冀教版数学八年级下册 《平行四边形》测试题1

合集下载

(必考题)初中八年级数学下册第十八章《平行四边形》经典练习(含答案解析)

(必考题)初中八年级数学下册第十八章《平行四边形》经典练习(含答案解析)

一、选择题1.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( )A .4﹣2B .2﹣4C .1D 2A解析:A【分析】 根据正方形的对角线平分一组对角可得∠ABD =∠ADB =45°,再求出∠DAE 的度数,根据三角形的内角和定理求∠AED ,从而得到∠DAE =∠AED ,再根据等角对等边的性质得到AD =DE ,然后求出正方形的对角线BD ,再求出BE ,最后根据等腰直角三角形的直角边等于2 【详解】解:在正方形ABCD 中,∠ABD =∠ADB =45°,∵∠BAE =22.5°,∴∠DAE =90°﹣∠BAE =90°﹣22.5°=67.5°,在△ADE 中,∠AED =180°﹣45°﹣67.5°=67.5°,∴∠DAE =∠AED ,∴AD =DE =4,∵正方形的边长为4,∴BD =2∴BE =BD ﹣DE =2﹣4,∵EF ⊥AB ,∠ABD =45°,∴△BEF 是等腰直角三角形,∴EF =22BE =22×(2﹣4)=4﹣2. 故选:A .【点睛】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD 是解题的关键,也是本题的难点.2.如图,在等腰直角ABC 中,AB BC =,点D 是ABC 内部一点, DE BC ⊥,DF AB ⊥,垂足分别为E ,F ,若3CE DE =, 53DF AF =, 2.5DE =,则AF =( )A .8B .10C .12.5D .15C解析:C【分析】 根据比例关系设DF=x ,可判断四边形DEBF 为矩形,根据矩形的性质和比例关系分别表示CB 和AB ,再根据AB BC =,列出方程,求解即可得出x ,从而得出AF .【详解】,DE BC DF AB ⊥⊥,90DEB DFB ∴∠=∠=︒,∵△ABC 为等腰直角三角形,∴∠ABC=90°,∴四边形DEBF 为矩形,∴BF=DE=2.5,DF=EB ,设DF=3x ,则EB=3x ,∵53DF AF =,∴AF=5x ,AB=5x+2.5,∵3CE DE =,∴CE=7.5,∴CB=7.5+3x ,∵AB=CB ,∴5x+2.5=7.5+3x ,解得x=2.5,∴512.5AF x ==,故选:C .【点睛】本题考查矩形的性质和判定,等腰三角形的定义,一元一次方程的应用.能借助相关性质表示对应线段的长度是解题关键.本题主要用到方程思想.3.如图,在ABC 中,D ,E 分别是,AB AC 的中点,12BC =,F 是DE 的上任意一点,连接,AF CF ,3DE DF =,若90AFC ∠=︒,则AC 的长度为( )A.4 B.5 C.8 D.10C解析:C【分析】根据三角形中位线定理求出DE,根据题意求出EF,根据直角三角形的性质计算即可.【详解】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=12BC=6,∵DE=3DF,∴EF=4,∵∠AFC=90°,E是AC的中点,∴AC=2EF=8,故选:C.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.4.如图,在菱形ABCD中,对角线BD=4,AC=3BD,则菱形ABCD的面积为()A.96 B.48 C.24 D.6C解析:C【分析】根据菱形的面积等于对角线乘积的一半解答.【详解】解:∵BD=4,AC=3BD,∴AC=12,∴菱形ABCD的面积为12AC×BD=11242⨯⨯=24.故选:C.【点睛】本题主要考查菱形的性质,利用对角线求面积的方法,在求菱形的面积中用得较多,需要熟练掌握.5.如图,己知四边形ABCD是平行四边形,下列说法正确..的是()A.若AB AD=,则平行四边形ABCD是矩形B.若AB AD=,则平行四边形ABCD是正方形C.若AB BC⊥,则平行四边形ABCD是矩形D.若AC BD⊥,则平行四边形ABCD是正方形C解析:C【分析】根据已知及各个特殊四边形的判定方法对各个选项进行分析从而得到最后答案.【详解】解:A、若AB=AD,则▱ABCD是菱形,选项说法错误;B、若AB=AD,则▱ABCD是菱形,选项说法错误;C、若AB⊥BC,则▱ABCD是矩形,选项说法正确;D、若AC⊥BD,则▱ABCD是菱形,选项说法错误;故选:C.【点睛】此题考查了菱形,矩形,正方形的判定方法,对角线互相垂直平分且相等的四边形是正方形.6.菱形的一个内角是60︒,边长是3cm,则这个菱形的较短的对角线长是()A.3cm2B33cm2C.3cm D.33cm C解析:C【分析】根据菱形的四边相等和一个内角是60°,可判断较短对角线与两边组成等边三角形,根据等边三角形的性质可求较短的对角线长.【详解】解:因为菱形的四边相等,当一个内角是60°,则较短对角线与两边组成等边三角形.∵菱形的边长是3cm,∴这个菱形的较短的对角线长是3cm.故选:C.【点睛】此题考查了菱形四边都相等的性质及等边三角形的判定,解题关键是判断出较短对角线与两边构成等边三角形.7.下列命题中,正确的命题是()A.菱形的对角线互相平分且相等B.顺次联结菱形各边的中点所得的四边形是C .矩形的对角线互相垂直平分D .顺次连结矩形各边的中点所得的四边形是正方形B解析:B【分析】根据菱形的性质、矩形的性质、中点四边形的定义逐一判断即可.【详解】解:A. 菱形的对角线互相平分,但不相等,该命题错误;B. 顺次联结菱形各边的中点所得的四边形是矩形,该命题正确;C. 矩形的对角线互相平分,但是不垂直,该命题错误;D. 顺次连结矩形各边的中点所得的四边形是菱形,该命题错误;故选:B .【点睛】本题考查特殊四边形的判定和性质,掌握菱形的性质、矩形的性质、中点四边形的定义是解题的关键.8.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠D解析:D【分析】 先证明△ADF ≌△BEF ,得到AD=BE ,推出四边形AEBD 是平行四边形,再逐项依次分析即可.【详解】解:在平行四边形ABCD 中,AD ∥BC ,∴∠DAB=∠EBA ,∵点F 是AB 的中点,∴AF=BF ,∵∠AFD=∠BFE ,∴△ADF ≌△BEF ,∴AD=BE ,∵AD ∥BE ,∴四边形AEBD 是平行四边形,A 、当BAD BDA ∠=∠时,得到AB=BD ,无法判定四边形AEBD 是菱形,故该选项不符合B、AB=BE时,无法判定四边形AEBD是菱形,故该选项不符合题意;C、DF=EF时,无法判定四边形AEBD是菱形,故该选项不符合题意;∠时,四边形AEBD是菱形,故该选项符合题意;D、当DE平分ADB故选:D.【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定,熟记平行四边形的性质是解题的关键.9.如图,菱形ABCD中,∠ABC=60°,AB=4,E是边AD上一动点,将△CDE沿CE 折叠,得到△CFE,则△BCF面积的最大值是()A.8 B.83C.16 D.163A解析:A【分析】由三角形底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC 时,三角形有最大面积.【详解】解:在菱形ABCD中,BC=CD=AB=4又∵将△CDE沿CE 折叠,得到△CFE,∴FC=CD=4由此,△BCF的底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC时,三角形有最大面积∴△BCF面积的最大值是11448BC FC=⨯⨯=22故选:A.【点睛】本题考查菱形的性质和折叠的性质,掌握三角形面积的计算方法和菱形的性质正确推理计算是解题关键.10.矩形不一定具有的性质是()A.对角线互相平分B.是轴对称图形C.对角线相等D.对角线互相垂直参考答案D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A、B、C正确,故选:D.【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题11.如图,EF过ABCD对角线的交点O,交AD于E,交BC于F,若ABCD的OE ,则四边形EFCD的周长为_____.周长为19, 2.5145【分析】根据平行四边形的性质易证三角形全等进而易得AE=CF故四边形的周长=AD+CD+EF根据已知求解即可【详解】解:在平行四边形ABCD中AD∥BCAC与BD互相平分∴AO=OC∠DAC=解析:14.5【分析】根据平行四边形的性质易证三角形全等,进而易得AE=CF,故四边形EFCD的周长=AD+CD+EF,根据已知求解即可.【详解】解:在平行四边形ABCD中,AD∥BC,AC与BD互相平分∴AO=OC,∠DAC=∠ACB,∠AOE=∠COF∴△AOE≌△COF∴AE=CF,OF=OE=2.5∴四边形EFCD的周长=CF+DE+CD+EF=AE+DE+CD+EF=AD+CD+EF=19 2.52+×2 =14.5. 故答案为:14.5.【点睛】本题考查了平行四边形的性质以及三角形全等的证明,将所求线段转化为已知线段是解题的关键.12.己知菱形ABCD 的边长是3,点E 在直线AD 上,DE =1,联结BE 与对角线AC 相交于点M ,则AM MC的值是______.或【分析】首先根据题意作图注意分为E 在线段AD 上与E 在AD 的延长线上然后由菱形的性质可得AD ∥BC 则可证得△MAE ∽△MCB 根据相似三角形的对应边成比例即可求得答案【详解】解:∵菱形ABCD 的边长是 解析:23或43【分析】 首先根据题意作图,注意分为E 在线段AD 上与E 在AD 的延长线上,然后由菱形的性质可得AD ∥BC ,则可证得△MAE ∽△MCB ,根据相似三角形的对应边成比例即可求得答案.【详解】解:∵菱形ABCD 的边长是3,∴AD=BC=3,AD ∥BC ,如图①:当E 在线段AD 上时,∴AE=AD -DE=3-1=2,∴△MAE ∽△MCB , ∴23MA AE MC BC ==; 如图②,当E 在AD 的延长线上时,∴AE=AD+DE=3+1=4,∴△MAE ∽△MCB , ∴43MA AE MC BC ==. ∴MA MC 的值是23或43. 故答案为23或43.【点睛】此题考查了菱形的性质,相似三角形的判定与性质等知识.解题的关键是注意此题分为E 在线段AD 上与E 在AD 的延长线上两种情况,小心不要漏解.13.如图,在四边形ABCD 中,150ABC ∠=︒,BD 平分ABC ∠,过A 点作//AE BC 交BD 于点E ,EF BC ⊥于点F 若6AB =,则EF 的长为________.3【分析】过点A 作AM ⊥CB 交CB 延长线于点M 根据题意可知∠ABM=30°可求AM=3再利用平行四边形的性质求出EF【详解】解:过点A 作AM ⊥CB 交CB 延长线于点M ∵∴∠ABM=30°∴AM=AB= 解析:3【分析】过点A 作AM ⊥CB ,交CB 延长线于点M ,根据题意可知,∠ABM=30°,可求AM=3,再利用平行四边形的性质,求出EF .【详解】解:过点A 作AM ⊥CB ,交CB 延长线于点M ,∵150ABC ∠=︒,∴∠ABM=30°,∴AM=12AB=12×6=3, ∵AM ⊥CB ,EF BC ⊥,∴AM ∥EF ,∵//AE BC ,∴四边形AMFE 是平行四边形,∵AM ⊥CB ,∴四边形AMFE 是矩形,∴EF=AM=3,故答案为:3..【点睛】本题考查了含30°角的直角三角形的性质和平行四边形的判定,恰当的作辅助线,构造特殊的直角三角形是解题关键.14.把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若38CDF∠=︒,则EFD∠的度数是_________.64°【分析】先根据矩形的性质求出∠CFD的度数继而求出∠BFD的度数根据图形折叠的性质得出∠EFD=∠BFE=∠BFD即可得出结论【详解】解:∵ABCD是矩形∴∠DCF=90°∵∠CDF=38°∴解析:64°【分析】先根据矩形的性质求出∠CFD的度数,继而求出∠BFD的度数,根据图形折叠的性质得出∠EFD=∠BFE=12∠BFD,即可得出结论.【详解】解:∵ABCD是矩形,∴∠DCF=90°,∵∠CDF=38°,∴∠CFD=52°,∴∠BFD=180°-52°=128°,∵四边形EFDA1由四边形EFBA翻折而成,∴∠EFD=∠BFE=12∠BFD=12×128°=64°.故答案为:64°.【点睛】本题考查的是矩形折叠问题,掌握轴对称的性质是关键.15.如图,B,E,F,D四点在一条直线上,菱形ABCD的面积为2120cm,正方形AECF 的面积为250cm ,则菱形的边长为___cm .13【分析】根据正方形的面积可用对角线进行计算解答即可【详解】解:连接ACBD 交于点O ∵四边形ABCD 是菱形∴AC ⊥BDAO=COBO=DO ∵正方形AECF 的面积为50cm2∴AC2=50∴AC=1 解析:13【分析】根据正方形的面积可用对角线进行计算解答即可.【详解】解:连接AC ,BD 交于点O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=CO ,BO=DO ,∵正方形AECF 的面积为50cm 2, ∴12AC 2=50, ∴AC=10cm ,∴AO=CO=5cm ,∵菱形ABCD 的面积为120cm 2, ∴12×AC×BD=120, ∴BD=24cm ,∴BO=DO=12cm , ∴22AB AO BO +25144+, 故答案为13. 【点睛】本题考查正方形的性质,菱形的性质,关键是根据正方形和菱形的面积进行解答. 16.如图,矩形ABCD 中,10AD =,14AB =,点E 为DC 上一个动点,把ADE 沿AE 折叠,点D 的对应点为D ,若D 落在ABC ∠的平分线上时,DE 的长为_____.5或【分析】连接BD′过D′作MN⊥AB交AB于点MCD于点N作D′P⊥BC交BC于点P先利用勾股定理求出MD′再分两种情况利用勾股定理求出DE【详解】解:如图连接BD′过D′作MN⊥AB交AB于点解析:5或10 3【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【详解】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB-BM=14-x,又折叠图形可得AD=AD′=10,∴x2+(14-x)2=100,解得x=6或8,即MD′=6或8.在Rt△END′中,设ED′=a,①当MD′=6时,AM=14-6=8,D′N=10-6=4,EN=8-a,∴a2=42+(8-a)2,解得a=5,即DE=5,②当MD′=8时,AM=14-8=6,D′N=10-8=2,EN=6-a,∴a2=22+(6-a)2,解得103a=,即103DE=.故答案为:5或10 3.【点睛】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.17.平行四边形的两条对角线长分别为6和8,其夹角为45︒,该平行四边形的面积为_______.【分析】画出图形证明四边形EFGH 是平行四边形得到∠EHG=45°计算出MG 得到四边形EFGH 的面积从而得到结果【详解】解:如图四边形ABCD 是平行四边形EFGH 分别是各边中点过点G 作EH 的垂线垂足 解析:122 【分析】 画出图形,证明四边形EFGH 是平行四边形,得到∠EHG=45°,计算出MG ,得到四边形EFGH 的面积,从而得到结果.【详解】解:如图,四边形ABCD 是平行四边形,E 、F 、G 、H 分别是各边中点,过点G 作EH 的垂线,垂足为M ,AC=6,BD=8,可得:EF=HG=12AC=3,EH=FG=12BD=4,EF ∥HG ∥AC ,EH ∥FG ∥BD , ∴四边形EFGH 是平行四边形,∵AC 和BD 夹角为45°,可得∠EHG=45°,∴△HGM 为等腰直角三角形,又∵HG=3,∴MG=233222=, ∴四边形EFGH 的面积=MG EH ⋅=62,∴平行四边形ABCD 的面积为122,故答案为:122.【点睛】此题考查了平行四边形的性质,中位线定理,等腰直角三角形的判定和性质,勾股定理,解题的关键是根据题意画出图形,结合图形的性质解决问题.18.如图,在Rt ABC △中,90A ︒∠=,2AB =,点D 是BC 边的中点,点E 在AC 边上,若45DEC ︒∠=,那么DE 的长是__________.【分析】过D作DF⊥AC于F得到AB∥DF求得AF=CF根据三角形中位线定理得到DF=AB=1根据等腰直角三角形的性质即可得到结论【详解】解:过D作DF⊥AC于F∴∠DFC=∠A=90°∴AB∥DF解析:2【分析】过D作DF⊥AC于F,得到AB∥DF,求得AF=CF,根据三角形中位线定理得到DF=12AB=1,根据等腰直角三角形的性质即可得到结论.【详解】解:过D作DF⊥AC于F,∴∠DFC=∠A=90°,∴AB∥DF,∵点D是BC边的中点,∴BD=DC,∴AF=CF,∴DF=12AB=1,∵∠DEC=45°,∴△DEF是等腰直角三角形,∴DE=2DF=2,故答案为:2.【点睛】本题考查了三角形的中位线定理,平行线的判定和性质,等腰直角三角形的性质,正确的作出辅助线构造等腰直角三角形是解题的关键.19.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD 于点E,AB=8,EF=1,则BC长为__________.15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB得出AF=AB=8同理可得DE=DC=8再由EF的长即可求出BC的长【详解】解:∵四边形ABCD是平行四边形∴AD∥BCDC=AB=8A解析:15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB=8,同理可得DE=DC=8,再由EF的长,即可求出BC的长.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=8,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=8,同理可证:DE=DC=8,∵EF=AF+DE-AD=1,即8+8-AD=1,解得:AD=15;故答案为:15.【点睛】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AF=AB是解决问题的关键.20.在长方形ABCD中,52AB=,4BC=,CE CF=,CF平分ECD∠,则BE=_________.【分析】延长CF交EA的延长线于点G连接EF过点F作FH⊥CE于点H过点E作EM⊥CF于点M由题意易得FH=FDFH=EMEC=EG进而可得△CDF≌△CME然后可得CM=CD=由勾股定理可得BG=解析:7 6【分析】延长CF,交EA的延长线于点G,连接EF,过点F作FH⊥CE于点H,过点E作EM⊥CF于点M,由题意易得FH=FD,FH=EM,EC=EG,进而可得△CDF≌△CME,然后可得CM=CD=52,由勾股定理可得BG=3,设BE=x ,则有EC=EG=3+x ,最后利用勾股定理可求解. 【详解】解:延长CF ,交EA 的延长线于点G ,连接EF ,过点F 作FH ⊥CE 于点H ,过点E 作EM ⊥CF 于点M ,如图所示:∵四边形ABCD 是矩形,4BC =,52AB =∴BC=AD ,52AB DC ==,AB ∥DC ,∠D=∠ABC=∠CBE=90° ∴∠DCF=∠G ,∵CF 平分∠ECD ,∴∠DCF=∠ECF ,DF=FH ,∴∠G=∠ECF ,∴EC=EG ,∴△ECG 是等腰三角形,∴CM=MG ,∵CE=CF ,∴△ECF 是等腰三角形, ∵EM 、FH 分别是等腰三角形ECF 腰上的高线, ∴FH=EM=DF ,∴Rt △CDF ≌Rt △CME (HL ),∴52CM DC ==, ∴CG=5,∴在Rt △CBG 中,223BG CG CB -=,设BE=x ,则有EC=EG=3+x ,在Rt △CBE 中,222BC BE CE +=,∴()22243x x +=+, 解得:76x =,∴76BE =; 故答案为76. 【点睛】本题主要考查等腰三角形的性质与判定、矩形的性质及勾股定理,熟练掌握等腰三角形的性质与判定、矩形的性质及勾股定理是解题的关键.三、解答题21.在Rt ABC 中,90ACB ∠=︒,点D 是AB 的中点,点E 是直线BC 上一点(不与点B ,C 重合),连结CD ,DE .(1)如图①若90CDE ∠=︒,求证:A E ∠=∠.②若BD 平分CDE ∠,且24E ∠=︒,求A ∠的度数.(2)设()45A αα∠=>︒,DEC β∠=,若CD CE =,求β关于α的函数关系式,并说明理由.解析:(1)①见解析;②22°;(2)1452βα=+︒或1452βα=-+︒,见解析 【分析】 (1)①由直角三角形斜边上中线的性质得AD DC BD ==,再根据等腰三角形的性质,由等角的余角相等,即可证明结论;②设DBC x ∠=︒,则24BDE x ∠=︒-︒,根据角平分线的性质以及三角形的内角和列式求出x 的值即可;(2)分情况讨论,当点E 在线段BC 上,或当点E 在线段BC 的延长线上,由等腰三角形的性质即可求出结果.【详解】(1)①证明:∵90ACB ∠=︒,∴90A ABC ∠+∠=︒,∵点D 是AB 的中点,∴AD DC BD ==,∴DCB ABC ∠=∠.∵90CDE ∠=︒,∴90E DCB ∠+∠=︒,∴A E ∠=∠;②解:设DBC x ∠=︒,则24BDE x ∠=︒-︒,∵BD 平分CDE ∠,∴24CDB BDE x ∠=∠=︒-︒.∵DB DC =,∴DCB DBC x ∠=∠=︒,∴24180x x x ︒+︒+︒-︒=︒,解得68x =,∴906822A ∠=︒-︒=︒;(2)①如图,当CD CE =时,∴CDE CED β∠=∠=.∵A α∠=,AD DC =,∴ACD α∠=,∴90DCB α∠=︒-,∴290180βα+︒-=︒,得1452βα=+︒;②如图,当CD CE =时∴CDE E β∠=∠=,∴290βα=︒-,得1452βα=-+︒.【点睛】本题考查等腰三角形的性质,直角三角形斜边上中线的性质,解题的关键是熟练掌握这些几何的性质定理.22.如图,在四边形ABCD 中,//AB CD ,90A ∠=︒,16cm AB =,13cm BC =,21cm CD =,动点N 从点D 出发,以每秒2cm 的速度在射线DC 上运动到C 点返回,动点M 从点A 出发,在线段AB 上,以每秒1cm 的速度向点B 运动,点M ,N 分别从点A ,D 同时出发.当点M 运动到点B 时,点N 随之停止运动,设运动时间为t (秒). (1)当t 为何值时,四边形MNCB 是平行四边形.(2)是否存在点N ,使NMB △是等腰三角形?若存在,请求出所有满足要求的t 的值,若不存在,请说明理由.解析:(1)5秒或373秒;(2)存在,163秒或72秒或685秒 【分析】 (1)由题意已知,AB ∥CD ,要使四边形MNBC 是平行四边形,则只需要让BM=CN 即可,因为M 、N 点的速度已知,AB 、CD 的长度已知,要求时间,用时间=路程÷速度,即可求出时间;(2)使△BMN 是等腰三角形,可分三种情况,即BM=BN 、NM=NB 、MN=MB ;可利用等腰三角形及直角梯形的性质,分别用t 表达等腰三角形的两腰长,再利用两腰相等即可求得时间t .【详解】解:(1)设运动时间为t 秒.∵四边形MNCB 是平行四边形,∴MB=NC ,当N 从D 运动到C 时,∵BC=13cm ,CD=21cm ,∴BM=AB-AM=16-t ,CN=21-2t ,∴16-t=21-2t ,解得t=5,当N 从C 运动到D 时,∵BM=AB-AM=16-t ,CN=2t-21∴16-t=2t-21,解得t=373,∴当t=5秒或373秒时,四边形MNCB是平行四边形;(2)△NMB是等腰三角形有三种情况,Ⅰ.当NM=NB时,作NH⊥AB于H,则HM=HB,当N从D运动到C时,∵MH=HB=12BM=12(16-t),由AH=DN得2t=12(16−t)+t,解得t=163秒;当点N从C向D运动时,观察图象可知,只有由题意:42-2t=12(16-t)+t,解得t=685秒.Ⅱ.当MN=MB,当N从D运动到C时,MH=AH-AM=DN-AM=2t-t=t,BM=16-t,∵MN2=t2+122,∴(16-t)2=122+t2,解得t=72(秒);Ⅲ.当BM=BN,当N从C运动到D时,则BH=AB-AH=AB-DN=16-2t,∵BM2=BN2=NH2+BH2=122+(16-2t)2,∴(16-t)2=122+(16-2t)2,即3t 2-32t+144=0,∵△<0,∴方程无实根,综上可知,当t=163秒或72秒或685秒时,△BMN 是等腰三角形. 【点睛】 本题主要考查了直角梯形的性质、平行四边形的性质、梯形的面积、等腰三角形的性质,特别应该注意要全面考虑各种情况,不要遗漏.23.如图,在四边形ABCD 中//AD BC ,5cm AD =,9cm BC =,M 是CD 的中点,P 是BC 边上的一动点(P 与B ,C 不重合),连接PM 并延长交AD 的延长线于Q .(1)试说明不管点P 在何位置,四边形PCQD 始终是平行四边形.(2)当点P 在点B ,C 之间运动到什么位置时,四边形ABPQ 是平行四边形?并说明理由.解析:(1)见解析;(2)PC=2时【分析】(1)由“ASA”可证△PCM ≌△QDM ,可得DQ=PC ,即可得结论;(2)得出P 在B 、C 之间运动的位置,根据一组对边平行且相等的四边形是平行四边形得出结论.【详解】解:(1)∵AD ∥BC ,∴∠QDM=∠PCM ,∵M 是CD 的中点,∴DM=CM ,∵∠DMQ=∠CMP ,DM=CM ,∠QDM=∠PCM ,∴△PCM ≌△QDM (ASA ).∴DQ=PC ,∵AD ∥BC ,∴四边形PCQD 是平行四边形,∴不管点P 在何位置,四边形PCQD 始终是平行四边形;(2)当四边形ABPQ 是平行四边形时,PB=AQ ,∵BC-CP=AD+QD ,∴9-CP=5+CP ,∴CP=(9-5)÷2=2.∴当PC=2时,四边形ABPQ 是平行四边形.【点睛】本题考查了平行四边形的判定和性质,全等三角形判定和性质,熟练掌握平行四边形的性质和判定方法是解题的关键.24.下面是小明设计的“在一个平行四边形内作菱形”的尺规作图过程.已知:四边形ABCD 是平行四边形,且,AB BC <求作:菱形ABEF ,使点E 在BC 上,点F 在AD 上.作法:①作BAD ∠的角平分线,交BC 于点E ;②以A 为圆心,AB 长为半径作弧,交AD 于点F ;③连接EF .则四边形ABEF 为所求作的菱形.根据小明设计的尺规作图过程(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)求证四边形ABEF 为菱形.解析:(1)见解析;(2)见解析【分析】(1)根据要求画出图形即可.(2)利用平行四边形的判定,菱形的判定解决问题即可.【详解】解:解:()1如图所示.()2证明:AE ∵平分,BAD ∠13,∴∠=∠在ABCD 中,//,AD BC23,∴∠=∠12,∴∠=∠,AB BE ∴=,AF AB =,AF BE ∴=又//,AF BE∴四边形ABEF 为平行四边形.,AF AB = ∴四边形ABEF 为菱形.【点睛】本题考查作图-复杂作图,平行四边形的判定和性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.如图,在▱ABCD 中,AB =12cm ,BC =6cm ,∠A =60°,点P 沿AB 边从点A 开始以2cm/秒的速度向点B 移动,同时点Q 沿DA 边从点D 开始以1cm/秒的速度向点A 移动,用t 表示移动的时间(0≤t ≤6).(1)当t 为何值时,△PAQ 是等边三角形?(2)当t 为何值时,△PAQ 为直角三角形?解析:(1)t =2;(2)t =3或65t =. 【分析】 (1)根据等边三角形的性质,列出关于t 的方程,进而即可求解.(2)根据△PAQ 是直角三角形,分两类讨论,分别列出方程,进而即可求解.【详解】解:(1)由题意得:AP =2t (米),AQ =6-t (米).∵∠A =60°,∴当△PAQ 是等边三角形时,AQ =AP ,即2t =6-t ,解得:t =2,∴当t =2时,△PAQ 是等边三角形.(2)∵△PAQ 是直角三角形,∴当∠AQP =90°时,有∠APQ =30°,即AP =2AQ ,∴2t =2(6-t ),解得:t =3(秒),当∠APQ =90°时,有∠AQP =30°,即AQ =2AP ,∴6-t =2·2t ,解得65t =(秒),∴当t =3或65t =时,△PAQ 是直角三角形. 【定睛】 本题主要考查等边三角形的性质,直角三角形的定义以及平行四边形的定义,熟练掌握等边三角形的性质,直角三角形的定义,列出方程,是解题的关键.26.如图,在△ABC 中,AB =AC ,DE 垂直平分AC ,CE ⊥AB ,AF ⊥BC ,(1)求证:CF =EF ;(2)求∠EFB 的度数.解析:(1)证明见解析;(2)EFB 45∠=︒【分析】(1)先根据线段垂直平分线的性质及CE ⊥AB 得出△ACE 是等腰直角三角形,再由等腰三角形的性质得出∠ACB 的度数,由AB=AC ,AF ⊥BC ,可知BF=CF ,CF=EF ; (2)根据三角形外角的性质即可得出结论.【详解】∵DE 垂直平分AC ,∴AE=CE ,∵CE ⊥AB ,∴△ACE 是等腰直角三角形,∠BEC=90°,∵AB=AC ,AF ⊥BC ,∴BF=CF ,即F 是BC 的中点,∴Rt △BCE 中,EF=12BC=CF ; (2)由(1)得:△ACE 是等腰直角三角形,∴∠BAC=∠ACE=45°,又∵AB=AC ,∴∠ABC=∠ACB=()11804567.52︒-︒=︒, ∴∠BCE=∠ACB-∠ACE=67.5°-45°=22.5°,∵CF=EF ,∴∠CEF=∠BCE=22.5°,∵∠EFB 是△CEF 的外角,∴∠EFB=∠CEF+∠BCE=22.5°+22.5°=45°.【点睛】本题考查了线段垂直平分线的性质,等腰直角三角形的判定和性质,斜边的中线等于斜边的一半,三角形的外角性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键,同时要熟悉直角三角形中,斜边的中线等于斜边的一半.27.如图,菱形EFGH 的三个顶点E 、G 、H 分别在正方形ABCD 的边AB 、CD 、DA 上,连接CF .(1)求证:∠HEA =∠CGF ;(2)当AH =DG 时,求证:菱形EFGH 为正方形.解析:(1)见解析;(2)见解析.【分析】(1)连接GE ,根据正方形对边平行,得∠AEG=∠CGE ,根据菱形的对边平行,得∠HEG=∠FGE ,利用两个角的差求解即可;(2)根据正方形的判定定理,证明∠GHE=90°即可.【详解】证明:(1)连接GE ,∵AB ∥CD ,∴∠AEG=∠CGE ,∵GF ∥HE ,∴∠HEG=∠FGE ,∴∠HEA=∠CGF ;(2)∵四边形ABCD 是正方形,∴∠D=∠A=90°,∵四边形EFGH 是菱形,∴HG=HE ,在Rt △HAE 和Rt △GDH 中,AH DG HE HG =⎧⎨=⎩, ∴Rt △HAE ≌Rt △GDH ,∴∠AHE=∠DGH,∵∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形.【点睛】本题考查了正方形的性质和判定,菱形的性质,平行线的性质,熟记正方形的性质和判定是解题的关键.28.如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点图形.(1)在图甲中画出一个三角形,使BP平分该三角形的面积.(2)在图乙中画出一个至少有一组对边平行的四边形,使AP平分该四边形的面积.解析:(1)画图见解析;(2)画图见解析.【分析】△即为所求;(1)连接AP延长至D点,使AP=DP,再连接BD,ABD(2)作EP平行且相等于AB,连接AE,四边形ABPE即为所求.【详解】(1)作图如下,连接AP延长至D点,使AP=DP,再连接BD,△即为所求,ABD=,AP DP∴和BDPABP△是等底同高的两个三角形,∴BP平分ABD△三角形的面积;(2)作图如下,作EP平行且相等于AB,连接AE,四边形ABPE即为所求,AB平行且相等于EP,∴四边形ABPE为平行四边形,∴AP为ABCD的对角线,∴AP平分ABCD的面积.【点睛】本题考查学生的作图能力,涉及三角形面积以及平行四边形面积相关的知识,根据题意作出图像是解题的关键.。

