遥感导论

合集下载

遥感导论复习重点

遥感导论复习重点

遥感导论复习重点第一章遥感概述§1-1遥感的基本概念及其特点一、遥感概念遥感(RemoteSening)是20世纪60年代发展起来对地观测综合性技术。

有广义和狭义之分。

1、广义遥感:泛指一切无接触的远距离探测(对电磁场、力场、机械波等)2、狭义遥感:即是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析揭示出物体的特征性质及其变化的综合测控技术。

遥测:对目标的某些运动参数和性质进行远距离册测量的技术。

分接触和非接触测量。

遥控:远距离控制目标的运动状态和过程的技术。

二、遥感的特点1.大面积同步观测:探测范围大,具有综合、宏观的特点,受地面条件限制少。

2.时效性:获取信息速度快,更新周期短,具有动态监测特点。

3.数据综合性先进性:信息量大,具有手段多,技术先进的特点。

4.经济性:用途广,效益高的特点。

5.局限性:利用的电磁波段有限。

§1-2遥感过程及系统一、遥感过程的实现光谱特性:一切物体固有的对电磁波反射、透射、吸收的能力。

由于环境不同,物体的反射、辐射电磁波是不同的。

数据获取→数据处理分析→数据应用遥感是一个接收、传送、处理和分析遥感信息,并最后识别目标的复杂技术过程。

二、遥感的技术系统依据遥感过程遥感系统分为:1.信息源2.信息的获取和接收传感器遥感平台地面站:是为了接收和记录遥感平台传送来得图像胶片或数字磁带数据而建立的。

由地面数据接收和记录系统(TRRS)和图像数据处理系统(IDPS)两部分组成。

3.信息的处理4.信息的应用-1-§1-3遥感的类型遥感的分类方法多种多样,主要有以下几种分类方法:1.按照遥感平台分:地面遥感、航空遥感、航天遥感、航宇遥感2.按照传感器的探测波段分:紫外遥感、可见光遥感、红外遥感、微波遥感、多波段遥感 3.按工作方式分:主动遥感、被动遥感;成像遥感、非成像遥感4.按信息获取方式分:5.按照波段宽度及波谱的连续性分:6.按应用领域分:较多§1-4遥感的发展简史一、遥感发展概况(一)遥感的萌芽及其初期发展时期(二)现代遥感发展时期从以下四个阶段了解遥感发展过程无记录的地面遥感阶段(1608-1838)有记录的地面遥感阶段(1839-1857)空中摄影遥感阶段(1858-1956)航天遥感阶段(1957-)二、我国遥感发展概况及其特点三、当前遥感发展主要特点与展望新一代传感器的研制,获得分辨率更高,质量更好的图象和数据;遥感应用不断深化;地理信息系统的发展与支持是遥感发展的又一新动向;复习题1.试述遥感的探测系统及其实现过程。

遥感导论ppt课件

遥感导论ppt课件
地球曲率
编辑课件
To be continued… 32
§2 几何校正
遥感图像的几何变形产生的原因
地形起伏
编辑课件
To be continued… 33
§2 几何校正
遥感图像的几何变形产生的原因
大气折射(光):整个大气层不是一个均匀的介质,因
此电磁波在大气层中传播时的折射率也随高度的变化而 变化,使电磁波传播的路径不是一条直线而变成了曲线, 从而引起像点的位移,
§1 辐射校正
而在实际测量时,辐射强度值还受到其他因素的影响 而发生改变。这部分就是需要矫正的部分,这也就 是所谓的辐射畸变。引起辐射畸变的原因有两个方 面:
1.传感器本身所具有的误差(……) 2.大气对辐射的影响。
编辑课件
To be continued… 16
§1 辐射校正
大气对辐射的影响:
进入大气的太阳辐射会发生反射、 折射、吸收、散射和透射等现象。 其中,对传感器影响较大的是散射 和吸收。吸收主要是减弱了地物反射 光线进入传感器的强度,而散射光 进入传感器后,使其获取的遥感信 息中带有一定的非目标地物的成像信息,降低了图像对比度, 影响了图像的质量。
遥感图像的几何变形产生的原因
传感器所搭载的运载平台在运行过程中,由于姿态、 地球曲率、地形起伏、地球旋转、大气折射、以及传 感器自身性能所引起的几何位置偏差。
位移变化
(dα)
侧翻变化
速度变化
高度变化
编俯辑仰课(dω件变) 化
To be con偏ti(n航dκu变) e化d… 31
§2 几何校正
遥感图像的几何变形产生的原因
编辑课件
11
编辑课件
12
编辑课件
13

