使细胞生长停滞,促进细胞凋亡,抑制肿瘤形成口.ING4蛋白通过核定位信号(NIS)与P53蛋白在细胞核内结合,在NIS区发生突变的情况下,由此产生的异常蛋白不能与P53蛋白相结合,所以也不能上调P53蛋白活性』,因而失去抑制肿瘤形成的作用.ZhangX.等口研究外因干扰ING4基因的肝癌细胞HepG2的生物学行为时,发现过度表达ING4蛋白的细胞介导的G./M期停滞,而且增强无血浆供给能量的HepG2细胞的凋亡;在研究ING4蛋白在骨肉瘤细胞中表达情况时,发现ING4 蛋白可以在无p53基因突变的骨肉瘤细胞中能上调内源性p21基因和Bax基因,证明ING4蛋白介导的G/M有依赖p53基因来增强p21基因的表达. 1.3抑制缺氧状态的适应由于肿瘤生长迅速,血管组织分布紊乱和结构异常容易导致肿瘤细胞缺氧.细胞缺氧时,细胞缺氧诱导因子多聚羟化酶(hypoxiainduciblefactor prolylhydroxylase,HPH)和ING4蛋白的PHD区相结合募集ING4蛋白到缺氧诱导因子(hypoxia induciblefactor,HIF)应答基因的启动子区,而抑制HIF对其靶基因的转录l】j.许多细胞对缺氧的反应通过缺氧诱导因子HIF使细胞适应缺氧状态.组织缺氧时HIF的表达上调,促使HIF对靶基因的转录而促进细胞在缺氧环境下的适应能力.HIF的目的基因中包含有许多与葡萄糖代谢和糖酵解相关的酶,它调控着葡萄糖转运蛋白及糖酵解酶等_1.缺氧状态下,肿瘤细胞通过HIF上调这些酶的表达,使细胞适应缺彭芳等:ING4基因及其抑癌作用的研究进展117氧状态.低氧时HIF的上调是肿瘤生长过中重要的促进因素.HPH以氧气作为底物被认为是氧感受器,氧含量正常时,HPH将HIF的ot亚基需氧降解区内高度保守的脯氨酸残基羟基化,从而使HIF快速降解l2].OzerA.等"发现HPH的第二功能,在缺氧条件下HPH和ING4的PHD区募集肿瘤抑制因子ING4到HIF应答基因的启动子区, 而抑制HIF对其靶基因的转录.1.4抑制接触抑制的丢失ING4蛋白通过调控某些基因的转录,如编码细胞间连接复合体的基因来维持接触抑制状态的存在_17_,抑制原癌基因myc基因的转录阻止myc诱导肿瘤细胞中接触抑制丢失[j8l.接触抑制是细胞在生长过程中达到相互接触时停止分裂的现象,恶性细胞对密度依赖性生长抑制失去敏感性,发生接触抑制的丢失[j.原癌基因myc基因家族及其产物可促进细胞增殖,分化,去分化和转化等,在多种肿瘤形成过程中处于重要地位. MYc蛋白是正常细胞生长所必需的一种转录因子.但myc基因的过度表达可诱导细胞生长过程中接触抑制的丢失,从而促进肿瘤的发生口.1.5增强细胞对化学试剂及放射治疗的敏感性在ZhangX.等rj胡的研究中发现高表达ING4蛋白的细胞更容易在一些损伤DNA因素的条件下凋亡,比如依托泊酐和阿霉素,意味着ING4蛋白可以增强某些DNA损伤因素的化疗敏感性.2ING4基因在肿瘤治疗中的作用近年来,研究者们将ING4基因重组入腺病毒质粒,经细胞包装和扩增后获得高滴度重组病毒Ad—ING4_1引,通过腺病毒载体将ING4基因导人人多种肿瘤细胞中,包括人肺腺癌细胞系A549l2,前列腺癌细胞l_1引,恶性黑色素瘤细胞系M14_2,结果显示,Ad—ING4感染的肿瘤细胞生长受到抑制,凋亡率明显高于感染空载体细胞,且抑制肿瘤细胞的浸润和转移.提示ING4基因表达对肿瘤细胞有抑制生长,诱导凋亡的作用.因此ING4基因可作为肿瘤治疗的目的基因之一.Ad—ING4与化疗药物单用或联合应用对肿瘤细胞增殖有抑制作用,s期细胞减少,G./M期阻滞,能提高化疗药物疗效,降低化疗药物用量,减少不良反应_l.3结语ING4基因是新发现的肿瘤抑制基因,它参与调节p53基因活性,肿瘤血管的增生,细胞对缺氧状态的适应,细胞接触抑制的丢失以及细胞对化学药物敏感性等影响肿瘤的发生,生长及对肿瘤治疗的多个方面.最近的研究主要集中在载有ING4基因的质粒.检测它对体外细胞系的影响.ING4蛋白现研究水平对体内肿瘤细胞的影Ⅱ向尚未有报道.选择可以用于体内增加ING4蛋白的新方法治疗肿瘤将会是一个新的基因治疗研究的主要方向.参考文献:[1]ShisekiM,NagashimaM,PedeuxRM,eta1.p29ING4and p28ING5bindtop53andp300,andenhancep53activity[J]. CancerRes,2003,63f1O):2373-2378.[2]GarkavtsevI,KozinSV,ChernovaO,eta1.Thecandidate tumoursuppressorproteinING4regulatesbraintumour growthandangiogenesis[J].Nature,2004,428(6980):328—332.E3]LiX,CaiL,ChenH,eta1.Inhibitorofgrowth4induces growthsuppressionandapoptosisingliomaU87MG[J]. Pathobiology,2009,76(4):181—192.r4]PalaciosA,MorenoA,OliveiraBI,eta1.Thedimericstruc—tureandthebivalentrecognitionofh3K4me8bythetumor suppressorING4suggestsamechanismforenhancedtargeting oftheHBO1complextochromatin[J].JMolBiol,2010,396 (4):1117-112'r.E5]DoyonY,CayrouC,UllahM,eta1.INGtumorsuppressorpro—teinsarecriticalregulatorsofchromatinacetylationrequired forgenomeexpressionandperpetuatiorl[J].MolCell,2006,21 (1):51-64.[6]ZhangX,WangKS,WangzQ,eta1.Nuclearlocalizationsig—halofING4playsakeyroleinitsbindingtopSa[J~.Biochem BiophysResCommun,2005,331(4):1032—1038.[7]BratDJ,BellailAC,V anMeirEG.Theroleofinterleukin一8 anditsreceptorsingliomagenesisandtumoralangiogenesisEJ2.NeuroOncol,2005,7(2):122—133.E8]WeillR,IsraelA.DecipheringthepathwayfromtheTCRto NF一~BEJ].CellDeathandDifferentiation,2006,13:826—833.[9]SugimotoM,Y amaokaY,FurutaT.Influenceofinterleukin polymorphismsondevelopmentofgastriccancerandpepticul—cer[J].WorldJGastroenterol,2010,16(10):1188—1200.