2011年山东地区中考数学模拟试题(八)

合集下载

山东潍坊2011年中考数学试题解析版

山东潍坊2011年中考数学试题解析版

山东省潍坊市2011年中考数学试卷-解析版一、选择题(共12小题,每小题3分,满分36分)1、(2011•潍坊)下面计算正确的是()A、B、C、D、考点:二次根式的混合运算。

专题:计算题。

分析:根据二次根式的混合运算方法,分别进行运算即可.解答:解:A.3+不是同类项无法进行运算,故此选项错误;B.===3,故此选项正确;C.=,×==,故此选项错误;D.=﹣2,∵==2,故此选项错误;故选:B.点评:此题主要考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.2、(2011•潍坊)我国以2010年11月1日零时为标准时点进行了笫六次全国人口普查,普查得到全国总人口为1370536875人,该数用科学记数法表示为()(保留3个有效数字)A、13.7亿B、13.7×108C、1.37×109D、1.4×109考点:科学记数法与有效数字。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1370536875有10位,所以可以确定n=10﹣1=9.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:1370536875=1.370536875×109≈1.37×109.故选:C.点评:此题主要考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.3、(2011•潍坊)如图,△ABC中,BC=2,DE是它的中位线,下面三个结论:(1)DE=1;(2)△ADE∽△ABC;(3)△ADE的面积与△ABC的面积之比为1:4.其中正确的有()A、0个B、1个C、2个D、3个考点:相似三角形的判定与性质;三角形中位线定理。