《遥感导论主要内容》课件

《遥感导论主要内容》课件
《遥感导论主要内容》ppt 课件
目 录
• 遥感导论概述 • 遥感系统与平台 • 遥感传感器与成像原理 • 遥感图像处理与分析 • 遥感应用案例分析
01
遥感导论概述
遥感的定义与特点
遥感定义
遥感是通过非直接接触目标物而 获取其特征信息,进而识别、测 量和解释目标物及其现象的过程 。
遥感特点
遥感具有大面积同步观测、信息 获取快速、经济性、周期性等特 点,能够提供多尺度、多维度、 多频谱的地球表面信息。
遥感技术的应用领域
环境监测
遥感技术广泛应用于环境监测 ,如大气污染、水污染、土地
利用变化等。
城市规划与管理
遥感技术为城市规划与管理提 供了基础数据和信息,有助于 城市规划的科学性和合理性。
农业管理
遥感技术可以监测作物生长状 况、病虫害发生等,为农业管 理提供决策支持。
灾害监测与评估
遥感技术能够快速获取灾区信 息,为灾害救援和灾后重建提
识别。
热红外遥感传感器在夜间和恶劣 天气条件下具有较好的感知能力 ,因此在安防监控、野生动物保
护等领域得到广泛应用。
04
遥感图像处理与分析
遥感图像预处理
01
02
03
纠正几何畸变
对原始遥感图像进行几何 变换,纠正因卫星轨道、 地球自转等因素引起的图 像畸ห้องสมุดไป่ตู้。
辐射定标
将遥感图像的像素值从物 理量转换为反射率或辐射 率,以便进行后续的定量 分析。
感谢您的观看
THANKS
信息提取
从遥感图像中提取有用的地理信息,如土地 覆盖、植被类型、水体分布等。
变化检测
比较不同时相的遥感图像,检测地物的变化 和动态趋势。

遥感导论主要内容

遥感导论主要内容

数据传输与处理
数据传输
遥感数据通过卫星、飞机或无人机等平台传输至地面接收 站,经过压缩和处理后进行存储或分发。
数据处理
遥感数据处理涉及辐射定标、大气校正、几何校正等多个 环节,目的是提取有用的地理信息并生成遥感产品。
数据融合与解译
将不同来源和类型的遥感数据融合,提高信息提取的准确 性和可靠性,同时结合地理信息系统(GIS)技术进行数 据解译和分析。
遥感导论主要内容
目录
• 遥感概述 • 遥感系统 • 遥感图像处理 • 遥感应用案例 • 遥感未来发展
01 遥感概述
遥感的定义与特点
遥感定义
远距离
大范围
高频度
多光谱
遥感是通过非直接接触 目标的方式,获取并分 析地表或地表上空物体 的电磁波信息,从而提 取和应用有关对象的空 间、时间、光谱等特征 的技术。
总结词
利用遥感技术进行森林资源调查,评估森林覆盖率、生长状况和生态状况。
详细描述
遥感技术能够获取大范围、高分辨率的森林资源数据,通过分析卫星影像和光 谱信息,可以准确评估森林覆盖率、树木种类、生长状况和生态状况等。这些 数据对于森林保护、管理和可持续发展具有重要意义。
灾害监测与评估
总结词
利用遥感技术监测灾害发生和发展情况,评估灾害损失和影响。
图像分类与识别
监督分类
基于已知样本的训练集进行分类,通过分类 器对未知样本进行分类。
非监督分类
根据像素间的相似性进行聚类,无需预先确 定样本类别。
特征提取
从遥感图像中提取出地物的形状、纹理、光 谱等特征,用于后续的分类和识别。
面向对象分类
将遥感图像中的像素组合成对象,然后对对 象进行分类和识别。