初中数学《八下》 第十八章 平行四边形-平行四边形 考试练习题

初中数学《八下》 第十八章 平行四边形-平行四边形 考试练习题

初中数学《八下》第十八章平行四边形-平行四边形考试练习题姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分1、如图,将折叠,使顶点D落在边上的点E处,折痕为,则下列结论一定正确的是A .B .C .D .知识点:平行四边形【答案】C【分析】根据折叠的性质,可得出DF=EF ,再结合题目有,四边形 CBEF 是平行四边形,继而有 BC=EF ,即可得出正确答案.【详解】解:由折叠的性质得,,,∵ 四边形是平行四边形,∴,.∴,∴.∵,∴ 四边形是平行四边形,∴,∴.故选:C .【点睛】本题考查的知识点是折叠的性质以及平行四边形的判定定理及其性质,属于中等难度题.失分的原因有2 个:(1 )不能熟练运用折叠的性质;(2 )未掌握平行四边形的性质与判定.2、已知:如图,在▱ABCD中,点E、F分别在AD、BC上,且BE平分∠ABC,EF ∥AB.求证:四边形ABFE 是菱形.评卷人得分知识点:平行四边形【答案】见解析【分析】先证四边形ABFE是平行四边形,由平行线的性质和角平分线的性质证AB=AE,依据有一组邻边相等的平行四边形是菱形证明即可.【详解】证明:∵ 四边形ABCD是平行四边形,∴AD ∥BC,又∵EF ∥AB,∴ 四边形ABFE是平行四边形,∵BE平分∠ABC,∴∠ABE=∠FBE,∵AD ∥BC,∴∠AEB=∠EBF,∴∠ABE=∠AEB,∴AB=AE,∴ 平行四边形ABFE是菱形.【点睛】本题考查了平行四边形的性质、等腰三角形的判定、菱形的判定,解题关键是熟练运用相关知识进行推理证明,特别注意角平分线加平行,可证等腰三角形.3、下列给出的条件中,能判断四边形ABCD是平行四边形的是()A .AB ∥CD,AD=BCB .∠B=∠C;∠A=∠DC .AB=CD,CB=ADD .AB=AD,CD=BC知识点:平行四边形【答案】C【分析】平行四边形的判定定理① 两组对边分别相等的四边形是平行四边形,② 一组对边平行且相等的四边形是平行四边形,③ 两组对角分别相等的四边形是平行四边形,④ 对角线互相平分的四边形是平行四边形,判断即可.【详解】解:A、根据AD ∥CD,AD=BC不能判断四边形ABCD是平行四边形,故本选项错误;B、根据∠B=∠C,∠A=∠D不能判断四边形ABCD是平行四边形,故本选项错误;C、根据AB=CD,AD=BC,得出四边形ABCD是平行四边形,故本选项正确;D、根据AB=AD,BC=CD,不能判断四边形ABCD是平行四边形,故本选项错误;故选:C.【点睛】本题考查了对平行四边形的判定定理的应用,关键是能熟练地运用平行四边形的判定定理进行推理,此题是一道比较容易出错的题目.4、下列选项中,能判定四边形ABCD是平行四边形的是()A .AB //CD,AD=BCB .∠A=∠D,∠B=∠CC .AB //CD,∠A+∠B=180°D .∠A=∠C,∠B+∠D=180°知识点:平行四边形【答案】C【分析】平行四边形的判定定理:(1 )两组对边分别平行的四边形是平行四边形(2 )两组对边分别相等的四边形是平行四边形(3 )一组对边平行且相等的四边形是平行四边形(4 )两组对角分别相等的四边形是平行四边形(5 )对角线互相平分的四边形是平行四边形.根据平行四边形的判定定理逐个分析即可解答.【详解】解:A 、AB //CD,AD=BC不能判定四边形ABCD是平行四边形,故此选项错误;B 、∠A=∠D,∠B=∠C不能判定四边形ABCD是平行四边形,故此选项错误;C 、因为∠A+∠B=180° ,所以AD //BC,又因为AB //CD,所以四边形ABCD是平行四边形,故此选项正确;D 、∠A=∠C,∠B+∠D=180° 不能判定四边形ABCD是平行四边形,故此选项错误;故选C .【点睛】本题主要考查平行四边形的判定定理,解决本题的关键是要熟练掌握平行四边形的判定定理.5、如图,A,B两地被池塘隔开,小明通过下面的方法测出A,B间的距离:先在AB外选一点C,连接AC,BC.分别取AC,BC的中点D,E,测得米,由此他知道了A,B间的距离为___________ 米,这种做法的依据是 _______________ .知识点:平行四边形【答案】30 三角形中位线性质定理【分析】根据三角形中位线性质定理解答即可.【详解】解:∵ 点D,E是AC,BC的中点,∴AB=2DE=30 (m ),小石的依据是三角形中位线定理,故答案为:30 ;三角形中位线性质定理.【点睛】本题考查的是三角形中位线性质定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.6、如图,□ABCD 的对角线 AC , BD 相交于点 O ,点 E 是 CD 的中点,△ABD 的周长为 16cm ,则△DOE 的周长是 _________ ;知识点:平行四边形【答案】8【详解】∵ 四边形 ABCD 是平行四边形,∴O 是 BD 中点,△ABD≌△CDB ,又∵E 是 CD 中点,∴OE 是△BCD 的中位线,∴OE=BC ,即△DOE 的周长=△BCD 的周长,∴△DOE 的周长=△DAB 的周长.∴△DOE 的周长=×16=8cm .7、如图,D是△ABC内一点,BD ⊥CD,AD =6 ,BD =4 ,CD =3 ,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A . 7B . 8C . 11D . 10知识点:平行四边形【答案】C【详解】分析:根据勾股定理求出BC的长,根据三角形的中位线定理得到HG =BC =EF,EH =FG =AD,求出EF 、HG、EH、FG的长,代入即可求出四边形EFGH的周长.详解:∵BD ⊥DC,BD =4 ,CD =3 ,由勾股定理得:BC ==5 .∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG =BC =EF,EH =FG =AD.∵AD =6 ,∴EF =HG =2.5 ,EH =GF =3 ,∴ 四边形EFGH的周长是EF +FG +HG +EH =2× (2.5+3 ) =11 .故选C .点睛:本题主要考查对勾股定理,三角形的中位线定理等知识点的理解和掌握,能根据三角形的中位线定理求出EF、HG、EH、FG的长是解答此题的关键.8、如图,在Rt △ABC中,∠BAC=90° ,过点A的直线MN ∥BC,点E为BC边上一点,过点E作DE ⊥AC ,交直线MN于点D,垂足为F.连接AE.(1 )求证:BE=AD;(2 )当点E在BC的中点时,四边形AECD是什么特殊的四边形?说明理由.(3 )若点E为BC的中点,当∠B满足什么条件时,四边形AECD是正方形?说明理由.知识点:平行四边形【答案】(1 )见解析;(2 )菱形,见解析;(3 )∠B=45° ,见解析【分析】(1 )MN ∥BC,得出四边形ADEB是平行四边形,即可得出结论;(2 )先证明AECD是平行四边形,由斜边中线得到AE=EC,可证明AECD是菱形;(3 )当△ABC是等腰直角三角形,由等腰三角形的性质得出AE ⊥BC,即可得出四边形AECD是正方形.【详解】(1 )证明:∵DE ⊥AC,∴∠EFC=90° ,∵∠BAC=90° ,∴∠BAC=∠EFC,∴AB ∥DE,∵MN ∥BC,∴BE ∥AD,∴ 四边形ADEB是平行四边形,∴BE=AD;(2 )结论:四边形AECD是菱形.理由:当点E在BC的中点时,而四边形ADEB是平行四边形,∴ 四边形AECD是平行四边形,又∵,∴ 四边形AECD是菱形.(3 )解:当∠B=45° 时,四边形AECD是正方形.理由:∵∠BAC=90° ,∠B=45° ,∴△ABC是等腰直角三角形,∵E为AB的中点,∴AE ⊥BC,∴∠AEC=90° ,四边形AECD是菱形,∴ 四边形AECD是正方形;故答案为:45° .【点睛】本题主要考查了平行四边形的性质与判定,菱形的判定,正方形的判定,解题的关键在于能够熟练掌握相关知识进行求解.9、已知:如图1 ,四边形 ABCD 是平行四边形, E,F 是对角线 AC 上的两点, AE=CF.(1 )求证:四边形 DEBF 是平行四边形;(2 )如果 AE=EF=FC, 请直接写出图中 2 所有面积等于四边形 DEBF 的面积的三角形 .知识点:平行四边形【答案】(1 )见解析;(2 )△ADF ,△CDE ,△CBE ,△ABF.【分析】(1 )由四边形 ABCD 是平行四边形得出 OA=OC,OB=OD ,因为 AE=CF 可推出 OE=OF ,由对角线互相平分的四边形是平行四边形,可证结论;(2 ) AE=EF=FC 可知,故而可推面积等于四边形DEBF 的面积的三角形有:△ADF ,△CDE ,△CBE ,△ABF.【详解】(1 )证明:连接BD 交 AC 于点 O ,∵ 平行四边形 ABCD∴OA=OC,OB=OD∵AE=CF∴OE=OF∴ 四边形 DEBF 为平行四边形;(2 )由 AE=EF=FC 可知故面积等于四边形DEBF 的面积的三角形有:△ADF ,△CDE ,△CBE ,△ABF ;【点睛】本题考查了平行四边形的性质及判定,以及三角形面积,熟练掌握平行四边形的判定是解题的关键.10、如图,在中,,,分别是边,,的中点,若的周长为10 ,则的周长为______ .知识点:平行四边形【答案】20【分析】根据三角形中位线定理得到AC =2DE,AB =2EF,BC =2DF,根据三角形的周长公式计算,得到答案.【详解】解:∵△DEF的周长为10 ,∴DE +EF +DF =4 ,∵D,E,F分别是AB,BC,CA的中点,∴AC =2DE,AB =2EF,BC =2DF,∴△ABC的周长=AC +AB +BC =2 (DE +EF +DF)=20 ,故答案为:20 .【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.11、如图,在中,对角线,,垂足为,且,,则与之间的距离为______ .知识点:平行四边形【答案】.【分析】设与之间的距离为,由条件可知的面积是的面积的2 倍,可求得的面积,,因此可求得的长.【详解】解:∵ 四边形为平行四边形,∴,,,∴,∵,,,∴,∴,设与之间的距离为,∵,∴,∴,解得,故答案为:.【点睛】本题主要考查平行四边形的性质,由已知条件得到四边形ABCD 的面积是△ABC 的面积的 2 倍是解题的关键(本题也可以采用等底等高的三角形的面积是平行四边形面积的一半来求解).12、如图,菱形ABCD 的两条对角线 AC , BD 相交于点 O , E 是 AB 的中点,若 AC = 6 , BD = 8 ,则 OE 长为()A . 3B . 5C . 2.5D . 4知识点:平行四边形【答案】C【分析】根据菱形的性质可得OB=OD ,AO⊥BO ,从而可判断 OE 是△DAB 的中位线,在Rt△AOB 中求出 AB ,继而可得出 OE 的长度.【详解】解:∵ 四边形 ABCD 是菱形, AC=6 , BD=8 ,∴AO=OC=3 , OB=OD=4 ,AO⊥BO ,又∵ 点 E 是 AB 中点,∴OE 是△DAB 的中位线,在Rt△AOD 中, AB==5 ,则OE=AD=.故选C .【点睛】本题考查了菱形的性质及三角形的中位线定理,熟练掌握菱形四边相等、对角线互相垂直且平分的性质是解题关键.13、如图,以为直径的经过的中点,于点.(1 )求证:是的切线;(2 )当,时,求图中阴影部分的面积(结果保留根号和).知识点:平行四边形【答案】(1 )见解析;(2 )【分析】(1 )连接,根据中位线定理,可得,由已知,可得,进而可得是的切线;(2 ))过点作,连接,根据已知条件求得扇形的圆心角的度数,进而求得扇形面积,求得的面积,根据阴影扇形即可求得阴影部分面积.【详解】(1 )连接,如图,点是的中点,点是的中点,,,l14、如图,菱形ABCD中,对角线AC,BD相交于点O,M为边AB的M中点,若MO=4cm ,则菱形ABCD的周长为()A . 32cmB . 24cmC . 16cmD . 8cm知识点:平行四边形【答案】A【分析】根据菱形的性质可以判定O为BD的中点,结合E是AB的中点可知OM是△A BD的中位线,根据三角形中位线定理可知AD的长,于是可求出四边形ABCD的周长.【详解】解:∵ 四边形ABCD为菱形,∴BO=DO,即O为BD的中点,又∵M是AB的中点,∴MO是△ABD的中位线,∴AD=2MO=2×4 = 8cm ,∴ 菱形ABCD的周长=4AD=4×8 = 32cm ,故选:A .【点睛】本题主要考查了菱形的性质,解答本题的关键是证明EO是△ABD的中位线,此题难度不大.15、如图,在□ABCD中,已知AB>BC.(1 )实践与操作:作∠ADC的平分线交AB于点E,在DC上截取DF =AD,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2 )猜想并证明:猜想四边形AEFD的形状,并给予证明.知识点:平行四边形【答案】(1 )详见解析;(2 )四边形 AEFD 是菱形,理由详见解析 .【分析】(1 )由角平分线的作法容易得出结果,在 AD 上截取 AF=AB ,连接 EF ;画出图形即可;(2 )先利用证明四边形 AEFD 是平行四边形,然后利用 AD=DF 可判断□ AEFD 是菱形..【详解】解:(1 )如图所示:(2 )猜想:四边形 AEFD 是菱形.证明:∵ 四边形 ABCD 为平行四边形,∴AB∥DC ,∴∠CDE=∠DEA ,∵DE 平分∠ADC ,∴∠CDE=∠ADE ,∴∠ADE=∠DEA ,∴AD=AE ,又∵AD=DF ,∴DF=AE 且DF∥AE ,∴ 四边形 AEFD 是平行四边形,∵AD=DF ,∴□ AEFD 是菱形.考点:角平分线的画法;平行四边形的性质;菱形的判定.16、如图,四边形是平行四边形,E,F分别是边,上的点,.证明.知识点:平行四边形【答案】见解析【分析】方法一:证明四边形是平行四边形,根据平行四边形的性质即可得结论;方法二:证明,利用全等三角形的性质即可得结论.【详解】方法一证明:∵ 四边形是平行四边形,∴.∴.又∵,∴ 四边形是平行四边形.∴.方法二证明:∵ 四边形是平行四边形,∴,,.∵,∴.即.∴.∴.【点睛】本题考查了平行四边形的性质及其判定方法,熟练运用平行四边形的性质及判定方法是解决问题的关键.17、以下四个命题:① 任意三角形的一条中位线与第三边上的中线互相平分;②A,B,C,D,E,F六个足球队进行单循环赛,若A,B,C,D,E分别赛了5 , 4 , 3 , 2 , 1 场,则由此可知,还没有与B 队比赛的球队可能是D队;③ 两个正六边形一定位似;④ 有 13 人参加捐款,其中小王的捐款数比 13 人捐款的平均数多 2 元,则小王的捐款数不可能最少,但可能只比最少的多.比其他的都少.其中真命题的个数有()A . 1 个B . 2 个C . 3 个D . 4 个知识点:平行四边形【答案】A【分析】① 根据三角形中位线、中线的性质,结合平行四边形的判定与性质解题;② 由单循环赛对 A 队, E 队进行推理即可;③ 根据正六边形的性质、位似的定义解题;④ 由平均数定义解题.【详解】解:① 如图,是的中线,是的中位线,连接,由中位线定义可知,四边形是平行四边形对角线互相平分,故① 正确;② 由单循环比赛可知,每支队伍最多赛 5 场,A对已经赛5 场,即每支队伍都与A队比赛过,而E 队只比赛1 场,据此可知,E队没有与B对比赛过,故② 错误;③ 两个正六边形不一定位似,没有确定位似中心,只能是相似的,故③ 错误;④13 人参加捐款,其中小王的捐款数比 13 人捐款的平均数多 2 元,则小王的捐款数不可能最少,也可能最多,故④ 错误,其中真命题的个数有① , 1 个,故选:A .【点睛】本题考查中位线、中线的性质,简单推理、位似、正六边形的性质、平均数的应用等知识,是基础考点,难度较易,掌握相关知识是解题关键.18、如图,四边形是平行四边形,且分别交对角线于点E,F.(1 )求证:;(2 )当四边形分别是矩形和菱形时,请分别说出四边形的形状.(无需说明理由)知识点:平行四边形【答案】(1 )证明见解析;(2 )四边形BEDF是平行四边形与菱形.【分析】(1 )根据平行线的性质可得,即可得出,根据平行四边形的性质可得,,利用AAS即可证明;(2 )当四边形ABCD为矩形时,根据全等三角形的性质可得BE =DF,即可证明四边形BEDF是平行四边形;当四边形ABCD为菱形时,根据菱形的性质,利用SAS可证明△ABE ≌△ADE,可得BE =DE,即可证明四边形BEDF是菱形.【详解】(1 )∵∴∴∵ 四边形是平行四边形∴,,∴在△ABE 和△CDF 中,∴.(2 )如图,当四边形ABCD为矩形时,连接DE、BF,同(1 )可知,∴BE =DF,∵BE //DF,∴ 四边形BEDF是平行四边形.如图,当四边形ABCD是菱形时,连接DE、BF,同理可知四边形BEDF是平行四边形,∵ 四边形ABCD是菱形,∴AB =AD,∠BAE =∠D AE,在△ABE和△ADE中,,∴△ABE ≌△ADE,∴BE =DE,∴ 四边形BEDF是菱形.综上所述:当四边形分别是矩形和菱形时,四边形分别是平行四边形与菱形.【点睛】本题考查平行四边形的判定与性质、全等三角形的判定与性质及菱形的判定与性质,熟练掌握相关性质及判定定理是解题关键.19、如图,在四边形中,平分交于点,交的延长线于点为延长线上一点,.(1 )求证;(2 )求的度数.知识点:平行四边形【答案】(1 )见解析;(2 )130°【分析】(1 )由邻补角的定义及题意可得到∠ADE =∠BCE,即可判定AD ∥BC;(2 )根据题意及由三角形的外角定理得到∠DGE =∠E =25° ,由平行线的性质得到∠EBC =∠GDE =25° ,根据角平分线的定义得到∠ABE =∠EBC =25° ,再根据对顶角相等及三角形的内角和求解即可.【详解】解:(1 )证明:∵∠ADE +∠BCF =180° ,∠BCE +∠BCF =180° ,∴∠ADE =∠BCE,∴AD ∥BC;(2 )∵∠ADC =∠E +∠DGE,∠ADC =2∠E =50° ,∴∠DGE =∠E =25° ,由(1 )得,AD ∥BC,∴∠EBC =∠DGE =25° ,∵BE平分∠ABC,∴∠ABE =∠EBC =25° ,∵∠AGB =∠DGE =25° ,∠A +∠ABE +∠AGB =180° ,∴∠A =180°-25°-25°=130° .【点睛】此题考查了多边形的内角与外角及平行线的判定与性质,熟记三角形的内角和、外角定理及平行线的判定定理与性质定理是解题的关键.20、如图,在网格中,线段的两个端点和点都在网格的格点上,分别按下列要求仅用无刻度直尺画图(保留作图痕迹).(1 )在图甲中画线段的中点.(2 )在图乙中画线段,使得.知识点:平行四边形【答案】(1 )见解析;(2 )见解析【分析】(1 )根据矩形的性质即可得到结论;(2 )根据平行四边形的性质作出图形即可.【详解】解:(1 )如图甲,点M即为所求;(2 )如图乙,线段CD即为所求.【点睛】本题考查了作图﹣应用与设计作图,矩形的性质,平行四边形的性质,正确的作出图形是解题的关键.。

八年级数学下册《平行四边形》单元测试卷(附答案)

八年级数学下册《平行四边形》单元测试卷(附答案)

八年级数学下册《平行四边形》单元测试卷(附答案)一.选择题(共10小题,满分40分)1.如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则CD=()A.4B.5C.6D.72.如图,在平行四边形ABCD中,AC、BD相交于点O,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为()A.4cm B.5cm C.6cm D.8cm3.下面关于平行四边形的说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.有一组对边平行,一组对角相等的四边形是平行四边形C.有一组对边相等,一组对角相等的四边形是平行四边形D.有两组对角相等的四边形是平行四边形4.如图,在▱ABCD中,EF∥AD,HN∥AB,则图中的平行四边形(不包括四边形ABCD)的个数共有()A.9个B.8个C.6个D.4个5.如图,▱ABCD中,CE平分∠BCD,交AB于点E,AE=3,BE=5,DE=4,则CE的长为()A.B.C.D.6.如图,在▱ABCD中,对角线AC,BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为30,则△ABE的周长为()A.30B.26C.20D.157.如图,平行四边形ABCD的周长为16,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4B.6C.8D.108.如图,将▱DEBF的对角线EF向两端延长,分别至点A和点C,且使AE=CF,连接AB,BC,AD,CD.求证:四边形ABCD为平行四边形.以下是证明过程,其顺序已被打乱,①∴四边形ABCD为平行四边形;②∵四边形DEBF为平行四边形,∴OD=OB,OE=OF;③连接BD,交AC于点O;④又∵AE=CF,∴AE+OE=CF+OF,即OA=OC.正确的证明步骤是()A.①②③④B.③④②①C.③②④①D.④③②①9.如图,在▱ABCD中,点M,N分别是AD、BC的中点,点O是CM,DN的交点,直线AB分别与CM,DN的延长线交于点P、Q.若▱ABCD的面积为192,则△POQ的面积为()A.72B.144C.208D.21610.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,,则下列结论:①∠CAD=30°②③S平行四边形ABCD=AB•AC④,正确的个数是()A.1B.2C.3D.4二.填空题(共8小题,满分32分)11.如图,已知▱ABCD中,AD⊥BD,AC=10,AD=4,则BD的长是.12.下列条件能判定四边形ABCD是平行四边形的是.A.AB∥CD,AD∥BC B.AD=BC,AB=CDC.AB∥CD,AD=BC D.∠A=∠C,∠B=∠D13.如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.14.如图,平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D的位置用数对表示为.15.如图,▱ABCD的对角线相交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线长的和.16.如图,在▱ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E、F,若BE=6,则CF=.17.如图,在平行四边形ABCD中,BD是对角线,E,F分别是边AD,BC上不与端点重合的两点,连接EF,下列条件中使得四边形BFDE是平行四边形的是.(多选)A.AE=CFB.EF经过BD的中点C.BE∥DFD.EF⊥AD18.在如图的网格中,以格点A、B、C、D、E、F中的4个点为顶点,你能画出平行四边形的个数为个.三.解答题(共6小题,满分48分)19.如图,在▱ABCD中,AE平分∠BAD交BD于点E,交BC于点M,CF平分∠BCD交BD于点F.(1)求证:AE=CF;(2)若∠ABC=70°,求∠AMB的度数.20.在▱ABCD中,对角线AC⊥AB,BE平分∠ABC交AD于点E,交AC于点F.(1)求证:AE=AB;(2)若AB=3,BC=5,求AF的长.21.如图,在平行四边形ABCD中,点F是AD中点,连接CF并延长交BA的延长线于点E.(1)求证:AB=AE.(2)若BC=2AE,∠E=31°,求∠DAB的度数.22.如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.23.如图,在等边△ABC中,D是BC的中点,以AD为边向左侧作等边△ADE,边ED与AB交于点G.(1)求∠CAE的度数;(2)取AB的中点F,连接CF,EF,求证:四边形CDEF是平行四边形.24.在▱ABCD中,点O是对角线BD的中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE如图1.(1)求证:四边形BEDF是平行四边形;(2)若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、P如图2.①当CD=6.CE=4时,求BE的长;②求证:CD=CH.参考答案与解析一.选择题(共10小题,满分40分)1.解:在▱ABCD中,AD=8;∴BC=AD=8,AD∥BC;∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED;∵DE平分∠ADC;∴∠ADE=∠CDE;∴∠CDE=∠CED;∴CD=CE=5;故选:B.2.解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm;∴OA=OC=AC=5(cm),OB=OD=BD=3(cm);∵∠ODA=90°;∴AD===4(cm);∴BC=AD=4(cm);故选:A.3.解:A、∵对角线互相平分的四边形是平行四边形;∴选项A不符合题意;B、∵有一组对边平行,一组对角相等的四边形是平行四边形;∴选项B不符合题意;C、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形;∴选项C符合题意;D、∵有两组对角相等的四边形是平行四边形;∴选项D不符合题意;故选:C.4.解:设EF与NH交于点O;∵在▱ABCD中,EF∥AD,HN∥AB;∴AD∥EF∥BC,AB∥NH∥CD;则图中的四边BEON、DFOH、DHNC、BEFC、BAHN、AEOH、AEFD、ONCF都是平行四边形,共8个.故选:B.5.解:∵AE=3,BE=5;∴AB=8;∵四边形ABCD是平行四边形;∴CD=AB=8,AB∥CD,AD=BC;∴∠DCE=∠CEB;∵CE平分∠BCD;∴∠DCE=∠BCE;∴∠BCE=∠BEC;∴BC=BE=5=AD;∵AE2+DE2=9+16=25,AD2=25;∴AE2+DE2=AD2;∴∠AED=90°;∵DC∥CD;∴∠CDE=90°;在△DCE中,由勾股定理可得:CE===4;故选:A.6.解:∵四边形ABCD是平行四边形;∴AB=CD,AD=BC,OB=OD;又∵OE⊥BD;∴OE是线段BD的中垂线;∴BE=DE;∴AE+ED=AE+BE;∵▱ABCD的周长为30;∴AB+AD=15;∴△ABE的周长=AB+AE+BE=AB+AD=15;故选:D.7.解:∵平行四边形ABCD;∴AD=BC,AB=CD,OA=OC;∵EO⊥AC;∴AE=EC;∵AB+BC+CD+AD=16;∴AD+DC=8;∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8;故选:C.8.解:连接BD,交AC于点O,如图所示:∵四边形DEBF为平行四边形;∴OD=OB,OE=OF;又∵AE=CF;∴AE+OE=CF+OF;即OA=OC;∴四边形ABCD为平行四边形;即正确的证明步骤是③②④①;故选:C.9.解:连接MN,如图所示:∵四边形ABCD是平行四边形;∴CD∥AB,AD∥BC,AD=BC;∴∠CDQ=∠Q,∠DCB=∠CBQ;∵点M,N分别是AD、BC的中点;∴DM=CN,CN=BN;∴四边形CDMN是平行四边形;在△CDN和△BQN中;;∴△CDN≌△BQN(AAS);同理可得:△CDM≌△P AM;∴△POQ的面积=四边形ABCD的面积+△COD的面积,O是CM的中点;∵▱ABCD的面积为192;∴四边形CDMN的面积是96;∴△CDM的面积为四边形CDMN的面积的一半,即48;∴△COD的面积为24;∴△POQ的面积=四边形ABCD的面积+△COD的面积=192+24=216.故选:D.10.解:①∵AE平分∠BAD;∴∠BAE=∠DAE;∵四边形ABCD是平行四边形;∴AD∥BC,∠ABC=∠ADC=60°;∴∠DAE=∠BEA;∴∠BAE=∠BEA;∴AB=BE=1;∴△ABE是等边三角形;∴AE=BE=1;∵BC=2;∴EC=1;∴AE=EC;∴∠EAC=∠ACE;∵∠AEB=∠EAC+∠ACE=60°;∴∠ACE=30°;∵AD∥BC;∴∠CAD=∠ACE=30°;故①正确;②∵BE=EC,OA=OC;∴OE=AB=,OE∥AB;∴∠EOC=∠BAC=60°+30°=90°;Rt△EOC中,OC=;∵四边形ABCD是平行四边形;∴∠BCD=∠BAD=120°;∴∠ACB=30°;∴∠ACD=90°;Rt△OCD中,OD=;∴BD=2OD=;故②正确;③由②知:∠BAC=90°;∴S平行四边形ABCD=AB•AC;故③正确;④由②知:OE是△ABC的中位线;∴OE=AB;∵AB=BC;∴OE=BC=AD;故④正确;故选:D.二.填空题(共8小题,满分32分)11.解:∵四边形ABCD是平行四边形;∴AO=CO=AC,DO=BO;∵AC=10;∴AO=5;∵AD⊥DB;∴∠ADB=90°,AD=4;∴DO==3;∴BD=6;故答案为:6.12.解:A.根据AB∥CD,AD∥BC能推出四边形ABCD是平行四边形;B.根据AD=BC,AB=CD能推出四边形ABCD是平行四边形;C.根据AB∥CD,AD=BC能得出四边形是等腰梯形,不能推出四边形ABCD是平行四边形D.根据∠A=∠C,∠B=∠D能推出四边形ABCD是平行四边形;故答案为:ABD.13.解:作AM⊥BC于M,如图所示:则∠AMB=90°;∵∠ABC=60°;∴∠BAM=30°;∴BM=AB=×2=1;在Rt△ABM中,AB2=AM2+BM2;∴AM===;∴S平行四边形ABCD=BC•AM=3;∵四边形ABCD是平行四边形;∴AD∥BC,BO=DO;∴∠OBE=∠ODF;在△BOE和△DOF中;;∴△BOE≌△DOF(ASA);∴S△BOE=S△DOF;∴图中阴影部分的面积=▱ABCD的面积=;故答案为:.14.解:∵平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3);∴点D坐标为(8,6);故答案为:(8,6).15.解:∵四边形ABCD是平行四边形;∴AB=CD=5;∵△OCD的周长为23;∴OD+OC=23﹣5=18;∵BD=2DO,AC=2OC;∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36;故答案为:36.16.解:如图,设BE与FC的交点为H,过点A作AM∥FC,交BE与点O;∵四边形ABCD是平行四边形;∴AD∥BC,AB∥CD;∴∠ABC+∠DCB+180°;∵BE平分∠ABC,CF平分∠BCD;∴∠ABE=∠EBC,∠BCF=∠DCF;∴∠CBE+∠BCF=90°;∴∠BHC=90°;∵AM∥CF;∴∠AOE=∠BHC=90°;∵AD∥BC;∴∠AEB=∠EBC=∠ABE;∴AB=AE=5;又∵∠AOE=90°;∴BO=OE=3;∴AO===4;在△ABO和△MBO中;;∴△ABO≌△MBO(ASA);∴AO=OM=4;∴AM=8;∵AD∥BC,AM∥CF;∴四边形AMCF是平行四边形;∴CF=AM=8;故答案为:8.17.解:∵四边形ABCD是平行四边形;∴AD∥BC;∵AE=CF,AD=BC;∴DE=BF;∴四边形BFDE是平行四边形;故A选项符合题意;若EF经过BD的中点O;∵AD∥BC;∴∠EDO=∠FBO;在△BOF和△DOE中;;∴△BOF≌△DOE(ASA);∴BF=DE;∴四边形BFDE是平行四边形;故B选项符合题意;∵DE∥BF,BE∥DF;∴四边形BFDE是平行四边形;故C选项符合题意;由EF⊥AD不能判定四边形BFDE是平行四边形;故D选项不符合题意;故答案为:A,B,C.18.解:如图所示:图中平行四边形有▱ABEC,▱BDEC,▱BEFC共3个.故答案为:3.三.解答题(共6小题,满分48分)19.(1)证明:∵四边形ABCD是平行四边形;∴AB∥CD,AB=CD,∠BAD=∠BCD∴∠ABE=∠CDF;∵AE平分∠BAD,CF平分∠BCD;∴∠BAE=∠DCF;∴△ABE≌△CDF(ASA);∴AE=CF;(2)∵四边形ABCD是平行四边形;∴AD∥BC,∠BAD+∠ABC=180°;∵∠ABC=70°;∴∠BAD=110°;∵AM平分∠BAD,AD∥BC;∴∠AMB=∠DAM=55°.20.(1)证明:∵四边形ABCD为平行四边形;∴∠AEB=∠EBC;∵BE平分∠ABC;∴∠ABE=∠EBC;∴∠ABE=∠AEB;∴AE=AB;(2)解:AC⊥AB,AB=3,BC=5;∴AC=;过F点作FH⊥BC,垂足为H;∵BE平分∠ABC,AC⊥AB;∴AF=FH;∵S△ABC=S△ABF+S△BFC;∴AB•AC=AB•AF+BC•FH;即;∴AF=.21.(1)证明:∵四边形ABCD是平行四边形;∴AB=CD,AB∥CD,BC=AD;∴∠E=∠DCF;∵点F是AD中点;∴AF=DF;∵∠EF A=∠CFD;∴△AFE≌△DFC(AAS);∴CD=AE;∴AB=AE;(2)解:由(1)可得AF=DF,BC=AD;∵BC=2AE;∵∠E=31°;∴∠AFE=∠E=31°;∴∠DAB=2∠E=62°.22.证明:(1)∵BE=CF;∴BE﹣CE=CF﹣CE;即BC=EF;又∵AC⊥BC于点C,DF⊥EF于点F;∴∠ACB=∠DFE=90°;在△ABC和△DEF中;;∴△ABC≌△DEF(SAS);(2)由(1)知△ABC≌△DEF;∴AB=DE,∠ABC=∠DEF;∴AB∥DE;∴四边形ABED是平行四边形.23.(1)解:∵△ABC是等边三角形,D是BC的中点;∴AD⊥BC,∠BAC=60°;∴∠DAC=∠BAC=30°;∵△AED是等边三角形;∴∠EAD=60°;∴∠CAE=∠EAD+∠DAC=90°;(2)证明:∵F是等边△ABC边AB的中点,D是边BC的中点;∴CF=AD,CF⊥AB;∵△AED是等边三角形;∴AD=ED;∴CF=ED;∵∠BAD=∠BAC=30°,∠EAG=∠EAD=30°;∴ED⊥AB;∴CF∥ED;∵CF=ED;∴四边形CDEF是平行四边形.24.(1)证明:∵在平行四边形ABCD中,点O是对角线BD的中点;∴AD∥BC,BO=DO;∴∠ADB=∠CBD;在△BOE与△DOF中;;∴△BOE≌△DOF(ASA);∴DF=BE且DF∥BE;∴四边形BEDF是平行四边形;(2)①解:如图,过点D作DN⊥EC于点N;∵DE=DC=6,DN⊥EC,CE=4;∴EN=CN=2;∴DN===4;∵∠DBC=45°,DN⊥BC;∴∠DBC=∠BDN=45°;∴DN=BN=4;∴BE=BN﹣EN=4;②证明:∵DN⊥EC,CG⊥DE;∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°;∴∠EDN=∠ECG;∵DE=DC,DN⊥EC;∴∠EDN=∠CDN;∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN;∴∠CDB=∠DHC;∴CD=CH.。