2011 山东省各地历年中考数学试题、模拟题集及答案

2011 山东省各地历年中考数学试题、模拟题集及答案

山东省中考数学试题、模拟题集及答案目录历年试题集及答案2010年山东省济南市中考数学试卷2009年山东省德州市中考数学试题及答案2008年山东省青岛市中考数学试题及答案2007年山东省淄博市中考数学试卷及答案2006年山东省烟台市中考试题数学试题和答案A. 2005年山东省临沂市中考试题数学(非课改实验区用)及答案2005年山东省临沂市中考数学试题(课改实验区用)模拟题集及答案2011山东圆精中考选试题2010~2011学年度第二学期模拟试卷济南市2010年初三年级学业水平考试数 学 试 题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.考试时间120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用2B 铅笔涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的地方.3.选择题选出答案后,用2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效.4.数学考试不允许使用计算器,考试结束后,应将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共48分)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.2+(-2)的值是 A .-4B .14C .0D .42.一组数据0、1、2、2、3、1、3、3的众数是 A .0B .1C .2D .33.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为4.作为历史上第一个正式提出“低碳世博”理念的世博会,上海世博会从一开始就确定以“低碳、和谐、可持续发展的城市”为主题.如今在世博场馆和周边共运行着一千多辆新能源汽车,为目前世界上规第4题图A .B .C .D .第3题图第10题图yxO -1 2 ABCDMNO 第9题图5分数人数(人)156分 020108分 10分第7题图模最大的新能源汽车示范运行,预计将减少温室气体排放约28400吨.将28400吨用科学记数法表示为A .0.284×105吨 B .2.84×104吨 C .28.4×103吨D .284×102吨5.二元一次方程组42x y x y -=⎧⎨+=⎩的解是A .37x y =⎧⎨=-⎩B .11x y =⎧⎨=⎩C .73x y =⎧⎨=⎩D .31x y =⎧⎨=-⎩6.下列各选项的运算结果正确的是A .236(2)8x x =B .22523a b a b -=C .623x x x ÷=D .222()a b a b -=- 7.在一次体育课上,体育老师对九年级一班的40名同学进行了立定跳远项目的测试,测试所得分数及相应的人数如图所示,则这次测试的平均分为 A .53分 B .354分 C .403分 D .8分8.一次函数21y x =-+的图象经过哪几个象限 A .一、二、三象限 B .一、二、四象限 C .一、三、四象限D .二、三、四象限9.如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则cos ∠OMN 的值为A .12B 2C 3D .110.二次函数22y x x =--的图象如图所示,则函数值y <0时x 的取值范围是A .x <-1B .x >2C .-1<x <2D .x <-1或x >2A BCDPE第12题图⑴ 1+8=?1+8+16=?⑵ ⑶1+8+16+24=?第11题图……11.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为A .2(21)n +B .2(21)n -C .2(2)n +D .2n 12.如图所示,矩形ABCD 中,AB =4,BC =43E 是折线段A -D -C 上的一个动点(点E 与点A 不重合),点P 是点A 关于BE 的对称点.在点E 运动的过程中,使△PCB 为等腰三角形的点E 的位置共有A .2个B .3个C .4个D .5个ABC DEF第14题图第16题图第17题图济南市2010年初三年级学业水平考试数 学 试 题注意事项:1.第Ⅱ卷共6页.用蓝、黑色钢笔或圆珠笔直接答在考试卷上. 2.答卷前将密封线内的项目填写清楚.第Ⅱ卷(非选择题 共72分)二、填空题(本大题共5个小题,每小题3分,共15分.把答案填在题中的横线上.)13.分解因式:221x x ++= .14.如图所示,△DEF 是△ABC 沿水平方向向右平移后的对应图形,若∠B =31°,∠C =79°,则∠D 的度数是 度.15.解方程23123x x =-+的结果是 . 16.如图所示,点A 是双曲线1y x=-在第二象限的分支上的任意一点,点B 、C 、D 分别是点A 关于x 轴、原点、y 轴的对称点,则四边形ABCD 的面积是 .ABCD第19题图17.如图所示,△ABC 的三个顶点的坐标分别为A (-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为 .三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.) 18.(本小题满分7分)⑴解不等式组:224x xx +>-⎧⎨-⎩≤⑵如图所示,在梯形ABCD 中,BC ∥AD ,AB =DC ,点M 是AD 的中点. 求证:BM =CM .19.(本小题满分7分)0(3)-⑵如图所示,△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,若AC 求线段AD 的长.BACDM第18题图第21题图20.(本小题满分8分)如图所示,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字1、2、-3、-4.若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为a 、b (若指针恰好指在分界线上,则该次不计,重新转动一次,直至指针落在扇形内).请你用列表法或树状图求a 与 b 的乘积等于2的概率.21.(本小题满分8分)如图所示,某幼儿园有一道长为16米的墙,计划用32120平方米的矩形草坪ABCD .求该矩形草坪BC 边的长.第20题图第22题图22.(本小题满分9分)如图所示,菱形ABCD 的顶点A 、B 在x 轴上,点A 在点B 的左侧,点D 在y 轴的正半轴上,∠BAD =60°,点A 的坐标为(-2,0).⑴求线段AD 所在直线的函数表达式.⑵动点P 从点A 出发,以每秒1个单位长度的速度,按照A →D →C →B →A 的顺序在菱形的边上匀速运动一周,设运动时间为t 秒.求t 为何值时,以点P 为圆心、以1为半径的圆与对角线AC 相切?ABCN MPAMN1 CP 2B A CMNP 1 P 2 P 2009 …… ……B第23题图2第23题图1第23题图323.(本小题满分9分)已知:△ABC 是任意三角形.⑴如图1所示,点M 、P 、N 分别是边AB 、BC 、CA 的中点.求证:∠MPN =∠A . ⑵如图2所示,点M 、N 分别在边AB 、AC 上,且13AM AB =,13AN AC =,点P 1、P 2是边BC 的三等分点,你认为∠MP 1N +∠MP 2N =∠A 是否正确?请说明你的理由.⑶如图3所示,点M 、N 分别在边AB 、AC 上,且12010AM AB =,12010AN AC =,点P 1、P 2、……、P 2009是边BC 的2010等分点,则∠MP 1N +∠MP 2N +……+∠MP 2009N =____________.(请直接将该小问的答案写在横线上.)x24.(本小题满分9分)如图所示,抛物线223y x x =-++与x 轴交于A 、B 两点,直线BD 的函数表达式为y =+l 与直线BD 交于点C 、与x 轴交于点E .⑴求A 、B 、C 三个点的坐标.⑵点P 为线段AB 上的一个动点(与点A 、点B 不重合),以点A 为圆心、以AP 为半径的圆弧与线段AC 交于点M ,以点B 为圆心、以BP 为半径的圆弧与线段BC 交于点N ,分别连接AN 、BM 、MN .①求证:AN =BM .②在点P 运动的过程中,四边形AMNB 的面积有最大值还是有最小值?并求出该最大值或最小值.济南市2010年初三年级学业水平考试数学试题参考答案及评分标准一、选择题二、填空题13. 2(1)x + 14. 70 15. 9x=-三、解答题18.(1)解:224x xx +-⎧⎨-⎩>≤解不等式①,得1x ->, ················· 1分 解不等式②,得2x ≥-, ················· 2分 ∴不等式组的解集为1x ->. ················· 3分 (2) 证明:∵BC ∥AD ,AB =DC ,∴∠BAM =∠CDM , ·················· 1分 ∵点M 是AD 的中点,∴AM =DM , ····················· 2分∴△ABM ≌△DCM , ·················· 3分 ∴BM =CM . ····················· 4分 19.(1)解:原式0(3)- ·············· 1分2+1 ···················· 2分 -1 ····················· 3分(2)解:∵△ABC 中,∠C =90º,∠B =30º,∴∠BAC =60º,∵AD 是△ABC 的角平分线,∴∠CAD =30º, ···················· 1分①②∴在Rt△ADC 中,cos30ACAD =︒············· 2分··········· 3分=2 . ·············· 4分20.解:a 与b 的乘积的所有可能出现的结果如下表所示:····························· 6分 总共有16种结果,每种结果出现的可能性相同,其中ab=2的结果有2种, ································ 7分∴a 与 b 的乘积等于2的概率是18. (8)分21.解:设BC 边的长为x 米,根据题意得 ············· 1分 321202xx-=, ····················4分 解得:121220x x ==,, ··················· 6分∵20>16,∴220x =不合题意,舍去, ················ 7分 答:该矩形草坪BC 边的长为12米. ············ 8分 22. 解:⑴∵点A 的坐标为(-2,0),∠BAD =60°,∠AOD =90°,∴OD =OA ·tan60°=∴点D 的坐标为(0,), ··············· 1分 设直线AD 的函数表达式为y kx b =+,20k b b -+=⎧⎪⎨=⎪⎩,解得k b ⎧=⎪⎨=⎪⎩AB CM N P 1 第23题图P 21 2O xy B CDP 1P 2P 3P 4123 4 A第22题图∴直线AD 的函数表达式为33y x =+. ·········· 3分 ⑵∵四边形ABCD 是菱形, ∴∠DCB =∠BAD =60°, ∴∠1=∠2=∠3=∠4=30°,AD =DC =CB =BA =4, ···················· 5分 如图所示:①点P 在AD 上与AC 相切时,AP 1=2r =2,∴t 1=2. ························ 6分②点P 在DC 上与AC 相切时,CP 2=2r =2,∴AD +DP 2=6,∴t 2=6. ········· 7分 ③点P 在BC 上与AC 相切时,CP 3=2r =2,∴AD +DC +CP 3=10,∴t 3=10. ········· 8分 ④点P 在AB 上与AC 相切时,AP 4=2r =2,∴AD +DC +CB +BP 4=14, ∴t 4=14,∴当t =2、6、10、14时,以点P 为圆心、以1为半径的圆与对角线AC 相切. ··············· 9分23. ⑴证明:∵点M 、P 、N 分别是AB 、BC 、CA 的中点, ∴线段MP 、PN 是△ABC 的中位线,∴MP ∥AN ,PN ∥AM , ······ 1分∴四边形AMPN 是平行四边形, · 2分 ∴∠MPN =∠A . ······· 3分DCMNO A B P 第24题图lxyFE ⑵∠MP 1N +∠MP 2N =∠A 正确. ····· 4分 如图所示,连接MN , ······· 5分 ∵13AM AN AB AC ==,∠A =∠A , ∴△AMN ∽△ABC , ∴∠AMN =∠B ,13MN BC =, ∴MN ∥BC ,MN =13BC , ······· 6分∵点P 1、P 2是边BC 的三等分点,∴MN 与BP 1平行且相等,MN 与P 1P 2平行且相等,MN 与P 2C 平行且相等, ∴四边形MBP 1N 、MP 1P 2N 、MP 2CN 都是平行四边形, ∴MB ∥NP 1,MP 1∥NP 2,MP 2∥AC ,·················· 7分 ∴∠MP 1N =∠1,∠MP 2N =∠2,∠BMP 2=∠A , ∴∠MP 1N +∠MP 2N =∠1+∠2=∠BMP 2=∠A . ················· 8分 ⑶∠A . ············· 9分24.解:⑴令2230x x -++=,解得:121,3x x =-=, ∴A (-1,0),B (3,0) ······· 2分 ∵223y x x =-++=2(1)4x --+, ∴抛物线的对称轴为直线x =1,将x =1代入333y x =-+y 3 ∴C (1,3. ········ 3分 ⑵①在Rt△ACE 中,tan∠CAE =3CEAE= ∴∠CAE =60º,由抛物线的对称性可知l 是线段AB 的垂直平分线, ∴AC=BC ,∴△ABC 为等边三角形, ················· 4分 ∴AB = BC =AC = 4,∠ABC=∠ACB = 60º, 又∵AM=AP ,BN=BP , ∴BN = CM ,∴△ABN ≌△BCM ,∴AN =BM . ························ 5分 ②四边形AMNB 的面积有最小值. ············· 6分 设AP=m ,四边形AMNB 的面积为S ,由①可知AB = BC= 4,BN = CM=BP ,S △ABC ×42= ∴CM=BN= BP=4-m ,CN=m , 过M 作MF ⊥BC ,垂足为F ,则MF =MC )m -,∴S △CMN =12CN MF =12m )m -=2+,······· 7分 ∴S =S △ABC -S △CMN=2)22)m -+···················· 8分∴m =2时,S 取得最小值··············· 9分绝密★启用前 试卷类型:A德州市二○○九年中等学校招生考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页为选择题,24分;第Ⅱ卷8页为非选择题,96分;全卷共10页,满分120分,考试时间为120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅰ卷(选择题 共24分)一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高(A)-10℃ (B)-6℃ (C)6℃ (D)10℃2.计算()4323b a --的结果是(A)12881b a (B )7612b a (C )7612b a - (D )12881b a -3.如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于 (A ) 70° (B ) 65° (C ) 50°(D ) 25°4.已知点M (-2,3 )在双曲线xky =上,则下列各点一定在该双曲线上的是 (A )(3,-2 ) (B )(-2,-3 ) (C )(2,3 ) D )(3,2)5.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是EDBC′FCD ′ A(第3题图)①正方体②圆柱③圆锥④球(第5题图)(A )①②(B )②③ (C ) ②④(D ) ③④6.不等式组⎪⎩⎪⎨⎧≥--+ 2.3,21123x x x >的解集在数轴上表示正确的是7.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为(A )10cm (B )30cm (C )45cm (D )300cm 8.如图,点A 的坐标为(-1,0),点B 在直线y =xB 的坐标为(A )(0,0) (B )(22,22-) (C )(-21,-21) (D )(-22,-22绝密★启用前 试卷类型:A德州市二○○九年中等学校招生考试数 学 试 题第Ⅱ卷(非选择题 共96分)(A ) (B )(C ) (D ) (第8题图)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分.9.据报道,全球观看北京奥运会开幕式现场直播的观众达2 300 000 000人,创下全球直播节目收视率的最高记录.该观众人数可用科学记数法表示为____________人. 10.甲、乙两位棉农种植的棉花,连续五年的单位面积产量(千克/亩)统计如下表,则产量较稳定的是棉农_________________.11.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为____________. 12.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k的值为 .13.如图,在4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P1.则其旋转中心一定是__________.14.如图,在四边形ABCD 中,已知AB 不平行CD ,∠ABD =∠ACD ,请你添加一个条件: ,使得加上这个条件后能够推出AD ∥BC 且AB =CD . 15.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折得 分评 卷 人B C DAO(第14题图) E(第15题图)AB ′C F B M 11(第13题图)痕为EF.已知AB=AC=3,BC=4,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y kx b=+(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是______________.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.17.(本题满分7分)化简:22222369x y x y yx y x xy y x y --÷-++++.(第16题图)得分评卷人18. (本题满分9分)某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点):求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围.(3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?19. (本题满分9分)如图,⊙O 的直径AB =4,C 为圆周上一点,AC =2,过点C 作⊙O 的切线l ,过点B 作l 的垂线BD ,垂足为D ,BD 与⊙O 交于点 E .(1) 求∠AEC 的度数;(2)求证:四边形OBEC 是菱形.得 分评 卷 人得 分评 卷 人(第19题图)(第18题图)6080 100 120140 160 180 次数20. (本题满分9分)为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的23倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?21. (本题满分10分)如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米.试求旗杆BC 的高度.得 分 评 卷 人得 分评 卷 人ABC(第21题图)D22. (本题满分10分)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD 是矩形,其中AB =2米,BC =1米;上部CDG 是等边三角形,固定点E 为AB 的中点.△EMN 是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN 是可以沿设施边框上下滑动且始终保持和AB 平行的伸缩横杆. (1)当MN 和AB 之间的距离为0.5米时,求此时△EMN 的面积;(2)设MN 与AB 之间的距离为x 米,试将△EMN 的面积S (平方米)表示成关于x 的函数;(3)请你探究△EMN 的面积S (平方米)有无最大值,若有,请求出这个最大值;若没有,请说明理由.23. (本题满分10分)已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)求证:EG =CG ;(2)将图①中△BEF 绕B点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)得 分评 卷 人得 分评 卷 人FBD第23题图①BDE第23题图②DB第23题图③E ABC(第22题图)德州市二○○九年中等学校招生考试 数学试题参考解答及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种或两种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、二、填空题:(本大题共8小题,每小题4分,共32分) 9.2.3×109; 10.乙;11.-2;12.43;13.点B 14.∠DAC =∠ADB ,∠BAD =∠CDA ,∠DBC =∠ACB ,∠ABC =∠DCB ,OB =OC ,OA =OD ; 15.127或2; 16.()121,2n n --. 三、解答题:(本大题共7小题, 共64分) 17.(本小题满分7分)解:原式=3x y x y-+•222269x xy y x y ++-2yx y -+………………………1分 =3x yx y -+•()()()23x y x y x y ++-2y x y-+………………………4分 =32x y yx y x y +-++ …………………………………………6分 =x yx y++=1. ……………………………………………7分18.(本小题满分9分)解:(1)该班60秒跳绳的平均次数至少是:50216051407120191001380460⨯+⨯+⨯+⨯+⨯+⨯=100.8.因为100.8>100,所以一定超过全校平均次数. …………………3分(2)这个学生的跳绳成绩在该班是中位数,由4+13+19=36,所以中位数一定在100~120范围内. …………………………………………6分(3)该班60秒跳绳成绩大于或等于100次的有:19+7+5+2=33(人), ……………………………………………………………………………8分 6605033.=.所以,从该班任选一人,跳绳成绩达到或超过校平均次数的概率为0.66. ………………………………………………………… 9分 19.(本题满分9分)(1)解:在△AOC 中,AC =2,∵ AO =OC =2,∴ △AOC 是等边三角形.………2分 ∴ ∠AOC =60°,∴∠AEC =30°.…………………4分 (2)证明:∵OC ⊥l ,BD ⊥l .∴ OC ∥BD . ……………………5分 ∴ ∠ABD =∠AOC =60°.∵ AB 为⊙O 的直径,∴ △AEB 为直角三角形,∠EAB =30°.…………………………7分 ∴∠EAB =∠AEC .∴ 四边形OBEC 为平行四边形. …………………………………8分 又∵ OB =OC =2.∴ 四边形OBEC 是菱形. …………………………………………9分 20.(本题满分9分)解:(1)2007年销量为a 万台,则a (1+40%)=350,a =250(万台). …………………………………………………………………………3分(2)设销售彩电x 万台,则销售冰箱23x 万台,销售手机(350-25x )万台.由题意得:1500x +2000×x 23+800(35052-x )=500000. ……………6分解得x =88. ………………………………………………………7分 ∴ 31322x =,53501302x -=.所以,彩电、冰箱(含冰柜)、手机三大类产品分别销售88万台、132万台、130万部.………………………………………………………………8分 ∴ 88×1500×13%=17160(万元),132×2000×13%=34320(万元), 130×800×13%=13520(万元).获得的政府补贴分别是17160万元、34320万元、13520万元. ……9分 21.(本题满分10分)解:延长BC 交AD 于E 点,则CE ⊥AD .……1分在Rt △AEC 中,AC =10,由坡比为1:3可知:∠CAE =30°.………2分(第20题图) AB CED∴ CE =AC ·sin30°=10×21=5,………3分 AE =AC ·cos 30°=10×23=35.……5分 在Rt △ABE 中,BE =22AE AB -=()223514-=11.……………………………8分∵ BE =BC +CE ,∴ BC =BE -CE =11-5=6(米).答:旗杆的高度为6米. …………………………………………10分22.(本题满分10分) 解:(1)由题意,当MN 和AB 之间的距离为0.5米时,MN 应位于DC 下方,且此时△EMN 中MN 边上的高为0.5米. 所以,S △EMN =5.0221⨯⨯=0.5(平方米). 即△EMN 的面积为0.5平方米. …………2分 (2)①如图1所示,当MN 在矩形区域滑动,即0<x ≤1时,△EMN 的面积S =x ⨯⨯221=x ;……3分②如图2所示,当MN 在三角形区域滑动, 即1<x <31+时,如图,连接EG ,交CD 于点F ,交MN 于点H , ∵ E 为AB 中点,∴ F 为CD 中点,GF ⊥CD ,且FG =3. 又∵ MN ∥CD ,∴ △MNG ∽△DCG .∴ GF GH DC MN =,即MN =.……4分故△EMN 的面积S=12x=x x )331(332++-; …………………5分综合可得:()()⎪⎩⎪⎨⎧+⎪⎪⎭⎫ ⎝⎛++-≤=31133133102<<.<,x x x x x S ……………………………6分 (3)①当MN 在矩形区域滑动时,x S =,所以有10≤<S ;………7分②当MN 在三角形区域滑动时,S =x x )331(332++-. 因而,当2312+=-=a b x (米)时,S 得到最大值,NE A B C图2最大值S =a b ac 442-=)()(3343312-⨯+-=3321+(平方米). ……………9分∵13321>+, ∴ S 有最大值,最大值为3321+平方米. ……………………………10分23.(本题满分10分)解:(1)证明:在Rt △FCD 中,∵G 为DF 的中点,∴ CG =12FD .………… 1分 同理,在Rt △DEF 中, EG =12FD . ………………2分 ∴ CG =EG .…………………3分(2)(1)中结论仍然成立,即EG =CG .…………………………4分 证法一:连接AG ,过G 点作MN ⊥AD 于M ,与EF 的延长线交于N 点. 在△DAG 与△DCG 中,∵ AD =CD ,∠ADG =∠CDG ,DG =DG ,∴ △DAG ≌△DCG .∴ AG =CG .………………………5分在△DMG 与△FNG 中,∵ ∠DGM =∠FGN ,FG =DG ,∠MDG =∠NFG ,∴ △DMG ≌△FNG .∴ MG =NG在矩形AENM 中,AM =EN . ……………6分 在Rt △AMG 与Rt △ENG 中, ∵ AM =EN , MG =NG , ∴ △AMG ≌△ENG . ∴ AG =EG .∴ EG =CG . ……………………………8分证法二:延长CG 至M ,使MG =CG ,连接MF ,ME ,EC , ……………………4分在△DCG 与△FMG 中,∵FG =DG ,∠MGF =∠CGD ,MG =CG , ∴△DCG ≌△FMG .∴MF =CD ,∠FMG =∠DCG .∴MF ∥CD ∥AB .………………………5分∴EF MF ⊥.在Rt △MFE 与Rt △CBE 中,∵ MF =CB ,EF =BE , ∴△MFE ≌△CBE .∴MEF CEB ∠=∠.…………………………………………………6分 ∴∠MEC =∠MEF +∠FEC =∠CEB +∠CEF =90°. …………7分DFB 图 ①B D N 图 ②(一)B D 图 ②(二)∴ △MEC 为直角三角形. ∵ MG = CG , ∴ EG =21MC .∴ EG CG =.………………………………8分 (3)(1)中的结论仍然成立,即EG =CG .其他的结论还有:EG ⊥CG .……10分2008年山东省青岛市中考数学试题(考试时间:120分钟;满分120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功! 1.请务必在指定位置填写座号,并将密封线内的项目填写清楚.2.本试题共有24道题,其中1—7题为选择题,请将所选答案的标号,写在第7题后面给出表格的相应位置上:8—14题为填空题,请将做出的答案填写在第14题后面给出表格的相应位置上;15—24题请在试题给出的本题位置上做答. 一、选择题(本题满分21分,共有7道小题,每小题3分)下列每小题都给出标号为A ,B ,C ,D 的四个结论,其中只有一个是正确的.每小题选对得分;不选,选错或选出的标号超过一个的不得分,请将1—7各小题所选答案的标号填写在第7小题后面表格的相应位置上.1.14-的相反数等于( ) A .14 B .14- C .4D .4-2.下列图形中,轴对称图形的个数是( )A.1 B.2 C.3 D.4 3.已知1O 和2O 的半径分别为3cm 和2cm ,圆心距124O O =cm ,则两圆的位置关系是( )A .相切B .内含C .外离D .相交4.某几何体的三种视图如右图所示,则该几何体可能是( )A .圆锥体B .球体C .长方体D .圆柱体5.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有( ) A .18个 B .15个 C .12个 D .10个主视图 左视图 俯视图6.如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )7.如图,把图①中的ABC △经过一定的变换得到图②中的A B C '''△,如果图①中ABC △上点P 的坐标为()a b ,,那么这个点在图②中的对应点P '的坐标为( ) A .(23)a b --,B .(32)a b --,C .(32)a b ++,D .(23)a b ++,请将1—7各小题所选答案的标号填写在下表的相应位置上:题号 1 2 3 4 5 6 7 答案二、填空题(本题满分21分,共有7道小题,每小题3分)请将8—14各小题的答案填写在第14小题后面表格的相应位置上. 8.计算:0122-+= .9.化简:293x x -=- .10.如图,在矩形ABCD 中,对角线AC BD ,相交于点O ,若60AOB ∠=,4AB =cm ,则AC 的长为 cm .11.如图,AB 是O 的直径,弦CD AB ⊥于E ,如果10AB =,8CD =,那么AE 的长为 .12.为了帮助四川地震灾区重建家园,某学校号召师生自愿捐款.第一y x O y x O y x O y x O A . C . D . 3 2 1 -1 O -2 -3 -3 -2 -1 1 2 3 x y 图① 3 21 -1 O -2 -3-3 -2 -1 1 2 3 xy 图② P A B C A ' B 'C ' P '次捐款总额为20000元,第二次捐款总额为56000元,已知第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元.求第一次捐款的人数是多少?若设第一次捐款的人数为x ,则根据题意可列方程为 .13.某市广播电视局欲招聘播音员一名,对A B ,两名候选人进行了两项素质测试,两人的两项测试成绩如右表所示.根据实际需要,广播电视局将面试、综合知识测试的得分按3:2的比例计算两人的总成绩,那么 (填A 或B )将被录用.14.如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF 长为10cm .母线()OE OF 长为10cm .在母线OF 上的点A 处有一块爆米花残渣,且2FA =cm ,一只蚂蚁从杯口的点E 处沿圆锥表面爬行到A 点.则此蚂蚁爬行的最短距离为 cm .请将8—14各小题的答案填写在下表的相应位置上:题号 8 9 10 11 答案题号 12 13 14 答案三、作图题(本题满分6分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.如图,AB AC ,表示两条相交的公路,现要在BAC ∠的内部建一个物流中心.设计时要求该物流中心到两条公路的距离相等,且到公路交叉处A 点的距离为1000米.(1)若要以1:50000的比例尺画设计图,求物流中心到公路交叉处A 点的图上距离; (2)在图中画出物流中心的位置P .解:(1)测试项目测试成绩A B 面试 90 95 综合知识测试 85 80 AFE O 第14题图ACB (2) 1cm四、解答题(本题满分72分,共有9道小题) 16.(本小题满分6分)用配方法解一元二次方程:2220x x --=.17.(本小题满分6分)某市为调查学生的视力变化情况,从全市九年级学生中抽取了部分学生,统计了每个人连续三年视力检查的结果,并将所得数据处理后,制成折线统计图和扇形统计图如下:解答下列问题:(1)该市共抽取了多少名九年级学生?(2)若该市共有8万名九年级学生,请你估计该市九年级视力不良(4.9以下)的学生大约有多少人?(3)根据统计图提供的信息,谈谈自己的感想(不超过30字).18.(本小题满分6分)小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色.此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为不公平,如何修改规则才能使游戏对双方公平?时间(年) 02006 2007 2008 被抽取学生视力在4.9以下 的人数变化情况统计图 A40% B30%C 20%D 10% A :4.9以下B :4.9-5.1C :5.1-5.2D :5.2以上 (每组数据只含最低值不含最高值) 被抽取学生2008年的视 力分布情况统计图19.(本小题满分6分) 在一次课题学习课上,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,AB 表示窗户,且2AB =米,BCD 表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD 的最小夹角α为18.6,最大夹角β为64.5.请你根据以上数据,帮助小明同学计算出遮阳蓬中CD 的长是多少米?(结果保留两个有效数字)(参考数据:sin18.60.32=,tan18.60.34=,sin 64.50.90=,tan 64.5 2.1=)20.(本小题满分8分)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A 种船票600元/张,B 种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A ,B 两种船票共15张,要求A 种船票的数量不少于B 种船票数量的一半.若设购买A 种船票x 张,请你解答下列问题: (1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱?21.(本小题满分8分) 已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE CG =,连接BG 并延长交DE 于F .(1)求证:BCG DCE △≌△;(2)将DCE △绕点D 顺时针旋转90得到DAE '△, 判断四边形E BGD '是什么特殊四边形?并说明理由.ABCDEF E 'G22.(本小题满分10分)某服装公司试销一种成本为每件50元的T 恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y (件)与销售单价x (元)的关系可以近似的看作一次函数(如图).(1)求y 与x 之间的函数关系式;(2)设公司获得的总利润(总利润=总销售额-总成本)为P 元,求P 与x 之间的函数关系式,并写出自变量x 的取值范围;根据题意判断:当x 取何值时,P 的值最大?最大值是多少?23.(本小题满分10分)实际问题:某学校共有18个教学班,每班的学生数都是40人.为了解学生课余时间上网情况,学校打算做一次抽样调查,如果要确保全校抽取出来的学生中至少有10人在同一班级,那么全校最少需抽取多少名学生?建立模型:为解决上面的“实际问题”,我们先建立并研究下面从口袋中摸球的数学模型: 在不透明的口袋中装有红、黄、白三种颜色的小球各20个(除颜色外完全相同),现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球? 为了找到解决问题的办法,我们可把上述问题简单化:(1)我们首先考虑最简单的情况:即要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需摸出小球的个数是:134+=(如图①);(2)若要确保从口袋中摸出的小球至少有3个是同色的呢?我们只需在(1)的基础上,再从袋中摸出3个小球,就可确保至少有3个小球同色,即最少需摸出小球的个数是:1327+⨯=(如图②)(3)若要确保从口袋中摸出的小球至少有4个是同色的呢?我们只需在(2)的基础上,再从袋中摸出3个小球,就可确保至少有4个小球同色,即最少需摸出小球的个数是:13310+⨯=(如图③):(10)若要确保从口袋中摸出的小球至少有10个是同色的呢?我们只需在(9)的基础上,再从袋中摸出3个小球,就可确保至少有10个小球同色,即最少需摸出小球的个数是:13(101)28+⨯-=(如图⑩)60 70y (件) 红黄 红 黄白白 红 黄 白红 红 红白白白 黄 黄黄红 红红白白白 黄 黄黄 白 … 红 黄9个9个...。