(完整版)遥感导论重点

(完整版)遥感导论重点

第一章绪论一、遥感的概念广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。

遥感定义:遥感是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标地物的电磁波信息,经过对信息的处理,判别出目标地物的属性的综合性技术。

遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来通过分析,揭示出物体的特征性质及其变化的综合性探测技术。

二、遥感系统包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理、信息的应用三、遥感分类1、按遥感平台分:地面遥感:传感器设置在地面平台上航空遥感:传感器设置在航空器上航天遥感:传感器设置在环地球的航天器上航宇遥感:传感器设置在星际飞船上2、按传感器的探测波段分:紫外遥感:探测波段在0.05~0.38um可见光遥感:探测波段在0.38~0.76um红外遥感:探测波段在0.76~1000um微波遥感:探测波段在1mm~10m多波段遥感:探测波段在可见光波段和红外波段范围内,分成若干窄波段来探测目标。

3、按工作方式分a、主动遥感:不依靠太阳,由探测器主动发射一定电磁波能量并接受目标的后向散射信号被动遥感:传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量b、成像方式、非成像方式4、按照遥感应用的目的分类:环境遥感、农业遥感、林业遥感、地质遥感等四、遥感的特点(简答)1、遥感范围大,可实施大面积的同步观测遥感观测为地面探测提供了最佳获取信息的方式,并且不受地物阻隔的影响。

遥感平台的范围越大,视角越大,可以同步观测的地面信息就越多。

2、时效性:获取信息快、更新周期短,具有动态监测的特点对于天气预报、火灾和水灾等灾情检测,以及军事行动等具有重要作用。

3、数据的综合性和可比性,具有手段多、技术先进的特点能够反映许多自然人文信息,能较大程度排除人为干扰。

4、经济性:经济效益高、用途十分广泛5、局限性:遥感技术所利用的电磁波还很有限,仅是其中的几个波段范围;已被利用的电磁波谱段,对许多地物某些特征不能准确反映。

遥感导论总复习 必备

遥感导论总复习 必备

《遥感导论》总复习第一章绪论1、遥感广义理解,泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。

实际工作中,重力、磁力、声波、地震波等的探测被划为物探(物理探测)的范畴。

因而,只有电磁波探测属于遥感的范畴。

狭义的遥感:遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的科学及综合性探测技术。

2、遥感技术系统遥感系统包括:被测目标的信息特征(信息源)、信息的获取、信息的传输与记录、信息的处理和信息的应用五大部分3、遥感平台转载传感器的平台4、主动遥感传感器从遥感平台主动发射出能源,然后接收目标反射或辐射回来的电磁波。

5、被动遥感传感器不向目标发射电磁波,仅接收目标地物反射及辐射外部能源的电磁波。

如对太阳辐射的反射和地球辐射。

·问答题6、作为对地观测系统,遥感与常规手段相比有什么特点?一、宏观观测,大范围获取数据资料,不受地形阻隔二、时效性(动态监测),快速更新监控范围数据三、技术手段多样,可获取海量数据,数据的综合性和可比性四、应用领域广泛,经济效益高五、局限性穿透性有限第二章电磁辐射与地物光谱特征7、电磁辐射电磁波是电磁振动的传播。

当电磁振荡进入空间时,变化的磁场激发了变化的电场,使电磁振荡在空间传播,形成电磁波,也称电磁辐射.8、电磁波的性质一、电磁波是横波,质点的震动方向与波的传播方向垂直.二、电磁波的性质与光波相同,在真空中传播速度c为3*108m/s满足:c=f*, f三、具有波粒二象性9、电磁波谱按照电磁波在真空中传播的波长或频率排列形成的一个连续谱带10、电磁波遇到介质(气体、液体、固体),发生一系列现象:反射:镜面反射、漫反射折射:射入介质,折射角一般不等于入射角吸收:部分被介质吸收透射:从入射延伸方向射出介质散射:辐射传播中,若遇到小粒子,会向四面八方散去,电磁波强度和方向发生各种变化,即散射。