平行四边形课后练习题(一),(二),(三)

平行四边形课后练习题(一),(二),(三)

平行四边形(一):平行四边形的性质一、学习目标:掌握平行四边形的性质。

二、知识方法1.平行四边形的定义:的四边形叫做平行四边形。

2.平行四边形的性质:⑴平行四边形的对边;⑵平行四边形的对角;⑶平行四边形的对角线。

3.定理:夹在两条平行线间的平行线段。

三、自主训练1.已知:如图,□ABCD中,BE⊥AC于E,DF⊥AC于F。

求证:BE=DF2.如图,□ABCD中,AE⊥BC于E,CF⊥AD于F,求证:BE=DF3.如图,□ABCD中,点E是AD的中点,连接CE并延长交BA的延长线于点F。

求证:AB=AF4.如图,□ABCD中,∠BCD的平分线交AB于点E,交DA的延长于点F。

求证:AE=AF一、学习目标:掌握平行四边形的判定。

二、知识方法平行四边形的判定:⑴定义:两组对边分别的四边形是平行四边形;⑵定理:两组对边分别的四边形是平行四边形;⑶定理:一组对边的四边形是平行四边形;⑷定理:两组对角分别的四边形是平行四边形;⑸定理:对角线的四边形是平行四边形。

三、自主训练1.如图,在□ABCD中,BF=DE。

求证:四边形AFCE是平行四边形。

2.已知:如图,BD是△ABC的中线,延长BD至E,使得DE=BD,连接AE、CE。

求证:∠BAE=∠BCE。

3.如图,□ABCD中,点E、F在对角线BD上,且BE=DF。

求证:四边形AECF是平行四边形。

4.如图,在等腰梯形ABCD中,AB∥CD,AC、BD是对角线,将△ABD沿AB对折到△ABE的位置。

求证:四边形AEBC是平行四边形。

一、学习目标:掌握三角形中位线定理。

二、知识方法1.三角形中位线的定义:连接三角形 的线段叫做三角形的中位线。

2.三角形中位线定理:三角形的中位线平行于 ,且等于 。

三、自主训练1. 如图,在△ABC 中,D 、E 、F 分别是边AB 、AC 、BC 的中点,AC =8cm ,AB =10cm ,BC =12cm ,求△DEF 的周长。

冀教版八年级数学下册第二十二章《四边形》专训1 判定平行四边形的五种常用方法

冀教版八年级数学下册第二十二章《四边形》专训1  判定平行四边形的五种常用方法
习题课 阶段方法技巧训练(一)
专训1 判定平行四边形的 五种常用方法
判定平行四边形的方法通常有五种,即定义 和四种判定定理,选择判定方法时,一定要结合 题目的条件,选择恰当的方法,从而简化解题过 程.
方法 1 利用两组对边分别平行判定平行四边形
1.如图,在▱ABCD中,E,F分别为AD,BC上的点, 且BF=DE,连接AF,CE,BE,DF,AF与BE相 交于M点,DF与CE相交于N点. 求证:四边形FMEN为平行四边形.
4.如图,已知△ABD,△BCE,△ACF都是等边三角 形.求证:四边形ADEF是平行四边形.
证明:∵△ABD,△BCE,△ACF都是等边三角形, ∴BA=BD=AD,BC=BE,AF=AC, ∠DBA=∠EBC=60°. ∴∠EBC-∠EBA=∠DBA-∠EBA, 即∠ABC=∠DBE. ∴△ABC≌△DBE. ∴AF=AC=DE. 同理,可证△ABC≌△FEC, ∴AD=AB=EF. ∴四边形ADEF是平行四边形.
证明:
AM CD,
AF
CE,
方法 3 利用两组对角分别相等判定平行四边形
3.如图,在▱ABCD中,BE平分∠ABC,交AD于点E, DF平分∠ADC,交BC于点F,那么四边形BFDE是 平行四边形吗?请说明理由.
解:四边形BFDE是平行四边形.
理由:在▱ABCD中,∠ABC=∠CDA,∠A=∠C.
∵BE平分∠ABC,DF平分∠ADC,
∴∠ABE=∠CBE=
1 2
∠ABC,
∠CDF=∠ADF= 1 ∠ADC. 2
∴∠ABE=∠CBE=∠CDF=∠ADF.
∵∠DFB=∠C+∠CDF,∠BED=∠ABE+∠A,
∴∠DFB=∠BED.
∴四边形BFDE是平行四边形.

平行四边形试题集含答案

平行四边形试题集含答案
20、菱形
∵四边形ABCD为平行四边形∴AD∥BC,∠2=∠3∵AB∥EF∴四边形ABED为平行四边形∵∠2=∠1∴∠1=∠3∴AB=BE∴四边形ABED为菱形
第五章平行四边形测试题
一、选择题(每小题3分,共24分)
1.在 ABCD中,∠A:∠B:∠C=2:3:2,则∠D=()
(A)36°(B)108°(C)72°(D)60°
二、填空题(每小题3分,共分)
9.若一个多边形的内角和为1 080°,则这个多边形的边数是_______.
10.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加的条件是_______(填一个你认为正确的条件).
11.在 ABCD中,若∠A+∠C=120°,则∠A=_______,∠B=_________.
12.在 ABCD中,AB=4cm,BC=6cm,则 ABCD的周长为_______cm.
13.已知O是 ABCD的对角线交点,AC=24cm,BD=38cm,AD=28cm,则△AOD的周长是________.
14.已知平行四边形的面积是144cm2,相邻两边上的高分别为8cm和9cm,则这个平行四边形的周长为________.
16.9.6 CM 17、AC=4 cm , BD=4
18.证明:连结PC∵四边形ABCD为平行四边形∴AB=AC,∠ABD=∠DPC ∠BCD=90°∵BP=BP∴△ABP≌△CBP∴AP = CP∵PE⊥BC,PF⊥DC∴四边形PECF为矩形∴EF=PC∴EF=AP
19、证明:⑴连结AD∵AB=AC,D为BC的中点∴AD为∠BAC的平分线∵DE⊥AB,DF⊥AC ∴DE=DF ⑵∠BAC=90° DE⊥DF
求AC和BD的长.
图8
18、如图9,在正方形ABCD中,P为对角线BD上一点,

2022年最新冀教版八年级数学下册第二十二章四边形专项测评试题(含答案解析)

2022年最新冀教版八年级数学下册第二十二章四边形专项测评试题(含答案解析)

八年级数学下册第二十二章四边形专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,平行四边形ABCD的边BC上有一动点E,连接DE,以DE为边作矩形DEGF且边FG过点A.在点E从点B移动到点C的过程中,矩形DEGF的面积()A.先变大后变小B.先变小后变大C.一直变大D.保持不变2、如图,在矩形ABCD中,动点P从点A出发,沿A→B→C运动,设PA x,点D到直线PA的距离为y,且y关于x的函数图象如图所示,则当PCD和PAB△的面积相等时,y的值为()A B C D3、如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边(x >y ),则下列四个说法:①x 2+y 2=49,②x ﹣y =2,③2xy +4=49,④x +y =9.其中说法正确的是( )A .②③B .①②③C .②④D .①②④4、如图,在▱ABCD 中,点E 在边BC 上,连接AE ,EM ⊥AE ,垂足为E ,交CD 于点M .AF ⊥BC ,垂足为F .BH ⊥AE ,垂足为H ,交AF 于点N ,连接AC 、NE .若AE =BN ,AN =CE ,则下列结论中正确的有( )个.①ANB CEA ≌△△;②ABC 是等腰直角三角形;③NFE 是等腰直角三角形;④ANE ECM ≌△△;⑤AD EC =+.A .1B .3C .4D .55、如图,五边形ABCDE 中,320A B E ∠∠+∠=︒十,CP ,DP 分别平分BCD ∠,CDE ∠,则CPD ∠=( )A .60°B .72°C .70°D .78°6、在平行四边形ABCD 中,∠A ∶∠ B ∶∠ C ∶∠ D 的值可以是( )A .1∶2∶3∶4B .1∶2∶2∶1C .2∶2∶1∶1D .1∶2∶1∶27、在Rt △ABC 中,∠B =90°,D ,E ,F 分别是边BC ,CA ,AB 的中点,AB =6,BC =8,则四边形AEDF 的周长是( )A .18B .16C .14D .128、正方形具有而矩形不一定具有的性质是( )A .四个角相等B .对角线互相垂直C .对角互补D .对角线相等9、若n 边形每个内角都为156°,那么n 等于( )A .8B .12C .15D .1610、如图,在平行四边形ABCD 中,AE 平分BAD ∠,交CD 边于E ,3AD =,5AB =,则EC 的长为( )A .1B .2C .3D .5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,A 、B 、C 均为一个正十边形的顶点,则∠ACB=_____°.2、如图,90,ACB AC BC ∠=︒=,D 为ABC 外一点,且,AD BD DE AC =⊥交CA 的延长线于E 点,若1,3AE ED ==,则BC =_______.3、如图,将长方形ABCD 沿AE ,EF 翻折使其B 、C 重合于点H ,点D 落在点G 的位置,HE 与AD 交于点P ,连接HF ,当6AB =,18BC =时,则P 到HF 的距离是______.4、过某个多边形一个顶点的所有对角线,将此多边形分成7个三角形,则此多边形的边数______.5、如图,菱形ABCD 的边长为4,∠BAD =120°,E 是边CD 的中点,F 是边AD 上的一个动点,将线段EF 绕着点E 顺时针旋转60°得到线段EF ',连接AF '、BF ',则△ABF '的周长的最小值是________________.三、解答题(5小题,每小题10分,共计50分)1、已知正方形ABCD 与正方形EFGH ,AB a ,()EF b b a =<.(1)如图1,若点C 和点H 重合,点E 在线段CB 上,点G 在线段DC 的延长线上,连接AC 、AG 、CG ,将阴影部分三角形ACG 的面积记作S ,则S = (用含有a 、b 的代数式表示).(2)如图2,若点B 与点E 重合,点H 在线段BC 上,点F 在线段AB 的延长线上,连接AC 、AG 、CG ,将阴影部分三角形ACG 的面积记作S ,则S = (用含有a 、b 的代数式表示).(3)如图3,若将正方形EFGH 沿正方形ABCD 的边BC 所在直线平移,使得点E 、H 在线段BC 上(点H 不与点C 重合、点E 不与点B 重合),连接AC 、AG 、CG ,设CH x =,将阴影部分三角形ACG 的面积记作S ,则S = (用含有a 、b 、x 的代数式表示).(4)如图4,若将正方形EFGH 沿正方形ABCD 的边BC 所在直线平移,使得点H 、E 在BC 的延长线上,连接AC 、AG 、CG ,设CH x =,将阴影部分三角形ACG 的面积记作S ,则S = (用含有a 、b 、x 的代数式表示).2、在平面直角坐标系xOy 中,已知点(3,1)A -,(1,1)B -,(,3)C m ,以点A ,B ,C 为顶点的平行四边形有三个,记第四个顶点分别为1D ,2D ,3D ,如图所示.(1)若1m =-,则点1D ,2D ,3D 的坐标分别是( ),( ),( );(2)若△123D D D 是以12D D 为底的等腰三角形,①直接写出m 的值; ②若直线12y x b =+与△123D D D 有公共点,求b 的取值范围.(3)若直线y x =与△123D D D 有公共点,求m 的取值范围.3、如图,OABC 是一张放在平面直角坐标系中的长方形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,10OA =,8OC =,在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处.(1)直接写出B 点的坐标____________________;(2)求D 、E 两点的坐标.4、如图,矩形ABCD 的对角线AC 、BD 相交于点O ,AB =5cm ,∠BOC =120°,求矩形对角线的长.5、已知在ABC 与CDE △中,,,AB CD B D ACE B =∠=∠∠=∠,点B C D 、、在同一直线上,射线AH EI 、分别平分BAC CED ∠∠、.(1)如图1,试说明AC CE =的理由;(2)如图2,当AH EI 、交于点G 时,设,B AGE αβ∠=∠=,求β与α的数量关系,并说明理由;(3)当AH EI ∥时,求B 的度数.-参考答案-一、单选题1、D【解析】【分析】连接AE ,根据11,22ADE ADE ABCD DEGF S S S S ==矩形,推出ABCD DEGF S S =矩形,由此得到答案. 【详解】解:连接AE ,∵11,22ADE ADE ABCD DEGF S S S S ==矩形,∴ABCD DEGF S S =矩形,故选:D . .【点睛】此题考查了平行四边形的性质,矩形的性质,正确连接辅助线AE 是解题的关键.2、D【解析】【分析】先结合图象分析出矩形AD 和AB 边长分别为4和3,当△PCD 和△PAB 的面积相等时可知P 点为BC 中点,利用面积相等求解y 值.【详解】解:当P 点在AB 上运动时,D 点到AP 的距离不变始终是AD 长,从图象可以看出AD =4,当P 点到达B 点时,从图象看出x =3,即AB =3.当△PCD 和△PAB 的面积相等时,P 点在BC 中点处,此时△ADP 面积为143=62⨯⨯,在Rt △ABP 中,AP由面积相等可知:162⨯⨯=AP y ,解得y = 故选:D .【点睛】本题主要考查了函数图形的认识,分析图象找到对应的矩形的边长,解决动点问题就是“动中找静”,结合图象找到“折点处的数据真正含义”便可解决问题.3、B【解析】【分析】根据正方形的性质,直角三角形的性质,直角三角形面积的计算公式及勾股定理解答即可.【详解】如图所示,∵△ABC 是直角三角形,∴根据勾股定理:22249x y AB +==,故①正确;由图可知2x y CE -==,故②正确;由图可知,四个直角三角形的面积与小正方形的面积之和为大正方形的面积, 列出等式为144492xy ⨯⨯+=,即2449xy +=,故③正确;由2449xy +=可得245xy =,又∵2249x y +=, 两式相加得:2224945x xy y ++=+,整理得:()294x y +=,9x y +=≠,故④错误;故正确的是①②③.故答案选B .【点睛】本题主要考查了勾股定理的应用,正方形性质,完全平方公式的应用,算术平方根,准确分析判断是解题的关键.4、C【解析】【分析】证出∠NBF =∠EAF =∠MEC ,再证明△NBF ≌△EAF (AAS ),得出BF =AF ,NF =EF ,证明△ANB ≌△CEA 得出∠CAE =∠ABN ,推出∠ABF =∠FAC =45°;再证明△ANE ≌△ECM 得出CM =NE ,由NF,得出AF+EC ,即可得出结论. 【详解】解:∵BH ⊥AE ,AF ⊥BC ,AE ⊥EM ,∴∠AEB +∠NBF =∠AEB +∠EAF =∠AEB +∠MEC =90°,∴∠NBF =∠EAF =∠MEC ,在△NBF 和△EAF 中,NBF EAF BFN EFA AE BN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△NBF ≌△EAF (AAS );∴BF =AF ,NF =EF ,∴∠ABC =45°,∠ENF =45°,∴△NFE 是等腰直角三角形,故③正确;∵∠ANB=90°+∠EAF,∠CEA=90°+∠MEC,∴∠ANB=∠CEA,在△ANB和△CEA中,AN CEANB CEABN AE=⎧⎪∠=∠⎨⎪=⎩,∴△ANB≌△CEA(SAS),故①正确;∵AN=CE,NF=EF,∴BF=AF=FC,又∵AF⊥BC,∠ABC=45°,∴△ABC是等腰直角三角形,故②正确;在▱ABCD中,CD∥AB,且△ABC、△NFE都是等腰直角三角形,∴∠ACD=∠BAC=90°,∠ACB=∠FNE=45°,∴∠ANE=∠BCD=135°,在△ANE和△ECM中,MEC EAFAN ECANE ECM∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ANE≌△ECM(ASA),故④正确;∴CM=NE,又∵NF,∴AF+EC,∴AD=BC=2AF+2EC,故⑤错误.综上,①②③④正确,共4个,故选:C.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定和性质等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.5、C【解析】【分析】根据五边形的内角和等于540︒,由320A B E ∠+∠+∠=︒,可求BCD CDE ∠+∠的度数,再根据角平分线的定义可得PDC ∠与PCD ∠的角度和,进一步求得CPD ∠的度数.【详解】 解:五边形的内角和等于540︒,320A B E ∠+∠+∠=︒,540320220BCD CDE ∴∠+∠=︒-︒=︒,BCD ∠、CDE ∠的平分线在五边形内相交于点O ,1()1102PDC PCD BCD CDE ∴∠+∠=∠+∠=︒, 18011070CPD ∴∠=︒-︒=︒.故选:C .【点睛】本题主要考查了多边形的内角和公式,角平分线的定义,解题的关键是熟记公式,注意整体思想的运用.6、D【解析】略7、B【解析】略8、B【解析】略9、C【解析】【分析】首先求得外角的度数,然后利用多边形的外角和是360度,列式计算即可求解.【详解】解:由题意可知:n 边形每个外角的度数是:180°-156°=24°,则n =360°÷24°=15.故选:C .【点睛】本题考查了多边形的外角与内角,熟记多边形的外角和定理是关键.10、B【解析】【分析】先由平行四边形的性质得//BA CD ,5CD AB ==,再证3DE AD ==,即可求解.【详解】 解:四边形ABCD 是平行四边形,//BA CD ∴,5CD AB ==,DEA EAB ∴∠=∠,AE ∵平分DAB ∠,DAE EAB ∴∠=∠,DAE DEA ∴∠=∠,3DE AD ∴==,532EC CD DE ∴=-=-=,故选:B .【点睛】本题考查了平行四边形的性质,等腰三角形的判定等知识,解题的关键是灵活应用这些知识解决问题.二、填空题1、18【解析】【分析】根据正多边形外角和和内角和的性质,得DAE ∠、144BAE E F ∠=∠=∠=︒;根据四边形内角和的性质,计算得EAC ∠;根据五边形内角和的性质,计算得ABC ∠,再根据三角形外角的性质计算,即可得到答案.【详解】如图,延长BA∵正十边形 ∴3603610DAE ︒∠==︒,正十边形内角()102180=14410-⨯︒=︒,即144BAE E F ∠=∠=∠=︒ 根据题意,得四边形ACFE 内角和为:360︒,且EAC FCA ∠=∠ ∴360362E F EAC FCA ︒-∠-∠∠=∠==︒ ∴72DAC DAE EAC ∠=∠+∠=︒根据题意,得五边形ABCFE 内角和为:()52180540=-⨯︒=︒,且ABC FCB ∠=∠ ∴540542BAE E F ABC FCB ︒-∠-∠-∠∠=∠==︒ ∴725418ACB DAC ABC ∠=∠-∠=︒-︒=︒故答案为:18.【点睛】本题考查了正多边形、三角形外角的知识;解题的关键是熟练掌握正多边形外角和、正多边形内角和的性质,从而完成求解.2、2【解析】【分析】过点D 作DM ⊥CB 于M ,证出∠DAE=∠DBM ,判定△ADE ≌△BDM ,得到DM=DE =3,证明四边形CEDM 是矩形,得到CE=DM =3,由A E =1,求出BC=AC =2.【详解】解:∵DE ⊥AC ,∴∠E=∠C=90°,∴CB ED ∥,过点D作DM⊥CB于M,则∠M=90°=∠E,∵AD=BD,∴∠BAD=∠ABD,∵AC=BC,∴∠CAB=∠CBA,∴∠DAE=∠DBM,∴△ADE≌△BDM,∴DM=DE=3,∵∠E=∠C=∠M =90°,∴四边形CEDM是矩形,∴CE=DM=3,∵A E=1,∴BC=AC=2,故答案为:2.【点睛】此题考查了全等三角形的判定及性质,矩形的判定及性质,等边对等角证明角度相等,正确引出辅助线证明△ADE≌△BDM是解题的关键.3、15√6161【解析】【分析】连接FC ,过点H 作HH ⊥HH ,过点P 作HH ⊥HH ,线段PM 长度即为所求,根据折叠及矩形的性质可得∆HHH ≅∆HHH ,∆HHH ≅∆HHH ,∠HHH =∠H =90°,∠HHH =∠HHH =90°,∠H =∠H =90°,HH =HH =18,由全等三角形及平行线的判定得出HH =HH =6,HH =HH =6,HH ∥HH ,点A 、H 、G 三点共线,且12AG =,点H 为AG 中点,设HH =H ,则GF x =,HH =18−H ,利用勾股定理可得5GF =,13AF =,由三角形中位线的判定及性质可得HH =52,HH =HH =132,最后在两个三角形HH ∆HHH 与∆HHH 中,利用等面积法求解即可得.【详解】解:如图所示:连接FC ,过点H 作HH ⊥HH ,过点P 作HH ⊥HH ,线段PM 长度即为所求,∵长方形ABCD 沿AE ,EF 翻折使其B 、C 重合于点H ,点D 落在点G 的位置,∴∆HHH ≅∆HHH ,∆HHH ≅∆HHH ,∠HHH =∠H =90°,∠HHH =∠HHH =90°,∠H =∠H =90°,HH =HH =18,∴HH =HH =6,HH =HH =6,HH ∥HH ,∴点A 、H 、G 三点共线,且HH =HH +HH =12,点H 为AG 中点,设HH =H ,则GF x =,HH =18−H ,在Rt AGF 中,HH 2+HH 2=HH 2,即122+H 2=(18−H )2,解得:5x =,∴5GF =,13AF =,∵HH ∥HH 且点H 为AG 中点,∴HP 为AGF 中位线,∴HH =12HH =52,HH =HH =12HH =132, 在HH ∆HHH 中, HH =√HH 2+HH 2=√61,H ∆HHH =12·HH ·HH =12·HH ·HH ,即12×6×52=12×132×HH , ∴HH =3013, ∴H ∆HHH =12·HH ·HH =12·HH ·HH ,即12×132×3013=12×√61×HH , 解得:HH =15√6161, 故答案为:15√6161. 【点睛】题目主要考查矩形及图形折叠的性质,全等三角形的性质及平行线的判定,中位线的判定和性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.4、9【解析】【分析】根据n边形从一个顶点出发可引出(n-3)条对角线,可组成n-2个三角形,依此可得n的值.【详解】解:由题意得,n-2=7,解得:n=9,即这个多边形是九边形.故答案为:9.【点睛】本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n.5、【解析】【分析】取AD中点G,连接EG,F'G,BE,作BH⊥DC的延长线于点H,利用全等三角形的性质证明∠F'GA=60°,点F'的轨迹为射线GF',易得A、E关于GF'对称,推出AF'=EF',得到BF'+AF'=BF'+EF'≥BE,求出BE即可解决周长最小问题.【详解】解:取AD中点G,连接EG,F'G,BE,作BH⊥DC的延长线于点H,∵四边形ABCD为菱形,∴AB=AD,∵∠BAD =120°,∴∠CAD =60°,∴△ACD 为等边三角形,又∵DE =DG ,∴△DEG 也为等边三角形.∴DE =GE ,∵∠DEG =60°=∠FEF ',∴∠DEG ﹣∠FEG =∠FEF '﹣∠FEG ,即∠DEF =∠GEF ',由线段EF 绕着点E 顺时针旋转60°得到线段EF ', 所以EF =EF '.在△DEF 和△GEF '中,DE GE DEF GEF EF EF '=⎧⎪∠=∠⎨='⎪⎩, ∴△DEF ≌△GEF '(SAS ).∴∠EGF '=∠EDF =60°,∴∠F 'GA =180°﹣60°﹣60°=60°, 则点F '的运动轨迹为射线GF '.观察图形,可得A ,E 关于GF '对称,∴AF '=EF ',∴BF '+AF '=BF '+EF '≥BE ,在Rt△BCH 中,∵∠H =90°,BC =4,∠BCH =60°,∴12,2CH BC BH ===,在Rt△BEH 中,BE∴BF '+EF∴△ABF '的周长的最小值为AB +BF '+EF '=故答案为:【点睛】本题考查了旋转变换,菱形的性质,解直角三角形,全等三角形的判定与性质,勾股定理,等边三角形等知识,解题关键在于学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.三、解答题1、 (1)12ab (2)212a (3)1()2a b x + (4)1()2a xb -2、 (1)-3,3,1,3,-3,-1(2)①-2;②15b ≤≤(3)m 1≥或3m ≤-【解析】【分析】(1)分别以AC 、BC 、AB 为对角线,利用平行四边形以及平移的性质可得点1D ,2D ,3D 的坐标;(2)①根据平行公理得1D ,A 、3D 在同一直线上,2D 、B 、3D 在同一直线上,可得AB 是等腰三角形△123D D D 的中位线,求出22D C AB ==,即可得m 的值;②由①求得的m 的值可得1D ,3D 的坐标,分别求出直线12y x b =+过点1D ,3D 时b 的值即可求解; (3)由题意用m 表示出点1D ,2D ,3D 的坐标,画出图形,求出直线y x =与△123D D D 交于点2D ,3D 时m 的值即可求解.(1)解:(3,1)A -,(1,1)B -,1(3)2AB ∴=---=,//AB x 轴.以AC 为对角线时,四边形ABCD 是平行四边形,//CD AB ∴,CD AB =,∴将(1,3)C -向左平移2个单位长度可得D ,即1(3,3)D -;以BC 为对角线时,四边形ABDC 是平行四边形,//CD AB ∴,CD AB =,∴将(1,3)C -向右平移2个单位长度可得D ,即2(1,3)D ;以AB 为对角线时,四边形ACBD 是平行四边形,∴对角线AB 的中点与CD 的中点重合, AB 的中点为(2,1)-,(1,3)C -,3(3,1)D ∴--.故答案为:()3,3-,(1,3),(3,1)--;(2)解:①如图,若△123D D D 是以12D D 为底的等腰三角形,四边形1ABCD ,2ABD C ,3ACBD 是平行四边形,13////BC AD AD ∴,23////AC BD BD ,12AB CD D C ==,1D ∴、A 、3D 在同一直线上,2D 、B 、3D 在同一直线上,1212AB D D =,AB ∴是等腰三角形△123D D D 的中位线,12//AB D D ∴,312CD D D ⊥, (3,1)A -,(1,1)B -,(,3)C m ,22D C AB ∴==,2m ∴=-;②由①得2m =,1(4,3)D ∴-,3(2,1)D --. 当直线12y x b =+过点1D 时,13(4)2b =⨯-+,解得:5b =,当直线12y x b =+过点3D 时,11(2)2b -=⨯-+,解得:0b =,b ∴的取值范围为05b ; (3)解:如图,(3,1)A -,(1,1)B -,(,3)C m ,1(2,3)D m ∴-,2(2,3)D m +.连接AB 、3CD 交于点E ,四边形3ACBD 是平行四边形,∴点C 、3D 关于点E 对称,3(4,1)D m ∴---,直线y x =与△123D D D 有公共点,当直线y x =与△123D D D 交于点2D ,23m +=,解得:1m =,1m ∴时,直线y x =与△123D D D 有公共点;当直线y x =与△123D D D 交于点3D ,41m --=-,解得:3m =-,3m ∴-时,直线y x =与△123D D D 有公共点;综上,m 的取值范围为1m 或3m -.【点睛】本题考查了平行四边形的性质,坐标与图形性质,平移的性质,一次函数的性质,一次函数图象上点的坐标特征等知识,解题的关键是利用数形结合与分类讨论的思想进行求解.3、 (1)(10,8)(2)D (0,5),E (4,8)【解析】【分析】(1)根据10OA =,8OC =,可得B 点的坐标;(2)根据折叠的性质,可得AE =AO ,OD =ED ,根据勾股定理,可得EB 的长,根据线段的和差,可得CE 的长,可得E 点坐标;再根据勾股定理,可得OD 的长,可得D 点坐标;(1)解:∵10OA =,8OC =,∴B 点的坐标(10,8),故答案为:(10,8);(2)解:依题意可知,折痕AD 是四边形OAED 的对称轴,在Rt △ABE 中,AE =AO =10,AB =OC =8,由勾股定理,得BE ,CE =BC -BE =10-6=4,E (4,8).在Rt △DCE 中,由勾股定理,得DC 2+CE 2=DE 2,又∵DE =OD ,CD =8-OD ,(8-OD )2+42=OD 2,解得OD =5,D (0,5).所以D(0,5),E(4,8);【点睛】本题主要考查了、矩形的性质、翻折变换、勾股定理等知识点,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.4、10cm【解析】【分析】根据矩形性质得出∠ABC=90°,AC=BD,OA=OC=12AC,OB=OD=12BD,推出OA=OB,求出等边三角形AOB,求出OA=OB=AB=5,即可得出答案.【详解】解:∵∠BOC=120°,∴∠AOB=180°﹣120°=60°,∵四边形ABCD是矩形,∴∠ABC=90°,AC=BD,OA=OC=12AC,OB=OD=12BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=5cm,∴OA=OB=AB=5cm,∴AC=2AO=10cm,BD=AC=10cm.【点睛】本题考查了矩形的性质和等边三角形的性质和判定的应用,解此题的关键是求出OA、OB的长,题目比较典型,是一道比较好的题目.5、 (1)理由见解析(2)32180αβ-=︒,理由见解析(3)60B ∠=︒【解析】【分析】(1)ACD ACE ECD A B ∠=∠+∠=∠+∠,B ACE ∠=∠,A ECD ∠=∠可知ABC CDE △≌△,进而可说明AC CE =;(2)如图1所示,连接GC 并延长至点K ,AH EI 、分别平分BAC DEC ∠∠、,则设,CAH BAH a CEI DEI b ∠=∠=∠=∠=,ACK ∠为ACG 的外角,ACK a AGC ∠=+∠,同理ECK b EGC ∠=+∠,ACE ACK ECK B α=∠+∠=∠=,得a b αβ+=-;又由(1)中证明可知2ECD BAC a ∠=∠=,180ECD DEC D ∠+∠+∠=︒,进而可得到结果;(3)如图2所示,过点C 作//MN AH ,则////MN AH EI ,,CAH ACM a CEI ECM b ∠=∠=∠=∠=ACE ACM ECM a b α∠=∠+∠=+=,可得a b α=+,由(1)中证明可得2,ECD BAC a D B α∠=∠=∠=∠=,在CED 中, 180ECD CED D ∠+∠+∠=︒,即22180a b α++=︒,进而可得到结果.(1)证明:ACD ACE ECD A B ∠=∠+∠=∠+∠又B ACE ∠=∠A ECD ∴∠=∠在ABC 和CDE △中B D AB CD A ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABC CDE ASA ∴△≌△AC CE ∴=.(2)解:32180αβ-=︒.理由如下:如图1所示,连接GC 并延长至点KAH EI 、分别平分BAC DEC ∠∠、则设,CAH BAH a CEI DEI b ∠=∠=∠=∠=ACK ∠为ACG 的外角ACK a AGC ∴∠=+∠同理可得ECK b EGC ∠=+∠ACE ACK ECK B α∴∠=∠+∠=∠=()()a AGC b EGC a b AGE a b β=+∠++∠=++∠=++即a b αβ=++a b αβ∴+=-.又由(1)中证明可知2ECD BAC a ∠=∠=由三角形内角和公式可得180ECD DEC D ∠+∠+∠=︒即22180a b α++=︒2()180a b α∴++=︒32180αβ∴-=︒.(3)解:当//AH EI 时,如图2所示,过点C 作//MN AH ,则////MN AH EI,CAH ACM a CEI ECM b ∴∠=∠=∠=∠=ACE ACM ECM a b α∴∠=∠+∠=+=,即a b α=+由(1)中证明可得2,ECD BAC a D B α∠=∠=∠=∠=在CED 中,根据三角形内角和定理有180ECD CED D ∠+∠+∠=︒即22180a b α++=︒即2()180a b α+=-︒即3180α=︒,解得:60α=︒故60B ∠=︒.【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、三角形内角和定理、平行线的性质、角平分线的性质等知识,连接GC 并延长,利用三角形外角性质证得a b αβ+=-是解题的关键.。