2011年山东省莱芜市中考数学模拟试题及答案

2011年山东省莱芜市中考数学模拟试题及答案

2011年山东省莱芜市中考数学模拟试题及答案(时间:120分钟; 满分:150分)一、填空题:(本大题共12小题,每小题3分,计36分) 1、15-的相反数是2、函数11-=x y 中,自变量x 的取值范围3、一粒纽扣式电池能够污染60升水,某市每年报废的纽扣式电池有近10000000粒,如果废旧电池不回收,一年报废的纽扣式电池所污染的水约 升.(用科学记数法表示).4、已知反比例函数2k y x-=,其图象在第一、第三象限内,则k 的值可为 。

(写出满足条件的一个k 的值即可)5、不等式0121—>x +的解集是 .6、亮调查了初三(1)班50位同学最喜欢的足球明星,结果如右图所示(其中A 代表贝克汉姆,B 代表费戈,C 代表罗纳尔多,D 代表巴乔),根据统计图可知:该班同学最喜欢的足球明星是 。

(填写代表明星的字母)7、在某一电路中,保持电压不变,电流I (安)与 电阻R (欧)成反比例函数关系,其图像如图, 则这一电路的电压为 伏 8、抛物线()31x 22+-=y 的顶点坐标是9、已知:在⊙O 中,弦AB=8cm ,弦心距为3cm , 则⊙O 的半径是10、一张纸片,第一次把它撕成6片, 第二次把其中一片又撕成6片,…如此下去,第N 次撕后共得小纸片片.11、赵亮同学想利用影长测量学校旗杆的高度,如图, 他在某一时刻立1米长的标杆测得其影长为1.2米, 同时旗杆的投影一部分在地面上,另一部分在某一 建筑的墙上,分别测得其长度为9.6米和2米, 则学校旗杆的高度为 米.12、一件商品按成本提高40%后标价,再打8折 (标价的80%)销售,售价为240元。

设这件商品的成本价为x 元,根据题意,可列方程为二、选择题(本大题共6个小题,每小题4分,共24分) 13、下列运算正确的是( )A . x ·x 3=x 3 B. x 2+x 2=x 4C. (-4xy 2)2=8x 2y 4D. (-2x 2)(-4x 3)=8x 514、甲、乙两人同时从A 地到B 地,甲先骑自行车到达中点后改为步行,乙先步行到中点后改骑自行车.已知甲、乙两人骑车的速度和步行的速度分别相同.则甲、乙两人所行的路程与所用时间的关系图正确的是(实线表示甲,虚线表示乙)( )A .B .C .D .15、如图,下列条件中,能判断直线1l //2l 的是( )(A )∠2=∠3 (B )∠1=∠3 (C )∠4+∠5=180° (D )∠2=∠4 16、香港于1997年7月1日成为中华人民共和国的一 个特别行政区,它的区徽图案(紫荆花)如图1,这 个图形是( )A. 轴对称图形B. 中心对称图形C. 既是轴对称图形,也是中心对称图形D. 既不是轴对称图形,也不是中心对称图形 17、两道单选题都含有A 、B 、C 、D 四个选择支,瞎猜这两道题恰好全部猜对的概率有( )A .14B .12C .18D .11618、如图示,将矩形纸片ABCD 沿虚线EF 折叠,使点A 落在点G 上,点D 落在点H 上;然后再沿虚线GH 折叠,使B 落在点E 上,点C 落在点F 上;叠完后,剪一个直径在BC 上的半圆,再展开,则展开后的图形为( )1 2 543 2l1l F E B D C AA B CD E F 三、解答题(本大题共90分)19、计算(本题满分8分) 200)2(60sin 2)23(|31|-+--+-20、(本题满分8分)先将)11(122aa aa -∙-+化简,然后请你自选一个合理的a 值,求原式的值.21、(本题满分8分)如图,在□ABCD 中,对角线AC 、BD 相交于点O. 请找出图中的一对全等三角形,并给予证明.(2)在下图所示的网络图内划出两个商场每天获利的折线图;(甲商场用虚线,乙商场用实线)(3)根据折线图请你预测下一周哪个商场的获利会多一些?并简单说出你的理由.23、(本题满分8分)小明想测量塔CD 的高度.他在A 处仰望塔顶,测得仰角为30°,再往塔的方向前进50m 至B 处.测得仰角为60°.那么该塔有多高?(小明的身高忽略不计,结果精确到1 m)24、(本题满分8分)某中学七年级有8个班,要从中选出2个班代表学校参加某项活动,七(1)班必须参加,另外再从七(2)至七(8)班选出1个班.七(5)班有学生建议用如下的方法:从装有编号为1、2、3、4的三个白球A袋中摸出1个球,再从装有编号为1、2、3、4的三个红球B袋中摸出1个球(两袋中球的大小、形状与质量完全一样),摸出的两个球上的数字和是几,就选几班,你人为这种方法公平吗?请说明理由.25、(本题满分8分)为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量x(度)与应付电费y(元)的关系如图所示.(1)根据图象,请分别求出当500≤x时,y与x的函数关系式.≤x和50(2)请回答:当每月用电量不超过50度时,收费标准是______;当每月用电量超过50度时,超过的部分收费标准是______.26、(本题满分8分)某次知识竞赛共有20道选择题.对于每一道题,若答对了,则得10分;若答错了或不答,则扣3分.请问至少要答对几道题,总得分才不少于70分?27、(本题13分)电线杆上有一盏路灯O ,电线杆与三个等高的标杆整齐划一地排列在马路的一侧,AB 、CD 、EF 是三个标杆,相邻的两个标杆之间的距离都是2 m ,已知AB 、CD 在灯光下的影长分别为BM = 1. 6 m ,DN = 0. 6m.(1)请画出路灯O 的位置和标杆EF 在路灯灯光下的影子。

山东临沂2011年中考数学试题解析版

山东临沂2011年中考数学试题解析版

山东省临沂市2011年中考数学试卷-解析版一、选择题(本大题共14小题,毎小题3分,共42分)1、(2011•临沂)下列各数中,比﹣1小的数是()A、0B、1C、﹣2D、2考点:有理数大小比较。

专题:探究型。

分析:根据有理数比较大小的法则进行比较即可.解答:解:∵﹣1是负数,∴﹣1<0,故A错误;∵2>1>0,∴2>1>0>﹣1,故B、D错误;∵|﹣2|>|﹣1|,∴﹣2<﹣1,故C正确.故选C.点评:本题考查的是有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2、(2011•临沂)下列运算中正确的是()A、(﹣ab)2=2a2b2B、(a+b)2=a2+1C、a6÷a2=a3D、2a3+a3=3a3考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

分析:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘;完全平方公式:两数和的平方等于它们的平方和加上它们积的2倍;同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;根据法则一个个筛选.解答:解:A、(﹣ab)2=(﹣1)2a2b2=a2b2,故此选项错误;B、(a+b)2=a2+2ab+b2,故此选项错误;C、a6÷a2=a6﹣2=a4,故此选项错误;D、2a3+a3=(2+1)a3=3a3,故此选项正确.故选D.点评:此题主要考查了积的乘方,完全平方公式,同底数幂的除法,合并同类项的计算,一定要记准法则才能做题.3、(2011•临沂)如图.己知AB∥CD,∠1=70°,则∠2的度数是()A、60°B、70°C、80°D、110考点:平行线的性质。

分析:由AB∥CD,根据两直线平行,同位角相等,即可求得∠2的度数,又由邻补角的性质,即可求得∠2的度数.解答:解:∵AB∥CD,∴∠1=∠3=70°,∵∠2+∠3=180°,∴∠2=110°.故选D.点评:此题考查了平行线的性质.注意数形结合思想的应用.4、(2011•临沂)计算﹣6+的结果是()A、3﹣2B、5﹣C、5﹣D、2考点:二次根式的加减法。

山东省十三地市2011年中考数学试卷汇编(共8份有详解)-2

山东省十三地市2011年中考数学试卷汇编(共8份有详解)-2

2011年山东省德州市中考数学试卷—解析版一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1、(2011•德州)下列计算正确的是()A、(﹣8)﹣8=0B、(﹣)×(﹣2)=1C、﹣(﹣1)0=1D、|﹣2|=﹣2考点:零指数幂;绝对值;有理数的减法;有理数的乘法。

专题:计算题。

分析:利用有理数的减法、有理数的乘法法则和a0=1(a≠0)、负数的绝对值等于它的相反数计算即可.解答:解:A、(﹣8)﹣8=﹣16,此选项错误;B、(﹣)×(﹣2)=1,此选项正确;C、﹣(﹣1)0=﹣1,此选项错误;D、|﹣2|=2,此选项错误.故选B.点评:本题考查了有理数的减法、有理数的乘法法则、零指数幂、绝对值的计算.解题的关键是熟练掌握各种运算法则.2、(2011•德州)一个几何体的主视图、左视图、俯视图完全相同,它一定是()A、圆柱B、圆锥C、球体D、长方体考点:简单几何体的三视图。

专题:应用题。

分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:A、圆柱的主视图、左视图都是长方形,俯视图是圆形;故本选项错误;B、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;C、球体的主视图、左视图、俯视图都是圆形;故本选项正确;D、长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形;故本选项错误;故选C.点评:本题考查了简单几何体的三视图,锻炼了学生的空间想象能力.3、(2011•德州)温家宝总理强调,“十二五”期间,将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求.把36 000 000用科学记数法表示应是()A、3.6×107B、3.6×106C、36×106D、0.36×108考点:科学记数法—表示较大的数。

2011年山东省泰安市中考数学试卷―解析版

2011年山东省泰安市中考数学试卷―解析版

2011年山东省泰安市中考数学试卷―解析版2011年山东省泰安市中考数学试卷―解析版一.选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错.不选或选出的答案超过一个,均记零分) 1、(2011•泰安)的倒数是() A、 B、 C、D、考点:倒数。

专题:计算题。

分析:根据倒数的定义:乘积是1的两数互为倒数.一般地,a• =1 (a≠0),就说a(a≠0)的倒数是.解答:解:的倒数是�,故选D.点评:此题主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 2、(2011•泰安)下列运算正确的是() A、3a2+4a2=7a4 B、3a2�4a2=�a2 C、3a•4a2=12a2 D、考点:整式的除法;合并同类项;单项式乘单项式。