遥感导论复习资料

遥感导论复习资料

遥感导论复习资料遥感导论复习资料遥感导论是地理信息科学中的重要课程,它主要讲述了遥感技术的原理、应用和发展趋势。

在这篇文章中,我将为大家提供一些遥感导论的复习资料,帮助大家更好地理解和掌握这门课程。

一、遥感技术的基本原理遥感技术是通过感知和记录地球表面的电磁辐射来获取地表信息的一种技术手段。

它利用传感器接收到的电磁波信号,通过信号的特征参数来识别和解译地物特征。

遥感技术的基本原理包括辐射传输、辐射能量与地物相互作用、传感器接收和数据处理等方面。

辐射传输是指电磁波在大气中的传输过程。

大气中的气体、云、颗粒物等会对电磁波进行散射、吸收和透射,从而影响遥感数据的获取和解译。

了解辐射传输的原理,可以帮助我们更好地理解遥感数据的质量和可靠性。

辐射能量与地物相互作用是指电磁波与地表物体之间的相互作用过程。

不同的地物对电磁波有不同的反射、吸收和发射特性,这些特性可以通过遥感技术来获取和分析。

通过学习这一原理,我们可以了解遥感技术在不同地物识别和分类中的应用。

传感器接收和数据处理是指遥感数据的获取和解译过程。

遥感传感器可以通过不同的波段和分辨率来接收地球表面的电磁波信号,然后将其转化为数字数据进行处理和分析。

数据处理包括图像增强、特征提取、分类和变化检测等步骤,这些步骤可以帮助我们从遥感图像中提取出有用的地物信息。

二、遥感技术的应用领域遥感技术在许多领域都有广泛的应用,包括环境监测、农业、城市规划、资源调查等。

其中,环境监测是遥感技术的重要应用之一。

通过遥感技术,我们可以监测大气污染、水体质量、土地利用变化等环境指标,为环境保护和可持续发展提供数据支持。

农业是另一个重要的遥感应用领域。

通过遥感技术,我们可以监测农作物的生长状况、土壤湿度、气象变化等因素,帮助农民做出科学决策,提高农业生产效益。

城市规划是遥感技术的另一个重要应用领域。

通过遥感技术,我们可以获取城市的地形、土地利用、建筑物分布等信息,为城市规划和土地管理提供数据支持。

遥感导论 第一章遥感概述 ppt课件

遥感导论 第一章遥感概述 ppt课件
热红外遥感,指通过红外敏感元件,探测物体的热辐射能量,显 示目标的辐射温度或热场图象的遥感技术的统称。遥感中指8-14 微米波段范围。地物在常温(约300K)下热辐射的绝大部分能量位 于此波段,在此波段地物的热辐射能量,大于太阳的反射能量。 热红外遥感具有昼夜工作的能力。
微波遥感,指利用波长1-1000毫米电磁波遥感的统称。通过接收 地面物体发射的微波辐射能量,或接收遥感仪器本身发出的电磁 波束的回波信号,对物体进行探测、识别和分析。微波遥感的特 点是对云层、地表植被、松散沙层和干燥冰雪具有一定的穿透能 力,又能夜以继日地全天侯工作。
8
遥感的载体:电磁波谱
9
地物波谱特征
自然界任何物体都具有反射、吸收、发射电磁波的能力, 这是由于组成物质的最小微粒不同运动状态造成的。
不同的物质由于物质组成和内部结构、表面状态不同,具 有相异的电磁波谱特性,这是遥感识别目标的前提。
10
信息获取
在外观上,Terra卫星的大小大概相当于一辆小型校园公汽。它装载的五
《遥感导论》课程
第一章 遥感概述
1
《遥感导论》教学主要内容
第一章 遥感概述 第二章 电磁辐射与地物光谱特征 第三章 遥感成像原理与遥感图像特征 第四章 遥感图像处理 第五章 遥感图像目视解译 第六章 遥感数字图像计算机解译 第七章 遥感应用 第八章 遥感、地理信息系统与全球定位系统综合应用
2
教学目的和要求
27
遥感的类型
按工作方式分
✓ 主动遥感:传感器主动发射一定电磁 波能量并接收目标的后向散射信号
✓ 被动遥感:传感器不向目标发射电磁 波,仅被动接收目标物的自身发射和对 自然辐射源的反射能量。
28
主动遥感和被动遥感