[1o]LiF,SturgisEM,ChenX,eta1.Associationofp53codon72 polymorphismwithriskofsecondprimarymalignancyinpa—tientswithsquamouscellcarcinomaoftheheadandneck[J]. Cancer,2010,116(10):2350—2359.El1]DoyonY,CayrouC,UllahM,eta1.INGtumorsuppressor proteinsarecriticalregulatorsofchromatinacetylationre—quiredforgenomeexpressionandperpetuation[J].MolCell, 2006,21(1):51-64.[12]Y angHC,ShengWH,XieYF,eta1.Invitroandinvivoin—hibitoryeffectofAd—ING4geneonprolife-~tionofhuman prostatecancerPC-3cells[J].ChinJCancer,2009,28(11): 1149—1157.(下转第122页)122南昌大学(医学版)2010年6月,第5O卷第6期[a63[373[a83[393[40][41][42][433E443SauderD.Newimmunetherapiesforskindisease:imiquimod andrelatedcompounds[J3.CutanMedSurg,2001,5(3):2-6. MillerRI.GersterJF.OwensMf.eta1.Imiquimedapplied topically:anovelimmuneresponsemodifierandnewclassof drug[J].IntJImmunopharmacol,1999,21(1):卜14. KaufmanJ,BermanB.Topicalapplicationofimiquimod5 ereamtoexcisionsitesissafeandeffectiveinreducingkeloid recurrences[J].AmAcadDermatol,2002,47(Supp1):$209一S211.PatelPJ,SkinnerRB.Experiencewithkeloidsafterexcision andapplicationof5imiquimodcream[J].DermatolSurg, 2006,32(3):462.杨顶权,白彦萍,宋佩华,等.复方倍他米松注射液联合5咪喹莫特乳膏治疗瘢痕疙瘩临床观察[J].实用皮肤病学杂志, 2009,2(3):138—141.D'AndreaF,BrongoS,FerraroG,eta1.Preventionandtreat—mentofkeloidswithintralesionalverapamil[J].Dermatolo—gY,2002,204(1):6O一62.CopeuE,SivriogluN,binationofsurgeryand intralesionalverapamilinjectioninthetreatmentofthekeloid [J].BurnCareRehabil,2004,25:1.王丽妮,吴卓桐,张灵,等.强脉冲光联合维拉帕米颜面外伤早期抗瘢痕治疗[J].中华普通外科学文献,2009,3(2):142—144.SallesAG,GemperliR,binedtretinoin andglycolieacidtreatmentimprovesmouthopeningforpost—burnpatients[J].AestheticPlastSurg,2006,30(3):356—362.[463靖亚莎,刘刚.增生性瘢痕和瘢痕疙瘩治疗进展[J3.中国中西医结合皮肤性病学杂志,2009,8(4):262—265.[463ShimizuT,KanaiK,KyoY,eta1.Effectoftranilastonmatrix metai10pr0teinaseproductionfromneutrophilsin—vitro[J]. PharmPharmacol,2006,58(1):9l_99.[473HosnuterM,PayasliC,IsikdemirA,eta1.Theeffectsofon—ionextractonhypertrophicandkeloidscars[J3.WoundCare,2007,l6(6):251-254.[483OgawaR,HyakusokuH,OgawaK,eta1.Effectivenessof mugwortlotionforthetreatmentofpost.burnhypertrophies.ears[J].PlastReconstrAesthetSurg,2008,61(2):210—212.[493丛林常,冬青,苏有明,等.增生性瘢痕和瘢痕疙瘩的局部治疗进展[J].实用医学杂志,2008,24(9):1469—1471.[5o3PhanTT,SunL,BayBH,eta1.Dietarycompoundsinhibit proliferationandcontractionofkeloidandhypertrophicscaF- derivedfibroblastsinvitro:therapeuticimplicationforexces—sivescarring[J].Trauma,2003,54(6):1212-1224.[513ZhiboX,Miaoboz.Potentialtherapeuticaleffectsofbotuli—nllmtoxintypeAinkelodmanagement[J].MedHypothe—ses,2008,71(4):623.(责任编辑:刘大仁)(上接第n7页)[133ZhangX,XuIS,WangZQ,eta1.ING4inducesG2/McellcyclearrestandenhancesthechemosensitivitytoDNA—'dam?- ageagentsinHepG2cells[J3.FEBSLett,2004,570(卜3):7—12.[143OzerA,BruickRK.RegulationofHIFbyprolylhydroxy—lases:recruitmentofthecandidatetumorsuppressorproteinING4[J].CellCycle,2005,4(9):1153—1156.[153CollaS,TagliaferriS,MorandiF,eta1.Thenewtumor-sup—pressorgeneinhibitorofgrowthfamilymember4(ING4) regulatestheproductionofproangiogenicmoleculesbymyelo—macellsandsuppresseshypoxia—induciblefactor-1alpha(HIF-lalpha)activity:involvementinrnyeloma—inducedan- giogenesis[J].Blood,2007,110(13):4464~4475.[16]TzouvelekisA,AidinisV,HarokoposV,eta1.Down—regula—tionoftheinhibitorofgrowthfamilymember4(ING4)indif—ferentformsofpulmonaryfibrosis[J].RespirRes,2009,10:14.