专题:计算题。

分析:根据单项式除单项式的法则、合并同类项以及整式的除法法则计算即可.解答:解:A、3a2+4a2=7a2,故本选项错误; B、3a2�4a2=�a2,故本选项正确; C、3a•4a2=12a3,故本选项错误; D、(3a2)2÷4a2= a2,故本选项错误;故选B.点评:本题主要考查多项式除以单项式运算、合并同类项以及整式的除法法则,牢记法则是关键. 3、(2011•泰安)下列图形:其中是中心对称图形的个数为() A、1 B、2 C、3 D、4 考点:中心对称图形。

专题:图表型。

分析:根据轴对称图形与中心对称图形的概念求解.解答:解:一图是轴对称图形,二图是中心对称图形,三图是轴对称图形,四图即是中心对称图形,也是周对称图形;所以,中心对称图形的个数为2.故选B.点评:本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合. 4、(2011•泰安)第六次全国人口普查公布的数据表明,登记的全国人靠数量约为1 340 000 000人.这个数据用科学记数法表示为()A、134×107人 B、13.4×108人 C、1.34×109人 D、1.34×1010人考点:科学记数法―表示较大的数。

2011年山东中考试题

2011年山东中考试题

2011年山东中考数学试题(一)姓名:; 评价: 。

1、(本题满分8分)如图 AB =AC ,CD ⊥AB 于D ,BE ⊥AC 于E ,BE 与CD 相交于点O . (1)求证AD =AE ;(2) 连接OA ,BC ,试判断直线OA ,BC 的关系并说明理由.2、、(2011•东营)如图,在四边形ABCD 中,DB 平分∠ADC ,∠ABC=120°,∠C=60°,∠BDC=30°;延长CD 到点E ,连接AE ,使得.(1)求证:四边形ABDE 是平行四边形;(2)若DC=12,求AD 的长.3、如图,在梯形ABCD 中,AD ∥BC ,∠B =90 ,∠C =45 ,AD =1,BC =4, E 为AB 中点, EF ∥DC 交BC 于点F , 求EF 的长.4、(8分)将两块大小相同的含30º角的直角三角板(∠BAC =∠B 1A 1C =30º)按图1的方式放置,固定三角板A 1B 1C ,然后将三角板ABC 绕直角顶点C 顺时针方向旋转(旋转角小于90º)至图2所示的位置,AB 与A 1C 交于点E ,AC 与A 1B 1交于点F ,AB 与A 1B 1交于点O .(1)求证:△BCE ≌△B 1CF ; (2)当旋转角等于30º时,AB 与A 1B 1垂直吗?请说明理由.5、(2011•临沂)如图,△ABC 中,AB=AC ,AD 、CD 分別是△ABC 两个外角的平分线. (1)求证:AC=AD ; (2)若∠B=60°,求证:四边形ABCD 是菱形.1A (A 1)A 1AEFBB 1图1图2ABCEDO2011年山东中考数学试题(二)姓名:;评价:。

1、(2011•青岛)在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.(1)求证:△BEC≌△DFA;(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.2、(本题满分10分)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,求证:ME=BD.3、(2011•威海)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.4、(2011•威海)如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.(1)若∠1=70°,求∠MKN的度数;(2)△MNK 的面积能否小于?若能,求出此时∠1的度数;若不能,试说明理由;(3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,求最大值.5、(本题满分8分)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.2011年山东中考数学试题(三)姓名:;评价:1、已知一次函数2y x=+与反比例函数kyx=,其中一次函数2y x=+的图象经过点P(k,5).①试确定反比例函数的表达式;②若点Q是上述一次函数与反比例函数图象在第三象限的交点,求点Q的坐标2、(7分)如图,正比例函数12y x=的图象与反比例函数kyx=(0)k≠在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知OAM∆的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA PB+最小.3.(10分)如图,已知一次函数y=kx+b的图象交反比例函数42(0)my xx-=>的图象于点A、B,交x轴于点C.(1)求m的取值范围;(2)若点A的坐标是(2,-4),且BCAB=13,求m的值和一次函数的解析式.4、(2011•临沂)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.5、如图,已知反比例函数11kyx=(k1>0)与一次函数2221(0)y k x k=+≠相交于A、B两点,AC⊥x轴于点C. 若△OAC的面积为1,且2=OCAC(1)求出反比例函数与一次函数的解析式;(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值?。

2011年中考模拟试卷数学试卷及答案(2)

2011年中考模拟试卷数学试卷及答案(2)
2011 年中考数学模拟试卷 试题卷
一. 仔细选一选 (本题有 10 个小题, 每小题 3 分, 共 30 分)
下面每小题给出的四个选项中, 只有一个是正确的, 请在答题卷中把正确选项的字母涂黑.
注意可以用多种不同的方法来选取正确答案.
1.我国在 2009 到 2011 三年中,各级政府投入医疗卫生领域资金达 8500 亿元人民币.将“8500
14.
15.
16.
三.全面答一答 (本题有 8 个小题, 共 66 分.)
17. (本题 6 分) 解:原式= a 2 a(a 1) a ……… 3 分 a 1 (a 2)(a 2) a 2
当 a=-1 时, 原式= -1
…………….2 分 …………….1 分
18. (本题 6 分) 解:(1)图略 ………… ………………………………3 分
23.(本题满分 10 分)某公司投资新建了一商场,共有商铺 30 间.据预测,当每间的年租金定为 10 万元时,可全部租出.每间的年租金每增加 5 000 元,少租出商铺 1 间.(假设年租金的增加额 均为 5000 元的整数倍)该公司要为租出的商铺每间每年交各种费用 1 万元,未租出的商铺每 间每年交各种费用 5 000 元.
)
①正方体
②圆柱
③圆锥
④球
A. ①②
B. ②③
C. ②④
D. ③④
7.如图,把⊙O1 向右平移 8 个单位长度得⊙O2,两圆相交于 A.B,
1
第7题
且 O1A⊥O2A,则图中阴影部分的面积是(
A.4π-8 B. 8π-16
C.16π-16
) D. 16π-32
2010 8. 已知函数 y=― t3― ,则在平面直角坐标系中关于该函数图像的位置判断正确的是

2011年中考数学模拟测试题及答案

2011年中考数学模拟测试题及答案

2011年中考数学模拟测试题及答案
考生须知:
1.本试卷分试题卷和答题卷两部分,满分120分,考试时间120分钟。

2.答题时,应该在答题卷指定位置内写明校名,姓名和准考证号。

3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。

4.考试结束后,上交试题卷和答题卷
试题卷
一. 仔细选一选(本题有10个小题,每小题3分,共30分)
下面每小题给出的四个选项中,只有一个是正确的。

注意可以用多种不同的方法来选取正确答案。

1. 的相反数是( )(原创)
A. B. C. D.
2.下列运算正确的是( ) (改编)
A. B. C. D.
3.北京时间2010年10月1日长征三号丙火箭在位于中国四川的西昌卫星发射中心发发射,把嫦娥二号探月卫星
成功送入太空。

“嫦娥二号”所携带的CCD立体相机的空间分辨率小于10米,并将在距月球约100公里的轨道上绕月运行,较“嫦娥一号”的距月球200公里高的轨道要低,也就是卫星轨道距月球表面又近了一倍,“看得更加精细”。

“200公里”用科学计数法表示为( ) (原创)
A.2.00×102米
B.2.00×105米
C.200×103米
D.2.00×104米
4.下列图案由黑、白两种颜色的正方形组成,其中属于轴对称图形的是( ).(改编)
2011年中考数学模拟测试题及答案完整版下载。

2011年山东省中考模拟试题(四)

2011年山东省中考模拟试题(四)