遥感导论知识点总结完整

遥感导论知识点总结完整

遥感导论知识点总结完整引言遥感作为一种先进的信息获取技术,已经在各个领域得到广泛的应用。

随着科学技术的不断发展,遥感技术也在不断进步,为人类提供了更多更精确的信息。

本文将从遥感的基本概念、发展历程、原理与分类、遥感数据的获取与处理、遥感在环境监测、资源调查、地质勘查等领域的应用以及遥感技术的未来发展方向等方面对遥感进行全面的介绍和总结。

一、遥感的基本概念遥感(Remote Sensing)是指利用卫星、飞机等远距离的传感器对地球表面和大气的特定区域进行观测和记录,然后通过数据处理和分析来获取地球表面和大气的信息的一种技术。

遥感技术的基本原理是利用电磁波在大气中传播的特性,通过感应器对地球表面和大气进行观测,然后对获取的数据进行处理,得到地表特征和大气物理参数等信息。

二、遥感的发展历程遥感技术的起源可以追溯到19世纪中叶,当时法国科学家对地球表面采用长焦距照相术进行观测。

20世纪初,随着航空摄影术的发明,遥感技术得到了迅速发展。

随着卫星技术的进步,遥感技术得到了更大的发展,不仅可以进行大范围的观测,还可以获取更多更精确的信息。

在遥感技术发展的过程中,人们不断提出了各种遥感技术和方法,比如红外遥感、微波遥感、激光雷达遥感等,这些新技术和方法的应用,使遥感技术更加全面和精确。

三、遥感的原理与分类1. 遥感的原理遥感技术基于物体对电磁波的反射、散射、辐射和吸收等特性,通过感应器对地球表面和大气进行观测,进而获取地表特征和大气物理参数等信息。

遥感技术的原理可以简要概括为:电磁波的发射和接收、电磁波与地表物体的相互作用、数据获取与处理。

2. 遥感的分类遥感根据不同的波段和传感器,可以分为光学遥感、红外遥感、微波遥感等。

根据不同的平台,可以分为航空遥感和卫星遥感。

根据不同的目的和应用,可以分为地质勘查、环境监测、农业资源调查等。

四、遥感数据的获取与处理1. 遥感数据的获取遥感数据的获取包括传感器的观测、数据的传输和处理。

遥感导论

遥感导论

1、遥感的概念广义的遥感泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。

实际工作中,只有电磁波探测属于遥感范畴,其余属于物探(物理探测)范畴。

狭义的遥感遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。

2、遥感系统被测目标物的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用五大类。

●目标物的电磁波特性●信息的获取●信息的接收●信息的处理●信息的应用3、遥感的类型按遥感平台分●地面遥感●航空遥感●航天遥感●航宇遥感按传感器的探测波段分●紫外遥感0.05~0.38um ●可见光遥感0.38~0.76 um●红外遥感0.76~1000 um ●微波遥感1㎜-10m●多波段遥感(探测波段在可见光波段和红外波段范围内,再分成若干窄波段来探测目标)按工作方式分●主动遥感和被动遥感:主动遥感由探测器主动发射一定电磁波能量并接受目标的后向散射信号;被动遥感的传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量。

●成像遥感和成像遥感:前者传感器接收的目标电磁波辐射信号可转换成(数字或模拟)图像;后者传感器接收的目标电磁辐射信号不能形成图像。

按遥感的应用领域分●从大的研究领域可分为:外层空间遥感、大气层遥感、陆地遥感、海洋遥感等;●从具体应用领域可分为:资源遥感、环境遥感、农业遥感、林业遥感、渔业遥感、地质遥感、气象遥感、水文遥感、城市遥感、工程遥感及灾害遥感、军事遥感等,还可以划分为更细的研究对象进行各种专题应用。