平行四边形练习题(3套)

平行四边形练习题(3套)

平行四边形练习题(3套)平行四边形(1)一、填空1、平行四边形ABCD中.若∠A的补角与∠B互余.则∠D的度数是。

2、平行四边形ABCD的周长是18.三角形ABC的周长是14.则对角线AC的长是。

3、矩形ABCD中.点E为边AB上的一点.过点E作直线EF垂直对边CD于F.若S AEFD:S BCFE=2:1.则DF:FC= 。

4、矩形的两条对角线的一个交角为60 o.两条对角线的和为8cm.则这个矩形的一条较短边为 cm。

120 ,且平分这个内角的对角线长为8cm.则这个菱形的周长为。

5、菱形的一个内角为6、若正方形的一条角平分线m.则这个正方形的面积为。

7、矩形的一条角平分线分长边为5cm和4cm两部分.则此面积为。

8、正方形ABCD的边BC的延长线上取一点E.使CE=AC.AE与CD交于点F.则∠AFC= 。

9、梯形的上底长为2.下底长为5.一腰为4.则另一腰m的范围是。

10、梯形ABCD中.AD∥BC.对角线AC=8cm,BD=6cm.且AC⊥BD.则梯形的面积为。

11、等腰梯形两底的差等于底边上高的2倍.则这个梯形较小的底角为度。

二、选择1、平行四边形的一边长为10cm.那么这个平行四边形的两条对角线长可以是()A、4cm和 6cmB、6cm和 8cmC、 20cm和 30cm D8cm 和12cm2、给定不在同一直线上的三点.则以这三点为顶点的平行四边形有()A、1个B、2个C、3个D、4个3、如图.AE∥BD. BE∥DF. AB∥CD.下面给出四个结论(1)AB=CD (2)BE=DF (3)S ABDC=S BDFE(4)S△ABE=S△DCF其中正确的有()A、1个B、2个C、3个D、4个4、平行四边形ABCD的对角线AC、BD相交于点O.下列条件中.不能判定它为菱形的是()A、AB=ADB、AC⊥BDC、∠A=∠DD、CA平分∠BCD5、正方形具有而菱形不一定具有的性质是()A、四条边都相等B、对角线相等C、对角线互相垂直平分D、每条对角线平分一组对角6、下列四边形中.既是中心对称图形.又是轴对称图形.而且有四条对称轴的是()A、平行四边形B、矩形C、菱形D、正方形7、能识别四边形ABCD是等腰梯形的条件是()A、AD∥BC.AB=CDB、∠A:∠B:∠C:∠D=3:2:3:2C、AD∥BC.AD≠BC.AB=CDD、∠A+∠B=180o.AD=BC8、如图.矩形ABCD中.DE⊥AC于E.且∠ADE:∠EDC=3:2.则∠BDE的度数为()A、36oB、18oC、27oD、9o三、解答题1、平行四边形的周长为20cm .AE⊥BC于E.AF⊥CD于F.AE=2 cm.AF=3 cm.求平行四边形ABCD的面积。

平行四边形练习题(含特殊平行四边形)[小编推荐]

平行四边形练习题(含特殊平行四边形)[小编推荐]

平行四边形练习题(含特殊平行四边形)[小编推荐]第一篇:平行四边形练习题(含特殊平行四边形)[小编推荐] 平形四边形练习题一、选择题1.下列条件中,能判定四边形是平行四边形的条件是()A.一组对边平行,另一组对边相等B.一组对边平行,一组对角相等C.一组对边平行,一组邻角互补D.一组对边相等,一组邻角相等2.过不在同一直线上的三点,可作平行四边形的个数是()A.1个B.2个C.3个D.4个3.下列性质中,矩形具有而平行四边形不一定具有的是()A.对边相等B.对角相等C.对角线相等D.对边平行4.矩形的两条对角线与各边围边的三角形中,共有多少对全等的三角形()A.2B.4C.6D.85.矩形的两条对角线与各边围边的三角形中,共有多少对全等的三角形()A.2B.4C.6D.86.下列检查一个门框是否为矩形的方法中正确的是()A.测量两条对角线,是否相等B.测量两条对角线,是否互相平分C.用曲尺测量门框的三个角,是否都是直角 D.用曲尺测量对角线,是否互相垂直二、填空题7.一个四边形的边长依次为a,b,c,d,且a2+b2+c2+d2=2ac+2bd,则这个四边形是.8.一平行四边形两条对角线的长度分别是5cm和7cm, 一边长为acm, 则a的取值范围是9.四边形中,任意相邻两个内角都互补,那么这个四边形是10.已知四边形ABCD中,AD∥BC,分别添加下列条件,①AB∥CD,②AB=DC,③AD=BC,④∠A=∠C,⑤∠B=∠C,能使四边形ABCD成为平行四边表的条件的序号是三、证明题11.如图,已知AC是□ABC D的一条对角线,BM⊥AC于M,DN⊥AC于N,求证:四边形BMDN是平行四边形.12.四边形ABCD 是平行四边形,E、F分别是AD、CB上的点,且DF = BE,求证:EF、AC互相平分;CA13.如图,G、H是□ABCD对角线上的点,且AG=CH,E、F分别是AB,CD的中点.求证:四边形EHFG是平行四边形..14.如图,矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD于F.求证:BE=CF.15.平行四边形ABCD,E是CD的中点,△ABE是等边三角形,求证:四边形ABCD是矩形16.在平行四边形ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC,求证:四边形AFCE是矩形17.△ABC中,∠ACB=90°,CD⊥AB,AE平分∠BAC交CD于F,EG⊥AB于G,求证:四边形CEGF是菱形。

小学数学冀教版第八册多边形的认识平行四边形的认识-章节测试习题(1)

小学数学冀教版第八册多边形的认识平行四边形的认识-章节测试习题(1)

章节测试题1.【答题】两个形状完全相同的平行四边形可以拼成一个平行四边形.( )【答案】√【分析】两个完全相同的平行四边形中长度相等的两条边相对,可以拼成一个平行四边形.【解答】两个形状完全相同的平行四边形可以拼成一个平行四边形如图:故答案为:正确.2.【答题】两个高相等的平行四边形一定能拼成一个大的平行四边形. ( )【答案】×【分析】当它们的角不相等时无法拼成平四边形,画图举反例即可.【解答】如图:虽然高相等,但是它们对应角的度数不相等,无法拼成一个新的平行四边形.所以原题说法错误.3.【答题】平行四边形易变形,具有不稳定性.()【答案】✓【分析】本题考查的是平行四边形的特性.【解答】平行四边形具有不稳定性,容易变形.故本题正确.4.【答题】伸缩门利用了平行四边形容易变形的性质.()【答案】✓【分析】本题考查的是平行四边形的特性.【解答】伸缩门做成平行四边形的形状,是利用平行四边形易变形的特性.故本题正确.5.【答题】过平行四边形的一个顶点可以向对边作无数条高. ()【答案】×【分析】本题考查的是认识平行四边形的高.【解答】平行四边形能画出无数条高,但过一个顶点向两条对边只能分别画1条高,共2条.故本题错误.6.【题文】作出下面平行四边形的高.【答案】【分析】从平行四边形的一个顶点向对边引垂线,这一点到垂足之间的线段就是平行四边形的高,据此画图.【解答】7.【题文】动手操作.(1)画出梯形的一条高.(2)画一条线段,把这个梯形分成一个三角形和一个平行四边形.【答案】【分析】(1)梯形两底间的距离叫做梯形的高,梯形也有无数条高,通常过上底的一个顶点作下底的垂线,用三角板的直角可以画出梯形的一条高.(2)利用过直线外一点作已知直线的平行线的方法,过梯形的上底的一个顶点D,作腰AB的平行线DE即可.【解答】如图所示:8.【题文】一个长方形的长是15厘米,宽是10厘米.把它拉成一个平行四边形后,这个平行四边形的周长是多少厘米?【答案】这个平行四边形的周长是50厘米.【分析】把长方形拉成平行四边形后,面积变小,周长不变,根据长方形的周长公式:C=(a+b)×2,把数据代入公式解答.【解答】(15+10)×2=25×2=50(厘米).答:这个平行四边形的周长是50厘米.9.【题文】已知一个平行四边形的周长是38厘米,其中一条边长10厘米,另外三条边长分别是多少厘米?【答案】平行四边形另外三条边分别是10厘米,9厘米,9厘米.【分析】根据平行四边形的特点,对边相等可得,平行四边形的周长的求解方法与长方形相似,都是相邻两条边的和的2倍,由此先用周长38厘米除以2,求出相邻两边的和,再减去其中的一条边10厘米,即可求出另一条边.【解答】如下图的平行四边形中,AD=BC=10厘米.38÷2-10=19-10=9(厘米).答:平行四边形另外三条边分别是10厘米,9厘米,9厘米.10.【题文】在平行四边形里面画一条线段,把它分割成两个三角形,有几种画法?【答案】2种【分析】连接对角线即可分成两个三角形,有2条对角线,所以一共有2种画法.【解答】根据题干分析画图如下:答:在平行四边形里面画一条线段,把它分割成两个三角形,一共有2种画法.11.【答题】下图中有()个平行四边形.A.2B.3C.4【答案】A【分析】本题考查的是认识平行四边形.【解答】图中的平行四边形有:平行四边形ABDC、平行四边形ABED,共有2个.选A.12.【答题】平行四边形有()种不同的高.A.1B.2C.无数【答案】B【分析】本题考查的是认识平行四边形的高.【解答】平行四边形有两组对边,每组对边平行且相等,对应一条高,所以平行四边形有2种不同的高.选B.13.【答题】下图中,AB表示平行四边形的().A.底B.高【答案】B【分析】本题考查的是认识平行四边形的高.【解答】从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高.选B.14.【答题】下列说法,错误的是().A.长方形对边相等,4个角都是直角B.正方形4条边都相等,4个角都是直角C.平行四边形对边相等,4个角都是直角【答案】C【分析】本题考查的是认识平行四边形.【解答】长方形的特点:对边相等,4个角都是直角;正方形的特点:每条边都相等,4个角都是直角;平行四边形的特征:两组对边分别平行且相等,两组对角分别相等,但不一定是直角.选C.15.【答题】用木棒做一个周长为50cm的平行四边形,其中一根木棒长15cm,另外三根木棒的长分别是______cm,______cm,______cm.(从大到小填写)【答案】15,10,10【分析】本题考查的是认识平行四边形.【解答】已知用木棒做一个周长为50cm的平行四边形,其中一根木棒长15cm,因为平行四边形对边相等,那么另一根木棒应该也为15cm,剩下的两根木棒一共为:50-15×2=20(cm),每根木棒的长度为:20÷2=10(cm),所以另外三根木棒的长分别是15cm,10cm,10cm.故本题的答案是:15,10,10.。

平行四边形测试题含答案

平行四边形测试题含答案

数学试题第十八章平行四边形班级________ 姓名________ 得分_______一、选择题(本大题共10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。

1.下列命题中,真命题的个数是( )①对角线互相平分的四边形是平行四边形.②两组对角分别相等的四边形是平行四边形.③一组对边平行,另一组对边相等的四边形是平行四边形.A.3个B.2个C.1个D.0个2.已知一个平行四边形两邻边的长分别为10和6,那么它的周长为( ).A. 16B. 60C.32D. 303.矩形、菱形、正方形都具有的性质是()A.每一条对角线平分一组对角B.对角线相等C.对角线互相平分D.对角线互相垂直4.有下列四个命题,其中正确的个数为( )①两条对角线互相平分的四边形是平行四边形②两条对角线相等的四边形是菱形③两条对角线互相垂直的四边形是正方形④两条对角线相等且互相垂直的四边形是正方形A.4B.3C.2D.15.若四边形的两条对角线相等,则顺次连接该四边形各边中点所得的四边形是( )A.梯形B.矩形C.菱形D.正方形6.平行四边形ABCD中, ∠A:∠B:∠C:∠D的值可以是( )A. 4:3:3:4B. 7:5:5:7C. 4:3:2:1D. 7:5:7:57. 菱形的两条对角线长分别为6㎝和8㎝,则这个菱形的面积为( )8.(2013·襄阳中考)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形A BCD的两条对角线的和是( )A.18B.28C.36D.469.如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为( )A.4cmB.5cmC.6cmD.8cm10.如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD于E,则△ABE 的周长为( )A.4 cmB.6 cmC.8 cmD.10 cm二、填空题(本大题共8个小题,11至14题每题3分,15至18题每题4分,共28分.请把答案填在题中的横线上)11.在平行四边形ABCD中, ∠A=40º,则∠B=______.12.矩形的一边长是3.6㎝, 两条对角线的夹角为60º,则矩形对角线长是_____ .13.等腰梯形两条对角线互相垂直,一条对角线长为6㎝,则这个梯形的面积为 .14.在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)15.如图,在平行四边形ABCD中,AE⊥BC于E,AC=AD, ∠CAE=56º,则∠D= .16.如图,在平行四边形ABCD中,AD=5cm,AB⊥BD,点O是两条对角线的交点,OD=2 cm,则AB=______cm.17.如图所示,平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点M,N,若△CON的面积为2,△DOM的面积为4,则△AOB的面积为______.18.如图,在▱ABCD中,对角线AC,BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是______.三、解答题(本大题共5个小题,共62分。

八年级数学下册《平行四边形的判定》单元测试卷(附带答案)

八年级数学下册《平行四边形的判定》单元测试卷(附带答案)

八年级数学下册《平行四边形的判定》单元测试卷(附带答案)一.选择题1.四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠A=180°C.∠A=∠D D.∠B=∠D2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD∥BC3.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABC=∠ADC,AD∥BC B.∠ABD=∠BDC,∠BAD=∠DCBC.∠ABD=∠BDC,OA=OC D.∠ABC=∠ADC,AB=CD4.下列说法不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行,另一组对边相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形5.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2B.3C.4D.66.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°7.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB =CD;④∠BAD=∠DCB;⑤AD∥BC,从以上5个条件中任选2个条件为一组,能判定四边形ABCD 是平行四边形的有()组.A.4B.5C.6D.78.如图,在平行四边形ABCD中,E,F是对角线BD上不同的两点,连接AE,CE,AF,CF.下列条件中,不能得出四边形AECF一定是平行四边形的为()A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF9.如图,在▱ABCD中,点E,F分别在边BC,AD上,有下列条件:①BE=DF;②AE∥CF;③AE=CF;④∠BAE=∠DCF.其中,能使四边形AECF是平行四边形的条件有()A.1个B.2个C.3个D.4个10.如图,在▱ABCD中,∠ABC=45°,BC=4,点F是CD上一个动点,以F A、FB为邻边作另一个▱AEBF,当F点由D点向C点运动时,下列说法正确的选项是()①▱AEBF的面积先由小变大,再由大变小②▱AEBF的面积始终不变③线段EF最小值为4A.①B.②C.①③D.②③二.填空题11.如图,BD是▱ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需增加的一个条件是.12.如图,在▱ABCD中,AB=2cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.13.如图,在四边形ABCD中,若AB=CD,则添加一个条件,能得到平行四边形ABCD.(不添加辅助线,任意添加一个符合题意的条件即可)14.在平面直角坐标系中,A(﹣1,1),B(2,3),C(3m,4m+1),D在x轴上,若以A,B,C,D四点为顶点的四边形是平行四边形,求点D的坐标.15.如图,四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截原四边形为两个新四边形.则当P,Q同时出发秒后其中一个新四边形为平行四边形.16.如图,在平面直角坐标系中,有一Rt△ABC,∠C=90°且A(﹣1,3)、B(﹣3,﹣1)、C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.若点Q在x轴上,点P在直线AB上,要使以Q、P、A1、C1为顶点的四边形是平行四边形,满足条件的点Q的坐标为.17.在平面直角坐标系里,A(1,0),B(0,2),C(﹣4,2),若以A、B、C、D为顶点的四边形是平行四边形,则点D的坐标为.18.如图,在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(4,0),点C在y的正半轴上,且OB=2OC,在直角坐标平面内确定点D,使得以点D、A、B、C为顶点的四边形是平行四边形,请写出点D的坐标为.三.解答题19.如图,点B,E,C,F在一条直线上,AB=DE,AB∥DE,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ACFD是平行四边形.20.E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.(1)根据题意,画出图形;(2)求证:①△AFD≌△CEB;②四边形ABCD是平行四边形.21.已知,如图所示,AB∥CD,AB=CD,点E、F在BD上.∠BAE=∠DCF,连接AF、EC,求证:(1)AE=FC;(2)四边形AECF是平行四边形.22.如图,四边形ABCD中AC、BD相交于点O,延长AD至点E,连接EO并延长交CB的延长线于点F,∠E=∠F,AD=BC.(1)求证:O是线段AC的中点:(2)连接AF、EC,证明四边形AFCE是平行四边形.23.如图,AB=CD,E,F分别为AB、CD上的点,连接BC,分别与AF、ED相交于点G,H.∠B=∠C,BH=CG.(1)求证:AG=DH;(2)求证:四边形AFDE是平行四边形.24.已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.参考答案一.选择题1.解:∵AD∥BC∴∠A+∠B=180°,∠D+∠C=180°∴A.∠A+∠C=180°,可得∠B=∠C,这样的四边形是等腰梯形,不是平行四边形,故此选项错误;B.∠A+∠B从题目已知条件即可得出,无法证明四边形为平行四边形,此选项错误;C.同理A,这样的四边形是等腰梯形,故此选项错误;D.∠B=∠D,可得∠A+∠D=180°,则BA∥CD,故四边形ABCD是平行四边形,此选项正确;故选:D.2.解:∵AB∥DC,AD∥BC∴四边形ABCD是平行四边形,故选项A不合题意;∵AB=CD,AD=BC∴四边形ABCD是平行四边形,故选项B不合题意;∵AO=CO,BO=DO∴四边形ABCD是平行四边形,故选项C不合题意;∵AB=CD,AD∥BC∴四边形ABCD不一定是平行四边形,故选项D符合题意;故选:D.3.解:A、∵AD∥BC∴∠ABC+∠BAD=180°∵∠ABC=∠ADC∴∠ADC+∠BAD=180°∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;B、∵∠ABD=∠BDC,∠BAD=∠DCB∴∠ADB=∠CBD∴AD∥CB∵∠ABD=∠BDC∴AB∥CD∴四边形ABCD是平行四边形,故此选项不合题意;C、∵∠ABD=∠BDC,OA=OC又∠AOB=∠COD∴△AOB≌△COD(AAS)∴四边形ABCD是平行四边形,故此选项不合题意;D、∠ABC=∠ADC,AB=CD不能判断四边形ABCD是平行四边形,故此选项符合题意;故选:D.4.解:A、∵两组对边分别平行的四边形是平行四边形∴选项A不符合题意;B、∵一组对边平行,另一组对边相等的四边形不一定是平行四边形∴选项B符合题意;C、∵一组对边平行且相等的四边形是平行四边形∴选项C不符合题意;D、∵一组对边平行,一组对角相等的四边形是平行四边形∴选项D不符合题意;故选:B.5.解:∵四边形ABCD是平行四边形∴AB∥CD,AD=BC=8,CD=AB=6∴∠F=∠DCF∵CF平分∠BCD∴∠FCB=∠DCF∴∠F=∠FCB∴BF=BC=8同理:DE=CD=6∴AF=BF﹣AB=2,AE=AD﹣DE=2∴AE+AF=4;故选:C.6.解:∵四边形ABCD是平行四边形∴AB∥CD∴∠ACD=∠BAC由折叠的性质得:∠BAC=∠B′AC∴∠BAC=∠ACD=∠B′AC=∠1=22°∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;7.解:①与⑤根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与④,⑤与④根据两组对角分别相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;①与②,②与⑤根据对角线互相平分的四边形是平行四边形,能推出四边形ABCD为平行四边形.所以能推出四边形ABCD为平行四边形的有6组.故选:C.8.解:如图,连接AC与BD相交于O在▱ABCD中,OA=OC,OB=OD要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、若AE=CF,则无法判断OE=OE,故本选项符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、由∠BAE=∠DCF,从而推出△DFC≌△BEA,然后得出∠DFC=∠BEA,∴∠CFE=∠AEF,∴FC∥AE,由全等可知FC=AE,所以四边形AECF是平行四边形;故本选项不符合题意;故选:B.9.解:①正确,理由如下:∵四边形ABCD平行四边形∴AD=BC,AD∥BC又∵BE=DF∴AF=EC.又∵AF∥EC∴四边形AECF是平行四边形.②正确,理由如下:∵AF∥EC,AE∥CF∴四边形AECF是平行四边形;④正确;理由如下:∵四边形ABCD是平行四边形∴∠B=∠D∵∠BAE=∠DCF∴∠AEB=∠CFD.∵AD∥BC∴∠AEB=∠EAD.∴∠CFD=∠EAD.∴AE∥CF.∵AF∥CE∴四边形AECF是平行四边形.∵AE=CF不能得出四边形AECF是平行四边形∴③不正确;能使四边形AECF是平行四边形的条件有3个.故选:C.10.解:过点C作CG⊥AB于点G则∵AB与CG的值始终不变化∴△ABF的面积始终不变化∵▱AEBF的面积=2×△ABF的面积∴▱AEBF的面积始终不变∴①错误,②正确;连接EF,与AB交于点H∵四边形AEBF是平行四边形∴AH=BH,EH=FH当FH⊥AB时,FH的值最小,EF=2FH的值也最小此时,FH=CG∵∠ABC=45°,CG⊥AB∴BG=CG∵BG2+CG2=BC2=16∴∴FH=∴线段EF最小值为EF=2FH=4.∴③正确故选:D.二.填空题(共8小题)11.解:如图,连接AC交BD于点O∵四边形ABCD为平行四边形∴AO=CO,BO=DO∴当BE=DF时,可得OE=OF,则四边形AECF为平行四边形∴可增加BE=DF故答案为:BE=DF(答案不唯一).12.解:在▱ABCD中,∵AB=CD=2cm,AD=BC=4cm,AO=CO,BO=DO ∵AC⊥BC∴AC==6cm∴OC=3cm∴BO==5cm∴BD=10cm∴△DBC的周长﹣△ABC的周长=BC+CD+BD﹣(AB+BC+AC)=BD﹣AC=10﹣6=4cm 故答案为:4.13.解:根据平行四边形的判定,可再添加一个条件:AD=BC.故答案为:AD=BC(答案不唯一).14.解:由点C的坐标可以判断出点C在直线y=上已知A、B两点,所以以AB为边和对角线分类讨论当AB为边时,AB∥CD,AB=CD,如图可证得△ABE≌△CDF∴FC=BE=2,AE=DF=3若点D在x轴正半轴时∴点C坐标为(,﹣2)∴点D坐标为(,0)若点D在x轴负半轴时点C坐标为(,2)点D坐标为(﹣,0)当AB为对角线时AB与CD相交于AB的中点(,2)设点D(m,0)可得点C坐标为(1﹣m,4)将点C坐标代入解析式可得m=点D坐标为(,0)故点D的坐标为(,0)或(,0)或(﹣,0).15.解:根据题意有AP=tcm,CQ=2tcm,PD=(12﹣t)cm,BQ=(15﹣2t)cm.①∵AD∥BC∴当AP=BQ时,四边形APQB是平行四边形.∴t=15﹣2t解得t=5.∴t=5s时四边形APQB是平行四边形;②AP=tcm,CQ=2tcm∵AD=12cm,BC=15cm∴PD=AD﹣AP=(12﹣t)cm∵AD∥BC∴当PD=QC时,四边形PDCQ是平行四边形.即:12﹣t=2t解得t=4s∴当t=4s时,四边形PDCQ是平行四边形.综上所述,当P,Q同时出发4或5秒后其中一个新四边形为平行四边形.故答案是:4或5.16.解:∵点Q在x轴上,点P在直线AB上,以Q、P、A1、C1为顶点的四边形是平行四边形当A1C1为平行四边形的边时∴PQ=A1C1=2∵P点在直线y=2x+5上∴令y=2时,2x+5=2,解得x=﹣1.5令y=﹣2时,2x+5=﹣2,解得x=﹣3.5∴点Q的坐标为(﹣1.5,0),(﹣3.5,0)当A1C1为平行四边形的对角线时∵A1C1的中点坐标为(3,2)∴P的纵坐标为4代入y=2x+5得,4=2x+5解得x=﹣0.5∴P(﹣0.5,4)∵A1C1的中点坐标为:(3,2)∴直线PQ的解析式为:y=﹣x+当y=0时,即0=﹣x+解得:x=6.5故Q为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).故答案为(﹣1.5,0)或(﹣3.5,0)或(6.5,0).17.解:如图有三种情况:①平行四边形AD1CB∵A(1,0),B(0,2),C(﹣4,2)∴AD1=BC=4,OD1=3则D的坐标是(﹣3,0);②平行四边形AD2BC∵A(1,0),B(0,2),C(﹣4,2)∴AD2=BC=4,OD2=1+4=5则D的坐标是(5,0);③平行四边形ACD3B∵A(1,0),B(0,2),C(﹣4,2)∴D3的纵坐标是2+2=4,横坐标是﹣(4+1)=﹣5则D的坐标是(﹣5,4)故答案为:(﹣3,0)或(5,0)或(﹣5,4).18.解:如图,①当BC为对角线时,易求M1(3,2);②当AC为对角线时,CM∥AB,且CM=AB.所以M2(﹣3,2);③当AB为对角线时,AC∥BM,且AC=BM.则|M y|=OC=2,|M x|=OB+OA=5,所以M3(5,﹣2).综上所述,符合条件的点D的坐标是M1(3,2),M2(﹣3,2),M3(5,﹣2).故答案为:(3,2)(﹣3,2)(5,﹣2).三.解答题19.证明:(1)∵AB∥DE∴∠B=∠DEF∵BE=CF∴BE+CE=CF+CE即BC=EF在△ABC和△DEF中∴△ABC≌△DEF(SAS);(2)由(1)得:△ABC≌△DEF∴AC=DF,∠ACB=∠F∴AC∥DF∴四边形ACFD是平行四边形.20.(1)解:如图,即为所画的图形;(2)证明:①如图,∵AD∥BC,DF∥BE∴∠DAF=∠BCE,∠DF A=∠BEC又AE=CF∴AE+EF=CF+EF即AF=CE在△AFD与△CEB中∴△AFD≌△CEB(ASA);②由①知,△AFD≌△CEB则AD=CB又∵AD∥BC∴四边形ABCD是平行四边形.21.证明:(1)∵AB∥CD∴∠B=∠D.在△ABE和△CDF中∴△ABE≌△CDF(ASA).∴AE=CF.(2)由(1)△ABE≌△CDF得AE=CF,∠AEB=∠CFD ∴180°﹣∠AEB=180°﹣∠CFD即∠AEF=∠CFE.∴AE∥CF.∵AE=CF∴四边形AECF是平行四边形.22.证明:(1)∵∠E=∠F∴AD∥BC∵AD=BC∴四边形ABCD是平行四边形∴AC,BD互相平分;即O是线段AC的中点.(2)∵AD∥BC∴∠EAC=∠FCA在△OAE和△OCF中∴△OAE≌△OCF(ASA).∴OE=OF又∵OA=OC∴四边形AFCE是平行四边形.23.证明:(1)∵BH=CG∴BH+HG=CG+HG∴BG=CH在△ABG与△CDH中∴△ABG≌△CDH(SAS)∴AG=DH;(2)∵△ABG≌△CDH∴∠AGB=∠CHD∴AF∥DE∵∠B=∠C∴AB∥CD∴四边形AFDE是平行四边形.24.证明:(1)四边形ABCD是平行四边形∴∠DAB=∠BCD∴∠EAM=∠FCN又∵AD∥BC∴∠E=∠F.∵在△AEM与△CFN中∴△AEM≌△CFN(ASA);(2)∵四边形ABCD是平行四边形∴AB=CD,AB∥CD又由(1)得AM=CN∴BM=DN,BM∥DN∴四边形BMDN是平行四边形.。