[17]陈斌,邓跃飞.ING4基因抗肿瘤作用的研究进展[J].中国微侵袭神经外科杂志,2008,13(3):141—143.[18]KimS,ChinK,GrayJW,eta1.Ascreenforgenesthatsup—presslossofcontactinhibition:identificationofING4asa candidatetumorsuppressorgeneinhumancancer[J].Proc[19][2o3[21][223[233NatlAcadSciUSA,2004,101(46):16251—16256.KimS.HuntiNG4newtumorsuppressors[J].CellCycle,2005,4(4):5I6-517.LiY,XuY,LingM,eta1.Mot一2一mediatedcrosstalkbetween NF—kappaBandp53isinvolvedinarsenite-indueedtumorigen- esisofhumanembryolungfibroblastcells[J3.EnvironHealth Perspect,2010,118(7):936—942.LiX,ZhangQ,Cai1,eta1.Inhibitorofgrowth4inducesap—optosisinhumanlungadenocarcinomacelllineA549viaBel一2 familyproteinsandmitochondriaapoptosispathway[J].Cane~erResClinOncol,2009,135(6):829-835.XieYF,ShengW,XiangJ,eta1.Adenovirus—mediatedING4 expressionsuppressespancreaticcarcinomacellgrowthviain~duetionofcell—cyclealteration,apoptosis,andinhibitionof tumorangiogenesis[J].CancerBiotherRadiopharm,2009,24 (2):261—269.CaiL,LiX,ZhengS.eta1.Inhibitorofgrowth4isinvolvedin melanomagenesisandinducesgrowthsuppressionandapopto—sisinmelanomacelllineM14[J].MelanomaRes,2009,19(1):1-7.(责任编辑:钟荣梅)。
肝癌的病理分子标志物的治疗靶点
肝癌的病理分子标志物的治疗靶点肝癌是一种严重威胁人类健康的恶性肿瘤,发病率逐年上升。
为了提高肝癌的治疗效果,研究人员一直在寻找病理分子标志物作为治疗的靶点。
本文将探讨肝癌的病理分子标志物及其作为治疗靶点的意义。
一、AFP(甲胎蛋白)AFP是一种乳癌细胞分泌出的蛋白质,常被用作肝癌的早期筛查指标。
研究显示,AFP的升高与肝癌的发生和恶化有关。
因此,AFP作为治疗靶点具有重要的临床意义。
二、CTNNB1(β-连环蛋白)CTNNB1是肝癌中常见的突变基因,它参与细胞外信号转导通路的调控。
通过抑制CTNNB1的功能,可以阻断肿瘤细胞的增殖和迁移,从而达到治疗肝癌的目的。
三、TP53(p53)TP53是一种重要的抑癌基因,其突变与肝癌的发生密切相关。
研究发现,肝癌患者中TP53的突变率较高,这意味着其作为治疗靶点的潜力。
通过干预TP53的功能,可以抑制肿瘤细胞的增殖和抵抗凋亡,从而有效治疗肝癌。
四、Vascular endothelial growth factor(血管内皮生长因子,VEGF)VEGF是肝癌生长与转移的重要调控因素之一。
研究表明,抑制VEGF的活性可以阻断肝癌血管的形成,从而抑制肿瘤的生长和转移。
因此,VEGF被认为是治疗肝癌的重要靶点。
五、HGF-MET(肝细胞生长因子-基质金属蛋白酶)HGF-MET是肝癌发生和转移中的关键因子之一。
研究发现,抑制HGF-MET的信号通路可以阻断肝癌细胞的迁移和侵袭,从而达到治疗肝癌的效果。
六、PD-L1(程序性死亡配体1)PD-L1是一种免疫检查点分子,其异常高表达与肝癌细胞的逃避免疫监视有关。
研究发现,通过干预PD-L1的功能,可以激活机体免疫系统对肿瘤细胞进行攻击,因此PD-L1被认为是治疗肝癌的潜在靶点。
总结:肝癌的病理分子标志物对于治疗靶点的研究具有重要意义。
AFP、CTNNB1、TP53、VEGF、HGF-MET和PD-L1都被认为是治疗肝癌的潜在靶点。
肝癌的病理分级和分子标志物
肝癌的病理分级和分子标志物肝癌是全球范围内最常见的恶性肿瘤之一,尤其在亚洲地区,其发病率和死亡率呈上升趋势。
病理分级和分子标志物在肝癌的诊断、预后评估和治疗方面起着至关重要的作用。
一、肝癌的病理分级病理分级是根据肝癌组织形态学特征、细胞分化程度和浸润深度等因素进行评估和分级的过程。
常用的肝癌病理分级方法有Edmondson-Steiner分级法、WHO分级法和BCLC分级法。
1. Edmondson-Steiner分级法Edmondson-Steiner分级法是最早的肝癌病理分级系统之一,将肝癌分为四个不同的级别,即I级(良性)、II级(中度恶性)、III级(高度恶性)、IV级(非常高度恶性)。
该方法主要根据肿瘤细胞的核分裂指数、细胞核形态和胶原纤维形成程度等指标进行分类。
2. WHO分级法WHO分级法是世界卫生组织制定的肝癌病理分级系统,将肝癌分为四个等级:I级(低分化)、II级(间分化)、III级(高分化)和IV级(未分化)。
该方法主要基于肝癌细胞形态学特征、腺管结构维持情况和细胞架构的完整度等指标进行评估。
3. BCLC分级法BCLC分级法是治疗肝癌的国际标准之一,将肝癌分为五个不同的阶段:0期(早期肝癌)、A期(早期肝癌或单个肿瘤,未超过5cm)、B期(多个肿瘤或大于5cm的肿瘤)、C期(局部复发或肿瘤侵及临近器官)和D期(肿瘤远处转移或肝功能衰竭)。
该方法综合考虑了肝癌的病理特征、肿瘤大小、侵袭范围和肝功能等因素。
二、肝癌的分子标志物肝癌的分子标志物是通过检测体液或组织中特定蛋白质、核酸或代谢产物的表达水平来评估肝癌的发展、预后和治疗效果的一种方法。
常用的肝癌分子标志物包括AFP(甲胎蛋白)、AFP-L3(甲胎蛋白-Ⅲ亚型)、DCP(脱碱性Ⅱ—Ⅲ型甲胎蛋白)、GPC3(胆固醇3酯醇醛酶)、HCC-1、HGF(肝细胞生长因子)和miR-122(微RNA-122)等。
1. AFPAFP是最常用的肝癌标志物之一,其升高与肝癌的发生和复发密切相关。
肝癌特异性黏附肽的鉴定和分析
肝癌特异性黏附肽的鉴定和分析
肝癌特异性黏附肽的鉴定和分析
利用体内噬菌体随机肽库技术筛选出肝癌特异性噬菌体肽A54,随后用化学合成法在体外合成该多肽,并标记荧光素和生物素,在组织和细胞水平对该肽进行了体内外肝癌特异性的鉴定及其抗原定位.将生物素(Biotin)标记的A54肽通过尾缘静脉注射入荷瘤裸鼠体内,通过免疫组化方法,检测A54肽与肝癌组织特异性结合的情况;并用免疫荧光细胞化学技术,对荧光素(FAM)标记A54肽进行了细胞水平的肝肿瘤特异性鉴定及抗原定位.体内外检测结果表明,A54肽仍保留了特异性识别肝癌组织的特性,且结合于肝癌细胞的膜表面.实验证明,化学合成的多肽,在体内仍然具有靶向肝癌细胞膜表面的作用,这进一步证明了筛选出来的目标噬菌体克隆其特异性靶向作用确实是由其表面插入的小分子多肽所介导的,为肝癌特异性导向药物载体的研究提供了科学依据.