1、遥感的概念当电磁震荡进入空间,变化的磁场激发了涡旋电场,变化的电场又激发了涡旋磁场,使电磁震荡在空间传播,这就是电磁波。

其方向是由电磁振荡向各个不同方向传播的。

2、电磁波的性质1)是横波;2)在真空以光速传播(3×108 m/s);3)满足:4)电磁波具有波粒二象性不需要媒质也能传播,与物质发生作用时会有反射、吸收、透射、散射等,并遵循同一规律。

遥感导论知识点整理(XXX新版)

遥感导论知识点整理(XXX新版)

遥感导论知识点整理(XXX新版)第一章】遥感导论1、【名】遥感(remote sensing)广义上指一切无接触的远距离探测,而狭义上是指从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标地物的电磁波信息,经过对信息的处理,判别出目标地物的属性。

2、遥感系统遥感系统包括:被测目标的信息特征(信息源)、信息的获取、信息的传输与记录、信息的处理和信息的应用。

3、【名】信息源任何目标具有发射、反射和吸收电磁波的性质,被称为遥感的信息源。

4、遥感的类型:a)按照遥感平台分:地面遥感、航空遥感、航天(空间)遥感、航宇遥感。

b)按传感器的探测波段分:紫外遥感(0.05μm-0.38μm)、可见光遥感(0.38-0.76μm)、红外遥感(0.76-1000μm)、微波遥感(1mm-10m)。

c)按工作方式分:主动遥感、被动遥感;成像遥感、非成像遥感。

5、遥感的特点遥感具有大面积的同步观测、时效性、数据的综合性和可比性、经济性等特点。

6、遥感发展简史Remote XXX的提出:美国学者XXX于1960年提出,61年正式通过。

遥感发展经历了三个阶段:1)萌芽阶段:1839年,XXX发表第一张空中相片;1858年,法国人用气球携带照相机拍摄了巴黎的空中照片;1882年,英国人用风筝拍摄地面照片。

2)航空遥感阶段:1903年,XXX兄弟发明飞机,创造了条件;1909年,意大利人首次利用飞机拍摄地面照片;一战中,航空照相技术用于获取军事情报;一战后,航空摄影用于地形测绘和森林调查与地质调查;1930年,美国开始全国航空摄影测量;1937年,出现了彩色航空像片。

3)航天遥感阶段:1957年,苏联发射第一颗人造地球卫星,意义重大;70年代美国的陆地卫星、法国的Spot卫星;发展中国家的情况:中国,印度,巴西等。

卫星遥感包括Landsat、Spot、NOAA、EO-1等。

XXX used in China's development of remote sensing。

遥感导论主要内容

遥感导论主要内容

• 空间分辨率、波谱(光谱)分辨率、辐 射分辨率、时间分辨率
• 遥感图像的空间分辨率:指像素所代表的 空间分辨率大小。
Rg=Rs f / H Rs为系统分辨率 Rg为地面分辨率
常见遥感图像的空间分辨率
图像类型 TM
SPOT CBERS QuickBird OrbView IKNOS
分辨率 28.5(15) 10(5、2.5)
陆地卫星
• Landsat MSS,TM,ETM+ 重点 • SPOT • 中巴资源卫星CBERS
海洋卫星
• Seasat ,ERS等 • 需要高空和空间的遥感平台,以进行大
面积同步覆盖的观测 • 以微波为主 • 电磁波与激光、声波的结合是扩大海洋
遥感手段的一条新路 • 需要其它海面实测资料的校正
飞机 气球
遥感用汽车
地面运载工具 (地面遥感)
高架平台 遥感用舰船
按传感器的探测波段分
–紫外遥感 –可见光遥感 –红外遥感 –微波遥感 –多波段遥感
按工作方式分
–主动遥感和被动遥感 –成像遥感与非成像遥感
遥感的特点
• 大面积同步观测 • 时效性 • 数据的综合性和可比性 • 经济性 • 局限性
第二章 电磁辐射与地物光谱特征