2011年山东省中考模拟试题(四)数 学 试 题2011.4一、选择题(本题共8个小题,每小题3分,共24分)1.9-的相反数是 A .19B .19-C .9-D .92.北京市2010年暨“十一五”期间国民经济和社会发展统计公报显示,2010年末,全市共有公共图书馆25个,总藏量44 510 000册.将44 510 000用科学记数法表示应为 A .810451.4⨯B .710451.4⨯C .61051.44⨯D .8104451.0⨯3.如图,已知AB ∥CD ,∠C =35°,BC 平分∠ABE ,则∠ABE 的度数是 A .17.5° B .35° C .70° D .105° 4.下列运算正确的是A .224236x x x =·B .22231x x -=- C .2222233x x x ÷=D .224235x x x +=5.某男子排球队20名队员的身高如下表:身高(cm ) 180 186 188 192 208 人数(个)46532则此男子排球队20名队员的身高的众数和中位数分别是(单位:cm ) A .186,186 B .186,187 C .208,188 D .188,187 6.把多项式8822++x x 分解因式,结果正确的是 A .()242+xB .()242+xC .()222-xD .()222x +7.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了 相应的颜色,转动转盘,转盘停止后,指针指向红色区域的概率是A.16B.13C.12 D.238.如图,AB 是O ⊙的直径,弦2cm B C =,F 是弦B C 的中点, 60A B C ∠=°.若动点E 以2cm /s 的速度从A 点出发沿着A B A →→方向运动,设运动时间为()(03)t s t <≤,连结EF ,当B E F △是直角三角形时,t (s )的值为 A .47 B .1 C .47或1 D .47或1 或49二、填空题(本题共12分,每小题3分) 9.在函数3y x =+中,自变量x 的取值范围是 .10.已知113xy-=,则代数式21422x xy y x xy y----的值为 .11.如图,⊙O 是△ABC 的外接圆,OD ⊥AB 于点D 、交⊙O 于点E , ∠蓝蓝 红 红 红 黄ABOD CEC =60°, 如果⊙O 的半径为2,那么OD = .12.如图所示,直线1+=x y 与y 轴交于点1A ,以1OA 为边作正方形111C B OA 然后延长11B C 与直线1+=x y 交于点2A ,得到第一个梯形211A OC A ;再以21A C 为边作正方形2221C B A C ,同样延长22B C 与直线1+=x y 交于点3A 得到第二个梯形3212A C C A ;,再以32A C 为边作正方形3332C B A C ,延长33B C ,得到第三个梯形;……则第2个梯形3212A C C A 的面积是 ;第n (n 是正整数)个梯形的面积是 (用含n 的式子表示).三、解答题(本题共30分,每小题5分)13.计算:︒+⎪⎭⎫⎝⎛----30tan 6213220111.15.已知:如图,C F 、在B E 上,A D AC D F BF EC ∠=∠=,∥,.求证:△ABC ≌DEF16.已知0342=--x x ,求4)1)(1()1(22--+--x x x 的值. 17.列方程或方程组解应用题:服装厂为红五月歌咏比赛加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服. 18.在平面直角坐标系中,A 点坐标为(04),,C 点坐标为(100),.(1)如图①,若直线A B O C ∥,AB 上有一动点P ,当P 点的坐标为 时,有P O P C =;(2)如图②,若直线AB 与O C 不平行, 在过点A 的直线4y x =-+上是否存在点P ,使90O P C ∠=︒,若有这样的点P ,求出它的坐标.若没有,请简要说明理由. 19.已知,如图,梯形ABCD 中,AD ∥BC ,∠A =90°,∠C =45°,BE ⊥DC 于E ,BC =5,AD :BC =2:5. 求ED 的长.20.如图,在A B C △中,A B A C =,A E 是角平分线,BM 平分A B C ∠交A E 于点M ,经过B M ,两点的O ⊙交B C 于 点G ,交A B 于点F ,F B 恰为O ⊙的直径.OBG E CM AFEB CDA ABC FED短信费长途话费基本话费月功能费6050403020100项目金额/元月功能费4%短信费长途话费 36%基本话费 40%(1)求证:A E 与O ⊙相切; (2)当14cos 3B C C ==,时,求O ⊙的半径.21.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:项目 月功能费基本话费长途话费短信费 金额/元5(1)该月小王手机话费共有多少元?(2)扇形统计图中,表示短信费的扇形的圆心角为多少度? (3)请将表格补充完整; (4)请将条形统计图补充完整.五、解答题 (本题共22分,第23题7分,第24题7分,第25题8分) 23.已知二次函数)0a (23bx axy 2≠-+=的图象经过点(10),,和(30)-,,反比例函数xk =1y (x >0)的图象经过点(1,2).(1)求这两个二次函数的解析式,并在给定的直角坐标系中作出这两个函数的图象; (2)若反比例函数xk =1y (0x >)的图象与二次函数)0a (23bx axy 2≠-+=)的图象在第一象限内交于点00()A x y ,,0x 落在两个相邻的正整数之间.请你观察图象写出这两个相邻的正整数; (3)若反比例函数2k y x=(00k x >>,)的图象与二次函数)0a (23bx axy 2≠-+=的图象在第一象限内的交点为A ,点A 的横坐标0x 满足023x <<,试求实数k 的取值范围. 24.已知点A ,B 分别是两条平行线m ,n 上任意两点,C 是直线n 上一点,且∠ABC=90°,点E 在AC 的延长线上,BC =k AB (k ≠0).(1)当k =1时,在图(1)中,作∠BEF =∠ABC ,EF 交直线m 于点F .,写出线段EF 与EB 的数量关系,并加以证明;25.已知:抛物线k k x k kx y ++++=22)2(32经过坐标原点.(1)求抛物线的解析式和顶点B 的坐标;(2)设点A 是抛物线与x 轴的另一个交点,试在y 轴上确定一点P ,使P A +PB 最短,并求出点P 的坐标;(3)过点A 作AC ∥BP 交y 轴于点C ,求到直线AP 、AC 、CP 距离相等的点的坐标.数学试卷参考答案及评分参考 2011.4一、选择题(本题共8个小题,每小题3分,共24分) 题号 1 2 3 4 56 7 8 答案 D B C A B D C D二、填空题(本题共16分,每小题3分) 题号 910 11 12答案3x -≥416(2分)2n 2223-⨯或1n 423-⨯ (2分)三、解答题(本题共20分,每小题5分) 13解︒+⎪⎭⎫⎝⎛----30tan 6213220111=3362321⨯+--…..4分 =1-…..5分15.证明:AC D F ∥,A C E D F B ∴∠=∠.…1分 ∴A C B D F E ∠=∠. ……2分 又B F E C =,BF C F EC C F ∴-=-,即B C E F =.….3分 在△ABC 与△DEF 中,⎪⎩⎪⎨⎧=∠=∠∠=∠,,,EF BC DFE ACB D A ……4分 A B C D E F ∴△≌△……5分 16.解:4)1)(1()1(22--+--x x x =4)1()12(222---+-x x x ……2分 =142--x x ….4分 ∴ 原式=1)4(2--x x =213=-………5 17.解:设服装厂原来每天加工x 套演出服.….1 分根据题意,得603006092x x-+=…2分 解得20x =……3分经检验,20x =是原方程的根…… 4分答:服装厂原来每天加工20套演出服.……5分 18.解:(1)(54),…….2分 (2)设(4)P x x -+,, 连接OP PC ,,过P 作P E O C ⊥于E ,P N O A ⊥于N ,……3分 因为222(4)O P x x =+-+,222(4)(10)PC x x =-++-, 222O P P C O C +=,所以22222(4)(4)(10)10x x x x +-++-++-=.2980x x -+=,11x =,28x =…….4分 所以P 坐标(13),或(84)-,…....5分四、解答题(本题共20分,第19题5分,20题5分,第21题6分,第22题4分) 19.解:作DF ⊥BC 于F ,…1分 ∵∠A =90°,AD ∥BC ∴ 四边形ABFD 是矩形. ∵ BC =5,AD :BC =2:5. ∴ AD=BF=2.…..2分 ∴ FC=3.在Rt △DFC 中, ∵ ∠C =45°,∴ DC=23……3分在Rt △BEC 中,∴ EC =225....4分 ∴ DE =2222523=-….5分20.解:(1)证明:连结O M ,则O M O B =. ∴ 12∠=∠.∵ BM 平分A B C ∠. ∴ 13∠=∠. ∴ 23∠=∠.∴ O M B C ∥. ∴ A M O A E B ∠=∠…..1分 在A B C △中,∵ A B A C =,AE 是角平分线, ∴ A E B C ⊥…..….2分 ∴ 90A E B ∠=°. ∴ 90A M O ∠=°.∴ O M A E ⊥. ∴ AE 与O ⊙相切.………3分 (2)解:在A B C △中,A B A C =,AE 是角平分线, ∴12B E BC A B C C =∠=∠,. ∵14cos 3B C C ==,,∴2=BE ,.31cos =∠ABC 在A B E △中,90A E B ∠=°,∴6cos B E A B A B C==∠.…….4分 设O ⊙的半径为r ,则6A O r =-.∵O M B C ∥,∴A O M A B E △∽△ .∴ O M A O B EA B=. ∴626r r -=.解得32r =.∴ O ⊙的半径为32…….5分21.解:(1)总话费125元…….1分 (2)72°……..2分(3)基本话费50;…….3分长途话费45;……4分 短信费 25……...5分 (4)…………………6分五、解答题 (本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)把(10),,和(30)-,分别代入)0a (23bx axy2≠-+= 解方程组,得 .1b ,21a ==……1分 ∴ 抛物线解析式为23212-+=x x y …...2分∵ 反比例函数xk =1y 的图象经过点(1,2),OBGECMAF123∴ k =2. ∴ x2y 1=…..3分(2)正确的画出二次函数和反比例函数在第一象限内的图象 …….4分 由图象可知,这两个相邻的正整数为1与2.……5分 (3)由函数图象或函数性质可知:当2<x <3时,对y=23212-+x x ,y 随着x 的增大而增大,对y 2=xk (k >0),y 2随着x 的增大而减小.因为A (x 0,y 0)为二次函数图象与反比例函数图象的交点,所以当x 0=2时,由反比例函数图象在二次函数的图象上方,得y 2>y. 即2k >2322212-+⨯, 解得k >5. ……6分同理,当x 0=3时,由二次函数的图象在反比例函数图象上方的,得y >y 2, 即2333212-+⨯>3k ,解得k <18. 所以k 的取值范围为5<k <18. ……7分24.解:(1)正确画出图形…..1分 E F E B =……2分 证明:如图(1),在直线m 上截取AM AB =,连结M E .BC kAB = ,1k =,B C A B ∴=. 90ABC ∠=,45CAB ACB ∴∠=∠=. m n ∥,45MAE ACB CAB ∴∠=∠=∠= ,90FAB ∠=. AE AE = ,M AE BAE ∴△≌△..……..3分 EM EB ∴=,AM E ABE ∠=∠……4分90BEF ABC ∠=∠=,180FAB BEF ∴∠+∠=.180ABE EFA ∴∠+∠=.又180AME EMF ∠+∠=,EM F EFA ∴∠=∠. EM EF ∴=. EF EB ∴=…..5分 25.解:(1)∵ 抛物线k k x k kx y ++++=22)2(32经过坐标原点,∴ k k +2=0. 解得 1,021-==k k .∵ 0≠k ,∴ 1-=k ∴ x x y 322+-=…1分 ∴ ()3,3B….2分(2)令0=y ,得x x 322+-=0,解得 32,021==x x . ∴ ()0,32A ..3分∴点A 关于y 轴的对称点A '的坐标为()0,32-.联结B A ',直线B A '与y 轴的交点即为所求点P .可求得直线B A '的解析式:233+=x y . ∴ ()2,0P ……4分(3)到直线AP 、AC 、CP 距离相等的点有四个.F MnmCBAE图(1)如图,由勾股定理得4===AC PA PC ,所以△PAC 为等边三角形.易证x 轴所在直线平分∠PAC ,BP 是△PAC 的一个外角的平分线.作∠PCA 的平分线,交x 轴于1M 点,交过A 点的平行线于y 轴的直线于2M 点,作△PAC 的∠PCA 相邻外角的平分线,交2AM 于3M 点,反向延长C 3M 交x 轴于4M 点.可得点1234M M M M ,,,就是到直线AP 、AC 、CP 距离相等的点.可证△AP 2M 、△AC 3M 、 △PC 4M 均为等边三角形.可求得:①332331==OP OM,所以点M 1的坐标为⎪⎪⎭⎫⎝⎛0,332;…………5分 ②42==AMAP ,所以点M 2的坐标为()4,32…....6分③点M 3与点M 2关于x 轴对称,所以点M 3的坐标为()4,32-..…..7分④点4M 与点A 关于y 轴对称,所以点4M 的坐标为()0,32-. 综上所述,到直线AP 、AC 、CP距离相等的点的坐标分别为⎪⎪⎭⎫⎝⎛0,3321M ,()4,322M,()4,323-M ,()0,324-M…….. 8分。

山东省十三地市2011年中考数学试卷汇编(共8份有详解)-1

山东省十三地市2011年中考数学试卷汇编(共8份有详解)-1

2011年山东省菏泽市中考数学试卷—解析版一、选择题(下列各题的四个选项中,只有一顶符合题意,每小题4分,共32分)1、﹣的倒数是()A、B、C、﹣D、﹣考点:倒数。

分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵﹣×()=1,,∴﹣的倒数是.故选D.点评:此题主要考查了倒数的定义,需要掌握并熟练运用.2、(2011•菏泽)为了加快3G网络建设,我市电信运营企业将根据各自发展规划,今年预计完成3G投资2800万元左右,将2800万元用科学记数法表示为多少元时,下列记法正确的是()A、2.8×103B、2.8×106C、2.8×107D、2.8×108考点:科学记数法—表示较大的数。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2800万元用科学记数法表示为2.8×107元.故选C.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2010•枣庄)将一副三角板按图中方式叠放,则角α等于()A、30°B、45°C、60°D、75°考点:三角形的外角性质;平行线的性质。

专题:计算题。

分析:利用两直线平行,内错角相等和三角形的一个外角等于与它不相邻的两个内角的和计算.解答:解:如图,根据两直线平行,内错角相等,∴∠1=45°,根据三角形的一个外角等于与它不相邻的两个内角的和,∴∠α=∠1+30°=75°.故选D.点评:本题利用了两直线平行,内错角相等和三角形的一个外角等于与它不相邻的两个内角的和.4、(2011•菏泽)实数a在数轴上的位置如图所示,则化简后为()A、7B、﹣7C、2a﹣15D、无法确定考点:二次根式的性质与化简;实数与数轴。

2011年中考数学模拟卷(含详细答案)

2011年中考数学模拟卷(含详细答案)

2011年中考数学模拟试卷题号 一 二 三总 分 19 20 21 22 23 24 25 得分注意事项:本试题满分150分,考试时间120分钟;一、选择题:本大题8个小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是正确的,请把正确选项的标号填在题后面的括号内.1. 北京国家体育场“鸟巢”建筑面积达25.8万平方米,用科学记数法表示应为 ( )A .24108.25m ⨯B .25108.25m ⨯C .251058.2m ⨯D . 261058.2m ⨯ 2.计算23(2)a -的结果为 ( ) A .68a -B .52a -C .58a -D .66a -3.如图所示,已知直线AB CD ∥,125C ∠=°,45A ∠=°,则E ∠的度数为( ) A .70° B .80° C .90° D .100°4.某百货商场的女装专柜对上周女装的销售情况进行了统计,销售情况如下表所示:颜色 黄色 绿色 白色 紫色 红色 数量(件)10018022080550百货商场经理根据上周销售情况的统计表,决定本周多进一些红色的女装,可用来解释这一现象的统计知识是 ( )A.方差 B.平均数 C.众数 D.中位数 5.已知二元一次方程组2423m n m n -=⎧⎨-=⎩,,则m n +的值是 ( )A .1B .0C .2-D .1-6.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么 ( ) A .0k >,0b > B .0k >,0b < C .0k <,0b > D .0k <,0b < 7.如图,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么这个几何体的侧面积是 ( ) A .4π B .π42 C .π22 D .2π得分 评卷人Oyx 1x =(30)A ,EAB C D45°125°3题图7题图8.如图所示是二次函数2y ax bx c =++图象的一部分,图象过A 点(3,0), 二次函数图象对称轴为1x =,给出四个结论:①24b ac >;②0bc <;③20a b +=;④0a b c ++=,其中正确结论是 ( ) A .②④ B .①③ C .②③ D .①④二、填空题:本大题共8个小题,每小题4分,共32分,请把答案填在题中横线上。

2011年山东省临沂市中考数学试题(WORD解析版)

2011年山东省临沂市中考数学试题(WORD解析版)

2011年山东省临沂市中考数学试卷-解析版一、选择题(本大题共14小题,毎小题3分,共42分)在每小题所给的四个选项中.只有一项是符合题目要求的。

1、(2011•临沂)下列各数中,比﹣1小的数是()A、0B、1C、﹣2D、2考点:有理数大小比较。

专题:探究型。

分析:根据有理数比较大小的法则进行比较即可.解答:解:∵﹣1是负数,∴﹣1<0,故A错误;∵2>1>0,∴2>1>0>﹣1,故B、D错误;∵|﹣2|>|﹣1|,∴﹣2<﹣1,故C正确.故选C.点评:本题考查的是有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2、(2011•临沂)下列运算中正确的是()A、(﹣ab)2=2a2b2B、(a+b)2=a2+1C、a6÷a2=a3D、2a3+a3=3a3考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

分析:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘;完全平方公式:两数和的平方等于它们的平方和加上它们积的2倍;同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;根据法则一个个筛选.解答:解:A、(﹣ab)2=(﹣1)2a2b2=a2b2,故此选项错误;B、(a+b)2=a2+2ab+b2,故此选项错误;C、a6÷a2=a6﹣2=a4,故此选项错误;D、2a3+a3=(2+1)a3=3a3,故此选项正确.故选D.点评:此题主要考查了积的乘方,完全平方公式,同底数幂的除法,合并同类项的计算,一定要记准法则才能做题.3、(2011•临沂)如图.己知AB∥CD,∠1=70°,则∠2的度数是()A、60°B、70°C、80°D、110考点:平行线的性质。

分析:由AB∥CD,根据两直线平行,同位角相等,即可求得∠2的度数,又由邻补角的性质,即可求得∠2的度数.解答:解:∵AB∥CD,∴∠1=∠3=70°,∵∠2+∠3=180°,∴∠2=110°.故选D.点评:此题考查了平行线的性质.注意数形结合思想的应用.4、(2011•临沂)计算﹣6+的结果是()A、3﹣2B、5﹣C、5﹣D、2考点:二次根式的加减法。

山东省十三地市2011年中考数学试卷汇编(共8份有详解)

山东省十三地市2011年中考数学试卷汇编(共8份有详解)