作者:吴淼杜冰汪磊周忠良钱旻于静WU Miao DU Bing WANG Lei ZHOU Zhong-liang QIAN Min YU Jing 作者单位:华东师范大学生命科学学院免疫学实验室,上海,200062 刊名:现代免疫学 ISTIC PKU 英文刊名: CURRENT IMMUNOLOGY 年,卷(期):2006 26(2) 分类号: Q782 关键词:噬菌体肽生物素标记肽荧光素标记肽免疫组化体内靶向作用抗原定位。
肝癌血清学标志物及5大“液体活检”标志物大盘点
肝癌血清学标志物及5大“液体活检”标志物大盘点背景介绍癌症现已成为中国高发疾病之一。
正如《健康中国行动(2019~2030年)》所强调的,癌症患者承受着沉重的疾病负担,存在着巨大的未满足需求。
在中国,每10分钟就有55人死于癌症;根据世界卫生组织国际癌症研究机构(IARC)发布了2020年全球最新癌症负担数据,肝癌位居全球发病率第六,91万;位居癌症死亡人数第三,83万。
全球约有50%的胃癌、肝癌和食道癌病例来自中国。
在中国,约有55%的肝癌患者在确诊时已处于III期或IV期,这一数字在美国和日本分别为15%和5%。
对于肝癌的筛查,有助于肝癌的早期发现、早期诊断、早期治疗,是提高肝癌疗效的关键目前肝癌筛查除了依靠影像学外,如超声、CT、磁共振等,血清学标志物筛查也扮演着不可或缺的重要角色。
如下,我们盘点一下肝癌血清学标志物有哪些。
定义原发性肝癌简称肝癌,主要包括肝细胞癌(Hepatocellular carcinoma,HCC)、肝内胆管癌(Intrahepatic cholangiocarcinoma,ICC)和HCC-ICC混合型3种不同病理学类型,其中HCC占85%~90%,是肝癌最主要的病理亚型,具有高侵袭性、高转移率及高复发率的特点,且起病隐匿,早期诊断率低,且5年生存率低于7%。
目前已知的HCC主要病因包括乙型肝炎病毒(HBV)感染、丙型肝炎病毒(HCV)感染、饮酒、非酒精性脂肪肝(NAFLD)、黄曲霉毒素、蓝藻毒素等。
不同于日本、欧美地区国家HCC的致病因素,我国HBV 感染是HCC最主要的原因,约85%HCC是由HBV 感染引起。
早期诊断是改善肝癌预后的关键。
肝癌血清学标志物1、甲胎蛋白(AFP)AFP是目前全世界应用最广泛的HCC肿瘤标志物,是一种糖蛋白,它属于白蛋白家族,主要由胎儿肝细胞及卵黄囊合成。
甲胎蛋白在胎儿血液循环中具有较高的浓度,出生后则下降,至生后2~3月甲胎蛋白基本被白蛋白替代,血液中较难检出,故在成人血清中含量极低。
最新抗癌药替拉扎明详细介绍
一类新药—替拉扎明项目简介一、概况据世界卫生组织(WHO)统计,全球平均每年死于恶性肿瘤者达690万人,新发病为870万例,且这一数字还在逐年增加。
全世界每年新确诊肿瘤疾病患者达到1000万人,预计到2020年,全世界每年将新发生2000万例肿瘤,其中1400万例在亚洲、非洲和拉丁美洲的发展中国家。
据我国卫生部统计,目前我国每年有106万左右的恶性肿瘤新生患者,同时有106.7万左右的良性肿瘤患者,两者合计约有212.7万,即肿瘤的全国发病率约在1.65‰左右。
每年,我国因肿瘤死亡人数约有154万人左右,癌症(肿瘤)成为继心脑血管疾病后的我国第二大疾病。
缺氧是诱导肿瘤血管生成的一个非常重要的因素,在目前国内外均有大量的实验和临床研究证实了这一点。
缺氧对促进肿瘤血管生成的调节主要是通过在分子水平上,缺氧对促进肿瘤血管生成的细胞因子转导的调节而实现的。
与缺氧有关的促进肿瘤血管生成的细胞因子有如下几种。
1、HIF-1(缺氧诱导因子-1),2、VEGF(血管内皮生长因子)以及血管内皮生长因子的两个受体(flt-1,KDR/flk-1),3、bFGF(碱性成纤维细胞生长因子),4、IGF(胰岛素样生长因子)及其主要受体IGF-IR,5、MMP(基质金属蛋白酶)。
目前,临床上对肿瘤的治疗仍以手术和放、化疗为主,但由于在实体瘤中存在着10%~50%的乏氧细胞,这些乏氧细胞对射线及化疗药物的耐受性比有氧细胞强2.5~3倍。
因而,在常规放(化)疗剂量治疗时,乏氧细胞不能被有效杀死,于是埋下了癌症复发祸根。
要想杀灭肿瘤乏氧细胞,只有加大放(化)疗剂量,然而,这又给患者带来难以承受的毒副反应和痛苦。
总之,乏氧细胞是肿瘤难治愈、易复发和转移的重要因素之一。
二、项目优势替拉扎明(tirapazamine,TPZ)化学名称:3-氨基-1,2,4苯并三唑-1,4-二氮-氧化物(3-Amino-1,2,4-benzotuiazine-1,4-dioxide)又名Win59075或SR4233,是一种新型的生物还原活性物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Identification of N-(4-Piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519),a Novel Cyclin Dependent Kinase Inhibitor Using Fragment-Based X-Ray Crystallography and Structure Based Drug Design†Paul G.Wyatt,‡,∇Andrew J.Woodhead,‡,*Valerio Berdini,⊥John A.Boulstridge,‡Maria G.Carr,‡David M.Cross,# Deborah J.Davis,|Lindsay A.Devine,§Theresa R.Early,‡Ruth E.Feltell,|E.Jonathan Lewis,#Rachel L.McMenamin,| Eva F.Navarro,‡Michael A.O’Brien,‡Marc O’Reilly,§Matthias Reule,#Gordon Saxty,‡Lisa C.A.Seavers,|Donna-Michelle Smith,#Matt S.Squires,|Gary Trewartha,‡Margaret T.Walker,‡and Alison J.-A.Woolford‡Astex Therapeutics Ltd,436Cambridge Science Park,Milton Road,Cambridge,CB40QA,United KingdomRecei V ed April3,2008The application of fragment-based screening techniques to cyclin dependent kinase2(CDK2)identified multiple(>30)efficient,synthetically tractable small molecule hits for further optimization.Structure-based design approaches led to the identification of multiple lead series,which retained the key interactions of the initial binding fragments and additionally explored other areas of the ATP binding site.The majority of this paper details the structure-guided optimization of indazole(6)using information gained from multiple ligand-CDK2cocrystal structures.Identification of key binding features for this class of compounds resulted in a series of molecules with low nM affinity for CDK2.Optimisation of cellular activity and characterization of pharmacokinetic properties led to the identification of33(AT7519),which is currently being evaluated in clinical trials for the treatment of human cancers.IntroductionBackground to Fragment-Based Drug Discovery.Astex has previously described the use of fragment-based X-ray crystallographic screening to identify low-affinity fragment hits for a range of targets,1,2and the area in general has been reviewed extensively over recent years.3–7Fragment-based screening approaches have become widely used throughout the pharmaceutical industry and can now be regarded as a compli-mentary approach to high-throughput screening.Fragments are low-molecular-weight compounds3(typically100-250Da)with generally low binding affinities(>100µM)and,as a result, very sensitive biophysical screening methods are frequently used to detect them,such as X-ray crystallography,1,8nuclear magnetic resonance spectroscopy(NMR),9and surface plasmon resonance(SPR).10Fragment screening has a number of advantages over conventional screening methodologies.First, only small libraries of compounds are needed for screening purposes(∼200-2000),due to the much greater probability of complimentarity between each fragment and the target than is expected for larger,drug-like compounds.11Second,despite their often very low affinity,fragments generally possess good ligand efficiency(LE a)12and as such form a small number of very high quality interactions.It is possible to optimize fragments to relatively low molecular weight leads with good drug-like properties,and this can be achieved with a limited number of molecules,particularly if good structural data is available.LE is the ratio of free binding affinity to molecular size,depicted mathematically as LE)-∆G/HAC≈-RT ln(IC50)/HAC, where the HAC(heavy atom count)includes all non-hydrogen atoms.This concept can be used to compare hits of widely differing structures and activities and is also a simple way of determining if the optimization of a hit into a lead has been carried out efficiently.Inhibition of Cyclin Dependent Kinases.The cyclin-dependent kinases(CDKs)are a family of serine-threonine protein kinases,which are key regulatory elements in cell cycle progression.The activity of CDKs is critically dependent on the presence of their regulatory partners(cyclins),whose levels of expression are tightly controlled throughout the different phases of the cell cycle.13–15Loss of cell cycle control resulting in aberrant cellular proliferation is one of the key characteristics of cancer,16and it is anticipated that inhibition of CDKs may provide an effective method for controlling tumor growth and hence an effective weapon in cancer chemotherapy.17,18 CDK2/cyclin E,CDK4/cyclin D and CDK6/cyclin D prima-rily regulate progression from the G1(Gap1)phase to the S phase(DNA synthesis)of the cell cycle through phosphorylation of the retinoblastoma protein(Rb).19,20Subsequent progression through S phase and entry into G2(Gap2)is thought to require the CDK2/cyclin A plexes of CDK1and the A or B type cyclins regulate both the G2to M phase transition†Coordinates of the CDK2complexes with compounds6,7,8,10,11, 12,14,15,18,22,23,28,29,and33have been deposited in the Protein Data Bank under accession codes2VTA,2VTH,2VTM,2VTJ,2VTR, 2VTS,2VTI,2VTL,2VTN,2VTO,2VTP,2VTQ,2VTT,and2VU3, together with the corresponding structure factorfiles.