(electromagnetic spectrum)
遥感中常用的电磁波
紫外线:波长范围为0.01~0.38μm,太阳光谱中,只有 0.3~0.38μm波长的光到达地面,对油污染敏感,但探测 高度在2000 m以下。 可见光:波长范围:0.38~0.76μm,人眼对可见光有敏锐 的感觉,是遥感技术应用中的重要波段。 红外线:波长范围为0.76~1000μm,根据性质分为近红 外、中红外、远红外和超远红外。 微波:波长范围为1 mm~1 m,穿透性好,不受云雾的影 响。

遥感导论 文档

遥感导论 文档

遥感导论1.(n )遥感:应用探测仪器,不与探测目标接触,从远处把目标的电磁波特征记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。

2.遥感系统的几大部分:1)目标物的电磁波特性。

2)信息的获取。

3)信息的接收。

4)信息的处理。

5)信息的应用。

3.遥感的类型:1)按照遥感平台划分:地面遥感;航空遥感;航天遥感;航宇遥感。

2)按传感器的探测波段划分:紫外遥感;可见光遥感;红外遥感;微波遥感;多波段遥感;3)按照工作方式分:a 主动遥感和被动遥感:主动要干由探测器主动发射一定电磁波能量并接收目标的后向散射信号;被动遥感的传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量。

b 成像遥感和非成像遥感:前者传感器接收的目标电磁辐射信号可转换成(数字模拟)图像;候着传感器接收的目标电磁辐射信号不能形成图像。

4.遥感的特点:大面积同步观测;时效性;数据的综合性和可比性;经济性;局限性。

5.遥感中较多的使用可见光、红外和微波波段。

长波:大于3000m 。

中波和短波:10~3000m 。

超短波:1~10m 。

微波:1mm~1m 。

红外波段:0.76~1000µm 。

可见光:0.38~0.76µm6.辐射测量:辐射能量(W ):电磁辐射的能量,单位J ;辐射通量Φ:单位时间内通过某一面积的辐射能量,Ф=dW /dt ,单位是W ;辐射通量是波长的函数,总辐射通量应该是各普段辐射通量之和或辐射通量的积分值。

辐射通量密度(E ):单位时间内通过单位面积的辐射能量,E=d Φ/dS ,单位:W/㎡。

S 为面积。

辐照度(I ):被辐射的物体表面单位面积上的辐射通量,I = d Φ/dS,单位是W/㎡。

S 为面积。

辐照出射度(M ):辐射源物体表面单位面积上的辐射通量,d Φ/dS,单位是W/㎡。

S 为面积。

辐照度(I )和辐照出射度(M )都是辐射通量密度的概念,不过I 为物体接收的辐射,M 为物体发出的辐射。

遥感导论

遥感导论

第一章1.遥感:广义理解,泛指一切无接触的远距离探测,包括对电磁场、力场、机械波等的探测。

狭义上,遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。

2.遥感系统包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理、信息的应用。

1.任何目标物都具有发射、反射和吸收电磁波的性质,这是遥感的信息源。

2.接收、记录目标物电磁波特征的仪器,称为传感器或遥感器。

如扫描仪、雷达、摄影机、摄像机、辐射计等。

3.信息的接收:传感器接收到目标地物的电磁波信息,记录在数字介质或胶片上。

胶片是由人或回收舱送至地面回收,而数字磁介质上记录的信息则可通过卫星上的微波天线传输给地面的卫星接收站。

4.遥感的类型:【选择】按遥感平台分:地面平台(如车载、船载、手提、固定或活动高架平台等)、航空遥感(飞机、气球等)、航天遥感(如人造地球卫星、航天飞机、空间站、火箭等)、航宇遥感按传感器的探测波段分:紫外遥感(0.05-0.38um)、可见光遥感(0.38-0.76um)、红外遥感(0.76-1000um)、微波遥感(1mm-10m)、多波段遥感(探测波段在可见光波段和红外波段范围内,再分为若干窄波段探测目标)5.遥感的特点【简答、论述】(1)大面积的同步观测。