八年级数学(平行四边形)试卷试题附答案

八年级数学(平行四边形)试卷试题附答案

一、单选题(共10题;共20分)1.在下列性质中,平行四边形不一定具有的是()A.对边相等B.对角互补C.对边平行D.对角相等2.平行四边形的一个内角是70。

,则其他三个角是()A. 70% 130°, 130°B. 110\ 70。

,120°C. 110°, 70°, 110°D. 70°, 120°, 120°3.如图,048。

的对角线AC、8,相交于点O ,且AC+8D=24.若△ 048的周长是20,则AB的长为()A. 8B. 9C. 10D. 124.下面给出的四边形ABCD中,ZA, ZB, Z C, N D的度数之比,其中能判定四边形ABCD是平行四边形的条件是()A. 3 : 4 : 3 : 4B. 3 : 3 : 4 : 4C. 2 : 3 : 4 : 5 D, 3 : 4 : 4 : 35.如图,已知四边形ABCD, R, P分别是DC, BC上的点,E, F分别是AP, RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是().A,线段EF的长逐渐增大 B.线段EF的长逐渐减少C,线段EF的长不变D.线段EF的长不能确定6.如图,下而不能判定四边形ABCD是平行四边形的是()A. AB 〃 CD, AB = CDB..45 = CD, AD = BCc. ZB+ ZDAB=180° : AB = CD D. NB = /BCA= NDAC7.如图,在口ABCD中,P是对角线BD上的一点,过点作EFIIAB,与AD和BC分别交于点E和点F,连结AP, CP“已知AE=4, EP=2, N ABC=60。

则阴影部分的面积是()A. 2GB.4$C.4D.88.如图,正方形ABCD和口AEFC,点B在EF边上,若正方形ABCD和口AEFC的面积分别是S1、S2的大小关系是()A. Si>S2B. Si=S2C. Si<S2D,无法确定9 .如图,在B\BCD 中,AD=2AB, F 是AD 的中点,作CE_LAB 于E,在线段AB 上,连接 EF 、CF.则下列结论:©Z BCD=2Z DCF; @Z ECF=Z CEF : @S A BEC =2S ACEF :④N DFE=3N AEF,其中一定正确的是()A.②④B.①②④C.①②③④D.②③④10 .如图,EF 过QABCD 对角线的交点O,交AD 于E,交BC 于F,若=ABCD 的周长为18, OE=15则四边形 EFCD 的周长为()二、填空题(共5题;共13分)1L 在平行四边形ABCD 中,若与N3的度数之比为5:4,则/C 的度数为.12 .平行四边形ABCD 的周长是30,AC,BD 相交于点0,火Z 』用的周长比」03c 的周长大3,则AB=13 .在四边形ABCD 中,对角线AC_LBD 且AC=4, BD=8, E 、F 分别是边AB.CD 的中点,则EF=.14 .如图,在四边形中,.10II BC 〃切=9阳方C = &7?7,点?、。

平行四边形判定练习题

平行四边形判定练习题

平行四边形判定练习题在几何学中,平行四边形是指具有两对相互平行的对边的四边形。

要判定一个四边形是否为平行四边形,我们需要检查四边形的特性和属性。

下面是一些平行四边形判定的练习题,通过解答这些题目,你可以巩固对平行四边形的理解并提升你的几何技巧。

练习题一:已知四边形ABCD,其中AB ∥ CD,AC ⊥ CD,AD ⊥ AB。

判断四边形ABCD是否为平行四边形。

解答:根据题干已知条件,我们可以得到以下推理:1. AB ∥ CD:对于平行四边形,对边是相互平行的,所以该条件满足。

2. AC ⊥ CD:平行四边形的两条对边不仅平行,还相互垂直,所以该条件不满足。

因此,根据已知条件,四边形ABCD不是平行四边形。

练习题二:在四边形EFGH中,EF ∥ GH,FG ⊥ GH,EG ⊥ EF。

已知EF = 5 cm,FG = 8 cm,EG = 4 cm。

求EH的长度。

解答:根据题干已知条件,我们可以得到以下推理:1. EF ∥ GH:对于平行四边形,对边是相互平行的,所以该条件满足。

2. FG ⊥ GH:平行四边形的两条对边不仅平行,还相互垂直,所以该条件不满足。

3. EG ⊥ EF:平行四边形的两条对边不仅平行,还相互垂直,所以该条件满足。

根据已知条件,我们可以将四边形EFGH划分成两个直角三角形EFG和EGH。

根据直角三角形的性质,我们可以使用勾股定理求解:EG² + GH² = EH²代入已知值,得到:4² + 8² = EH²16 + 64 = EH²80 = EH²通过开方运算,得到:EH = √80 ≈ 8.94 cm所以,四边形EFGH中EH的长度约为8.94 cm。

练习题三:在平行四边形IJKL中,已知IJ = 6 cm,JK = 8 cm,KL = 6 cm,IL = 8 cm。

判断平行四边形IJKL的类型。

八下 平行四边形 专题练习及答案

八下 平行四边形 专题练习及答案

《平行四边形》专题练习一.填空题1.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.2.如图,在平行四边形ABCD中,AB=4,BC=5,∠ABC=60°,平行四边形ABCD的对角线AC、BD交于点O,过点O作OE⊥AD,则OE=.3.如图,在▱ABCD中,AD=6,点E、F分别是BD、CD的中点,则EF=.4.如图,将△ABC沿它的中位线MN折叠后,点A落在点A′处,若∠A=30°,∠B=115°,则∠A′NC=°.5.如图,一块六边形绿化园地,六角都做有半径为R的圆形喷水池,则这六个喷水池占去的绿化园地的面积为(结果保留π)6.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=30°,那么∠1+∠2=°.7.已知:如图,平行四边形ABCD中,BE平分∠ABC交AD于E,CF平分∠BCD交AD于F,若AB=3,BC=5,则EF=.8.如图,在▱ABCD中,∠BAD的平分线AE交边CD于点E,AB=5cm,BC=3cm,则EC=cm.9.如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s 的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s)当t=s时,以A、C、E、F为顶点四边形是平行四边形.10.如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=220°,则∠P=°.11.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=.12.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论:(1)∠DCF+∠D=90°;(2)∠AEF+∠ECF=90°;(3)S△BEC=2S△CEF;(4)若∠B=80°,则∠AEF=50°.其中一定成立的是(把所有正确结论的序号都填在横线上)13.如图,▱ABCD的对角线相交于O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE 的周长为10,则▱ABCD的周长为.14.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是.15.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为.16.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=.17.如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC为对角线的平行四边形ADCE中,DE的最小值是.18.如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是.二.解答题19.如图,四边形ABCD为平行四边形,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:△ABE≌△FCE;(2)过点D作DG⊥AE于点G,H为DG的中点.判断CH与DG的位置关系,并说明理由.20.在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.(1)如图①,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;(2)如图②,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.21.如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H.(1)求证:△BEF≌△CEH;(2)求DE的长.22.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.(1)求证:DE=CF;(2)若AB=4,AD=6,∠B=60°,求DE的长.23.如图,在四边形ABCD中,AD∥BC,AD=5cm,BC=9cm.M是CD的中点,P是BC边上的一动点(P与B,C不重合),连接PM并延长交AD的延长线于Q.(1)试说明△PCM≌△QDM.(2)当点P在点B、C之间运动到什么位置时,四边形ABPQ是平行四边形?并说明理由.24.如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.25.如图,四边形ABCD的对角线AC⊥BD于点E,AB=BC,F为四边形ABCD外一点,且∠FCA=90°,∠CBF=∠DCB.(1)求证:四边形DBFC是平行四边形;(2)如果BC平分∠DBF,∠F=45°,BD=2,求AC的长.26.如图,在▱ABCD中,DE是∠ADC的平分线,交BC于点E.(1)试说明CD=CE;(2)若BE=CE,∠B=80°,求∠DAE的度数.27.已知:如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AB=1,BC=.(1)求平行四边形ABCD的面积S□ABCD;(2)求对角线BD的长.28.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,动点P 从点A出发,以1cm/s的速度向点D运动;动点Q从点C同时出发,以3cm/s的速度向点B运动.规定当其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t,求:(1)当t为何值时,PQ∥CD?(2)当t为何值时,PQ=CD?29.如图,在四边形ABCD中,AD∥BC,∠B﹦90°,AB﹦8cm,AD﹦24cm,BC﹦26cm,点p从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B 运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t s.(1)t为何值时,四边形PQCD为平行四边形?(2)t为何值时,四边形PQCD为等腰梯形?(等腰梯形的两腰相等,两底角相等)30.如图所示,在▱ABCD中,对角线AC与BD相交于点O,过点O任作一条直线分别交AB、CD于点E、F.(1)求证:OE=OF;(2)若AB=7,BC=5,OE=2,求四边形BCFE的周长.参考答案与试题解析一.填空题1.(2017•无锡一模)若一个多边形的内角和比外角和大360°,则这个多边形的边数为6.【分析】根据多边形的内角和公式(n﹣2)•180°,外角和等于360°列出方程求解即可.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°﹣360°=360°,解得n=6.故答案为:6.【点评】本题考查了多边形的内角和公式与外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.2.(2017•新城区校级模拟)如图,在平行四边形ABCD中,AB=4,BC=5,∠ABC=60°,平行四边形ABCD的对角线AC、BD交于点O,过点O作OE⊥AD,则OE=.【分析】作CF⊥AD于F,由平行四边形的性质得出∠ADC=∠ABC=60°,CD=AB=4,OA=OC,求出∠DCF=30°,由直角三角形的性质得出DF=CD=2,求出CF=DF=2,证出OE是△ACF的中位线,由三角形中位线定理得出OE的长即可.【解答】解:作CF⊥AD于F,如图所示:∵四边形ABCD是平行四边形,∴∠ADC=∠ABC=60°,CD=AB=4,OA=OC,∴∠DCF=30°,∴DF=CD=2,∴CF=DF=2,∵CF⊥AD,OE⊥AD,CF∥OE,∵OA=OC,∴OE是△ACF的中位线,∴OE=CF=;故答案为:.【点评】本题考查了平行四边形的性质、直角三角形的性质、勾股定理、三角形中位线定理等知识;熟练掌握平行四边形的性质,证出OE是三角形的中位线是解决问题的关键.3.(2017春•徐州期中)如图,在▱ABCD中,AD=6,点E、F分别是BD、CD的中点,则EF=3.【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=6,∵点E、F分别是BD、CD的中点,∴EF=BC=×6=3.故答案为:3.【点评】此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.4.(2017春•宜兴市期中)如图,将△ABC沿它的中位线MN折叠后,点A落在点A′处,若∠A=30°,∠B=115°,则∠A′NC=110°.【分析】先利用内角和定理求∠C,根据三角形的中位线定理可知MN∥BC,由平行线的性质可求∠A′NM、∠CNM,再利用角的和差关系求∠A′NC.【解答】解:∵∠A=30°,∠B=115°,∴∠C=180°﹣∠A﹣∠B=180°﹣30°﹣115°=35°,∵MN是三角形的中位线,∴MN∥BC,∴∠A′NM=∠C=35°,∠CNM=180°﹣∠C=180°﹣35°=145°,∴∠A′NC=∠CNM﹣∠A′NM=145°﹣35°=110°.故答案为:110.【点评】本题考查的是三角形中位线定理、翻折变换,熟知图形翻折不变性的性质是解答此题的关键.5.(2017春•宜兴市期中)如图,一块六边形绿化园地,六角都做有半径为R的圆形喷水池,则这六个喷水池占去的绿化园地的面积为2πR2(结果保留π)【分析】根据多边形的内角和定理计算出六边形的内角和为720°,再根据扇形的面积公式计算即可.【解答】解:∵六个扇形的圆心角的和=(4﹣2)×180°=720°,∴S==2πR2.阴影部分故答案为:2πR2.【点评】此题主要考查了本题考查了多边形的内角和定理和扇形的面积公式,牢记公式是解答本题的关键.6.(2017春•工业园区期中)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=30°,那么∠1+∠2=72°.【分析】分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.【解答】解:如图,∵∠3=30°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣30°=90°,∴∠5+∠6=180°﹣80°=90°,∴∠5=180°﹣∠2﹣108°①,∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=90°,即∠1+∠2=72°.故答案为:72.【点评】本题考查的是三角形内角和定理,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.7.(2017春•邗江区期中)已知:如图,平行四边形ABCD中,BE平分∠ABC交AD于E,CF平分∠BCD交AD于F,若AB=3,BC=5,则EF=1.【分析】先证明AB=AE=3,DC=DF=3,再根据EF=AE+DF﹣AD即可计算.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=3,BC=AD=5,AD∥BC,∵BE平分∠ABC交AD于E,CF平分∠BCD交AD于F,∴∠ABF=∠CBE=∠AEB,∠BCF=∠DCF=∠CFD,∴AB=AE=3,DC=DF=3,∴EF=AE+DF﹣AD=3+3﹣5=1.故答案为1.【点评】本题考查平行四边形的性质,等腰三角形的判定和性质等知识,解题的关键是熟练掌握这些知识的应用,属于常见题,中考常考题型.8.(2017春•东台市期中)如图,在▱ABCD中,∠BAD的平分线AE交边CD于点E,AB=5cm,BC=3cm,则EC=2cm.【分析】直接利用角平分线的性质结合平行四边形的性质得出∠DAE=∠DEA,进而得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=DC=5cm,BC=AD=3cm,AB∥DC,∴∠BAE=∠DEA,∵∠BAD的平分线AE交边CD于点E,∴∠DAE=∠BAE,∴∠DAE=∠DEA,∴AD=DE=3cm,∴EC=DC﹣DE=5﹣3=2(cm).故答案为:2.【点评】此题主要考查了角平分线的性质以及平行四边形的性质,正确得出∠ADE=∠DEA是解题关键.9.(2017春•柯桥区校级期中)如图,在等边三角形ABC中,BC=6cm,射线AG ∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s)当t=2或6s时,以A、C、E、F为顶点四边形是平行四边形.【分析】分别从当点F在C的左侧时与当点F在C的右侧时去分析,由当AE=CF 时,以A、C、E、F为顶点四边形是平行四边形,可得方程,解方程即可求得答案.【解答】解:①当点F在C的左侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BC﹣BF=6﹣2t(cm),∵AG∥BC,∴当AE=CF时,四边形AECF是平行四边形,即t=6﹣2t,解得:t=2;②当点F在C的右侧时,根据题意得:AE=tcm,BF=2tcm,则CF=BF﹣BC=2t﹣6(cm),∵AG∥BC,∴当AE=CF时,四边形AEFC是平行四边形,即t=2t﹣6,解得:t=6;综上可得:当t=2或6s时,以A、C、E、F为顶点四边形是平行四边形.故答案为:2或6.【点评】此题考查了平行四边形的判定.此题难度适中,注意掌握分类讨论思想、数形结合思想与方程思想的应用.10.(2017春•泰兴市校级月考)如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=220°,则∠P=20°.【分析】利用四边形内角和是360°可以求得∠DAB+∠ABC=140°.然后由角平分线的性质,邻补角的定义求得∠PAB+∠ABP=∠DAB+∠ABC+(180°﹣∠ABC)=90°+(∠DAB+∠ABC)=160°,所以根据△ABP的内角和定理求得∠P的度数即可.【解答】解:如图,∵∠D+∠C=220°,∠DAB+∠ABC+∠C+∠D=360°,∴∠DAB+∠ABC=140°.又∵∠DAB的角平分线与∠ABC的外角平分线相交于点P,∴∠PAB+∠ABP=∠DAB+∠ABC+(180°﹣∠ABC)=90°+(∠DAB+∠ABC)=160°,∴∠P=180°﹣(∠PAB+∠ABP)=20°.故答案是:20.【点评】本题考查了三角形内角和定理、多边形的内角与外角.熟知“四边形的内角和是360°”是解题的关键.11.(2017春•高港区校级月考)如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=540°.【分析】根据三角形的内角和与四边形的内角和公式得∠3+∠4+8=180°①,∠6+∠7+∠10+∠11=360°②,∠1+∠2+∠5+∠9=360°③,三式相加,再由邻补角的性质即可得出答案.【解答】解:如图,∵∠3+∠4+8=180°①,∠6+∠7+∠10+∠11=360°②,∠1+∠2+∠5+∠9=360°③,∴①+②+③得,∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠9+∠10+∠11+∠12=900°,∵∠8+∠10=180°,∠9+∠11=180°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=900°﹣180°﹣180°=540°.故答案为:540°.【点评】本题考查了多边形的内角和定理以及三角形外角的性质,是基础知识要熟练掌握.12.(2017春•建湖县校级月考)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论:(1)∠DCF+∠D=90°;(2)∠AEF+∠ECF=90°;(3)S△BEC =2S△CEF;(4)若∠B=80°,则∠AEF=50°.其中一定成立的是(1)(2)(4)(把所有正确结论的序号都填在横线上)【分析】由平行四边形的性质和等腰三角形的性质得出(1)正确;由ASA证明△AEF≌△DMF,得出EF=MF,∠AEF=∠M,由直角三角形斜边上的中线性质得出CF=EM=EF,由等腰三角形的性质得出∠FEC=∠ECF,得出(2)正确;证出S△EFC =S△CFM,由MC>BE,得出S△BEC<2S△EFC,得出(3)错误;由平行线的性质和互余两角的关系得出(4)正确;即可得出结论.【解答】解:(1)∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∠BCD+∠D=180°,∴∠DCF=∠BCF,∴∠DCF=∠BCD,∴∠DCF+∠D=90°,故(1)正确;(2)延长EF,交CD延长线于M,如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴EF=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴CF=EM=EF,∴∠FEC=∠ECF,∴∠AEF+∠ECF=∠AEF+∠FEC=∠AEC=90°,故(2)正确;(3)∵EF=FM,∴S△EFC =S△CFM,∵MC>BE,∴S△BEC <2S△EFC故(3)错误;(4)∵∠B=80°,∴∠BCE=90°﹣80°=10°,∵AB∥CD,∴∠BCD=180°﹣80°=100°,∴∠BCF=∠BCD=50°,∴∠FEC=∠ECF=50°﹣10°=40°,∴∠AEF=90°﹣40°=50°,故(4)正确.故答案为:(1)(2)(4).【点评】此题主要考查了平行四边形的性质、等腰三角形的性质、全等三角形的判定与性质、直角三角形斜边上的中线性质等知识;本题综合性强,有一定难度,证明△AEF≌△DMF是解题关键.13.(2017春•泉山区校级月考)如图,▱ABCD的对角线相交于O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为20.【分析】由平行四边形的性质得出AB=CD,BC=AD,OB=OD,再根据线段垂直平分线的性质得出BE=DE,由△CDE的周长得出BC+CD=6cm,即可求出平行四边形ABCD的周长.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故答案为:20.【点评】本题考查了平行四边形的性质、线段垂直平分线的性质以及三角形、平行四边形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.14.(2016秋•海宁市校级月考)如图,▱ABCD中,∠ABC=60°,E、F分别在CD 和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是.【分析】根据直角三角形性质求出CE长,利用勾股定理即可求出AB的长.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵EF=3,∴CE==2,∴AB=,故答案为:.【点评】本题考查了平行线性质,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的应用,此题综合性比较强.15.(2016•武汉)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为36°.【分析】由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°;故答案为:36°.【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.16.(2016•常德)如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=55°.【分析】由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE=55°即可.【解答】解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD=∠BAE=55°;故答案为:55°.【点评】本题考查了平行四边形的性质、折叠的性质;由平行四边形和折叠的性质得出∠D1AE=∠BAD是解决问题的关键.17.(2016•东营)如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC 上,以AC为对角线的平行四边形ADCE中,DE的最小值是4.【分析】首先证明BC∥AE,当DE⊥BC时,DE最短,只要证明四边形ABDE是矩形即可解决问题.【解答】解:∵四边形ADCE是平行四边形,∴BC∥AE,∴当DE⊥BC时,DE最短,此时∵∠B=90°,∴AB⊥BC,∴DE∥AB,∴四边形ABDE是平行四边形,∵∠B=90°,∴四边形ABDE是矩形,∴DE=AB=4,∴DE的最小值为4.故答案为4.【点评】本题考查平行四边形的性质、垂线段最短等知识,解题的关键是找到DE的位置,学会利用垂线段最短解决问题,属于中考常考题型.18.(2016•镇江二模)如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是9.【分析】延长EF交BC于点H,可知EF,FH,FG、EG分别为△BDC、△ABC、△BDC和△ACD的中位线,由三角形中位线定理结合条件可求得EF+FG+EG,可求得答案.【解答】解:连接AE,并延长交CD于K,∵AB∥CD,∴∠BAE=∠DKE,∠ABD=∠EDK,∵点E、F、G分别是BD、AC、DC的中点.∴BE=DE,在△AEB和△KED中,,∴△AEB≌△KED(AAS),∴DK=AB,AE=EK,EF为△ACK的中位线,∴EF=CK=(DC﹣DK)=(DC﹣AB),∵EG为△BCD的中位线,∴EG=BC,又FG为△ACD的中位线,∴FG=AD,∴EG+GF=(AD+BC),∵两腰和是12,即AD+BC=12,两底差是6,即DC﹣AB=6,∴EG+GF=6,FE=3,∴△EFG的周长是6+3=9.故答案为:9.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.二.解答题19.(2017•江都区一模)如图,四边形ABCD为平行四边形,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:△ABE≌△FCE;(2)过点D作DG⊥AE于点G,H为DG的中点.判断CH与DG的位置关系,并说明理由.【分析】(1)根据平行四边形的性质,利用ASA即可证明.(2)结论:CH⊥DG.利用三角形中位线定理,证明CH∥AF即可解决问题.【解答】解:(1)∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∴∠B=∠ECF∵E为BC的中点,∴BE=CE,在△ABE和△FCE中,∴△ABE≌△FCE.(2)结论:CH⊥DG.理由如下:∵△ABE≌△FCE,∴AB=CF,∵AB=CD,∴DC=CF,∵H为DG的中点,∴CH∥FG∵DG⊥AE,∴CH⊥DG.【点评】本题考查平行四边形的性质、全等三角形的判定和性质,三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(2017•大石桥市校级一模)在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.(1)如图①,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;(2)如图②,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.【分析】(1)首先作∠GAH=∠EAB交GE于点H,易证得△ABG≌△AEH,又由∠EAB=60°,可证得△AGH是等边三角形,继而证得结论;(2)首先作∠GAH=∠EAB交GE于点H,易证得△ABG≌△AEH,继而可得△AGH是等腰直角三角形,则可求得答案.【解答】(1)证明:如图①,作∠GAH=∠EAB交GE于点H.∴∠GAB=∠HAE.∵∠EAB=∠EGB,∠APE=∠BPG,∴∠ABG=∠AEH.在△ABG和△AEH中,,∴△ABG≌△AEH(ASA).∴BG=EH,AG=AH.∵∠GAH=∠EAB=60°,∴△AGH是等边三角形.∴AG=HG.∴EG=AG+BG;(2)EG=AG﹣BG.如图②,作∠GAH=∠EAB交GE于点H.∴∠GAB=∠HAE.∵∠EGB=∠EAB=90°,∴∠ABG+∠AEG=∠AEG+∠AEH=180°.∴∠ABG=∠AEH.∵又AB=AE,∴△ABG≌△AEH.∴BG=EH,AG=AH.∵∠GAH=∠EAB=90°,∴△AGH是等腰直角三角形.∴AG=HG.∴EG=AG﹣BG.【点评】此题考查了平行四边形的性质、矩形的性质、全等三角形的判定与性质、等边三角形的判定与性质、等腰直角三角形的性质以及三角函数等知识.此题综合性较强,难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.21.(2017•南雄市校级模拟)如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H.(1)求证:△BEF≌△CEH;(2)求DE的长.【分析】(1)由平行四边形的性质得出AB∥CD,由AAS证明△BEF≌△CEH即可;(2)由平行四边形的性质得出CD=AB=3,BC=AD=4,AB∥CD,由平行线的性质得出∠HCE=∠B=60°,证出EF⊥DH,由含30°角的直角三角形的性质得出CH=CE=1,求出EH=CG=,DH=CD+CH=4,由勾股定理求出DE即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∵EF⊥AB∴EF⊥CD,∴∠BFE=∠CHE=90°,∵E是BC的中点,∴BE=CE,在△BEF和△CEH中,,∴△BEF≌△CEH(AAS);(2)解:∵EF⊥AB,∠ABC=60°,BE=BC=AD=2.∴BF=1,EF=.∵△BEF≌△CEH,∴BF=CH=1,EF=EH=,DH=4,∵∠CHE=90°,∴DE2=EH2+DH2.∴DE==.【点评】本题考查了平行四边形的性质、含30°角的直角三角形的性质、勾股定理;熟练掌握平行四边形的性质,由含30°角的直角三角形的性质求出CG是解决问题的关键.22.(2017•赤壁市一模)如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.(1)求证:DE=CF;(2)若AB=4,AD=6,∠B=60°,求DE的长.【分析】(1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),得出四边形CEDF是平行四边形,即可得出结论;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.又∵F是AD的中点,∴FD=AD.∵CE=BC,∴FD=CE.又∵FD∥CE,∴四边形CEDF是平行四边形.∴DE=CF.(2)解:过D作DG⊥CE于点G.如图所示:∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB=4,BC=AD=6.∴∠DCE=∠B=60°.在Rt△CDG中,∠DGC=90°,∴∠CDG=30°,∴CG=CD=2.由勾股定理,得DG==2.∵CE=BC=3,∴GE=1.在Rt△DEG中,∠DGE=90°,∴DE==.【点评】本题考查了平行四边形的判定与性质、勾股定理、直角三角形的性质.熟练掌握平行四边形的判定与性质是解决问题的关键.23.(2017•正定县一模)如图,在四边形ABCD中,AD∥BC,AD=5cm,BC=9cm.M 是CD的中点,P是BC边上的一动点(P与B,C不重合),连接PM并延长交AD 的延长线于Q.(1)试说明△PCM≌△QDM.(2)当点P在点B、C之间运动到什么位置时,四边形ABPQ是平行四边形?并说明理由.【分析】(1)要证明△PCM≌△QDM,可以根据两个三角形全等四个定理,即AAS、ASA、SAS、SSS中的ASA.利用∠QDM=∠PCM,DM=CM,∠DMQ=∠CMP 即可得出;(2)得出P在B、C之间运动的位置,根据一组对边平行且相等的四边形是平行四边形得出.【解答】(1)证明:∵AD∥BC∴∠QDM=∠PCM∵M是CD的中点,∴DM=CM,∵∠DMQ=∠CMP,在△PCM和△QDM中∵,∴△PCM≌△QDM(ASA).(2)解:当四边形ABPQ是平行四边形时,PB=AQ,∵BC﹣CP=AD+QD,∴9﹣CP=5+CP,∴CP=(9﹣5)÷2=2.∴当PC=2时,四边形ABPQ是平行四边形.【点评】本题考查了全等三角形、平行四边形的判定,熟练掌握平行四边形的性质和判定方法是解题的关键.24.(2017•无锡一模)如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.【分析】(1)根据已知和角平分线的定义证明∠ADE=∠BAD,得到DE∥AB,又AE∥BD,根据两组对边分别平行的四边形是平行四边形证明即可;(2)设BF=x,根据勾股定理求出x的值,再根据勾股定理求出AF,根据AC=2AF 得到答案【解答】(1)证明:∵AE⊥AC,BD垂直平分AC,∴AE∥BD,∵∠ADE=∠BAD,∴DE∥AB,∴四边形ABDE是平行四边形;(2)解:∵DA平分∠BDE,∴∠BAD=∠ADB,∴AB=BD=5,设BF=x,则52﹣x2=62﹣(5﹣x)2,解得,x=,∴AF==,∴AC=2AF=.【点评】本题考查的是平行四边形的判定和性质,掌握平行四边形的判定定理和性质定理以及勾股定理是解题的关键.25.(2017•通州区一模)如图,四边形ABCD的对角线AC⊥BD于点E,AB=BC,F为四边形ABCD外一点,且∠FCA=90°,∠CBF=∠DCB.(1)求证:四边形DBFC是平行四边形;(2)如果BC平分∠DBF,∠F=45°,BD=2,求AC的长.【分析】(1)由这一天就证出BD∥CF,CD∥BF,即可得出四边形DBFC是平行四边形;(2)由平行四边形的性质得出CF=BD=,由等腰三角形的性质得出AE=CE,作CM⊥BF于F,则CE=CM,证出△CFM是等腰直角三角形,由勾股定理得出CM=CF=,得出AE=CE=,即可得出AC的长.【解答】(1)证明:∵AC⊥BD,∠FCA=90°,∠CBF=∠DCB.∴BD∥CF,CD∥BF,∴四边形DBFC是平行四边形;(2)解:∵四边形DBFC是平行四边形,∴CF=BD=,∵AB=BC,AC⊥BD,∴AE=CE,作CM⊥BF于F,∵BC平分∠DBF,∴CE=CM,∵∠F=45°,∴△CFM是等腰直角三角形,∴CM=CF=,∴AE=CE=,【点评】本题考查了平行四边形的判定与性质、等腰三角形的性质、等腰直角三角形的判定与性质、勾股定理;熟练掌握平行四边形的判定与性质是解决问题的关键.26.(2017春•海州区校级期中)如图,在▱ABCD中,DE是∠ADC的平分线,交BC于点E.(1)试说明CD=CE;(2)若BE=CE,∠B=80°,求∠DAE的度数.【分析】(1)由平行四边形的性质可得AD∥BC,由平行线的性质得出和角平分线得出∠DEC=∠CDE,根据等角对等边可得CD=CE;(2)证出BE=AB,由等腰三角形的性质和三角形内角和定理求出∠AEB,再由平行线的性质即可得出∠DAE=∠AEB=50°.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∴∠ADE=∠DEC,∵DE是∠ADC的平分线,∴∠ADE=∠CDE,∴∠DEC=∠CDE,∴CD=CE;(2)解:∵BE=CE,CD=CE,∴BE=CD,∴BE=AB,∴∠AEB=∠BAE=(180°﹣∠B)=50°,∵AD∥BC,∴∠DAE=∠AEB=50°.【点评】此题主要考查了平行四边形的性质、等腰三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形是等腰三角形是解题的关键.27.(2017春•高安市期中)已知:如图,在▱ABCD中,对角线AC,BD交于点O,AB⊥AC,AB=1,BC=.(1)求平行四边形ABCD的面积S□ABCD;(2)求对角线BD的长.【分析】(1)先求出AC,根据平行四边形的面积=底×高,进行计算即可.(2)在Rt△ABO中求出BO,继而可得BD的长.【解答】解:(1)在Rt△ABC中,AC==2,则S□ABCD=AB×AC=2.(2)∵四边形ABCD是平行四边形,∴AO=OC,BO=OD,∴AO=1,在Rt△ABO中,BO==,∴BD=2.【点评】本题考查了平行四边形的性质,解答本题的关键是掌握平行四边形的对角线互相平分的性质.28.(2017春•岳池县期中)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,动点P从点A出发,以1cm/s的速度向点D运动;动点Q 从点C同时出发,以3cm/s的速度向点B运动.规定当其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t,求:(1)当t为何值时,PQ∥CD?(2)当t为何值时,PQ=CD?【分析】(1)由当PQ∥CD时,四边形PQCD为平行四边形,可得方程24﹣t=3t,解此方程即可求得答案;(2)根据PQ=CD,一种情况是:四边形PQCD为平行四边形,可得方程24﹣t=3t,一种情况是:四边形PQCD为等腰梯形,可求得当QC﹣PD=QC﹣EF=QF+EC=2CE,即3t=(24﹣t)+4时,四边形PQCD为等腰梯形,解此方程即可求得答案.【解答】解:根据题意得:PA=t,CQ=3t,则PD=AD﹣PA=24﹣t,(1)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,∴PQ∥CD,即24﹣t=3t,解得:t=6,即当t=6时,PQ∥CD;(2)若要PQ=CD,分为两种情况:①当四边形PQCD为平行四边形时,即PD=CQ24﹣t=3t,解得:t=6,②当四边形PQCD为等腰梯形时,即CQ=PD+2(BC﹣AD)3t=24﹣t+4解得:t=7,即当t=6或t=7时,PQ=CD.【点评】此题考查了直角梯形的性质、平行四边形的判定、等腰梯形的判定以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.29.(2017春•个旧市期中)如图,在四边形ABCD中,AD∥BC,∠B﹦90°,AB ﹦8cm,AD﹦24cm,BC﹦26cm,点p从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t s.(1)t为何值时,四边形PQCD为平行四边形?(2)t为何值时,四边形PQCD为等腰梯形?(等腰梯形的两腰相等,两底角相等)【分析】(1)根据题意可得PA=t,CQ=3t,则PD=AD﹣PA=24﹣t,当PD=CQ时,四边形PQCD为平行四边形,可得方程24﹣t=3t,解此方程即可求得答案;(2)过点D作DE⊥BC,则CE=BC﹣AD=2cm当CQ﹣PD=4时,四边形PQCD是等腰梯形.即3t﹣(24﹣t)=4,求出t的值即可.【解答】解:(1)运动时间为ts.AP=t,PD=24﹣t,CQ=3t,∵经过ts四边形PQCD平行四边形∴PD=CQ,即24﹣t=3t,解得t=6.当t=6s时,四边形PQCD是平行四边形;(2)如图,过点D作DE⊥BC,则CE=BC﹣AD=2cm∵当CQ﹣PD=4时,四边形PQCD是等腰梯形.即3t﹣(24﹣t)=4,∴t=7.。