*To whom correspondence should be addressed.Phone:+44(0)1223 226287.Fax:+44(0)1223226201.E-mail:a.woodhead@astex-therapeutics. com.‡Medicinal Chemistry.§Structural Biology.|Biology.⊥Computational Chemistry and Informatics.#DMPK.∇Current address:Drug Discovery Unit,Division of Biological Chem-istry&Drug Discovery College of Life Sciences,James Black Centre, University of Dundee,Dow Street,Dundee,DD15EH,United Kingdom. Phone:+44(0)1382386231.E-mail:p.g.wyatt@.a Abbreviations:CDK,cyclin dependent kinase;DCM,dichloromethane; DFG,region of conserved amino acids,aspartic acid,phenyl alanine,glycine; EDC,1-(3-dimethyaminopropyl)-3-ethylcarbodiimide;HP CD,hydrox-ypropyl- -cyclodextrin;HOBT,1-hydroxybenzotriazole hydrate;HOAt, 1-hydroxy-7-azabenzotriazole;LE,ligand efficiency;NMP,1-methyl-2-pyrrolidinone;NPM,nucleophosmin;Rb,retinoblastoma protein;T/C,mean tumor volume of treated animals divided by the mean control tumor volume.J.Med.Chem.2008,51,4986–4999498610.1021/jm800382h CCC:$40.75 2008American Chemical SocietyPublished on Web07/26/2008and mitosis.15,17However,not all members of the CDK family are involved exclusively in cell cycle control;CDK2/cyclin E plays a role in the p53mediated DNA damage response pathway and also in gene regulation.21–24CDKs 7,8,and 9are implicated in the regulation of transcription,and CDK5plays a role in neuronal and secretory cell function.25–27Thus inhibiting CDK enzyme activity may affect cell growth and survival via several different mechanisms and therefore represents an attractive target for therapeutics designed to arrest,or recover control of,the cell cycle in aberrantly dividing cells.Accumulating evidence from genetic knockouts of the CDKs and/or their cyclin partners and from siRNA studies suggests significant redundancy in their regulation of key cell cycle events.28–32In addition,the effects of CDK inhibitors on cell proliferation and the induction of apoptosis are not fully reconciled with the current understanding of the biological functions of individual CDKs and the CDK family as a whole.Therefore,an inhibitor active against more than one of the key CDKs may have additional benefits in terms of antitumor activity.Not surprisingly,with the wealth of underlying biological rationale,the development of chemical modulators of CDKs as new anticancer agents has engendered significant interest,with several compounds in clinical and preclinical development.33,34First generation CDK inhibitors such as 1(Flavopiridol/L868275)35and 7-hydroxystaurosporine 36(UCN-01)have been evaluated in the clinic for some time,and recently 1has been granted orphan drug status for the treatment of chronic lym-phocytic leukemia.37Inhibitors with greater selectivity for the CDKs such as 2(roscovitine/CYC-202),383(BMS-387032/SNS-032)39(both primarily target CDK2,but also possess significant CDK7and 9activity),and 4(PD0332991)40(a selective CDK4/6inhibitor)(Figure 1)are currently being evaluated in phase I and II clinical trials,but limited results have been published to date.Hit Identification.Apo crystals of CDK2were soaked with cocktails of targeted fragments (4fragments per cocktail).The screening set of about 500compounds was made up from a focused kinase set,a drug fragment set,and compounds identified by virtual screening against the crystal structure of CDK2.1Multiple (>30)low-affinity fragment hits were identi-fied that bind in the adenosine 5′-triphosphate (ATP)bindingsite.A conserved structural feature of all the bound fragments was one or more hydrogen bonding interactions to key backbone residues at the hinge region of CDK2(Glu81and Leu83).ATP itself adopts a similar binding mode,as illustrated in Figure 2.41The compounds shown in Figure 3are a representative selection of the hits identified during fragment screening (compounds 5-8).The hits had only low potency (40µM to 1mM)but were highly efficient binders given their low molecular weight (<225)and limited functionality.An important consid-eration during our fragments-to-leads phase is pursuing multiple series in parallel in order to have two or more series for optimization in the later stages of the project.A key feature of this process was the collection of multiple protein -ligand crystal structures to guide iterative cycles of optimization.1,2To enable the design process,a detailed analysis of the ATP binding site of CDK2and binding mode of known CDK inhibitors was carried out.The analysis identified a number of key interactions and regions of the protein to target in order to optimize activity and physicochemical properties (Figure 2).Hydrogen bonds to the backbone carbonyl and NH of Leu83and the backbone carbonyl of Glu81were commonly observed with bound fragments and more potent ligands.Making all three of these interactions with the hinge appeared to be a potential way to design a very potent and ligand efficient inhibitor.Other key areas to explore included the relatively small region between the gatekeeper residue (Phe80)and the catalytic aspartic acid (Asp145)of the DFG motif and a hydrophobic pocket leading to the solvent exposed region (defined by Phe82,Ile10,Leu134,and side chain methylene of Asp86).A number of inhibitors in the literature appeared to interact with Asp86,and this was targeted with some early compounds.42,43The solvent accessible region toward Lys89was identified as potentially suitable for modulating physicochemical properties,particularly forincreas-Figure 1.CDK inhibitors currently under investigation in clinicaltrials.Figure 2.X-ray crystal structure of ATP (adenosine triphosphate)bound into the active site of CDK2(1HCL).The ligand is anchored in place with two hydrogen bonds,one between the backbone carbonyl of Glu81and the 6-amino group and one between the backbone NH of Leu83and the N1position of the adenine ring.An additional favorable electrostatic interaction is made between the hydrogen atom at the C2position and the carbonyl of Leu83.The ribose and phosphate groups form multiple polar interactions,one of which involves coordination to the catalytic magnesium (gray/silver sphere)via the phosphate groups along with Asp145and Asn132.Other key features to notice are that ATP does not interact with the solvent accessible region or the hydrophobic pocket between the gatekeeper residue and the DFG region.Identification of AT7519Journal of Medicinal Chemistry,2008,Vol.51,No.164987Figure 3.Fragment -protein cocomplexes of four low-molecular-weight hits identified by fragment-based X-ray crystallographic screening (5-8).On the left is shown the fragment structure and available IC 50data,in the center a pictorial representation of the protein -ligand complex,and the right-hand column provides a description of the experimentally determined binding mode.Key:red spheres,water molecules;purple dashed lines,protein -ligand and water -ligand hydrogen bonds;blue dashed lines,other electrostatic interactions.The PDB code for compound 5is 1WCC.4988Journal of Medicinal Chemistry,2008,Vol.51,No.16Wyatt et al.Figure 4.Fragment to lead optimization of pyrazine-based pound 5possesses reasonable growth points toward the gatekeeper residue (Phe80)and from the amino group out toward the solvent exposed region.Hydrophobic space filling by substitution at the 2-amino position with an aryl group gave compound 9(7µM;LE )0.50),displaying a 150-fold jump in activity over the starting fragment 5.Perhaps surprisingly,the structural data quality for this compound was poor,with no electron density observed for the aryl group,possibly due to the aryl group being able to bind in a number of conformations.Introduction of a sulfonamide at the 4-position of the aryl group forces an intramolecular salt bridge between Asp86and Lys89to break and allows for the formation of a further H-bonding interaction between the sulfonamide and the backbone NH of Asp86.In spite of this additional interaction,only a modest increase in activity is observed for 10(1.9µM;LE )0.43).51Further modification of this group or replacement of the 6-chloro substituent suggested that optimization beyond low micromolar activity was not straightforward,so this series was not pursued further.Key:red spheres,water molecules;purple dashed lines,protein -ligand and water-ligand hydrogen bonds;blue dashed lines,other electrostaticinteractions.Figure 5.Fragment to lead optimization of pyrazolopyrimidine-based inhibitors.Fragment 8binds to CDK2as described in Figure 3.The binding mode is very similar to that of Roscovitine (2)and other bicyclic templates described in the literature.Substitution of compound 8at the 7-position with a hydrogen bond donor allowed a third interaction to be formed with the protein backbone at the hinge region (carbonyl of Leu83).The amine could be substituted with a range of functionalities and the isopropyl group being particularly pound 11gave a 700-fold jump in binding affinity (IC 50)1.5µM,LE )0.50)and an improvement in ligand efficiency over the starting fragment.Growing out from the 5-position allowed the opportunity to access the ribose and phosphate binding regions of the active site.Introduction of basic functionality in the phosphate binding pocket was well tolerated,with this strategy producing the high affinity lead 12(IC 50)0.03µM,LE )0.45).The crystal structure shows the 4-amino group to be forming hydrogen bonds with the carboxylate of Asp145and the side chain carbonyl of Asn132,mimicking the Mg 2+observed in many ATP bound kinase pound 12also displayed good cellular activity (HCT116cell IC 50)0.29µM),however,this did not translate into in vivo activity and work on this series was abandoned in favor of more promising compounds.Key:red spheres,water molecules;purple dashed lines,protein -ligand and water -ligand hydrogen bonds;blue dashed lines,other electrostatic interactions.Identification of AT7519Journal of Medicinal Chemistry,2008,Vol.51,No.164989ing water solubility.Many of these interactions are discussed in an interesting review by Liao on the molecular recognition of protein kinase binding pockets.44Results and DiscussionSummary of Fragment to Lead Optimization.Figure 3shows four representative fragment hits identified by structural screening of CDK2.A number of considerations were taken into account when deciding which of the hits should be worked on further,and these included LE,vectors suitable to access the key regions highlighted in Figure 2,novelty,and synthetic tractability.Of the fragments described,compound 7was assessed not to have suitable vectors for optimization and,in addition,the chemistry did not appear to be very tractable.As a result,this compound did not enter hit-to-lead pounds 5,6,and 8were deemed to have suitable vectors and the chemistry sufficiently tractable to warrant further work.The optimization of compounds 5and 8is outlined in brief in Figures 4and 5,respectively;the optimization of compound 6will be discussed in detail in the following sections.Fragment to Lead Optimization of Compound 6.The “hit to lead”chemistry of 6focused primarily on two vectors (from the 3and 5positions of the indazole ring,see Figure 6)suitable to access pockets identified by the kinase structural analysis (Figure 2).Structural data from Astex fragments and known CDK inhibitors suggested that formation of an additional hydrogen bonding interaction to the carbonyl of Leu83was a possibility.45,46This was achieved by linking an aryl amide to the 3-position of indazole,resulting in 13(IC 50)3µM;LE )0.42)(Table 1).The phenyl ring was twisted out of plane and occupies the hydrophobic pocket formed by the backbone of the linker region and side chains of Ile10and Leu134.Addition of a sulfonamide group at the 4-position of the phenyl ring afforded 14with submicromolar activity (IC 50)0.66µM;LE )0.38).The sulfonamide picks up two further interactions,both to Asp86,a direct hydrogen bond to the backbone NH and a water-mediated interaction to the carboxylate side chain (Figure 6).42,43Substitution of the indazole ring at the 4or 5positions resulted in relatively small increases in CDK2activity,while as expected,substitutions at the 6or 7positions were poorly tolerated (data not shown)due to the close proximity of Phe80.An alternative strategy was pursued in parallel and rather than seeking to increase the potency of 14by continuing to add molecular weight,the system was simplified by removal of the fused benzene ring to afford the pyrazole 15(IC 50)97µM;LE )0.39).Despite a drop in activity,the LE was similar to the more elaborated compounds and the binding modeasFigure 6.CDK2cocrystal structures of compounds 6,14,and 15.Key:red spheres,water molecules;purple dashed lines,protein -ligand hydrogen bonds;arrows indicate potential vectors for substitution.Table 1.CDK2Inhibition of Selected Indazole and Pyrazole AmidesaaCompound were assayed 2or more times.b IC 50data for 2was generated in house and compares well with values quoted in the literature (within 2fold).474990Journal of Medicinal Chemistry,2008,Vol.51,No.16Wyatt et al.confirmed by the X-ray crystal