2011年烟台市初中学生学业考试数 学 试 题说明:1.本试题分为Ⅰ卷和Ⅱ卷两部分,第Ⅰ卷为选择题,第Ⅱ卷为非选择题.考试时间120分钟,满分150分.2.答题前将密封线内的项目填写清楚.3.考试过程中允许考生进行剪、拼、折叠等实验.第Ⅰ卷注意事项:请考生将自己的姓名、准考证号、考试科目涂写在答题卡上.每小题选出答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑,如要改动,必须用橡皮擦干净,再选涂其它答案.一、选择题(本题共12个小题,每小题4分,共48分)每小题都给出标号为A ,B ,C ,D 四个备选答案,其中有且只有一个是正确的......... 1. (2011山东烟台,1,4分) (-2)0的相反数等于( )A.1B.-1C.2D.-2【答案】B【思路分析】(-2)0=1,1的相反数是-1,故选B.【方法规律】此题考查实数的基础知识. 任何非零数的零次幂为1;互为相反数两数符号相反,绝对值相同.【易错点分析】对零次幂的意义把握不牢,可致错. 【关键词】实数:零次幂,相反数 【难度】★☆☆☆☆ 【题型】常规题2. (2011山东烟台,2,4分) 从不同方向看一只茶壶,你认为是俯视效果图的是( )【答案】A【思路分析】俯视图是从上面看到的平面图形,也是在水平投影面上的正投影. 易判断选A.AB CD【方法规律】此题考查三视图的判断. 试题选材生活,给试卷平添亮点,具有一定的吸引力.解此类题需具有将立体图形与平面图形相互转化的能力. 画物体的三视图时,应遵循这样的画图规则:“主、俯两图长对正,主、左两图高平齐,左、俯两图宽相等”.另外要注意看得见部分的轮廓线画成实线,看不见部分的轮廓线画成虚线.【易错点分析】易忽略应有的轮廓线.【关键词】三视图【难度】★☆☆☆☆【题型】常规题,新题3.(2011山东烟台,3,4分)下列计算正确的是()A.a2+a3=a5B. a6÷a3=a2C. 4x2-3x2=1D.(-2x2y)3=-8 x6y3【答案】D【思路分析】A不能合并;B结果应为a3;C 结果应为x2;D正确. 故选D【方法规律】此题考查整式运算的基础知识,需全面掌握合并同类项、幂的运算等整式运算的基础知识.【易错点分析】A、B、C三个选项都有可能误选.【关键词】整式运算:合并同类项,幂的运算性质.【难度】★☆☆☆☆【题型】常规题4. (2011山东烟台,4,4分)不等式4-3x≥2x-6的非负整数解有()A.1 个B. 2 个C. 3个D. 4个【答案】C【思路分析】解不等式得x≤2,其非负整数解为0,1,2,故选C.【方法规律】此题考查一元一次不等式的解法及特殊解的判断. 需会解一元一次不等式,会判断其特殊解.【易错点分析】易忽略0,误选B.【关键词】一元一次不等式解法,特殊解【难度】★☆☆☆☆【题型】常规题5. (2011山东烟台,5,4分)如果2(21)12a a-=-,则()A.a<12B. a≤12C. a>12D. a≥12【答案】B【思路分析】因为二次根式具有非负性,所以1-2a≥0,解得a≤12,故选B.【方法规律】此题考查二次根式性质及其应用,同时考查不等式的解法. 当a≥0时,2a=a;当a<0时,2a=-a.此题可直接利用非负性列不等式求解. 具有非负思想是解此类题的关键.【易错点分析】对知识掌握不灵活,错列不等式,误选B.【关键词】二次根式的非负性【难度】★★☆☆☆【题型】常规题,易错题6. (2011山东烟台,6,4分)如图,梯形ABCD 中,AB ∥CD ,点E 、F 、G 分别是BD 、AC 、DC 的中点. 已知两底差是6,两腰和是12,则△EFG 的周长是( )A.8B.9C.10D.12【答案】B【思路分析】连BF 与DC 相交,易证EF 等于两底差的一半;由三角形中位线定理,可得EG +FG 等于两腰和的一半. 这样可得△EFG 的周长是9,故选B.【方法规律】此题考查三角形中位线定理,及梯形知识. 灵活添加辅助线,得到“两对角线中点的连线是两底差的一半”是解此题关键,另外具有整体思想,也是解此类题所必不可少的思想方法.【易错点分析】因不会解致错. 【关键词】三角形中位线,梯形 【难度】★★☆☆☆ 【题型】常规题7. (2011山东烟台,7,4分)如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m 和8m.按照输油中心O 到三条支路的距离相等来连接管道,则O 到三条支路的管道总长(计算时视管道为线,中心O 为点)是( )A2m B.3m C.6m D.9m【答案】C 【思路分析】此题可转化为求三角形内切圆的半径. 由勾股定理可得斜边为10,设内切圆半径为r ,则利用面积法可得:12r(6+8+10)=12×6×8,解得r=2. 从而管道为2×3=6(m ),故选C.O(第7题图)A B CDEFG(第6题图)【方法规律】命题者独具匠心,试题设计新颖别致,为试卷又一亮点. 解此题需具有一定的数学功底,能够进行数学建模,并巧用面积法解题,或利用切线长定理解决.【易错点分析】因不会致错.【关键词】三角形内切圆,勾股定理【难度】★★☆☆☆【题型】新题8. (2011山东烟台,8,4分)体育课上测量立定跳远,其中一组六个人的成绩(单位:米)分别是:1.0,1.3,2.2,2.0,1.8,1.6,,则这组数据的中位数和极差分别是()A.2.1,0.6B. 1.6,1.2C.1.8,1.2D.1.7,1.2【答案】D【思路分析】将数据按顺序排列:1.0,1.3,1.6,1.8,2.0,2.2,易判断中位数为1.6 1.82=1.7;极差为2.2-1.0=1.2. 故选D.【方法规律】此题考查统计量的计算. 掌握中位数、极差的概念即可获解.【易错点分析】易忽略将数据按大小顺序排列,误选A.【关键词】统计量:中位数,极差【难度】★☆☆☆☆【题型】常规题9. (2011山东烟台,9,4分)如果△ABC中,sin A=cos B=22,则下列最确切的结论是()A. △ABC是直角三角形B. △ABC是等腰三角形C. △ABC是等腰直角三角形D. △ABC是锐角三角形【答案】C【思路分析】因为sin A=cos B=22,所以∠A=∠B=45°,所以△ABC是等腰直角三角形.故选C.【方法规律】此题考查特殊角的三角函数,及三角形的分类. 掌握特殊角的三角函数值即可获解.【易错点分析】易判断不全面,可能误选A或B.【关键词】特殊角的三角函数,三角形分类.【难度】★☆☆☆☆【题型】常规题10. (2011山东烟台,10,4分)如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是()A.m=n,k>h B.m=n ,k<hC.m>n,k=h D.m<n,k=h【答案】A 【思路分析】由两抛物线的解析式可判断其顶点坐标,再根据坐标意义即可判断答案选A【方法规律】此题主要考查二次函数的基础知识,会根据顶点式判断出顶点坐标便易获解.【易错点分析】有可能混淆横、纵坐标,误选D. 【关键词】二次函数 【难度】★☆☆☆☆ 【题型】常规题11. (2011山东烟台,11,4分)在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )A. 1 个B. 2 个C.3 个D. 4个【答案】C【思路分析】利用图象可判断①②④正确,③错误,故选C.【方法规律】此题赋常规题以新背景,体现了数学与现实生活的紧密联系性. 试题考查函数图象的识别. 解题关键是能够将实际问题情境与函数图象相互转换,能够从图象的横、纵两个方向分别获取信息,判断相应的实际意义.【易错点分析】误判①错误,从而错选B. 【关键词】函数图象 【难度】★☆☆☆☆ 【题型】常规题12. (2011山东烟台,12,4分) 如图,六边形ABCDEF 是正六边形,曲线2乙甲乙甲815105 1.510.5Ox /时y/千米(第11题图)20FK 1K 2K 3K 4K 5K 6K 7……叫做“正六边形的渐开线”,其中1FK ,12K K ,23K K ,34K K ,45K K ,56K K ,……的圆心依次按点A ,B ,C ,D ,E ,F 循环,其弧长分别记为l 1,l 2,l 3,l 4,l 5,l 6,…….当AB =1时,l 2 011等于( )A.20112πB. 20113πC. 20114πD. 20116π【答案】B【思路分析】可以发现规律:每段弧的度数都等于60°,1n n K K -的半径为n ,所以l 2 011 =602011180π⨯=20113π.【方法规律】此题考查弧长计算,正六边形知识,以及规律探索的能力,为本卷亮点试题. 从简单的特殊情形中探索得到变化规律是解此类题的关键.【易错点分析】规律归纳错误 【关键词】弧长计算,规律探索 【难度】★☆☆☆☆【题型】新题,规律探索题第Ⅱ卷二、填空题(本题共6个小题,每小题4分,满分24分).13. (2011山东烟台,13,4分)微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩小.某种电子元件的面积大约为0.000 000 7平方毫米,用科学记数法表示为 平方毫米.【答案】7×10-7【思路分析】0.000 000 7=7×10-7,故填7×10-7.【方法规律】此题考查科学记数法. 此类试题一般背景新颖,与时俱进,解题需掌握科学记数法的形式10n a ⨯,及a 的取值范围,n 的确定方法.【易错点分析】可能忽略指数中的负号,误写成7×107 【关键词】实数:科学记数法 【难度】★☆☆☆☆ 【题型】常规题14. (2011山东烟台,14,4分)等腰三角形的周长为14,其一边长为4,那么,它的底边为 .【答案】4或6(第12题图)A B CD EF K 1 K 2K 3K 4K 5K 6K 7【思路分析】此题应分两种情况讨论,4可能为底边,也可能为腰长,且两种情况都成立.【方法规律】此题考查等腰三角形的概念,三角形三边关系,及分类讨论思想. 解题关键明确此类题需分类讨论,且注意检验各情况是否成立.【易错点分析】忽略4是底边的情况,只填6. 【关键词】等腰三角形,三角形三边关系. 【难度】★☆☆☆☆ 【题型】常规题15. (2011山东烟台,15,4分)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是 .【答案】12【思路分析】易判断黑色部分的面积为大圆的一半,故填12. 【方法规律】此题考查概率的简单计算. 对于此类几何概型问题,按照公式:()A P A 事件所有可能结果所组成的图形面积所有可能结果所组成的图形面积计算即可.【易错点分析】一般不会出错. 【关键词】概率 【难度】★☆☆☆☆ 【题型】常规题16. (2011山东烟台,16,4分)如图,△ABC 的外心坐标是__________.【答案】(-2,-1)【思路分析】三角形的外心为三边垂直平分线的交点,观察图形,画出AB 、BC 的垂直平分线,即可获解.【方法规律】此题综合考查三角形外心、平面直角坐标系等的知识. 解题关键是掌握三角形的外心为三边(任选两边)垂直平分线的交点,能利用网格特点,画出两边的垂直平分线.【易错点分析】对外心概念不掌握致错. 【关键词】三角形的外心 【难度】★☆☆☆☆ 【题型】操作题17. (2011山东烟台,17,4分)如图,三个边长均为2的正方形重叠在一起,O 1、O 2是其中两个正方形的中心,则阴影部分的面积是.(第15题图)O xyB CA (第16题图)【答案】2【思路分析】正方形为旋转对称图形,绕中心旋转每90°便与自身重合. 可判断每个阴影部分的面积为正方形面积的14,这样可得答案填2.【方法规律】此题考查正方形的旋转对称性. 解题关键是掌握正n 边形旋转360n︒与自身重合.【易错点分析】不掌握其中规律,不会做. 【关键词】正方形 【难度】★★★☆☆ 【题型】运动变换题18. (2011山东烟台,18,4分)通过找出这组图形符号中所蕴含的内在规律,在空白处的横线上填上恰当的图形.【答案】【思路分析】观察图形,可发现规律:每个图形都是由两个英文大写字母构成的轴对称图形,且按顺序排列,其中奇数位置上下对称,偶数位置为左右对称.【方法规律】此题同12题,都是典型题变式而来,都属规律探索题. 考查规律探索能力,及轴对称的知识. 发现其中变化规律是解题关键.【易错点分析】因发现不了其中规律,或归纳规律不全面而致错. 【关键词】探索规律 轴对称 【难度】★★★★☆ 【题型】探索规律三、解答题(本大题共8各小题,满分78分). 19. (2011山东烟台,19,6分)先化简再计算:22121x x x x x x --⎛⎫÷- ⎪+⎝⎭,其中x 是一元二次方程2220x x --=的正数根. 【解】原式=2(1)(1)21(1)x x x x x x x +--+÷+=21(1)x x x x -⋅-=11x -. 解方程得2220x x --=得, 1130x =+>,2130x =-<.(第17题图) O 2O 1所以原式=1131+-=13(或33). 【思路分析】应先进行分式的化简运算,再解一元二次方程,求出其正解,最后代值计算.【方法规律】此题综合考查分式计算,一元二次方程的解法,代数式的求值. 掌握相关计算方法即可获解.【易错点分析】“-”号处理错误,导致分式化简,解方程错误. 最易出错是21x x x --的化简.【关键词】分式计算,解一元二次方程,代数式求值 【难度】★★☆☆☆ 【题型】计算题20. (2011山东烟台,20,8分)小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米 ,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?【解】设平路有x 米,坡路有y 米 10,608015.6040x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩解这个方程组,得 300,400.x y =⎧⎨=⎩所以x +y =700.所以小华家离学校700米.【思路分析】由题目中的两个等量关系“从家里到学校需10分钟,从学校到家里需15分钟”可列二元一次方程组求解.【方法规律】此题考查利用列方程解决实际问题. 找到等量关系,并明确基础数量关系:时间=路程/速度,便可列出方程组解决.【易错点分析】不会列方程组 【关键词】二元一次方程组的应用 【难度】★★☆☆☆ 【题型】实际应用题21. (2011山东烟台,21,8分)综合实践课上,小明所在小组要测量护城河的宽度。