初中数学八年级下册平行四边形练习题(含解析)

初中数学八年级下册平行四边形练习题(含解析)

易错专题03平行四边形(含解析)共39小题一.直角三角形斜边上的中线(共3小题)1.如图,在△ABC中,△B=50°,CD△AB于点D,△BCD和△BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则△ACD+△CED=()A.125°B.145°C.175°D.190°2.两个连续整数a、b满足a<√11<b,则以a、b为边的直角三角形斜边上的中线为.3.如图(1),已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)求证:MN△DE.(2)连接DM,ME,猜想△A与△DME之间的关系,并证明猜想.(3)当△A变为钝角时,如图(2),上述(1)(2)中的结论是否都成立,若结论成立,直接回答,不需证明;若结论不成立,说明理由.二.三角形中位线定理(共5小题)4.如图,在△ABC中,D,E分别是AB,AC的中点,AC=10,F是DE上一点,连接AF,CF,DF=1.若△AFC=90°,则BC的长度为()A.10B.12C.14D.165.如图,在△ABC中,△ABC=90°,BC=5.若DE是△ABC的中位线,延长DE交△ABC 的外角△ACM的平分线于点F,且DF=9,则CE的长为.6.已知:如图,AD、CE分别是△ABC的角平分线和中线,AD△CE,AD=CE=4,则BC 的长等于.7.如图,在△ABC中,AB=6cm,AC=10cm,AD平分△BAC,BD△AD于点D,BD的延长线交AC于点F,E为BC的中点,求DE的长.8.(1)如图1,BD、CE分别是△ABC的外角平分线,过点A作AF△BD,AG△CE,垂足分别是F、G,连接FG.求证:FG=12(AB+BC+AC).[提示:分别延长AF、AG与直线BC相交](2)如图2,若BD、CE分别是△ABC的内角平分线,过点A作AF△BD,AG△CE,垂足分别是F、G,连接FG.线段FG与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.三.平行四边形的性质(共4小题)9.下列平行四边形中,其图中阴影部分面积不一定等于平行四边形面积一半的是( )A .B .C .D .10.平行四边形的一条边长是12cm ,那么它的两条对角线的长可能是( )A .8cm 和16cmB .10cm 和16cmC .8cm 和14cmD .8cm 和12cm11.如图,平行四边形ABCD 中,点O 为对角线AC 、BD 的交点,点E 为CD 边的中点,连接OE ,如果AB =4,OE =3,则平行四边形ABCD 的周长为 .12.在平面直角坐标系中,已知△OBAC ,其中点O (0,0)、A (﹣6,﹣8)、B (m ,43m ﹣4),则△OBAC 的面积为 .四.平行四边形的判定(共2小题)13.在下列给出的条件中,不能判定四边形ABCD 是平行四边形的是 ( )A .AB △CD ,AB =CDB .AB △CD ,△A =△C C .AB =BC ,AD =DC D .AD △BC ,△A +△D =180°14.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出 个平行四边形.五.平行四边形的判定与性质(共4小题)15.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.对角线相等四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行且相等的四边形是平行四边形16.如图,已知△XOY=60°,点A在边OX上,OA=2.过点A作AC△OY于点C,以AC 为一边在△XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD△OY交OX于点D,作PE△OX交OY于点E.设OD=a,OE=b,则a+2b 的取值范围是.17.如图,在四边形ABCD中,△A=△B=△BCD=90°,AB=DC=4,AD=BC=8.延长BC到E,使CE=3,连接DE,由直角三角形的性质可知DE=5.动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P运动的时间为t秒.(t>0)(1)当t=3时,BP=;(2)当t=时,点P运动到△B的角平分线上;(3)请用含t的代数式表示△ABP的面积S;(4)当0<t<6时,直接写出点P到四边形ABED相邻两边距离相等时t的值.18.如图,BD 是△ABCD 的对角线,△ABD 的平分线BE 交AD 于点E ,△CDB 的平分线DF 交BC 于点F .求证:四边形DEBF 为平行四边形.六.菱形的性质(共3小题)19.如图,已知菱形ABCD 的边长为6,点M 是对角线AC 上的一动点,且△ABC =120°,则MA +MB +MD 的最小值是( )A .3√3B .3+3√3C .6+√3D .6√320.如图,在菱形ABCD 中,△A =100°,E ,F 分别是边AB 和BC 的中点,EP △CD 于点P ,则△FPC =( )A .35°B .45°C .50°D .55°21.如图,菱形ABCD 的顶点B 、C 在x 轴上(B 在C 的左侧),顶点A 、D 在x 轴上方,对角线BD 的长是23√10,点E (﹣2,0)为BC 的中点,点P 在菱形ABCD 的边上运动,点F 在y 轴的正半轴上,且△EFO =30°,当点F 到EP 所在直线的距离取得最大值时,点P 恰好落在AB 的中点处,则菱形ABCD 的边长等于 .七.菱形的判定(共2小题)22.如图,在△ABC中,AB=AC,△B=60°,△F AC、△ECA是△ABC的两个外角,AD平分△F AC,CD平分△ECA.求证:四边形ABCD是菱形.23.如图,在△ABC中,△ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当△B满足什么条件时,四边形ACEF是菱形,并说明理由.八.菱形的判定与性质(共4小题)24.如图,AD是△ABC的角平分线,DE△AC交AB于点E,DF△AB交AC于点F,且AD 交EF于点O,则△AOF为()A.60°B.90°C.100°D.110°25.如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2=.26.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:△BAC=△DAC,△AFD=△CFE.(2)若AB△CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使得△EFD=△BCD,并说明理由.27.如图,已知点E,F分别是△ABCD的边BC,AD上的中点,且△BAC=90°.(1)求证:四边形AECF是菱形;(2)若△B=30°,BC=10,求菱形AECF面积.九.矩形的性质(共4小题)28.下列结论中,菱形具有而矩形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直29.如图,四边形ABCD为矩形,H、F分别为AD、BC边的中点,四边形EFGH为矩形,E、G分别在AB、CD边上,则图中四个直角三角形面积之和与矩形EFGH的面积之比为.30.如图,在矩形ABCD中,点E在AD上,且BE=BC.(1)EC平分△BED吗?证明你的结论.(2)若AB=1,△ABE=45°,求BC的长.31.已知:如图,在△ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG△DB 交CB的延长线于G.(1)求证:△ADE△△CBF;(2)若四边形AGBD是矩形,则四边形BEDF是什么特殊四边形?请证明你的结论一十.矩形的判定(共1小题)32.下列各句判定矩形的说法(1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有四个角是直角的四边形是矩形;(5)四个角都相等的四边形是矩形;(6)对角线相等,且有一个角是直角的四边形是矩形;是正确有几个()A.2个B.3个C.4个D.5个一十一.矩形的判定与性质(共1小题)33.如图,直角三角形ABC中,△ACB=90°,AC=3,BC=4,点D是AB上的一个动点,过点D作DE△AC于E点,DF△BC于F点,连接EF,则线段EF长的最小值为.一十二.正方形的性质(共4小题)34.如图,以边长为4的正方形ABCD 的中心O 为端点,引两条相互垂直的射线,分别与正方形的边交于E 、F 两点,则线段EF 的最小值为( )A .2B .4C .√2D .2√235.将n 个边长都为1cm 的正方形按如图所示的方法摆放,点A 1,A 2,…,A n 分别是正方形对角线的交点,则n 个正方形重叠形成的重叠部分的面积和为( )A .14 cm 2B .n−14cm 2C .n 4 cm 2D .(14)n cm 2 36.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为( )A .6B .7C .8D .937.如图,正方形ABCD 的边长为5,E 是AD 边上一点,AE =3,动点P 由点D 向点C 运动,速度为每秒2个单位长度,EP 的垂直平分线交AB 于M ,交CD 于N .设运动时间为t 秒,当PM △BC 时,t 的值为( )A .√2B .2C .√3D .32 一十三.正方形的判定(共1小题)38.下列说法正确的是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .对角线相等的四边形是矩形C .每一条对角线都平分一组对角的四边形是菱形D .对角线互相垂直且相等的四边形是正方形一十四.正方形的判定与性质(共1小题)39.如图,正方形ABCD 的对角线交于点O ,以AD 为边向外作Rt△ADE ,△AED =90°,连接OE ,DE =6,OE =8√2,则另一直角边AE 的长为 .易错专题03平行四边形(含解析)共39小题参考答案与试题解析一.直角三角形斜边上的中线(共3小题)1.如图,在△ABC中,△B=50°,CD△AB于点D,△BCD和△BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则△ACD+△CED=()A.125°B.145°C.175°D.190°【分析】根据直角三角形的斜边上的中线的性质,即可得到△CDF是等边三角形,进而得到△ACD=60°,根据△BCD和△BDC的角平分线相交于点E,即可得出△CED=115°,即可得到△ACD+△CED=60°+115°=175°.【解答】解:△CD△AB,F为边AC的中点,△DF=12AC=CF,又△CD=CF,△CD=DF=CF,△△CDF是等边三角形,△△ACD=60°,△△B=50°,△△BCD+△BDC=130°,△△BCD和△BDC的角平分线相交于点E,△△DCE+△CDE=65°,△△CED=115°,△△ACD+△CED=60°+115°=175°,故选:C.【点评】本题主要考查了直角三角形的斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半.2.两个连续整数a 、b 满足a <√11<b ,则以a 、b 为边的直角三角形斜边上的中线为 2.5或2 .【分析】求出√11的范围,得出a =3,b =4,有两种情况:△当b 是斜边时,求出12b 即可;△当ab 为直角边时,由勾股定理求出斜边,再求出12斜边即可. 【解答】解:△3<√11<4,△a =3,b =4,△当b 是斜边时,以a 、b 为边的直角三角形斜边上的中线是2;△当ab 为直角边时,由勾股定理得:斜边=√32+42=5,△以a 、b 为边的直角三角形斜边上的中线是2.5;故答案为:2.5或2.【点评】本题考查了直角三角形斜边上的中线,勾股定理,实数大小比较等知识点的应用,主要应用直角三角形斜边上的中线等于斜边的一半.3.如图(1),已知锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,M 、N 分别是线段BC 、DE 的中点.(1)求证:MN △DE .(2)连接DM ,ME ,猜想△A 与△DME 之间的关系,并证明猜想.(3)当△A 变为钝角时,如图(2),上述(1)(2)中的结论是否都成立,若结论成立,直接回答,不需证明;若结论不成立,说明理由.【分析】(1)连接DM ,ME ,根据直角三角形的性质得到DM =12BC ,ME =12BC ,得到DM =ME ,根据等腰直角三角形的性质证明;(2)根据三角形内角和定理、等腰三角形的性质计算;(3)仿照(2)的计算过程解答.【解答】(1)证明:如图(1),连接DM,ME,△CD、BE分别是AB、AC边上的高,M是BC的中点,△DM=12BC,ME=12BC,△DM=ME,又△N为DE中点,△MN△DE;(2)在△ABC中,△ABC+△ACB=180°﹣△A,△DM=ME=BM=MC,△△BMD+△CME=(180°﹣2△ABC)+(180°﹣2△ACB),=360°﹣2(△ABC+△ACB),=360°﹣2(180°﹣△A),=2△A,△△DME=180°﹣2△A;(3)结论(1)成立,结论(2)不成立,理由如下:连接DM,ME,在△ABC中,△ABC+△ACB=180°﹣△BAC,△DM=ME=BM=MC,△△BME+△CMD=2△ACB+2△ABC,=2(180°﹣△BAC),=360°﹣2△BAC,△△DME=180°﹣(360°﹣2△BAC),=2△BAC﹣180°.【点评】本题考查的是直角三角形的性质、三角形内角和定理,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.二.三角形中位线定理(共5小题)4.如图,在△ABC中,D,E分别是AB,AC的中点,AC=10,F是DE上一点,连接AF,CF,DF=1.若△AFC=90°,则BC的长度为()A.10B.12C.14D.16【分析】先证明EF=5,继而得到DE=6;再证明DE为△ABC的中位线,即可解决问题.【解答】解:如图,△△AFC=90°,E是AC的中点,△Rt△ACF中,EF=12AC=12×10=5,△DE=1+5=6;△D,E分别是AB,AC的中点,△DE为△ABC的中位线,△BC=2DE=12,故选:B.【点评】本题主要考查了三角形的中位线定理、直角三角形的性质等几何知识点及其应用问题;牢固掌握三角形的中位线定理、直角三角形的性质等几何知识点是解题的基础和关键.5.如图,在△ABC中,△ABC=90°,BC=5.若DE是△ABC的中位线,延长DE交△ABC 的外角△ACM的平分线于点F,且DF=9,则CE的长为 6.5.【分析】依据三角形中位线定理,可得DE=12BC=2.5,DE△BC,再根据DE△BC,CF平分△ACM,可得△ECF=△FCM=△EFC,进而得出CE=FE=6.5.【解答】解:△BC=5,DE是△ABC的中位线,△DE=12BC=2.5,DE△BC,又△DF=9,△EF=9﹣2.5=6.5,△DE△BC,CF平分△ACM,△△ECF=△FCM=△EFC,△CE=FE=6.5,故答案为:6.5.【点评】本题主要考查了三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.6.已知:如图,AD、CE分别是△ABC的角平分线和中线,AD△CE,AD=CE=4,则BC 的长等于3√5.【分析】过E作EF△AD,交BC于F,依据EF是△ABD的中位线,可得EF=12AD=2,进而得到Rt△CEF中,CF=√EF2+CE2=√22+42=2√5,依据G是CE的中点,GD△EF,可得D是CF的中点,进而得到BC的长.【解答】解:如图,过E作EF△AD,交BC于F,则△CEF=90°,△E是AB的中点,△F是BD的中点,△EF是△ABD的中位线,△EF=12AD=2,△Rt△CEF中,CF=√EF2+CE2=√22+42=2√5,△AD平分△BAC,AD△CE,△△ACE=△AEC,△AC=AE,△G是CE的中点,△GD△EF,△D是CF的中点,△CD=DF=BF=√5,△BC=3√5,故答案为:3√5.【点评】本题主要考查了三角形中位线定理以及平行线分线段成比例定理的运用,解决问题的关键掌握:三角形的中位线平行于第三边,并且等于第三边的一半.7.如图,在△ABC中,AB=6cm,AC=10cm,AD平分△BAC,BD△AD于点D,BD的延长线交AC于点F,E为BC的中点,求DE的长.【分析】根据等腰三角形的判定和性质定理得到AB =AF =6,BD =DF ,求出CF ,根据三角形中位线定理计算即可.【解答】解:△AD 平分△BAC ,BD △AD ,△AB =AF =6,BD =DF ,△CF =AC ﹣AF =4,△BD =DF ,E 为BC 的中点,△DE =12CF =2.【点评】本题考查的是等腰三角形的判定和性质、三角形中位线定理的应用,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8.(1)如图1,BD 、CE 分别是△ABC 的外角平分线,过点A 作AF △BD ,AG △CE ,垂足分别是F 、G ,连接FG .求证:FG =12(AB +BC +AC ).[提示:分别延长AF 、AG 与直线BC 相交](2)如图2,若BD 、CE 分别是△ABC 的内角平分线,过点A 作AF △BD ,AG △CE ,垂足分别是F 、G ,连接FG .线段FG 与△ABC 的三边又有怎样的数量关系?写出你的猜想,并给予证明.【分析】(1)利用全等三角形的判定定理ASA 证得△ABF △△MBF ,然后由全等三角形的对应边相等进一步推出MB =AB ,AF =MF ,同理CN =AC ,AG =NG ,由此可以证明FG 为△AMN 的中位线,然后利用中位线定理求得FG =12(AB +BC +AC );(2)延长AF 、AG ,与直线BC 相交于M 、N ,与(1)类似可以证出答案.【解答】解:(1)如图1,△AF △BD ,△ABF =△MBF ,△△BAF =△BMF ,在△ABF 和△MBF 中,{∠AFB =∠MFB BF =BF ∠ABF =∠MBF ,△△ABF△△MBF(ASA),△MB=AB,△AF=MF,同理:CN=AC,AG=NG,△FG是△AMN的中位线,△FG=12MN,=12(MB+BC+CN),=12(AB+BC+AC).(2)猜想:FG=12(AB+AC﹣BC),证明:如图2,延长AG、AF,与直线BC相交于M、N,△由(1)中证明过程类似证△ABF△△NBF,△NB=AB,AF=NF,同理CM=AC,AG=MG,△FG=12MN,△MN=2FG,△BC=BN+CM﹣MN=AB+AC﹣2FG,△FG=12(AB+AC﹣BC).【点评】本题主要考查了三角形的中位线定理,三角形的内角和定理,等腰三角形的性质和判定等知识点,解此题的关键是作辅助线转化成三角形的中位线.三.平行四边形的性质(共4小题)9.下列平行四边形中,其图中阴影部分面积不一定等于平行四边形面积一半的是()A.B.C.D.【分析】利用平行四边形的性质,根据三角形的面积和平行四边形的面积逐个进行判断,即可求解.【解答】解:A、因为高相等,三个底是平行四边形的底,根据三角形和平行四边形的面积可知,阴影部分的面积等于平行四边形的面积的一半,正确;B、因为两阴影部分的底与平行四边形的底相等,高之和正好等于平行四边形的高,所以阴影部分的面积等于平行四边形的面积的一半,正确;C、根据平行四边形的对称性,可知小阴影部分的面积等于小空白部分的面积,所以阴影部分的面积等于平行四边形的面积的一半,正确;D、无法判断阴影部分面积是否等于平行四边形面积一半,错误.故选:D.【点评】本题考查了平行四边形的性质,并利用性质结合三角形的面积公式进行判断,找出选项.10.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm 【分析】根据平行四边形的性质中,两条对角线的一半和一边构成三角形,利用三角形三边关系判断可知.【解答】解:A、4+8=12,不能构成三角形,不满足条件,故A选项错误;B、5+8>12,能构成三角形,满足条件,故B选项正确.C、4+7<12,不能构成三角形,不满足条件,故C选项错误;D、4+6<12,不能构成三角形,不满足条件,故D选项错误.故选:B.【点评】主要考查了平行四边形中两条对角线的一半和一边构成三角形的性质.并结合三角形的性质解题.11.如图,平行四边形ABCD中,点O为对角线AC、BD的交点,点E为CD边的中点,连接OE ,如果AB =4,OE =3,则平行四边形ABCD 的周长为 20 .【分析】平行四边形中对角线互相平分,则点O 是BD 的中点,而E 是CD 边中点,根据三角形两边中点的连线平行于第三边且等于第三边的一半可得AD =6,进一步即可求得△ABCD 的周长.【解答】解:△四边形ABCD 是平行四边形,△OB =OD ,OA =OC ,又△点E 是CD 边中点△AD =2OE ,即AD =6,△△ABCD 的周长为(6+4)×2=20.故答案为:20.【点评】此题主要考查了平行四边形的性质及三角形中位线定理,三角形中位线性质应用比较广泛;三角形的中位线平行于第三边,并且等于第三边的一半.12.在平面直角坐标系中,已知△OBAC ,其中点O (0,0)、A (﹣6,﹣8)、B (m ,43m ﹣4),则△OBAC 的面积为 24 .【分析】由A (﹣6,﹣8)可得AO 的解析式为y =43x ,由B (m ,43m ﹣4),可得点B 在直线y =43x ﹣4上,设直线y =43x ﹣4与y 轴交于点D ,则AO △BD ,D (0,﹣4),依据S △ABO =S △ADO =12×4×6=12,即可得到S 平行四边形ABOC =2×12=24. 【解答】解:如图所示,由A (﹣6,﹣8)可得,AO 的解析式为y =43x ,又△B (m ,43m ﹣4), △点B 在直线y =43x ﹣4上,设直线y =43x ﹣4与y 轴交于点D ,则AO △BD ,D (0,﹣4),△S △ABO =S △ADO =12×4×6=12,△S 平行四边形ABOC =2×12=24,故答案为:24.【点评】本题主要考查了平行四边形的性质,解题时注意:平行四边形是中心对称图形.四.平行四边形的判定(共2小题)13.在下列给出的条件中,不能判定四边形ABCD是平行四边形的是()A.AB△CD,AB=CD B.AB△CD,△A=△CC.AB=BC,AD=DC D.AD△BC,△A+△D=180°【分析】根据平行四边形的判定即可判断A、C;根据平行线的性质和已知求出△B=△D,根据平行四边形的判定判断B即可;根据平行线的判定推出AD△BC,根据平行四边形的判定判断D即可.【解答】解:A,△AB△CD,AB=CD,△四边形ABCD是平行四边形,故本选项错误;B、△AB△CD,△△A+△D=180°,△B+△C=180°,△△A=△C,△△B=△D,△四边形ABCD是平行四边形,故本选项错误;C、根据AB=BC,AD=DC,不能判断四边形是平行四边形,故本选项正确;D、△△A+△D=180°,△AB△CD,△AD△BC,△四边形ABCD是平行四边形,故本选项错误;故选:C.【点评】本题考查了对平行线的性质和判定,平行四边形的判定等知识点的应用,关键是推出证明是四边形是平行四边形的条件,题型较好,是一道容易出错的题目.14.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出15个平行四边形.【分析】根据全等三角形的性质及平行四边形的判定,可找出现15个平行四边形.【解答】解:两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出15个平行四边形.故答案为:15.【点评】此题主要考查学生对平行四边形的判定的掌握情况和读图能力,注意找图过程中,要做到不重不漏.五.平行四边形的判定与性质(共4小题)15.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.对角线相等四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行且相等的四边形是平行四边形【分析】根据矩形、菱形、正方形、平行四边形的判定定理判断即可.【解答】解:A、有一组邻边相等的平行四边形是菱形,本选项说法错误;B、对角线相等平行四边形是矩形,本选项说法错误;C、对角线垂直且相等的平行四边形是正方形,本选项说法错误;D、一组对边平行且相等的四边形是平行四边形,本选项说法正确;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16.如图,已知△XOY=60°,点A在边OX上,OA=2.过点A作AC△OY于点C,以AC为一边在△XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD △OY 交OX 于点D ,作PE △OX 交OY 于点E .设OD =a ,OE =b ,则a +2b 的取值范围是 2≤a +2b ≤5 .【分析】作辅助线,构建30度的直角三角形,先证明四边形EODP 是平行四边形,得EP =OD =a ,在Rt△HEP 中,△EPH =30°,可得EH 的长,计算a +2b =2OH ,确认OH 最大和最小值的位置,可得结论.【解答】解:如图1,过P 作PH △OY 交于点H ,△PD △OY ,PE △OX ,△四边形EODP 是平行四边形,△HEP =△XOY =60°,△EP =OD =a ,Rt△HEP 中,△EPH =30°,△EH =12EP =12a ,△a +2b =2(12a +b )=2(EH +EO )=2OH , 当P 在AC 边上时,H 与C 重合,此时OH 的最小值=OC =12OA =1,即a +2b 的最小值是2;当P 在点B 时,如图2,OC =1,AC =BC =√3,Rt△CHP 中,△HCP =30°,△PH =√32,CH =32,则OH 的最大值是:OC +CH =1+32=52,即(a +2b )的最大值是5,△2≤a+2b≤5.【点评】本题考查了等边三角形的性质、直角三角形30度角的性质、平行四边形的判定和性质,有难度,掌握确认a+2b的最值就是确认OH最值的范围.17.如图,在四边形ABCD中,△A=△B=△BCD=90°,AB=DC=4,AD=BC=8.延长BC到E,使CE=3,连接DE,由直角三角形的性质可知DE=5.动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P运动的时间为t秒.(t>0)(1)当t=3时,BP=6;(2)当t=8时,点P运动到△B的角平分线上;(3)请用含t的代数式表示△ABP的面积S;(4)当0<t<6时,直接写出点P到四边形ABED相邻两边距离相等时t的值.【分析】(1)根据题意可得BP=2t,进而可得结果;(2)根据△A=△B=△BCD=90°,可得四边形ABCD是矩形,根据角平分线定义可得AF=AB=4,得DF=4,进而可得t的值;(3)根据题意分3种情况讨论:△当点P在BC上运动时,△当点P在CD上运动时,△当点P在AD上运动时,分别用含t的代数式表示△ABP的面积S即可;(4)当0<t<6时,点P在BC、CD边上运动,根据题意分情况讨论:△当点P在BC 上,点P到AD边的距离为4,点P到AB边的距离也为4,△当点P在BC上,点P到AD边的距离为4,点P到DE边的距离也为4,△当点P在CD上,点P到AB边的距离为8,但点P到AB、BC边的距离都小于8,进而可得当t=2s或t=3s时,点P到四边形ABED相邻两边距离相等.【解答】解:(1)BP=2t=2×3=6,故答案为:6;(2)作△B的角平分线交AD于F,△△ABF=△FBC,△△A=△ABC=△BCD=90°,△四边形ABCD是矩形,△AD△BC,△△AFB=△FBC,△△ABF=△AFB,△AF=AB=4,△DF=AD﹣AF=8﹣4=4,△BC+CD+DF=8+4+4=16,△2t=16,解得t=8.△当t=8时,点P运动到△ABC的角平分线上;故答案为:8;(3)根据题意分3种情况讨论:△当点P在BC上运动时,S △ABP =12×BP ×AB =12×2t ×4=4t ;(0<t <4); △当点P 在CD 上运动时,S △ABP =12×AB ×BC =12×4×8=16;(4≤t ≤6); △当点P 在AD 上运动时,S △ABP =12×AB ×AP =12×4×(20﹣2t )=﹣4t +40;(6<t ≤10);(4)当0<t <6时,点P 在BC 、CD 边上运动,根据题意分情况讨论:△当点P 在BC 上,点P 到四边形ABED 相邻两边距离相等,△点P 到AD 边的距离为4,△点P 到AB 边的距离也为4,即BP =4,△2t =4,解得t =2s ;△当点P 在BC 上,点P 到AD 边的距离为4,△点P 到DE 边的距离也为4,△PE =DE =5,△PC =PE ﹣CE =2,△8﹣2t =2,解得t =3s ;△当点P 在CD 上,如图,过点P 作PH △DE 于点H ,点P 到DE 、BE 边的距离相等,即PC =PH ,△PC =2t ﹣8,△S △DCE =S △DPE +S △PCE ,△12×3×4=12×5×PH +12×3×PC , △12=8PH ,△12=8(2t﹣8),解得t=19 4.综上所述:t=2或t=3或t=194时,点P到四边形ABED相邻两边距离相等.【点评】本题考查了平行四边形的性质、角平分线定义、三角形的面积、全等三角形的判定与性质,解决本题的关键是综合运用以上知识.18.如图,BD是△ABCD的对角线,△ABD的平分线BE交AD于点E,△CDB的平分线DF交BC于点F.求证:四边形DEBF为平行四边形.【分析】根据平行四边形性质和角平分线定义求出△FDB=△EBD,推出DF△BE,根据平行四边形的判定判断即可.【解答】解:△四边形ABCD是平行四边形,△AD△BC,AB△CD,△△CDB=△ABD,△DF平分△CDB,BE平分△ABD,△△FDB=12△CDB,△EBD=12△ABD,△△FDB=△EBD,△DF△BE,△AD△BC,即ED△BF,△四边形DEBF是平行四边形.【点评】本题考查了角平分线定义,平行四边形的性质和判定等的应用,关键是推出DF△BE,主要检查学生能否运用定理进行推理,题型较好,难度适中.六.菱形的性质(共3小题)19.如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且△ABC=120°,则MA+MB+MD的最小值是()A.3√3B.3+3√3C.6+√3D.6√3【分析】过点D作DE△AB于点E,连接BD,根据垂线段最短,此时DE最短,即MA+MB+MD最小,根据菱形性质和等边三角形的性质即可求出DE的长,进而可得结论.【解答】解:如图,过点D作DE△AB于点E,连接BD,△菱形ABCD中,△ABC=120°,△△DAB=60°,AD=AB=DC=BC,△△ADB是等边三角形,△△MAE=30°,△AM=2ME,△MD=MB,△MA+MB+MD=2ME+2DM=2DE,根据垂线段最短,此时DE最短,即MA+MB+MD最小,△菱形ABCD的边长为6,△DE=√AD2−AE2=√62−32=3√3,△2DE=6√3.△MA+MB+MD的最小值是6√3.故选:D.【点评】本题考查了菱形的性质,等边三角形的判定与性质,解决本题的关键是掌握菱形的性质,等边三角形的判定与性质.20.如图,在菱形ABCD中,△A=100°,E,F分别是边AB和BC的中点,EP△CD于点P,则△FPC=()A.35°B.45°C.50°D.55°【分析】延长EF交DC的延长线于H点.证明△BEF△△CHF,得EF=FH.在Rt△PEH 中,利用直角三角形斜边上的中线等于斜边的一半,得△FPC=△FHP=△BEF.在等腰△BEF中易求△BEF的度数.【解答】解:延长EF交DC的延长线于H点.△在菱形ABCD中,△A=100°,E,F分别是边AB和BC的中点,△△B=80°,BE=BF.△△BEF=(180°﹣80°)÷2=50°.△AB△DC,△△FHC=△BEF=50°.又△BF=FC,△B=△FCH,△△BEF△△CHF.△EF=FH.△EP△DC,△△EPH=90°.△FP=FH,则△FPC=△FHP=△BEF=50°.故选:C.【点评】此题考查了菱形的性质、全等三角形的判定方法、直角三角形斜边上的中线等于斜边的一半等知识点,综合性较强.如何作出辅助线是难点.21.如图,菱形ABCD的顶点B、C在x轴上(B在C的左侧),顶点A、D在x轴上方,对角线BD 的长是23√10,点E (﹣2,0)为BC 的中点,点P 在菱形ABCD 的边上运动,点F 在y 轴的正半轴上,且△EFO =30°,当点F 到EP 所在直线的距离取得最大值时,点P 恰好落在AB 的中点处,则菱形ABCD 的边长等于 2√103 .【分析】如图1中,当点P 是AB 的中点时,作FG △PE 于G ,连接EF .首先说明点G 与点E 重合时,FG 的值最大,如图2中,当点G 与点E 重合时,连接AC 交BD 于H ,PE 交BD 于J .设BC =2a .利用相似三角形的性质构建方程求解即可.【解答】解:如图1中,当点P 是AB 的中点时,作FG △PE 于G ,连接EF ,△E (﹣2,0),△EFO =30°,△OE =2,EF =4,△△FGE =90°,△FG ≤EF ,△当点G 与E 重合时,FG 的值最大.如图2中,当点G 与点E 重合时,连接AC 交BD 于H ,PE 交BD 于J .设BC =2a .△P A =PB ,BE =EC =a ,△PE △AC ,BJ =JH ,△四边形ABCD 是菱形,△AC △BD ,BH =DH =√103,BJ =√106,△PE △BD ,△△BJE =△EOF =△PEF =90°,△△EBJ =△FEO ,△△BJE △△EOF ,△BE EF =BJ EO ,△a 4=√1062, △a =√103,△BC =2a =2√103. 故答案为:2√103. 【点评】本题考查菱形的性质,坐标与图形的性质,相似三角形的判定和性质,垂线段最短等知识,解题的关键是理解题意,学会添加常用辅助线,构造相似三角形解决问题,属于中考选择题中的压轴题.七.菱形的判定(共2小题)22.如图,在△ABC 中,AB =AC ,△B =60°,△F AC 、△ECA 是△ABC 的两个外角,AD 平分△F AC ,CD 平分△ECA .求证:四边形ABCD是菱形.【分析】根据平行四边形的判定方法得出四边形ABCD是平行四边形,再利用菱形的判定得出.【解答】证明:△△B=60°,AB=AC,△△ABC为等边三角形,△AB=BC,△△ACB=60°,△F AC=△ACE=120°,△△BAD=△BCD=120°,△△B=△D=60°,△四边形ABCD是平行四边形,△AB=BC,△平行四边形ABCD是菱形.【点评】此题主要考查了平行四边形的判定以及菱形的判定和角平分线的性质等内容,注意菱形与平行四边形的区别,得出AB=BC是解决问题的关键.23.如图,在△ABC中,△ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当△B满足什么条件时,四边形ACEF是菱形,并说明理由.。