structure remained identical to the starting fragment,which encouraged us to pursue this strategy further.The change of hinge binder provided a significantly different vector and improved access to the DFG region between the gatekeeper residue (Phe80)and the catalytic aspartate (Asp145)(Figure 2).It appeared that derivatizing the pyrazole at the 4-position presented an opportunity to grow into this pocket (Figure 6).Accordingly,introduction of a 4-amino group as a synthetic handle gave 17which resulted in a modest increase in activity (IC 50)85µM;LE )0.35).Introduction of a hydrogen bond acceptor gave compounds such as the amide 18,leading to a 100-fold increase in activity and improved LE (IC 50)0.85µM;LE )0.44).An X-ray structure of 18bound into CDK2showed that the increase in activity was at least in part due to a water mediated hydrogen bond from the acetamide carbonyl oxygen to the backbone NH of Asp145(Figure 7).Another important observation is that the planarity of 18is achieved due to an intramolecular hydrogen bond between the acetamide NH and the benzamide carbonyl,allowing the compound to fit into the narrow binding pocket.Ongoing with this work were attempts to replace the amide at the 3-position of the pyrazole with alternative groups that could maintain the hydrogen bonding interaction to the backbone carbonyl of Leu83while maintaining the planarity of the system.For example,a 2-benzimidazole group proved to be an effective replacement for the aryl amide.16(IC 50)25µM;LE )0.45)is more active than the corresponding amide 15.Further optimization of 16led to the identification of an alternative series with excellent kinase and cell activity.Details of the develop-ment of this alternative series will follow in a subsequent publication.The protein -ligand structure of 18indicated that the methyl of the acetamide group is in very close proximity to the side chain carboxylate of Asp145(approximately 3.5Å),making the pocket relatively small.Some protein flexibility is observed in this region of the binding site,so in order to probe this area further,a limited number of amides with diverse properties were synthesized (Table 2).A range of simple functionalities such as 19and 20did not afford a significant increase in activity over 18;however,interesting levels of kinase activity were obtained with directly attached monocycles such as the cyclo-hexyl amide 21and benzamide 22,and these compounds also showed some indication of cellular activity.The benzamide 22was particularly interesting,showing only a small increase in binding affinity and a decrease in ligand efficiency (IC 50)0.14µM,LE )0.39);however,the protein -ligand crystal structure (Figure 7)provided a number of important insights into the binding mode of this compound.First,a small amount of protein movement had occurred,allowing the aromatic ring to be accommodated.Second the phenyl ring was significantly twisted out of plane of the amide,with a torsion angle of 51°,an energetically unfavorable conformation.It was postulated that stabilization of this twist by diortho substitution of the phenyl ring might be beneficial.The X-ray structure confirmed that 23bound to CDK2as predicted (Figure 7),resulting in a 45-fold increase in kinase activity for the addition of only two heavy atoms and with a ligand efficiency very similar to the starting fragment (IC 50)0.003µM,LE )0.45).Although 23exhibited good kinase activity and its pharma-cokinetic (PK)properties indicated it to be a good leadmolecule,Figure 7.CDK2cocrystal structures of compounds 18,22,and 23,demonstrating the use of 2,6-disubstitution on the phenyl ring (23)to stabilize the induced twist observed for the benzamide of 22on binding to CDK2.Key:red spheres,water molecules;purple dashed lines,protein -ligand and water-ligand hydrogen bonds.Table 2.Pyrazole Diamide Structure -Activity Relationships(SAR)aCompounds were assayed 2or more times unless indicated *where n )1.Identification of AT7519Journal of Medicinal Chemistry,2008,Vol.51,No.164991with moderate plasma clearance (40mL/min/kg)after intrave-nous (iv)dosing in mice,its antiproliferative cell activity against HCT116colon cancer cells was only moderate (1.4µM).One explanation for this moderate cell activity may be due to low cell permeability.23has a ClogP of 2.4,however,the measured value is approximately 2log units higher,presumably due to internal hydrogen bonding reducing the overall polarity of the molecule.This relatively high lipophilicity may be detrimental to cell permeability,and in an attempt to address this,further optimization of the series was sought by replacing the lipophilic 4-fluorophenyl group of 23(Table 3).In general,other aromatic groups (data not shown)and simple alkyl groups such as in 24gave good kinase activity but only moderate cell activity.However,the directly attached cycloalkyl ring of 25gave an improvement in kinase activity and was the first compound in this series with submicromolar cell activity.Because of its reasonable cellular activity the PK properties of 25were determined in mice and it was found to have high plasma clearance (65mL/min/kg).A potential cause of this was oxidative metabolism of the highly lipophilic cyclohexyl group,and in an attempt to address this,modifications were made to the cyclohexyl ring.Although a number of 4-substituted cyclohexyl derivatives such as 26and 27exhibited good kinase and cell activity,most had relatively high plasma clearances.Introduction of a nitrogen atom into the ring affording 28and 29gave compounds with good CDK2and cell potency.It became apparent from making these small polar changes that modulating physicochemical properties was just as important as increasing kinase activity when attempting to improve cell potency.Interestingly,the 3-piperidinyl isomer 29exhibited anincrease in CDK1as well as CDK2activity compared to 28.This increase in activity can be explained by the presence of a conserved carboxylate residue in CDK1and CDK2(Asp86in CDK2)with which the 3-piperidinyl nitrogen of 29can interact.The X-ray structure of 29bound to CDK2(Figure 8)confirms this interaction,the protonated nitrogen being 2.65Åfrom the carboxylate of pound 28was considered to be a promising lead due to its reasonable cell activity and acceptable plasma protein binding (PPB)(Table 5);as a consequence of this,further in vivo characterization of 28was performed.Despite showing moderate plasma clearance (43mL/min/kg),the compound was dosed to mice bearing HCT116tumor xenografts to determine the level of compound in the tumor.After a single 10mg/kg dose of 28was administered via the ip