2011年山东济南中考数学试题及参考答案

2011年山东济南中考数学试题及参考答案

济南市2011年初三年级学业水平考试数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.考试时间120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用2B铅笔涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的地方.3.选择题选出答案后,用2B铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效.4.数学考试不允许使用计算器,考试结束后,应将本试卷和答题卡一并交回.第Ⅰ卷(选择题共45分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.3×(-4)的值是A.-12 B.-7 C.-1 D.12【答案】A2.如右图,桌子上放着一个长方体的茶叶盒和一个圆柱形的水杯,则它的主视图是【答案】B3.“山东半岛蓝色经济区”规划主体区包括的海域面积共159500平方公里.159500用科学记数法表示为A.1595×102B.159.5×103C.15.95×104D.1.595×105【答案】D4.某校九年级一班体育委员在一次体育课上记录了六位同学托排球的个数分别为:37,25,30,35,28,25,这组数据的中位数是A.25 B.28 C.29 D.32.5【答案】C5.下列运算正确的是A.a2·a3=a6B.(a2)3=a6C.a6÷a2=a3D.2-3=-6【答案】B6.不等式组2324xx+<⎧⎨-<⎩的解集是A DCBA .x >-2B .x <1C .-2<x <1D .x <-2 【答案】C7.如图,菱形ABCD 的周长是16,∠A =60°,则对角线BD 的长度为A .2B .C .4D .【答案】C8.化简22m n m n m n---的结果是 A .m +n B .m -n C .n -m D .-m -n 【答案】A9.某校为举办“庆祝建党90周年”的活动,从全校1400名学生中随机调查了280名学生,其中有80人希望举办文艺演出,据此估计该学校希望举办文艺演出的学生人数为 A .1120 B .400 C .280 D .80【答案】B10.一次函数y =(k -2)x +3的图象如图所示,则k 的取值范围是A .k >2B .k <2C .k >3D .k <3【答案】B11.如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O ,下列结论不一定正确的是A .AC =BDB .∠OBC =∠OCBC .S △AOB =S △DOCD .∠BCD =∠BDC【答案】DBCDAAODCBS 1S 3S 2NM G F EDCB A12.如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为ABO 上一点(不与O 、A 两点重合),则cos C 的值为 A .34 B .35C .43D .45【答案】D13.竖直向上发射的小球的高度h (m )关于运动时间t (s )的函数表达式为h =at 2+bt ,其图象如图所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是A .第3秒B .第3.5秒C .第4.2秒D .第6.5秒【答案】C14.观察下列各式:(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72…请你根据观察得到的规律判断下列各式正确的是 A .1005+1006+1007+…+3016=20112 B .1005+1006+1007+…+3017=20112C .1006+1007+1008+…+3016=20112D .1007+1008+1009+…+3017=20112 【答案】C15.如图,△ABC 中,∠ACB =90°,AC >BC ,分别以△ABC 的边AB 、BC 、CA 为一边向△ABC 外作正方形ABDE 、BCMN 、CAFG ,连接EF 、GM 、ND ,设△AEF 、△BND 、△CGM 的面积分别为S 1、S 2、S 3,则下列结论正确的是 A .S 1=S 2=S 3 B . S 1=S 2<S 3 C .S 1=S 3<S 2 D .S 2=S 3<S 1【答案】A第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6小题,每小题3分,共18分) 16.19-的绝对值是__________. 【答案】1917.分解因式:269a a -+=__________________. 【答案】2(3)a +18.方程220x x -=的解为__________________. 【答案】10x =,22x =19.如图,直线l 与直线a 、b 分别交于点A 、B ,a ∥b ,若∠1 = 70°,则∠2 = _______度.【答案】11020.如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,2),点B 与点D 在反比例函数y =6x(x >0)的图象上,则点C 的坐标为____________. 【答案】(3,6)21.如图,△ABC 为等边三角形,AB =6,动点O 在△ABC 的边上从点A 出发沿A →C →B→A 的路线匀速运动一周,速度为1个单位长度每秒,以O运动过程中与△ABC 的边第二次相切时是出发后第_______秒.【答案】4三、解答题(本大题共7小题,满分57分,解答应写出文字说明、证明过程或演算步骤) 22.(1)计算2()()2a b a b b +-+; (2)解方程213x x=+.B【答案】(1)解:2()()2a b a b b +-+=2222a b b -+=22a b +. (2)解:213x x=+. 方程两边都乘以(3)x x +,去掉分母得23x x =+.解这个方程,得3x =.经检验,3x =是原方程的解. 23.(1)如图1,△ABC 中,∠A = 60°,∠B ︰∠C = 1︰5.求∠B 的度数.(2)如图2,点M 为正方形ABCD 对角线BD 上一点,分别连接AM 、CM . 求证:AM = CM .【答案】(1)解:设∠B = x °,则∠C = 5x °,∵∠A +∠B +∠C =180°,∴60°+ x °+5x °=180°,∴6 x °=120°,∴x =20,即∠B = 20°. (2)∵BD 是正方形ABCD 的对角线, ∴∠ABD =∠CBD ,AB = BC . ∵BM = BM ,∴△ABM ≌△CBM . ∴AM = CM .24.某小学6月1日组织师生共110人到趵突泉公园游览,趵突泉公园规定:成人票价每位40元,学生票价每位20元.该学校购票共花费2400元.在这次游览活动中,教师和学生各有多少人?【答案】设教师有x 人,学生有y 人。

2011中考数学模拟试卷及答案

2011中考数学模拟试卷及答案

2011中考数 学模拟试 题临沂二十七中 命题人 徐大虎 2011.4.28一、选择题(本大题共14小题,每小题3分,满分42分)在每小题所给的四个选项中,只有一项是符合题目要求的. 1. -2是2的( ).A .绝对值B .倒数C .相反数D .算术平方根 2. 前几年甲型H1N1流感在墨西哥爆发并在全球蔓延,研究表明甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,保留两个有效数字,用科学记数法表示这个数是 ( ) A .0.16×510- m B .0.15×510 m C .1.6×610- m D .1.5×610 m 3. 下列运算正确的是( )A .236·a a a = B .11()22-=- C4=± D .|6|6-=4. 从编号为1到10的10张卡片中任取1张,所得编号是3的倍数的概率为( ) A .110B .210C .310D .155.某班数学学习小组8名同学在一节数学课上发言的次数分别为1、5、6、7、6、5、6、6则这组同学发言次数的众数和中位数分别是( )A .6和6B .5和5C .6和5D .5和6 6. 从上面看如右图所示的几何体,得到的图形是( )7.顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( ) A .矩形 B .直角梯形 C .菱形 D .正方形 8.已知两圆半径分别为2和3,圆心距为d ,若两圆没有公共点,则下列结论正确的是( ) A .01d << B .5d > C .01d <<或5d > D .01d <≤或5d >9.如图,在□ABCD 中,AC 与BD 相交于点O ,点E 是边BC 的中点,AB = 4,则OE 的长是 ( )A .2B .2C .1D .2110. 如图,由四个相同的直角三角板拼成的图形,设三角板的直角边分别为a 、b (a b >),则这两个图形能验证的式子是( )A .22()()4a b a b ab +--=B .222()()2a b a b ab +--=C .222()2a b ab a b +-=+D .22()()a b a b a b +-=-11.小明外出散步,从家走了20分钟后到达了一个离家900米的报亭,看了10分钟的报纸然后用了15分钟返回到家.则下列图象能表示小明离家距离与时间关系的是( )12.已知y 关于x 的函数图象如图所示,则当0y <时,自变量x 的取值范围是( )A .0x <B .11x -<<或2x >C .1x >-D .1x <-或12x <<13.如图所示,给出下列条件: ①B ACD ∠=∠; ②ADC ACB ∠=∠③AC AB CD BC=; ④AC 2=AD •AB .其中单独能够判定ABC ACD △∽△的个数为()A .1B .2C .3D .4 14.已知ABC △中,17AB =,10AC =,BC 边上的高8AD =, 则边BC 的长为( ) A .21 B .15 C .6 D .以上答案都不对A . B. C . D . (第6题图) A . /B .C .D . AC D B (第13题图)(第10题)第9题图二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上. 15.分解因式m 3 -m= 16.不等式组⎩⎨⎧≤-<+-843,24x x 的解集是_______________.17. 化简22422b a a b b a+--的结果是_______________. 18.若一个圆锥的底面积是侧面积的13,则该圆锥侧面展开图的圆心角度数是_____度. 19. 在平面直角坐标系中,ABC △顶点A 的坐标为,若以原点O 为位似中心,画ABC △的位似图形A B C '''△,使ABC △与A B C '''△的相似比等于12,则点A '的坐标为.三、开动脑筋,你一定能做对!(本大题共3小题,共20分)20.(6分)如图,有一块三角形材料(△ABC ),请你画出一个圆,使其与△ABC 的各边都相切.解:结论:21.(7分)某中学为了解该校学生的课余活动情况,采用抽样调查的方式,从运动、娱乐、阅读和其他四个方面调查了若干名学生的兴趣爱好情况,并根据调查结果制作了如下两幅统计图.根据图中提供的信息解答下列问题: (1)补全人数统计图;(2)若该校共有1500名学生,请你估计该校在课余时间喜欢阅读的人数;22.(7分)在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰角37CGE ∠=°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD 的高度.(参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈)CGEDB AF 第19题图人数统计图 阅读 其他 娱乐 运动 40%分布统计图 AB C四、认真思考,你一定能成功!(本大题共2小题,共19分) 23.(本小题满分9分)如图,AC 是O ⊙的直径,P A ,PB 是O ⊙的切线,A ,B 为切点,AB =6,P A =5. 求(1)O ⊙的半径; (2)sin BAC ∠的值.24. (本小题满分10分) 某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x 元、每星期售出商品的利润为y 元,请写出y 与x 的函数关系式,并求出自变量x 的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?五、相信自己,加油啊!(本大题共2小题,共24分) 25.(本小题满分11分)已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .(1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF是什么特殊四边形?并证明你的结论.证明:26. (本小题满分13分)如图,已知二次函数24y ax x c =-+的图象与坐标轴交于点A (-1, 0)和点B (0,-5).(1)求该二次函数的解析式; (2)已知该函数图象的对称轴上存在一点P ,新 课 标 第一网参考答案1.A2.C3.D4.C5.A6.B7.A8.D 10.B 11.D 12.B 13.C 14.A 15. m(m+1)(m-1) 16.2<x ≤4 17.2a b -- 18. 19.(1,23)或(-1,-23) 20. 正确画出两条角平分线,确定圆心;3分确定半径;4分C (第23题图)A DB E FO C第25题图 (第26题图)正确画出圆并写出结论. 6分 21.解:(1)正确补全统计图; ······················· 4分 (2)300人. ······························ 7分 新 课 标 第一网22.解:由题意知CD AD ⊥,EF AD ∥,∴90CEF ∠=°,设CE x =, 在Rt CEF △中,tan CE CFE EF ∠=,则8tan tan 213CE x EF x CFE ===∠°; 在Rt CEG △中,tan CECGE GE∠=,则4tan tan 373CE x GE x CGE ===∠°; ····· 4分∵EF FG EG =+, ∴845033x x =+. 37.5x =,∴37.5 1.539CD CE ED =+=+=(米).答:古塔的高度约是39米.23.解:(1)连接PO OB ,.设PO 交AB 于D . PA PB ,是O ⊙的切线. ∴90PAO PBO ∠=∠=°,PA PB =,APO BPO ∠=∠.∴3AD BD ==,PO AB ⊥.········ (2分)∴4PD =. ··········· (3分)在Rt PAD △和Rt POA △中,tan AD AOAPD PD PA==∠. ∴·351544AD PA AO PD ⨯===,即O ⊙的半径为154. ············ (5分)(2)在Rt AOD △中,94DO ==. ······ (7分)∴934sin 1554OD BAC AO ∠===. ····················· (9分) 24. 解:设该商品降价x 元时,每星期可获得利润为y 元依题意得: y = (60-40-x )•(300+20x)=-20x 2+100x +6000=-20(x -25)2+6125 (0≤x <20) 当x=25时,函数有最大值。

2011年山东省初中生毕业考试数学模拟卷

2011年山东省初中生毕业考试数学模拟卷

2011年山东省初中毕业生学业考试数学模拟试卷一、 填空题(共10题,每题3分,共30分)1、(-2)0=__________;(21)-1=__________;21=___________。

2、已知方程x 2+mx -6=0的一个根为-2,则另一个根是___________。

3、已知扇形的圆心角为1500,它所对的弧长为20πcm ,扇形的面积是_____________cm 2。

4、温家宝总理有句名言:“多么小的问题乘以13亿,都会变得很大;多么大的经济总量,除以13亿都会变得很小”据国家统计局的公布,2004年我国淡水资源总量为26520亿立方米,居世界第四位,但人均只有 立方米,是全球人均水资源最贫乏的十三个国家之一。

(结果保留两位小数)。

5、如果长度分别为3、5、x 的三条线段能组成一个三角形,那么x 的范围是_______。

6、从一副扑克牌中随机抽出一张牌,得到大王或小王的概率是________。

7、如图,在同一直角坐标系中,二次函数的图象与两坐标轴分别交于A (-1,0)、点B (3,1)和点C (0,3),一次函数的图象与抛物线交于B 、C 两点。

(1)当自变量x 时,两函数的函数值都随x 的增大而增大; (2)当自变量 时,一次函数值大于二次函数值;(3)当自变量x 时,两函数的函数值的小于0。

8、如图,等腰三角形ABC 中,AB=AC ,∠A=44°,CD ⊥AB 于D ,则∠DCB 等于= ° 9、如图,AB ∥CD ,那么∠A +∠E +∠C = °10、在半径为1的圆中,弦AB 、AC 分别是3和2,则 ∠BAC=___________。

二、 选择题(共10题,每题3分,共30分)11、在下列实数中,无理数是 【 】A 、21-B 、0C 、3D 、3.14 12、下列计算,正确的是 【 】 A 、63329)3(y x xy = B 、22222)(2y x y x +=+ C 、326x x x =÷D 、y x yx y x 22223212=-13、若点P (1-m ,m)在第二象限,则下列关系式正确的是 【 】 A 、0<m<1 B 、m<0 C 、m>0 D 、 m>114、若x x -=||,则x 的取值范围是 【 】A 、1-=xB 、0=xC 、0≥xD 、0≤x15、已知⊙O 1和⊙O 2的半径分别为5cm 和7cm ,圆心距O 1O 2=3cm ,则这两个圆的位置关系是 【 】A 、外离B 、相交C 、内切D 、外切 16、已知反比例函数y=xk(k<0)的图象上两点A (x 1,y 1),B(x 2,y 2),且x 1 <x 2,则y 1-y 2的值是 【 】 A 、正数 B 、负数 C 、非正数 D 、不能确定 17、如果某物体的三视图是如图所示的三个图形,那么该物体的形状是 【 】 A 、三棱柱 B 、长方体 C 、正方体 D 、圆锥 18、某人骑车外出,所行的路程S (千米)与时间t (小时)的函数关系如图所示,现有下列四种说法: ① 第3小时中的速度比第1小时中的速度快; ② 第3小时中的速度比第1小时中的速度慢; ③ 第3小时后已停止前进; ④ 第3小时后保持匀速前进。