八年级数学第十八章《平行四边形》全章基础测试题含答案

八年级数学第十八章《平行四边形》全章基础测试题含答案

八年级数学第十八章《平行四边形》全章基础测试题测试1 平行四边形的性质(一)学习要求1.理解平行四边形的概念,掌握平行四边形的性质定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.课堂学习检测一、填空题1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD 记作__________。

2.平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______;平行四边形的对角线______;平行四边形的面积=底边长×______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.6题图7.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.7题图8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.二、选择题9.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成....立.的是( ).(A)AF=EF(B)AB=EF(C)AE=AF(D)AF=BE10.如图,下列推理不正确的是( ).(A)∵AB∥CD∴∠ABC+∠C=180°(B)∵∠1=∠2 ∴AD∥BC(C)∵AD∥BC∴∠3=∠4(D)∵∠A+∠ADC=180°∴AB∥CD11.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).(A)5 (B)6(C)8 (D)12综合、运用、诊断一、解答题12.已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.13.如图,在□ABCD中,∠ABC的平分线交CD于点E,∠ADE的平分线交AB于点F,试判断AF与CE是否相等,并说明理由.14.已知:如图,E、F分别为□ABCD的对边AB、CD的中点.(1)求证:DE=FB;(2)若DE、CB的延长线交于G点,求证:CB=BG.15.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF.求证:(1)BE=DF;(2)BE∥DF.拓展、探究、思考16.已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x 轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.17.某市要在一块□ABCD的空地上建造一个四边形花园,要求花园所占面积是□ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在□ABCD的四条边上,请你设计两种方案:方案(1):如图1所示,两个出入口E、F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;图1方案(2):如图2所示,一个出入口M已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.图2测试2 平行四边形的性质(二)学习要求能综合运用所学的平行四边形的概念和性质解决简单的几何问题.课堂学习检测一、填空题1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______.2.□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是______.3.平行四边形周长是40cm,则每条对角线长不能超过______cm.4.如图,在□ABCD中,AE、AF分别垂直于BC、CD,垂足为E、F,若∠EAF=30°,AB=6,AD=10,则CD=______;AB与CD的距离为______;AD与BC的距离为______;∠D=______.5.□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=______,BC=______.6.在□ABCD中,AC与BD交于O,若OA=3x,AC=4x+12,则OC的长为______.7.在□ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=______,AB=______.8.在□ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则□ABCD的面积为______.二、选择题9.有下列说法:①平行四边形具有四边形的所有性质;②平行四边形是中心对称图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是( ).(A)①②④(B)①③④(C)①②③(D)①②③④10.平行四边形一边长12cm,那么它的两条对角线的长度可能是( ).(A)8cm和16cm (B)10cm和16cm (C)8cm和14cm (D)8cm和12cm 11.以不共线的三点A、B、C为顶点的平行四边形共有( )个.(A)1 (B)2 (C)3 (D)无数12.在□ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别是AB和CD的五等分点,点B1、B2、和D1、D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则□ABCD的面积为( )(A)2(B)53 (C)35 (D)1513.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )……(1) (2) (3)(A)3n (B)3n (n +1) (C)6n(D)6n (n +1)综合、运用、诊断 一、解答题14.已知:如图,在□ABCD 中,从顶点D 向AB 作垂线,垂足为E ,且E 是AB 的中点,已知□ABCD 的周长为8.6cm ,△ABD 的周长为6cm ,求AB 、BC 的长.15.已知:如图,在□ABCD 中,CE ⊥AB 于E ,CF ⊥AD 于F ,∠2=30°,求∠1、∠3的度数.拓展、探究、思考16.已知:如图,O 为□ABCD 的对角线AC 的串点,过点O 作一条直线分别与AB 、CD 交于点M 、N ,点E 、F 在直线MN 上,且OE =OF .(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.17.已知:如图,在□ABCD中,点E在AC上,AE=2EC,点F在AB上,BF=2AF,若△BEF的面积为2cm2,求□ABCD的面积.测试3 平行四边形的判定(一)学习要求初步掌握平行四边形的判定定理.课堂学习检测一、填空题1.平行四边形的判定方法有:从边的条件有:①两组对边__________的四边形是平行四边形;②两组对边__________的四边形是平行四边形;③一组对边__________的四边形是平行四边形.从对角线的条件有:④两条对角线__________的四边形是平行四边形.从角的条件有:⑤两组对角______的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形______是平行四边形.(填“一定”或“不一定”)2.四边形ABCD中,若∠A+∠B=180°,∠C+∠D=180°,则这个四边形______(填“是”、“不是”或“不一定是”)平行四边形.3.一个四边形的边长依次为a、b、c、d,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形为______.4.四边形ABCD中,AC、BD为对角线,AC、BD相交于点O,BO=4,CO=6,当AO=______,DO=______时,这个四边形是平行四边形.5.如图,四边形ABCD中,当∠1=∠2,且______∥______时,这个四边形是平行四边形.二、选择题6.下列命题中,正确的是( ).(A)两组角相等的四边形是平行四边形(B)一组对边相等,两条对角线相等的四边形是平行四边形(C)一条对角线平分另一条对角线的四边形是平行四边形(D)两组对边分别相等的四边形是平行四边形7.已知:园边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是( ).(A)①②(B)①③④(C)②③(D)②③④8.能确定平行四边形的大小和形状的条件是( ).(A)已知平行四边形的两邻边(B)已知平行四边形的相邻两角(C)已知平行四边形的两对角线(D)已知平行四边形的一边、一对角线和周长综合、运用、诊断一、解答题9.如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.10.如图,在□ABCD中,E、F分别是边AD、BC上的点,已知AE=CF,AF与BE相交于点G,CE与DF相交于点H,求证:四边形EGFH是平行四边形.11.如图,在□ABCD中,E、F分别在边BA、DC的延长线上,已知AE=CF,P、Q分别是DE和FB的中点,求证:四边形EQFP是平行四边形.12.如图,在□ABCD中,E、F分别在DA、BC的延长线上,已知AE=CF,F A与BE的延长线相交于点R,EC与DF的延长线相交于点S,求证:四边形RESF是平行四边形.13.已知:如图,四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD交于点O,求证:O是BD的中点.14.已知:如图,△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE 的平行线与线段ED的延长线交于点F,连结AE、CF.求证:CF∥AE.拓展、探究、思考15.已知:如图,△ABC,D是AB的中点,E是AC上一点,EF∥AB,DF∥BE.(1)猜想DF与AE的关系;(2)证明你的猜想.16.用两个全等的不等边三角形ABC和三角形A′B′C′(如图),可以拼成几个不同的四边形?其中有几个是平行四边形?请分别画出相应的图形加以说明.测试4 平行四边形的判定(二)学习要求进一步掌握平行四边形的判定方法.课堂学习检测一、填空题1.如图,□ABCD中,CE=DF,则四边形ABEF是____________.1题图2.如图,□ABCD,EF∥AB,GH∥AD,MN∥AD,图中共有______个平行四边形.2题图3.已知三条线段长分别为10,14,20,以其中两条为对角线,其余一条为边可以画出______个平行四边形.4.已知三条线段长分别为7,15,20,以其中一条为对角线,另两条为邻边,可以画出______个平行四边形.5.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.5题图二、选择题6.能判定一个四边形是平行四边形的条件是( ).(A)一组对边平行,另一组对边相等(B)一组对边平行,一组对角互补(C)一组对角相等,一组邻角互补(D)一组对角相等,另一组对角互补7.能判定四边形ABCD是平行四边形的题设是( ).(A)AD=BC,AB∥CD(B)∠A=∠B,∠C=∠D(C)AB=BC,AD=DC(D)AB∥CD,CD=AB8.能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ).(A)1∶2∶3∶4 (B)1∶4∶2∶3(C)1∶2∶2∶1 (D)1∶2∶1∶29.如图,E、F分别是□ABCD的边AB、CD的中点,则图中平行四边形的个数共有( ).(A)2个(B)3个(C)4个(D)5个10.□ABCD的对角线的交点在坐标原点,且AD平行于x轴,若A点坐标为(-1,2),则C点的坐标为( ).(A)(1,-2) (B)(2,-1) (C)(1,-3) (D)(2,-3)11.如图,□ABCD中,对角线AC、BD交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有( ).(A)1条(B)2条(C)3条(D)4条综合、运用、诊断一、解答题12.已知:如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).(1)连结______;(2)猜想:______=______;(3)证明:13.如图,在△ABC中,EF为△ABC的中位线,D为BC边上一点(不与B、C重合),AD 与EF交于点O,连结EF、DF,要使四边形AEDF为平行四边形,需要添加条件______.(只添加一个条件)证明:14.已知:如图,△ABC中,AB=AC=10,D是BC边上的任意一点,分别作DF∥AB交AC 于F ,DE ∥AC 交AB 于E ,求DE +DF 的值.15.已知:如图,在等边△ABC 中,D 、F 分别为CB 、BA 上的点,且CD =BF ,以AD 为边作等边三角形ADE .求证:(1)△ACD ≌△CBF ;(2)四边形CDEF 为平行四边形.拓展、探究、思考16.若一次函数y =2x -1和反比例函数x k y 2=的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,利用图象求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.17.如图,点A (m ,m +1),B (m +3,m -1)在反比例函数xk y =的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.测试5 平行四边形的性质与判定学习要求能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.课堂学习检测一、填空题:1.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个平行四边形各角的度数分别为______.2.从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这个平行四边形的各内角的度数为______.3.在□ABCD中,BC=2AB,若E为BC的中点,则∠AED=______.4.在□ABCD中,如果一边长为8cm,一条对角线为6cm,则另一条对角线x的取值范围是______.5.□ABCD中,对角线AC、BD交于O,且AB=AC=2cm,若∠ABC=60°,则△OAB 的周长为______cm.6.如图,在□ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则□ABCD的面积是______.7.□ABCD中,对角线AC、BD交于点O,若∠BOC=120°AD=7,BD=10,则□ABCD 的面积为______.8.如图,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AF=5,2BG,则△CEF的周长为______.49.如图,BD为□ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△DMC______ S△BNC.(填“<”、“=”或“>”)综合、运用、诊断一、解答题10.已知:如图,△EFC中,A是EF边上一点,AB∥EC,AD∥FC,若∠EAD=∠F AB.AB =a,AD=b.(1)求证:△EFC是等腰三角形;(2)求EC+FC.11.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F.求证:BE=FC.12.已知:如图,在□ABCD中,E为AD的中点,CE、BA的延长线交于点F.若BC=2CD,求证:∠F=∠BCF.13.如图,已知:在□ABCD中,∠A=60°,E、F分别是AB、CD的中点,且AB=2AD.求证:BF∶BD=3∶3.拓展、探究、思考14.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一点,Q为坐标平面上一动点,P A垂直于x轴,QB垂直于y轴,垂足分别是A、B.图1(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.图2测试6 三角形的中位线学习要求理解三角形的中位线的概念,掌握三角形的中位线定理.课堂学习检测一、填空题:1.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线____________第三边,并且等于____________________________________.2.如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′C′的周长为_________.如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.3.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为______.二、解答题4.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.5.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.综合、运用、诊断6.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.7.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.8.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.拓展、探究、思考9.已知:如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB =5,AC=7,求ED.10.如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD 的中点.过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?测试7 矩形学习要求理解矩形的概念,掌握矩形的性质定理与判定定理.课堂学习检测一、填空题1.(1)矩形的定义:__________________的平行四边形叫做矩形.(2)矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.(3)矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.2.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10cm,则AB=______cm,BC=______cm.3.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.4.如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=______°。

八年级下册数学-平行四边形测试题(含答案)

八年级下册数学-平行四边形测试题(含答案)

平行四边形测试题一.选择题(共10小题)1.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.52.如图,在平行四边形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④B.②和③C.③和④D.②和④3.下列识别图形不正确的是()A.有一个角是直角的平行四边形是矩形B.有三个角是直角的四边形是矩形C.对角线相等的四边形是矩形D.对角线互相平分且相等的四边形是矩形4.正方形具有而菱形不具有的性质是()A.四边相等B.四角相等C.对角线互相平分D.对角线互相垂直5.如图,在平行四边形ABCD中,AD=7,CE平分∠BCD交AD边于点E,且AE=4,则AB的长为()A.4 B.3 C.2.5 D.26.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.2D.3第5题第6题第7题7.如图所示,在菱形ABCD中,∠A=60°,AB=2,E,F两点分别从A,B两点同时出发,以相同的速度分别向终点B,C移动,连接EF,在移动的过程中,EF的最小值为()A.1 B.C.D.8.已知▱ABCD,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是()A.∠DAE=∠BAE B.∠DEA=∠DAB C.DE=BE D.BC=DE 第8题第9题9.如图,在▱ABCD中,连接AC,若∠ABC=∠CAD=45°,AB=1,则BC的长是()A.B.1 C.D.210.如图,将腰长为4的等腰直角三角形放在直角坐标系中,顺次连接各边中点得到第1个三角形,再顺次连接各边中点得到第2个三角形……,如此操作下去,那么,第6个三角形的直角顶点坐标为()A.(﹣,)B.(﹣,)C.(﹣,)D.(﹣,)二.填空题(共5小题)11.在直角三角形ABC中,∠C=90°,CD是AB上的中线,如果CD=2,那么AB=.12.矩形的面积为12cm2,一边长为4cm,那么矩形的对角线长是cm.13.菱形的一个内角是120°,边长是5cm,则这个菱形较短的对角线长是cm.14.如图,AO=OC,BD=16cm,则当OB=cm时,四边形ABCD是平行四边形.第14题第15题15.如图,在长方形ABCD中,AF⊥BD,垂足为E,AF交BC于点F,连接DF.图中有全等三角形对,有面积相等但不全等的三角形对.三.解答题(共9小题)16.如图,在平行四边形ABCD中,点E、F分别是AD、BC的中点.求证:AF=CE.17.如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形.18.如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB⊥AF,BC=12,EF=6,求CD的长.19.如图,在▱ABCD中,对角线AC,BD相交于点O,AC+BD=32,AB=11,求:△OCD的周长为多少?20.探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC、BE交于点P.求证:∠ANC=∠ABE.应用:Q是线段BC的中点,若BC=6,则PQ=.21.如图,在平行四边形ABCD中,BE平分∠ABC交AD于点E,DF平分∠ADC交BC于F.求证:(1)△ABE≌△CDF;(2)若BD⊥EF,则判断四边形EBFD是什么特殊四边形,请证明你的结论.22.已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=°和∠AEB=°时,四边形ACED是正方形?请说明理由.23.如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB于E,交AC于F,求证:四边形AEDF是菱形.24.如图,已知菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形CODE是矩形;(2)若AB=5,AC=6,求四边形CODE的周长.参考答案与试题解析一.选择题(共10小题)1.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=BC=×8=4.故选:C.【点评】此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.2.如图,在平行四边形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④B.②和③C.③和④D.②和④【分析】由四边形ABCD是平行四边形,即可得①和③正确,然后利用排除法即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②与④不一定成立,∵当四边形是菱形时,②和④成立.故选:D.【点评】此题考查了平行四边形的性质.注意掌握平行四边形的对角线互相平分,对边平行是解此题的关键.3.下列识别图形不正确的是()A.有一个角是直角的平行四边形是矩形B.有三个角是直角的四边形是矩形C.对角线相等的四边形是矩形D.对角线互相平分且相等的四边形是矩形【分析】矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形,据此判定.【解答】解:A、有一个角是直角的平行四边形是矩形,正确;B、有三个角是直角的四边形是矩形,正确;C、对角线相等的四边形不一定是矩形,对角线相等的平行四边形才是矩形,错误;D、对角线互相平分且相等的四边形是矩形,正确.故选:C.【点评】本题主要考查的是矩形的判定定理.(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形,据此判定.4.正方形具有而菱形不具有的性质是()A.四边相等B.四角相等C.对角线互相平分 D.对角线互相垂直【分析】根据正方形的性质以及菱形的性质,即可作出判断.【解答】解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的四个角不一定相等,而正方形的四个角一定相等.故选:B.【点评】本题主要考查了正方形与菱形的性质,正确对特殊四边形的各种性质的理解记忆是解题的关键.5.如图,在平行四边形ABCD中,AD=7,CE平分∠BCD交AD边于点E,且AE=4,则AB的长为()A.4 B.3 C.D.2【分析】利用平行四边形的性质以及角平分线的性质得出∠DEC=∠DCE,进而得出DE=DC=AB求出即可.【解答】解:∵在▱ABCD中,CE平分∠BCD交AD于点E,∴∠DEC=∠ECB,∠DCE=∠BCE,AB=DC,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=7,AE=4,∴DE=DC=AB=3.故选:B.【点评】此题主要考查了平行四边形的性质以及角平分线的性质,得出DE=DC=AB 是解题关键.6.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD,垂足为E,AE=3,ED=3BE,则AB的值为()A.6 B.5 C.2 D.3【分析】由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易证得△OAB是等边三角形,继而求得∠BAE的度数,由△OAB是等边三角形,求出∠ADE的度数,又由AE=3,即可求得AB的长.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等边三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB==2,故选:C.【点评】此题考查了矩形的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质,结合已知条件和等边三角形的判定方法证明△OAB是等边三角形是解题关键.7.如图所示,在菱形ABCD中,∠A=60°,AB=2,E,F两点分别从A,B两点同时出发,以相同的速度分别向终点B,C移动,连接EF,在移动的过程中,EF的最小值为()A.1 B.C.D.【分析】连接DB,作DH⊥AB于H,如图,利用菱形的性质得AD=AB=BC=CD,则可判断△ABD和△BCD都是等边三角形,再证明△ADE≌△BDF得到∠2=∠1,DE=DF,接着判定△DEF为等边三角形,所以EF=DE,然后根据垂线段最短判断DE的最小值即可.【解答】解:连接DB,作DH⊥AB于H,如图,∵四边形ABCD为菱形,∴AD=AB=BC=CD,而∠A=60°,∴△ABD和△BCD都是等边三角形,∴∠ADB=∠DBC=60°,AD=BD,在Rt△ABH中,AH=1,AD=2,∴DH=,在△ADE和△BDF中,∴△ADE≌△BDF,∴∠2=∠1,DE=DF∴∠1+∠BDE=∠2+∠BDE=∠ADB=60°,∴△DEF为等边三角形,∴EF=DE,而当E点运动到H点时,DE的值最小,其最小值为,∴EF的最小值为.故选:D.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.也考查了等边三角形的判定与性质.8.已知▱ABCD,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是()A.∠DAE=∠BAE B.∠DEA=∠DAB C.DE=BE D.BC=DE【分析】根据角平分线的性质与平行四边形的性质对各选项进行逐一分析即可.【解答】解:A、由作法可知AE平分∠DAB,所以∠DAE=∠BAE,故本选项不符合题意;B、∵CD∥AB,∴∠DEA=∠BAE=∠DAB,故本选项不符合题意;C、无法证明DE=BE,故本选项符合题意;D、∵∠DAE=∠DEA,∴AD=DE,∵AD=BC,∴BC=DE,故本选项不符合题意.故选:C.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.9.如图,将腰长为4的等腰直角三角形放在直角坐标系中,顺次连接各边中点得到第1个三角形,再顺次连接各边中点得到第2个三角形……,如此操作下去,那么,第6个三角形的直角顶点坐标为()A.(﹣,)B.(﹣,)C.(﹣,)D.(﹣,)【分析】利用等腰直角三角形的性质分别求出第1个到第6个三角形的直角顶点坐标即可.【解答】解:由题意:第1个三角形的直角顶点坐标:(﹣2,2);第2个三角形的直角顶点坐标:(﹣1,1);第3个三角形的第1个三角形的直角顶点坐标:(﹣,);第4个三角形的直角顶点坐标:(﹣,);第5个三角形的直角顶点坐标:(﹣,);第6个三角形的直角顶点坐标:(﹣,);故选:A.【点评】本题考查三角形的中位线定理、等腰直角三角形的性质、中点三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型10.如图,在▱ABCD中,连接AC,若∠ABC=∠CAD=45°,AB=1,则BC的长是()A.B.1 C.D.2【分析】根据平行四边形的性质可得出CD=AB=1、∠D=∠CAD=45°,由等角对等边可得出AC=CD=1,再利用勾股定理即可求出BC的长度.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=1,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=1,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD==.故选:C.【点评】本题考查了平行四边形的性质、等腰三角形的性质以及勾股定理,根据平行四边形的性质结合∠ABC=∠CAD=45°,找出△ACD是等腰直角三角形是解题的关键.二.填空题(共5小题)11.在直角三角形ABC中,∠C=90°,CD是AB上的中线,如果CD=2,那么AB= 4.【分析】此题主要考查直角三角形的性质,可直接求得结果.【解答】解:∵直角三角形斜边上的中线等于斜边的一半,∴AB=2CD=4.【点评】熟记直角三角形斜边上的中线等于斜边的一半.12.矩形的面积为12cm2,一边长为4cm,那么矩形的对角线长是5cm.【分析】由矩形的面积与边长,可求另一边长,进而利用勾股定理求矩形的对角线.【解答】解:∵矩形的面积为12cm2,一边长为4cm,∴另一边为3cm,∴对角线长为=5cm.故答案为5.【点评】熟练掌握矩形的性质,能够求解一些简单的计算问题.13.菱形的一个内角是120°,边长是5cm,则这个菱形较短的对角线长是5 cm.【分析】根据菱形的性质及已知可得到较短的对角线与菱形的一组邻边组成一个等边三角形,从而得到较短的对角线等于其边长.【解答】解:菱形的一个内角是120°,其邻角为60°,根据菱形的性质得,60°角所对的对角线与菱形的两边构成的三角形是等边三角形,故这个菱形较短的对角线长是5cm.故答案为5.【点评】此题考查了菱形四边都相等的性质及等边三角形的判定,解决问题的关键是掌握菱形的四条边都相等.14.如图,AO=OC,BD=16cm,则当OB=8cm时,四边形ABCD是平行四边形.【分析】根据对角线互相平分的四边形是平行四边形可得OB=8cm时,四边形ABCD是平行四边形.【解答】解:当OB=8cm时,四边形ABCD是平行四边形,∵BD=16cm,OB=8cm,∴BO=DO,又∵AO=OC,∴四边形ABCD是平行四边形.故答案为:8.【点评】此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定方法.15.如图,在长方形ABCD中,AF⊥BD,垂足为E,AF交BC于点F,连接DF.图中有全等三角形1对,有面积相等但不全等的三角形4对.【分析】根据长方形的对边相等,每一个角都是直角可得AB=CD,AD=BC,∠BAD=∠C=90°,然后利用“边角边”证明Rt△ABD和Rt△CDB全等;根据等底等高的三角形面积相等解答.【解答】解:有,Rt△ABD≌Rt△CDB,理由:在长方形ABCD中,AB=CD,AD=BC,∠BAD=∠C=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(SAS);有,△BFD与△BFA,△ABD与△AFD,△ABE与△DFE,△AFD与△BCD面积相等,但不全等.故答案为:1;4.【点评】本题考查了全等三角形的判定,长方形的性质,以及等底等高的三角形的面积相等.三.解答题(共9小题)16.已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=45°和∠AEB=45°时,四边形ACED是正方形?请说明理由.【分析】(1)首先根据O是CD的中点,可得DO=CO,再证明∠D=∠OCE,然后可利用ASA定理证明△AOD≌△EOC;(2)当∠B=45°和∠AEB=45°时,四边形ACED是正方形;首先证明∠BAE=90°,然后证明AC是BE边上的中线,根据直角三角形的性质可得AC=CE,然后利用等腰三角形的性质证明AC⊥BE,可得结论.【解答】(1)证明:∵O是CD的中点,∴DO=CO,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO和△ECO中,∴△AOD≌△EOC(ASA);(2)解:当∠B=45°和∠AEB=45°时,四边形ACED是正方形,∵∠B=45°和∠AEB=45°,∴∠BAE=90°,∵△AOD≌△EOC,∴AO=EO,∵DO=CO,∴四边形ACED是平行四边形,∴AD=CE,∵四边形ABCD是平行四边形,∴AD=BC,∴BC=CE,∵∠BAE=90°,∴AC=CE,∴平行四边形ACED是菱形,∵∠B=∠AEB,BC=CE,∴AC⊥BE,∴四边形ACED是正方形.故答案为:45,45.【点评】此题主要考查了全等三角形的判定与性质,以及正方形的判定,关键是掌握邻边相等的矩形是正方形.17.如图,AD是△ABC的角平分线,过点D分别作AC和AB的平行线,交AB 于E,交AC于F,求证:四边形AEDF是菱形.【分析】由已知易得四边形AEDF是平行四边形,由角平分线和平行线的定义可得∠FAD=∠FDA,∴AF=DF,∴四边形AEDF是菱形;【解答】证明:∵AD是△ABC的角平分线,∴∠EAD=∠FAD,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EAD=∠ADF,∴∠FAD=∠FDA∴AF=DF,∴四边形AEDF是菱形.【点评】本题考查角平分线的定义,等腰三角形的判定和性质、平行四边形的判定和性质、菱形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.如图,已知菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.(1)求证:四边形CODE是矩形;(2)若AB=5,AC=6,求四边形CODE的周长.【分析】(1)如图,首先证明∠COD=90°;然后证明∠OCE=∠ODE=90°,即可解决问题.(2)如图,首先证明CO=AO=3,∠AOB=90°;运用勾股定理求出BO,即可解决问题.【解答】解:(1)如图,∵四边形ABCD为菱形,∴∠COD=90°;而CE∥BD,DE∥AC,∴∠OCE=∠ODE=90°,∴四边形CODE是矩形.(2)∵四边形ABCD为菱形,∴AO=OC=AC=3,OD=OB,∠AOB=90°,由勾股定理得:BO2=AB2﹣AO2,而AB=5,∴DO=BO=4,∴四边形CODE的周长=2(3+4)=14.【点评】该题主要考查了菱形的性质、矩形的性质、勾股定理等几何知识点及其应用问题;解题的关键是牢固掌握菱形的性质、矩形的性质,这是灵活运用解题的基础和关键.19.如图,在平行四边形ABCD中,点E、F分别是AD、BC的中点.求证:AF=CE.【分析】根据“平行四边形ABCD的对边平行且相等的性质”证得四边形AECF为平行四边形,然后由“平行四边形的对边相等”的性质证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC;又∵点E、F分别是AD、BC的中点,∴AE∥CF,AE=CF=AD,∴四边形AECF为平行四边形(对边平行且相等的四边形为平行四边形),∴AF=CE(平行四边形的对边相等).【点评】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.20.如图,在▱ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF 交BC于点F,连接BD.(1)求证:△ABE≌△CDF;(2)若AB=DB,求证:四边形DFBE是矩形.【分析】(1)根据平行四边形性质得出AB=CD,∠A=∠C.求出∠ABD=∠CDB.推出∠ABE=∠CDF,根据ASA推出全等即可;(2)根据全等得出AE=CF,根据平行四边形性质得出AD∥BC,AD=BC,推出DE ∥BF,DE=BF,得出四边形DFBE是平行四边形,根据等腰三角形性质得出∠DEB=90°,根据矩形的判定推出即可.【解答】证明:(1)在□ABCD中,AB=CD,∠A=∠C.∵AB∥CD,∴∠ABD=∠CDB.∵BE平分∠ABD,DF平分∠CDB,∴∠ABE=∠ABD,∠CDF=∠CDB.∴∠ABE=∠CDF.∵在△ABE和△CDF中,∴△ABE≌△CDF(ASA).(2)∵△ABE≌△CDF,∴AE=CF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴DE∥BF,DE=BF,∴四边形DFBE是平行四边形,∵AB=DB,BE平分∠ABD,∴BE⊥AD,即∠DEB=90°.∴平行四边形DFBE是矩形.【点评】本题考查了平行线的性质,平行四边形的性质和判定,矩形的判定,全等三角形的性质和判定,角平分线定义等知识点的应用,主要考查学生综合运用性质进行推理的能力.21.探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC、BE交于点P.求证:∠ANC=∠ABE.应用:Q是线段BC的中点,若BC=6,则PQ=3.【分析】根据正方形性质得出AN=AB,AC=AE,∠NAB=∠CAE=90°,求出∠NAC=∠BAE,证出△ANC≌△ABE即可.【解答】证明:∵四边形ANMB和ACDE是正方形,∴AN=AB,AC=AE,∠NAB=∠CAE=90°,∵∠NAC=∠NAB+∠BAC,∠BAE=∠BAC+∠CAE,∴∠NAC=∠BAE,在△ANC和△ABE中∴△ANC≌△ABE(SAS),∴∠ANC=∠ABE.解:∵四边形NABM是正方形,∴∠NAB=90°,∴∠ANC+∠AON=90°,∵∠BOP=∠AON,∠ANC=∠ABE,∴∠ABP+∠BOP=90°,∴∠BPC=∠ABP+∠BOP=90°,∵Q为BC中点,BC=6,∴PQ=BC=3,故答案为:3.【点评】本题考查了三角形的外角性质,直角三角形斜边上中线性质,垂直定义,全等三角形的性质和判定,正方形性质的应用,关键是推出△ANC≌△ABE和推出∠BPC=90°.22.如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB⊥AF,BC=12,EF=6,求CD的长.【分析】(1)由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE即可;(2)由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF,∵E是▱ABCD的边CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)∵△ADE≌△FCE,∴AE=EF=6,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=12,∴DE===6,∴CD=2DE=12.【点评】此题考查了平行四边形的性质、全等三角形的判定方法、勾股定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.23.如图,在▱ABCD中,对角线AC,BD相交于点O,AC+BD=32,AB=11,求:△OCD的周长为多少?【分析】根据平行四边形的对角线互相平分可得出OC+OD=(AC+BD),再由平行四边形的对边相等可得CD=AB=11,继而代入可求出△OCD的周长.【解答】解:∵ABCD是平行四边形,∴OC+OD=(AC+BD)=16,CD=AB=11,∴△OCD的周长=OC+OD+CD=16+11=27.【点评】此题考查了平行四边形的性质,属于基础题,解答本题的关键是熟练掌握平行四边形的对边相等及对角线互相平分的性质.24.如图,在平行四边形ABCD中,BE平分∠ABC交AD于点E,DF平分∠ADC 交BC于F.求证:(1)△ABE≌△CDF;(2)若BD⊥EF,则判断四边形EBFD是什么特殊四边形,请证明你的结论.【分析】(1)由平行四边形的性质得出AB=CD,AD=CB,AD∥CB,∠A=∠C,∠ABC=∠ADC,证出∠ABE=∠CDF,由ASA即可得出△ABE≌△CDF;(2)由全等三角形的性质得出AE=CF,得出DE=BF,证明四边形EBFD是平行四边形,由对角线互相垂直即可得出四边形EBFD是菱形.【解答】:∵四边形ABCD是平行四边形,∴AB=CD,AD=CB,AD∥CB,∠A=∠C,∠ABC=∠ADC,∵BE平分∠ABC,DF平分∠ADC,∴∠ABE=∠ABC,∠CDF=∠ADC,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)∴AE=CF,∴DE=BF,又∵DE∥BF,∴四边形EBFD是平行四边形.∵BD⊥EF,∴四边形EBFD是菱形.【点评】本题考查了菱形的判定、全等三角形的判定与性质、平行四边形的判定与性质;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.。