route,reasonable,albeit somewhat variable levels of compound appeared to distribute into tumor (AUC )3422(2478h ·ng/g)(Table 5).The compound was much more rapidly cleared from plasma,with negligible material remaining after 7h (data not shown).In an attempt to determine whether compound levels in tumor were a potential indicator of in vivo efficacy,28was evaluated for antitumor activity in a mouse xenograft model.The hydrochloride salt of compound 28was dosed ip bid (twice daily)at 18.2,9.1,and 4.6mg/kg to SCID mice bearing early stage HCT116human colon carcinoma xenografts for pound 28showed a clear dose -response for antitumorTable 3.Summary of SAR for Compounds 23-29aCompounds were assayed 2or more times unless indicated *where n )1.b The plasma clearance data was determined after IV administration to BALB/c mice at 0.2mg/kg according to Pharmacokinetic StudyMethods.Figure 8.CDK2cocrystal structures of compounds 28and 29.29forms an additional hydrogen bond between the ring nitrogen of the piperidyl group and the carboxylate of Asp86.This may explain the observed improvement in binding affinity.Key:red spheres,water molecules;purple dashed lines,protein -ligand and water -ligand hydrogen bonds.4992Journal of Medicinal Chemistry,2008,Vol.51,No.16Wyatt et al.activity although the dose schedule was not optimized.The 18.2mg/kg dose group showed tumor growth inhibition of 86%(%T /C )14),however this dose was not well tolerated.At a tolerated dose of 9.1mg/kg,growth inhibition was 46%(%T /C )54)(Table 5)and the 4.6mg/kg group showed 22%growth inhibition (%T /C )78).These data suggested that distribution of compounds in tumor and their persistence there might be a useful indicator of in vivo activity when considered alongside protein binding and cell potency.The further impact of compound disposition on biomarker modulation will be dis-cussed in a subsequent paper.Further optimization of 28aimed at increasing activity against CDK2and subsequently improve cell activity was explored by reoptimizing the 2,6-difluorophenyl moiety (Table 4).Attempts to block potential metabolism of the phenyl ring by substitution of the 4-position,e.g.,in 30resulted in somewhat reduced inhibitory activity against the kinase.Replacement of one of the fluorines of 28with small substituents such as methoxy and chloro to give 31and 32was well tolerated and resulted in increased kinase and cell activity (Table 4).The 2,6-dichlo-rophenyl derivative 33gave an increase in kinase and cell activity,as the chlorine atoms filled this lipophilic pocket moreeffectively than fluorine.Because previous compounds showed persistence in tumor in spite of moderate to high plasma clearance (e.g.,28),further compounds (31and 33)were dosed to HCT116tumor bearing mice at 10mg/kg to determine tumor distribution properties.A similar trend to compound 28was observed,with significant levels of both 31and 33present in tumor (AUC )3325(543and 6260-6340h ·ng/g,respec-tively)(Table 5).Compound 33in particular showed good tumor exposure.The promising in vitro kinase and antiproliferative cell activity,coupled with low PPB and reasonable tumor distribu-tion for both 31and 33,led them to be evaluated in vivo for potential antitumor effipound 31showed 38%tumor growth inhibition (%T /C )62)in the HCT116mouse xenograft model at 10mg/kg,although the dose and schedule were not pound 33showed significant efficacy in the same tumor type producing tumor growth inhibition of 87%(%T /C )13)when dosed at 9.1mg/kg ip bid for 10days (Table 5),which warranted further investigation.A similar beneficial effect was observed for 33in the A2780(human ovarian carcinoma cell line)mouse xenograft model.Details of this and further characterization of 33is described in the following section.Characterization of Compound 33.Kinase Selectivity Profipound 33was profiled more widely against a panel of kinases (see Supporting Information).In addition to CDKs 1and 2(IC 50s 190nM and 47nM,respectively),33potently inhibited a number of other CDKs (4and 5in particular,IC 50s 67nM and 18nM,respectively),but had lower activity against other kinases tested (more detailed selectivity data will be published in a subsequent paper).One explanation for the observed selectivity over some kinases (Aurora A,IR kinase,MEK,PDK1,c-abl,IC 50>10µM)is shown in Figure 9a.All these kinases possess an additional glycine residue (in between the amino acids corresponding to Gln85and Asp86of CDK2),which causes the main chain to bulge into the ATP binding pocket resulting in a clash with the piperidine of 33.Cell-Based pound 33is a potent inhibitor of HCT116cell proliferation (used as a primary screen during lead optimization).Following 72h exposure,33potently inhibited the proliferation of a range of human tumor cell lines (over 100cell lines have been tested),with compound 33showing sub 1µM activity against more than 75(data not shown).Compound 33had reduced antiproliferative activity against the nontrans-formed fibroblast cell line,MRC-5,but more significantly,it did not affect the viability of noncycling MRC-5cells at doses up to 10µM (Table 6).These data suggest that the antiprolif-erative activity is cell cycle related and not due to general cytotoxicity to nondividing cells.The mechanism of action of 33in cells was investigated by monitoring the phosphorylation state of substrates specific for the various CDKs,following treatment with 33for 24h.These studies indicated that inhibition of phosphorylation of the CDK1substrate PP1R (Thr320)and the CDK2substrates Rb (Thr821)and Nucleophosmin (NPM)(Thr199)(data to be published inTable 4.Substituted Benzamide SAR for Compounds 30-33aCompounds were assayed 2or more times.b The plasma clearance data was determined after IV administration to BALB/c mice at 0.2mg/kg according to Pharmacokinetic Study Methods.Table 5.Activity,Distribution,and Initial Efficacy Parameters for Compounds 28,31,and 33CompoundHCT116a IC 50(µM)Plasma protein binding(%bound)Tumor AUC (0-t )h ·ng/g bEfficacy screening protocol in HCT116tumor xenograft model %T /C e280.31843422(2478(n )4)9.1mg/kg/dose bid QDx10c 54310.052753325(543(n )3)10mg/kg/dose bid QDx9d 62330.082426260-63409.1mg/kg/dose bid QDx10c13aCompounds were assayed 2or more times.b Mean (SD for n determinations or range for n )2determinations.c Efficacy study conducted in SCID mice following ip administration.d Efficacy study conducted in BALB/c nude mice following ip administration.e %T /C is the mean tumor volume of treated animals divided by the mean control tumor volume expressed as a percentage.Identification of AT7519Journal of Medicinal Chemistry,2008,Vol.51,No.164993。