山东省东营市2011年学业水平模拟考试数学试题

山东省东营市2011年学业水平模拟考试数学试题

山东省东营市2011 年学业水平模拟考试数学试题
东营市2011 年学业水平模拟考试数学注意事项:
1.本试卷共8 页,三大题,满分120 分,考试时间120 分钟. 请用钢笔或圆珠笔直接答在试卷上.
2.答题前将密封线内的项目填写清楚.
第Ⅰ卷(选择题共36 分)
一、选择题:本大题共12 小题,在每小题给出的四个选项中,只有一项
是正确的,请把正确的选项选出来.每小题选对得3 分,选错、不选或选出的答
案超过一个均记零分.
1.的平方根是( )
A.B.C.D.
2.甲型H1N1 流感病毒的直径约为0.08 微米至0.12 微米,普通纱布或棉布口罩不能阻挡甲型H1N1 流感病毒的侵袭,只有配戴阻隔直径低于
0.075 微米的标准口罩才能有效.0.075 微米用科学记数法表示正确的是( )
A.微米B.微米C.微米D.微米
3.抛物线y=3(x-1)+1 的顶点坐标是()
A、(1,1)
B、(-1,1)
C、(-1,-1)
D、(1,-1)
4.如图,由四个相同的直角三角板拼成的图形,设三角板的直角边分别为、(),则这两个图形能验证的式子是( )
A.B.
C.D.。

2011年山东省潍坊市中考数学试题答案

2011年山东省潍坊市中考数学试题答案

试卷类型A2011年潍坊市初中学业水平考试数学试题参考答案及评分标准一.选择题:(本题共12小题,共36分.在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选(本题共5小题,共15分.只要求填写最后结果,每小题填对得3分.)13.()()211a a -+ 14.如:2y x=,3y x =-+,25y x =-+,等,写出一个即可.15.23x y =⎧⎨=⎩ 16.12a 17. 87cm 三.解答题:(本题共7小题,共69分.解答应写出文字说明、证明过程或演算步骤.)18. (本题满分8分)解:(1)∵ABCD 为正方形,∴AC BD ⊥ ∵PF BD ⊥,∴PF ∥AC ,同理PE ∥BD∴四边形PEOF 为矩形,故PE OF =. ………………………2分 又∵45PBF ∠=︒,∴PF BF =. ………………………3分∴cos 452PE PF OB a a +==︒=. ………………………5分 (2)∵ABCD 为正方形,∴AC BD ⊥.∵PF BD ⊥,∴PF ∥AC ,同理PE ∥BD . ∴四边形PEOF 为矩形,故PE OF =. 又∵45PBF OBA ∠=∠=︒,∴PF BF =.∴cos 452PE PF OB a a -==︒=. ………………………8分 19. (本题满分9分)(1)解:如图,过C 作CF AM ⊥,F 为垂足,过B 点作BE AM ⊥,BD CF ⊥,E D 、为垂足. ∵在C 点测得B 点的俯角为30°, ∴30CBD ∠=︒,又400BC =米, ∴1400sin 304002002CD =⨯︒=⨯=(米). ∴B 点的海拔高度为1121-200=921(米). ………………………3分 ∴921121800BE =-=米∵2080AB =米, 1920AE ===(米)∴AB 的坡度8005192012AB BE i AE ===,故AB 的坡度为1︰125,即1︰2.4. ………………5分(2)∵2080AB =米,∴从A 点到B 点用时120800.82600t ==(小时), ∴=400BC 米,∴从B 点到达C 点用时24000.8500t ==(小时).……………7分 ∴20804002480AB BC +=+=(米). ∴他们从A 点到C 点的平均速度2480155016v .==(米/小时). ………………9分 20. (本题满分9分)解:(1) 设乙盒中有x 个蓝球,则乙盒中摸得蓝球的概率13xP x =+,…………1分 甲盒中摸得蓝球的概率214P =; ………………………2分 依题意得1=32x x +, ………………………4分 解得 3x =,乙盒中有3个蓝球. ………………………5分(2)方法一:列表如下 (列表正确得2分)由表格可以看出,可能的结果有24种,其中均为蓝球的有3种,因此从甲、乙两盒中各摸取一球,两球均为蓝球的概率31248P ==. ∴从甲、乙两盒中各摸取一球,两球均为蓝球的概率为18. ………………………9分 (也可以用画树状图法或枚举法)方法二:从甲盒中摸得蓝球的概率为14,从乙盒中摸得蓝球的概率为12.………………………7分 则从甲、乙两盒中各摸取一球,两球均为蓝球的概率111428P =⨯=. ………………………9分21. (本题满分10分) 解:(1)设从甲厂调运饮用水x 吨,从乙厂调运饮用水y 吨,由题意可知:2012141526700,120.x y x y ⨯⨯+⨯⨯=⎧⎨+=⎩ ………………………3分 解得50,70x y =⎧⎨=⎩,故从甲、乙两水厂各调用了50吨、70吨饮用水.………………………5分(2)从甲厂调运水x 吨,则需从乙厂调运水120x -吨,由题意得: x ≤80,且120x -≤90,即30≤x ≤80. ………………………7分总运费()2402101203025200W x x x =+⨯-=+,(30≤x ≤80)…………………8分 ∵W 随x 的增大而增大,故当30x =时,=26100W 最小元.每天从甲厂调运30吨,从乙厂调运90吨,每天的总运费最省. ……………………10分 22. (本题满分10分)解:(1)当1≤x ≤7时,设y kx m =+,将点()1,8、()7,26分别代入y kx m =+得:8726k m k m +=⎧⎨+=⎩,解之得53m k =⎧⎨=⎩,∴函数解析式为 35y x =+. ………………………2分当7≤x ≤12时,将()7,26、()9,14、()12,11分别代入2y ax bx c =++得:49726819141441211a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解之得122131a b c =⎧⎪=-⎨⎪=⎩,∴函数解析式为 2-22131y x x =+. …………4分 (2)当1≤x ≤7时,35y x =+,当1x =时,=8y 最小值当7≤x ≤12时,()22-22131=1110y x x x =+-+当11x =时,=10y 最小值 ………………6分所以,该农产品月平均价格最低的是1月,最低为8元. ………………………7分 (3)∵1至7月份的月平均价格呈一次函数,∴4x =时的月平均价格17是前7个月的平均值. 后5个月的平均价格分别为19,14,11,10,11. ∴年均价格为177+19+14+11+10+1146=15.3123y ⨯=≈. ………………………9分∴4、5、6、7、8五个月的月平均价格高于年平均价格. …………………10分23. (本题满分11分)(1)证明:∵AB 为直径,∴90ACB ∠=︒,即AC BC ⊥. 又OE BC ⊥,∴OE ∥AC ,∴BAC FOB ∠=∠. BN 半圆的切线,故90BCA OBF ∠=∠=︒.∴V ACB ∽V OBF . ………………………3分(2)由V ACB ∽V OBF 得,OFB DBA ∠=∠,90DAB OBF ∠=∠=︒, ∴ADB V ∽V OBF ,当ADB V 与V OBF 的面积相等时,ADB V ≌V OBF .……………4分 ∴1AD =. 又∵DPQ 是半圆O 的切线,∴DQ ∥AB , ∴BQ =AD =1. ……………6分(3)由(1)知,ABD BFO ∠=∠,DAB OBF ∠=∠, ∴V DAB ∽V OBF , ∴BF AB OB AD =, ∴ 2BF AD=. ……………7分 ∵DPQ 是半圆O 的切线,∴AD DP =,QB BQ =, ……………9分过Q 点作AM 的垂线QK ,垂足为K ,在直角三角形DQK 中,222DQ QK DK =+, ∴222()()2AD BQ AD BQ +=-+ ∴1BQ AD=,∴2BF BQ =,∴Q 为BF 的中点………………………11分 24.(本题满分12分)解:(1)()0A m,-,()30B m,,()0D .……………3分(2)设直线ED 的解析式为y kx h =+,将()30-,、()0D 代入得:30,k h h -+=⎧⎪⎨=⎪⎩解得,,k h ==.∴直线ED的解析式为y =. ……5分将抛物线)()3y x m x m =+-化为顶点式:)2-y x m =. ∴顶点M的坐标为3m m ⎛⎫⎪⎪⎝⎭,.代入y =+得:2m m =. ∵0m >,∴1m =.所以,当1m =时,M 点在直线DE 上. ………………………7分 连接CD , C 为AB 中点,C 点坐标为(),0C m .∵OD =1OC =,∴2CD =,D 点在圆上 又3OE =,22212,DE OD OE =+=216,EC =24,CD =∴222.CD DE EC +=∴90FDC ∠=︒,∴直线ED 与⊙C 相切. …………8分(3)当03m <<时,()132AED S AE OD m =⋅=-V2.S =+ ……………9分 当3m >时,()132AED S AE OD m =⋅=-V ,即2.22S m m =- …………10分 图象示意图如图中实线部分. ……………12分说明:本参考答案多数题目只给出了一种解法,其它正确方法应参考本标准给出相应分数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(5题图)
(6题图)
(7题图)
2011年山东地区中考数学模拟试题八
一、选择题(每题4分,共48分) 1.1
2-的相反数是(B ) A .
12
B .12
-
C .2
D .2-
2.下列计算正确的是( C ) A
.= B
=C
3= D
3=-
3.如图所示零件的左视图是(D )
A .
B .
C .
D .
4.2008年5月12日,四川汶川发生了特大地震.震后,国内外纷纷向灾区捐物捐款,截至5月26日12时,捐款达308.76亿元.把它用科学记数法表示为( B ) A .9
30.87610⨯元 B .103.087610⨯元 C .11
0.3087610⨯元
D .11
3.087610⨯元
5.如图,把线段AB 平移,使得点A 到达点C(4,2),点B 到达点D ,那么点D 的坐标是( C ) A . (7,3) B . (6,4) C . (7,4) D . (8,4)
6.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是( C ) A.7、7 B.8、
7.5 C.7、7.5
D. 8、6.5
7.如图,⊙O 中,弦AB 的长为6cm ,圆心O 到AB 的距离为4cm ,则⊙O 的半径长为( C )
A.3cm
B.4cm
C.5cm
D.6cm
第3题图
时间(分钟)
(11题图)
(12题图)
8. 若35
2++n m x y
与323y x -是同类项,则=n m ( A )
A .
21 B.2
1
- C.1 D.-2 9.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色, ,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有( C ) A .18个
B .15个
C .12个
D .10个
10.若关于x 的一元二次方程(m-1)x 2
+5x+m 2
-3m+2=0有一个根为0,则m 的值等于( B ) A . 1 B . 2 C . 1或2 D . 0
11.小亮早晨从家骑车到学校,先上坡后下坡,行程情况如图所示.若返回时上坡、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是( A ) A .37.2分钟
B .48分钟
C .30分钟
D .33分钟
12.如图,第四象限的角平分线OM 与反比例函数()0≠=
k x
k
y 的图象交于点A ,已知OA =23,则该函数的解析式为( D )
A .x y 3=
B .x y 3-=
C .x y 9=
D .x
y 9-= 二、填空题(每题3分,共15分)
13.化简:22
4
44
a a a -=++ 14.已知一个圆锥体的底面半径为2,母线长为4,则它的侧面展开图面积是 (结果保留π)
15.如图,在四边形ABCD 中,E F G H ,,,分别是AB BD CD AC ,,,的中点,要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是
16.如图,D 、E 为△ABC 两边AB 、AC 的中点,将△ABC 沿线段DE 折叠,使点A 落在点F 处,
A
B
E
(第15题
若∠B=55°,则∠
BDF= °.
17.如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3.而且6123=++,所以6是完全数.大约2200多年前,欧几里德提出:如果21n
-是质数,那么)12(21--n n 是一个完全数,请你根据这个结论写
出6之后的下一个完全数是 三、解答题(共57分)
18.(7分)(1)解方程:2
50x x --=. (2)若不等式组2311
(3)2
x x x +<⎧⎪⎨>-⎪⎩整数解是关于x 的方程
24x ax -=的根,求a 的值.
19.(7分)(1)已知:如图,B 、E 、F 、C 四点在同一条直线上,
AB =DC ,BE =CF ,∠B =∠C .
求证:OA =OD .
(2)如图2,已知AB 是⊙O 的直径,BC 是弦,30ABC ∠=
.过圆心O 作OD BC ⊥交弧BC 于点D ,连接DC ,求∠DCB 的度数
C
D
20. (8分)有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1、2、3、4四个数,另一个信封内的四张卡片分别写有5、6、7、8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.
(1)请你通过列表(或画树状图)计算甲获胜的概率.
(2)你认为这个游戏公平吗?为什么?如何修改规则使游戏公平?
21.(8分)某厂工人小王某月工作的部分信息如下:
信息一:工作时间:每天上午8∶20~12∶00,下午14∶00~18∶00,每月25天;
信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.
生产产品件数与所用时间之间的关系见下表:
信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元. 根据以上信息,回答下列问题:
(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分? (2)小王该月最多能得多少元?此时生产甲、乙两种产品分别多少件?
22.(9分)如图所示,A B ,两地之间有条河,原来从A 地到B 地需要经过桥DC ,沿折线A D C B →→→到达.现在新建了桥
EF ,可直接沿直线AB 从A 地到达B 地.已知
11km BC =,45A ∠= ,37B ∠= ,桥DC 和AB 平行,则现在从A 地
到B 地可比原来少走多少路程?(结果精确到0.1km .参考数据:
1.41,sin 370.60 ≈,cos370.80 ≈)
23(9分)如图,在Rt ABC △中,90A ∠=
,6AB =,8AC =,D E ,分别是边AB AC
,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于
R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.
(1)求点D 到BC 的距离DH 的长;
(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);
(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.
24.(9分)如图,在矩形ABCD 中,(16,12)B ,E 、F 分别是OC 、BC 上的动点,8EC CF +=.
⑴当60AFB ∠=︒时,ABF ∆沿着直线AF 折叠,折叠后,落在平面内G 点处,求G 点的坐标.
⑵当F 运动到什么位置时,AEF ∆的面积最小,最小为多少?
⑶当AEF ∆的面积最小时,直线EF 与y 轴相交于点M ,P 点在x 轴上,⊙P 与直线EF 相切于点M ,求P 点的坐标.
A B
C
D E
R
P H Q。

相关文档
最新文档