平行四边形练习题及答案

平行四边形练习题及答案

20.1平行四边形的判定一、选择题1 .四边形ABCD,从( 1)AB∥CD;( 2)AB=CD;( 3)BC∥AD;( 4) BC=AD这四个条件中任选两个,其中能使四边形ABCD是平行四边形的选法有()A .3种B.4种C.5种D.6种2.四边形的四条边长分别是a, b, c,d,其中 a,b 为一组对边边长, c,d?为另一组对边边长且满足a2+b2+c2+d2=2ab+2cd,则这个四边形是()A .任意四边形B.平行四边形C.对角线相等的四边形 D .对角线垂直的四边形3.下列说法正确的是()A.若一个四边形的一条对角线平分另一条对角线,则这个四边形是平行四边形B.对角线互相平分的四边形一定是平行四边形C.一组对边相等的四边形是平行四边形D.有两个角相等的四边形是平行四边形二、填空题4 .在□ ABCD中,点 E, F 分别是线段A D, BC上的两动点,点 E 从点 A 向 D 运动,点F从 C?向 B 运动,点 E 的速度边形.m与点F 的速度n 满足 _______关系时,四边形BFDE为平行四5.如图 1 所示,平行四边形ABCD中, E, F 分别为AD,BC边上的一点,连结EF,若再增加一个条件_______,就可以推出BE=DF.图1图26 .如图 2 所示, AO=OC,BD=16cm,则当 OB=_____cm时,四边形ABCD是平行四边形.三、解答题7.如图所示,四边形 ABCD中,对角线 BD=4,一边长 AB=5,其余各边长用含有未知数 x的代数式表示,且 AD⊥BD于点 D,BD⊥BC 于点 B.问:四边形 ABCD?是平行四边形吗?为什么?四、思考题8.如图所示,在□ABCD中, E,F 是对角线 AC上的两点,且 AF=CE,?则线段 DE?与 BF的长度相等吗?参考答案一、 1. B 点拨:可选择条件( 1)(3)或(2)( 4)或( 1)( 2)或( 3)(4).故有 4 种选法.2. B 点拨: a2+b 2+c2+d2=2ab+2cd 即( a-b)2+( c-d )2=0,22即( a-b ) =0 且( c-d )=0.所以 a=b, c=d,即两组对边分别相等,所以四边形为平行四边形.3. B 点拨:熟练掌握平行四边形的判定定理是解答这类题目的关键.二、 4.相等点拨:利用“一组对边平行且相等的四边形是平行四边形”来确定.5 .AE=CF 点拨:本题答案不惟一,只要增加的条件能使四边形EBFD?是平行四边形即可.6. 8 点拨:根据对角线互相平分的四边形为平行四边形来进行判别.三、 7.解:如图所示,四边形ABCD是平行四边形.理由如下:在 Rt△BCD 中,根据勾股定理,得BC2+BD 2=DC 2,222,解得 x=8.即( x-5 ) +4=( x-3 )所以 AD=11-8=3, BC=x-5=3, DC=x-3=8-3=5 ,所以 AD=BC, AB=DC.所以四边形ABCD是平行四边形.点拨:本题主要告诉的是线段的长度,故只要说明AD=BC, AB=DC即可,本题也可在Rt△ABD中求 x 的值.四、 8.解:线段DE与BF 的长度相等;连结BD交AC于O点,连结DF, BE,如图所示.在ABCD中, DO=OB, AO=OC,又因为 AF=EC,所以 AF-AO=CE-OC,即 OF=OE,所以四边形 DEBF是平行四边形,所以DE=BF.点拨:本题若用三角形全等,也可以解答,但过程复杂,学了平行四边形性质后,要学会应用.20.2矩形的判定一、选择题1.矩形具有而一般平行四边形不具有的性质是()A.对角相等 B .对边相等 C .对角线相等 D .对角线互相垂直2.下列叙述中能判定四边形是矩形的个数是()①对角线互相平分的四边形;②对角线相等的四边形;③对角线相等的平行四边形;④对角线互相平分且相等的四边形.A . 1B. 2C. 3D. 43.下列命题中,正确的是()A.有一个角是直角的四边形是矩形B.三个角是直角的多边形是矩形C.两条对角线互相垂直且相等的四边形是矩形 D .有三个角是直角的四边形是矩形二、填空题4.如图 1 所示,矩形 ABCD中的两条对角线相交于点O,∠ AOD=120°, AB=4cm,则矩形的对角线的长为 _____.D E CF OA B图 1图 25.若四边形 ABCD的对角线 AC, BD相等,且互相平分于点 O,则四边形 ABCD?是_____ 形,若∠ AOB=60°,那么AB:AC=______.6.如图 2 所示,已知矩形ABCD周长为 24cm,对角线交于点O,OE⊥DC 于点 E,于点 F, OF-OE=2cm,则 AB=______, BC=______.三、解答题7.如图所示,□ABCD的四个内角的平分线分别相交于E, F, G,H 两点,试说明四边形 EFGH是矩形.四、思考题8.如图所示,△ABC中, CE, CF分别平分∠ACB和它的邻补角∠ACD.AE⊥CE于 E,AF⊥CF 于F,直线EF分别交AB, AC于 M, N 两点,则四边形AECF是矩形吗?为什么?参考答案一、 1. C点拨:A与B都是平行四边形的性质,而D是一般矩形与平行四边形都不具有的性质.2 .B点拨:③是矩形的判定定理;④中对角线互相平分的四边形是平行四边形,对角线相等的平行四边形是矩形,故④能判定矩形,应选B.3. D 点拨:选项 D 是矩形的判定定理.二、 4. 8cm5.矩; 1: 2 点拨:利用对角线互相平分来判定此四边形是平行四边形,再根据对角线相等来判定此平行四边形是矩形.由矩形的对角线相等且互相平分,?可知△ AOB 是等腰三角形,又因为∠ AOB=60°,所以AB=AO=1AC.26 . 8cm; 4cm三、 7.解:在□ABCD中,因为AD∥BC,所以∠ DAB+∠CBA=180°,又因为∠ HAB= 1∠DAB,∠ HBA=1∠CBA.22所以∠ HAB+∠HBA=90°,所以∠ H=90°.所以四边形EFGH是矩形.点拨:由于“两直线平行,同旁内角的平分线互相垂直”,所以很容易求出四边形EFGH 的四个角都是直角,从而求得四边形EFGH是矩形.四、 8.解:四边形AECF是矩形.理由:因为CE平分∠ ACB, ?CF?平分∠ ACD, ?所以∠ ACE=1∠ACB,∠ ACF=1∠ACD.所以∠ ECF=1(∠ ACB+∠ACD)=90°.222又因为 AE⊥CE,AF⊥CF, ?所以∠ AEC=∠AFC=90°,所以四边形AECF是矩形.点拨: ?本题是通过证四边形中三个角为直角得出结论.还可以通过证其为平行四边形,再证有一个角为直角得出结论.20.3菱形的判定一、选择题1.下列四边形中不一定为菱形的是()A .对角线相等的平行四边形B.每条对角线平分一组对角的四边形C.对角线互相垂直的平行四边形D.用两个全等的等边三角形拼成的四边形2.四个点 A, B, C,D 在同一平面内,从① AB∥CD;② AB=CD;③ AC⊥BD;④ AD=BC;5 个条件中任选三个,能使四边形ABCD是菱形的选法有().A .1种B.2种C.3种D.4种3 .菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是()A.8cm和 4 3 cm B.4cm和83 cm C.8cm和83 cm D.4cm和43 cm二、填空题4.如图 1 所示,已知□ABCD,AC,BD相交于点O,?添加一个条件使平行四边形为菱形,添加的条件为 ________.(只写出符合要求的一个即可)图1图25.如图 2 所示, D, E,F 分别是△ ABC 的边 BC, CA,AB 上的点,且 DE∥AB,DF∥CA,要使四边形 AFDE是菱形,则要增加的条件是 ________.(只写出符合要求的一个即可)6 .菱形 ABCD的周长为48cm,∠ BAD:∠ ABC=1:?2,?则 BD=?_____,?菱形的面积是______.7.在菱形ABCD中, AB=4, AB 边上的高DE垂直平分边AB,则 BD=_____,AC=_____.三、解答题8.如图所示,在四边形ABCD中, AB∥CD, AB=CD=BC,四边形 ABCD是菱形吗? ?说明理由.四、思考题9.如图,矩形 ABCD的对角线相交于点 O,PD∥AC,PC∥BD, PD,PC相交于点 P,四边形 PCOD是菱形吗?试说明理由.参考答案一、 1. A点拨:本题用排除法作答.2. D 点拨:根据菱形的判定方法判断,注意不要漏解.3. C点拨:如图所示,若∠ ABC=60°,则△ ABC为等边三角形,?所以 AC=AB=1×32=8( cm), AO=1AC=4cm.42因为 AC⊥BD,在 Rt△AOB中,由勾股定理,得OB=2222AB OA8 4 =43(cm ?),所以 BD=2OB=8 3 cm.二、 4. AB=BC 点拨:还可添加AC⊥BD 或∠ ABD=∠CBD等.5.点 D 在∠ BAC的平分线上(或 AE=AF)26. 12cm; 723 cm点拨:如图所示,过 D 作 DE⊥AB 于 E,因为 AD∥BC, ?所以∠ BAD+∠ABC=180°.又因为∠ BAD:∠ ABC=1: 2,所以∠ BAD=60°,因为 AB=AD,所以△ ABD 是等边三角形,所以BD=AD=12cm.所以 AE=6cm.在 Rt△AED 中,由勾股定理,得 AE 2+ED 2=AD 2, 62+ED 2=12 2,所以 ED 2=108 ,所以 ED=6 3 cm,所以S菱形ABCD=12×6 3 =72 3 (cm2).7. 4;4 3点拨:如图所示,因为DE垂直平分 AB,又因为 DA=AB,所以 DA=DB=4.所以△ ABD 是等边三角形,所以∠ BAD=60°,由已知可得AE=2.在 Rt△AED中,2222222AE +DE=AD,即 2 +DE=4,所以 DE=12,所以 DE=2 3 ,因为1AC·BD=AB·DE,即1AC·4=4×2 3 ,所以AC=4 3 .22三、 8.解:四边形ABCD是菱形,因为四边形ABCD中, AB∥CD,且AB=CD,所以四边形ABCD是平行四边形,又因为AB=BC,所以ABCD是菱形.点拨:根据已知条件,不难得出四边形ABCD为平行四边形,又AB=BC,即一组邻边相等,由菱形的定义可以判别该四边形为菱形.四、 9.解:四边形PCOD是菱形.理由如下:因为 PD∥OC,PC∥OD, ?所以四边形P COD是平行四边形.又因为四边形ABCD是矩形,所以OC=OD,所以平行四边形PCOD是菱形.20.4正方形的判定一、选择题1.下列命题正确的是()A.两条对角线互相平分且相等的四边形是菱形B.两条对角线互相平分且垂直的四边形是矩形C.两条对角线互相垂直,平分且相等的四边形是正方形D.一组邻边相等的平行四边形是正方形2.矩形四条内角平分线能围成一个()A.平行四边形B.矩形C.菱形 D .正方形二、填空题3.已知点 D, E,F 分别是△ ABC 的边 AB, BC, CA的中点,连结 DE, EF, ?要使四边形ADEF是正方形,还需要添加条件_______.4.如图 1 所示,直线L 过正方形ABCD的顶点 B,点 A, C 到直线 L?的距离分别是 1 和2,则正方形ABCD的边长是 _______.图1图2图35.如图 2 所示,四边形 ABCD是正方形,点 E 在 BC的延长线上, BE=BD且 AB=2cm,则∠E的度数是 ______, BE 的长度为 ____.6.如图 3 所示,正方形 ABCD的边长为 4,E 为 BC上一点, BE=1,F?为 AB?上一点, AF=2,P 为 AC上一动点,则当 PF+PE取最小值时, PF+PE=______.三、解答题7.如图所示,在 Rt△ABC中, CF为∠ ACB的平分线, FD⊥AC 于 D,FE⊥BC于点 E,试说明四边形 CDFE是正方形.BEF四、思考题8.已知如图所示,在正方形 ABCD中, E,F 分别是(1) AF 与 DE相等吗?为什么?(2) AF 与 DE是否垂直?说明你的理由.C D A AB,BC边上的点,且 AE=BF,?请问:参考答案一、 1. C点拨:对角线互相平分的四边形是平行四边形,?对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形一定是正方形,故选 C.2. D 点拨:由题意画出图形后,利用“一组邻边相等的矩形是正方形”来判定.二、 3.△ ABC是等腰直角三角形且∠ BAC=90°点拨:还可添加△ ABC 是等腰三角形且四边形ADEF是矩形或∠ BAC=90°且四边形ADEF 是菱形等条件.4.5点拨:观察图形易得两直角三角形全等,由全等三角形的性质和勾股定理得正方形的边长为 2212=5.5. 67. 5°; 2 2 cm点拨:因为BD是正方形ABCD的对角线,所以∠ DBC=45°, AD=?AB=2cm.在 Rt△BAD中,由勾股定理得 AD 2+AB 2=BD 2,即 22+22=BD 2,所以 BD=2 2 cm,所以 BE=BD=2 2( cm),又因为BE=BD,所以∠ E=∠EDB= 1(180°- 45°)=67. 5°.26.17点拨:如图所示,作 F 关于AC的对称点G.连结EG交AC于P,则 PF+?PE=PG+PE=GE为最短.过 E 作 EH⊥AD.在 Rt△GHE中,HE=4,HG=AG-AH=AF-BE=1,所以 GE= 4212 = 17,?即 PF+PE= 17.三、 7.解:因为∠ FDC=∠FEC=∠BCD=90°,所以四边形CDFE是矩形,因为 CF?平分∠ ACB,FE⊥BC,FD⊥AC,所以FE=FD,所以矩形CDFE是正方形.点拨:本题先说明四边形是矩形,再求出有一组邻边相等,?还可以先说明其为菱形,再求其一个内角为90°.四、 8.解:( 1)相等.理由:在△ ADE 与△ BAF 中, AD=AB,∠ DAE=∠ABF=90°, AE=BF,所以△ ADE≌△ BAF( S. A. S.),所以 DE=AF.( 2) AF 与 DE垂直.理由:如图,设DE与 AF 相交于点O.因为△ ADE≌△ BAF, ?所以∠ AED=∠BFA.又因为∠ BFA+∠EAF=90°,所以∠ AEO+∠EAO=90°,所以∠ EOA=90°,所以DE⊥AF.20.5等腰梯形的判定1 A C 一、选择题.下列结论中,正确的是(.等腰梯形的两个底角相等.一组对边平行的四边形是梯形)BD.两个底角相等的梯形是等腰梯形.两条腰相等的梯形是等腰梯形2.如图所示,等腰梯形ABCD的对角线 AC,BD相交于点O,则图中全等三角形有()A.2对B.3对C.4对D.5对3.课外活动课上, ?老师让同学们制作了一个对角线互相垂直的等腰梯形形状的风筝,其面积为450cm,则两条对角线所用的竹条长度之和至少为()A. 30 2 cm B.30cm C.60cm D.60 2 cm二、填空题4.等腰梯形上底,下底和腰分别为 4,?10,?5,?则梯形的高为 _____,?对角线为 ______.5.一个等腰梯形的上底长为5cm,下底长为 12cm,一个底角为 60°,则它的腰长为____cm,周长为 ______cm.6.在四边形 ABCD中, AD∥BC,但 AD≠BC,若使它成为等腰梯形,则需要添加的条件是__________ (填一个正确的条件即可).三、解答题7.如图所示,AD是∠ BAC的平分线, DE∥AB, DE=AC,AD≠EC.求证: ?四边形 ADCE是等腰梯形.四、思考题8.如图所示,四边形ABCD中,有 AB=DC,∠ B=∠C,且AD<BC,四边形 ABCD是等腰梯形吗?为什么?参考答案一、 1. D点拨:梯形的底角分为上底上的角和下底上的角,?因此在等腰梯形的性质和判别方法中必须强调同一底上的两个内角(?指上底上的两个内角或下底上的两个内角),否则就会出现错误,因此A, B 选项都不正确,而 C 选项中漏掉了限制条件另外一组对边不平行,若平行该四边形就形成了平行四边形了,因此应选D.2. B点拨:因为△ ABC≌△ DCB,△ BAD≌△ CDA,△ AOB≌△ DOC,所以共有 3 对全等的三角形.3. C点拨:设该等腰梯形对角线长为Lcm,因为两条对角线互相垂直,12所以梯形面积为L =450,解得 L=30,2所以所用竹条长度之和至少为2L=2×30=60( cm).二、 4. 4:65点拨:如图所示,连结BD,过 A,D 分别作 AE⊥BC,DF⊥BC,垂足分别为E, F.易知△ BAE≌△ CDF,在四边形AEFD为矩形,所以BE=CF=3, AD=EF=4.222222在 Rt△CDF 中, FC+DF =CD ,即 3+DF =5,所以 DF=4 ,在 Rt △BFD 中, BF2+DF 2=BD 2,即 72+42=BD 2,所以 BD=65 .5. 7;31点拨:如图所示,过点D作 DE∥AB 交 BC于 E.因为ABED是平行四边形.所以 BE=AD=5(cm), AB=DE.又因为 AB=CD,所以 DE=?DC,又因为∠ C=60°,所以△ DEC 是等边三角形,所以 DE=DC=EC=7( cm),所以周长为5+?12+7+7=31(cm).6. AB=CD(或∠ A=∠D,或∠ B=∠C,或 AC=BD,或∠ A+∠C=180°,或∠B+∠D=180°)三、 7.证明:因为 AB∥ED,所以∠ BAD=∠ADE.又因为 AD是∠ BAC的平分线,所以∠ BAD=∠CAD,所以∠ CAD=∠ADE,所以 OA=OD.又因为AC=DE,所以 AC-OA=DE-OD即 OC=OE, ?所以∠ OCE=∠OEC,又因为∠ AOD=∠COE,所以∠ CAD=∠OCE.所以AD∥CE,而 AD≠CE,故四边形ADCE是梯形.又因为∠ CAD=∠ADE, AD=DA, AC=DE,所以△ DAC≌△ ADE,所以DC=?AE,所以四边形ADCE是等腰梯形.点拨:证明一个四边形是等腰梯形时,应先证其是梯形而后再证两腰相等或同一底上的两个角相等.四、 8.解:四边形 ABCD 是等腰梯形.理由:延长 BA , CD ,相交于点 E ,如图所示,由∠ B=∠C ,可得 EB=EC .又 AB=DC ,所以 EB-AB=EC-DC ,即 AE=DE ,所以∠ EAD=∠EDA .因为∠ E+∠EAD+∠EDA=180°,∠ E+∠B+∠C=180°,所以∠ EAD=∠B .故 AD ∥BC . ?又 AD<BC ,所以四边形 ABCD 是梯形.又 AB=DC ,所以四边形 ABCD 是等腰梯形.点拨:由题意可知, 只要推出 AD ∥BC ,再由 AD<BC 就可知四边形 ABCD 为梯形,再由 AB=DC ,即可求得此四边形是等腰梯形, 由∠ B=∠C 联想到延长 BA ,CD ,即可得到等腰三角形,从而使 AD ∥BC .华东师大版数学八年级(下)第 20 章平行四边形的判定测试(答卷时间: 90 分钟,全卷满分: 100 分)姓名得分____________一、认认真真选,沉着应战!(每小题 3 分,共30 分)1. 正方形具有菱形不一定具有的性质是 ( )(A )对角线互相垂直 ( B )对角线互相平分线平分一组对角( C )对角线相等( D )对角2. 如图 (1),EF 过矩形 ABCD 对角线的交点 O ,且分别交 AB 、CD 于 E 、 F ,那么阴影部分的面积是矩形 ABCD 的面积的( )(A )1(B )1(C )1(D )3A54310AD EFFEBDHCBC(1)(2)(3)3.在梯形ABCD 中, AD ∥ BC ,那么 A : B : C : D 可以等于()( A)4:5:6:3(B)6:5:4:3(C)6:4:5:3(D)3:4:5:64.如图 (2) ,平行四边形ABCD 中,DE ⊥ AB 于 E,DF⊥ BC 于 F,若ABCD 的周长为48,DE = 5, DF= 10,则ABCD 的面积等于()( A)87.5(B)80(C)75(D)72.55. A 、 B、 C、 D 在同一平面内,从① AB∥CD;② AB=CD;③ BC∥AD;④ BC=AD这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有()( A)3种(B)4种(C)5种(D)6种6.如图 (3),D、E、F分别是ABC 各边的中点,AH 是高,如果 ED5cm ,那么 HF的长为()( A ) 5cm(B)6cm(C)4cm(D)不能确定7.如图( 4):E 是边长为 1 的正方形 ABCD 的对角线 BD 上一点,且 BE = BC, P 为 CE 上任意一点, PQ⊥BC 于点 Q, PR⊥ BE 于点 R,则 PQ+PR 的值是()2132( A )(B)2(C)2(D)328.如图( 5),在梯形ABCD 中, AD ∥ BC , AB CD , C 60 ,BD平分ABC ,如果这个梯形的周长为30,则AB的长()( A)4( B)5(C)6( D)7A DA DERPB C( 5)B(4)Q C9.右图是一个利用四边形的不稳定性制作的菱形晾衣架.A B C已知其中每个菱形的边长为20cm,墙上悬挂晾衣架的两个铁钉 A 、 B 之间的距离为20 3 cm,则∠1等于()1)( A)90°(B) 60°(C) 45°(D) 30°10.某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发现以下规律:对于任意正数a、 b,都有 a+b ≥ 2ab 成立.某同学在做一个面积为3600cm2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来做对角线用的竹条至少需要准备xcm.则 x 的值是()(A) 1202(B) 602(C) 120(D) 60二、仔仔细细填,记录自信! ( 每小题 2 分,共 20 分)11.一个四边形四条边顺次是 a 、b 、c 、d ,且 a2b 2c 2d 22ac 2bd,则这个四边形是 _______________ .12.在四边形 ABCD 中,对角线 AC 、 BD 交于点 O ,从(1) ABCD ;( 2) AB ∥CD ;(3) OA OC ;(4) OB OD ;( 5) AC ⊥ BD ;( 6) AC 平分 BAD 这六个条件中, 选取三个推出四边形 ABCD 是菱形.如( 1)( 2)( 5) ABCD 是菱形,再写出符合要求的两个:ABCD是菱形;ABCD是菱形.13. 如图,已知直线l 把 ABCD 分成两部分,要使这两部分的面积相等,直线l 所在位置需满足的条件是____________________. (只需填上一个你认为合适的条件)lADBC(第 13 题)(第 16 题)14. 梯形的上底长为 6cm ,过上底的一顶点引一腰的平行线, 与下底相交, 所构成的三角形周长为 21cm ,那么梯形的周长为 _________ cm 。

八年级数学冀教版四边形典型习题

八年级数学冀教版四边形典型习题

1.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A.2 B.3 C.4 D.52.在平面直角坐标系中,如果mn>0,那么点(m,|n|)一定在()A.第一象限或第二象限B.第一象限或第三象限c.第二象限或第四象限D.第三象限或第四象限3,在国外留学的叔叔送给聪聪一个新奇的玩具--智能流氓兔.它的新奇之处在于若第一次向正南跳一下,第二次就掉头向正北跳两下,第三次又掉头向正南跳三下,…而且每一跳的距离为20厘米.当流氓兔位于原点处,第一次向正南(记y轴正半轴方向为正北),那么跳完第80次后,流氓兔所在位置的坐标为()A.(800,0)B.(0,-80)C.(0,800) D.(0,80)4.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2012的坐标为()A.(1008,0)B.(1006,0)C.(2,2012)5.在同一直角坐标系中,图形M是由图形N向右平移2个单位得到的,如果图形M上某点A的坐标是(4,-3),那么图形N上与点A对应的点A'的坐标是[ ] A.(4,-1)B.(4,-5)C.(2,-3)D.(6,-3)6.某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资(调进与调出的速度保持不变).该仓库库存物资m(吨)与时间t(小时)之间的函数关系如图所示.则这批物资从开始调进到全部调出所需要的时间是()A.8.4小时B.8.6小时C.8.8小时D.9小时7.万州某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地.假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从万州出发,逆水航行到朝天门,停留一段时间(卸货、装货、加燃料等),又顺水航行返回万州.若该轮船从万州出发后所用的时间为x(小时),轮船距万州的距离为y(千米),则下列各图形中,能够反映y 与x之间函数关系的大致图象是()A.B.C.D.8.甲乙两人以相同路线前往离学校12千米的地方参加植树活动,如图L甲L乙分别表示甲乙两人前往目的地所行驶的路程s(千米)随时间t(分钟)变化的函数图象,则每分钟甲比乙多行驶___千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平行四边形》测试题1
班级 姓名 学号
一、填空题(每小题3分,共30分)
1.已知□ABCD 中,∠B =70°,则∠A =______,∠C =______,∠D =______.
2.在□ABCD 中,AB =3,BC =4,则□ABCD 的周长等于_______.
3.已知菱形两邻角的比是1:2,周长是40cm ,则较短对角线长是________ cm
4.在□ABCD 中,∠A +∠C =270°,则∠B =______,∠C =______.
5.如右图:在平行四边形ABCD 中,AC 与BD 交于O ,则其中共有_____对全等的三角形.
6.如右图矩形的对角线相交成的角中,∠AOB=60°,这个角所对的边长为20cm ,则其对角线长为_______,矩形的面积为________.
7.一个菱形的两条对角线长分别为6cm ,8cm ,这个菱形的边长为_______ cm ,• 面积S=______ cm 2.
8.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为
9. 对角线 的四边形是矩形;
10.对角线 的四边形是菱形
二.选择题(每小题3分,共30分)
11.在□ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )
A .1:2:3:4
B .1:2:2:1
C .1:1:2:2
D .2:1:2:1 12.在□ABCD 中,∠A 、∠B 的度数之比为5:4,则∠C 等于( ) A .60° B .80°
C .100°
D .120° 13.□ABCD 的周长为36 cm ,AB =
75BC ,则较长边的长为( ) A .15 cm B .7.5 cm C .21 cm D .10.5 cm
14.两个全等的三角形(不等边)可拼成不同的平形四边形的个数是( )
(A )1 (B )2 (C )3 (D )4
15.不能判定四边形ABCD 为平行四边形的题设是( )
(A )AB=CD ,AD=BC (B )AB //CD (C )AB=CD ,AD ∥BC (D )AB ∥CD ,AD ∥BC
16.符合下列条件的四边形不一定是菱形的是( )
A 、四边都相等
B 、两组邻边分别相等
C 、对角线互相垂直平分
D 、两条对角线分别平分一组对角
17.下列说法错误的是( ).。

相关文档
最新文档