遥感观测可以为大面积同步观测提供最佳的获取信息的方式,并且不受地形阻隔等限制。

遥感平台越高,视角越宽广,可以同步探测到的地面范围就越大,容易发现地球上一些重要目标物空间分布的宏观规律(2)时效性。

可以在短时间内对同一地区进行重复探测,发现地球上许多事物的动态变化。

(3)数据的综合性和可比性。

遥感获得的地物电磁波特性数据综合反映了地球上许多自然、人文信息。

(4)经济性。

遥感的费用投入与所获得的效益,与传统的方法相比,可以大大地节省人力、屋里、财力和时间,具有很高的经济效益和社会效益。

(5)局限性。

遥感导论

遥感导论
• 遥感发展的三个阶段:
– 萌芽阶段 – 航空遥感阶段 – 航天遥感阶段
萌芽阶段
• 1839年,达格雷发表第一张空中相片; • 1858年,法国人用气球携带照相机拍摄
了巴黎的空中照片。 • 1882年,英国人用风筝拍摄地面照片;
History of aerial photography and aerial platforms
16天,而气象卫星的周期更短(1天或半
天)。
4
宏 观 同 步 观 测
5
(一) 宏观同步观测
6
二、遥感技术的特点
➢ 宏观性、综合性
覆盖范围大、信息丰富。 一景TM影像为185×185 平方公里;影像包含各 种地表景观信息,有可 见的,也有潜在的。
二、遥感技术的特点
➢ 多波段性 波段的延长使对地球的观测走向了全天候。
一、遥感在资源调查方面的应用
3. 在水文、水资源方面的应用 ➢ 水资源调查、流域规划、水土流失调查、海
洋调查等。 ➢ 青藏高原水资源调查 ➢ 夏威夷群岛淡水资源
二、遥感在环境监测评价等方面的应用
1. 在环境监测方面的应用 ✓ 污染物位置、性质、动态变化及对环境的影响; 环境制图 ✓ 长江三峡库区环境本底调查、环境演变分析、动 态监测等
§3、遥感在地理学中的作用和意义
二、遥感已成为地理研究的重要手段和方法
1. 遥感方法改变了地理研究的工作模式 2. 遥感方法为地理分析提供了基础,也为地理分析从
定性到定量,从静态到动态创造了条件。 3. 遥感与地理信息系统的结合,为地理研究提供了广
阔的发展前景。
§4、遥感的应用
遥感应用从内容上 可以概括为资源调查与 应用、环境监测评价、 区域分析规划及全球宏 观研究四大领域。

遥感导论期末总结

遥感导论期末总结

遥感导论期末总结遥感导论是一门系统介绍遥感原理、技术与应用的课程。

在这门课程中,我学习了遥感技术的基本概念、原理、方法和应用,深入了解了遥感在地学、环境科学、气象学、农业等领域中的应用。

通过学习,我对遥感技术有了更深入的理解,并且认识到遥感在现代社会发展中的重要性。

在本学期的学习中,我首先学习了遥感技术的基本原理和流程。

遥感技术是通过获取、处理和解译遥感数据来获取地球表面信息的技术。

遥感数据分为被动遥感数据和主动遥感数据,被动遥感数据是由能量源(太阳光)激发后反射、散射和辐射回到传感器上获得的数据,主动遥感数据是通过发射器发射能量,经过目标反射、散射或辐射后被传感器接收到的数据。

遥感技术的流程包括数据获取、数据预处理、数据解译和应用。

在遥感技术的数据获取环节,我们学习了不同的遥感平台和传感器。

遥感平台包括卫星、飞机和无人机等,传感器包括光学传感器、热红外传感器和微波传感器等。

不同的平台和传感器有不同的优点和适应范围,可以用于获取不同类型和分辨率的遥感数据。

我们还学习了遥感数据的几何校正、辐射校正和大气校正等预处理技术,以提高遥感数据的质量和准确性。

在遥感技术的数据解译环节,我们学习了遥感图像的分类和解译方法。

遥感图像的分类是将图像中的像元划分为不同的类别,常用的方法包括基于统计学、基于特征的分类和基于人工智能的分类方法。

遥感图像的解译是通过分析图像中的空间分布和光谱信息,识别出图像中的地物和目标。

我们还学习了不同类型的遥感数据的解译方法,例如多光谱遥感图像、合成孔径雷达图像和高光谱遥感图像等。

在遥感技术的应用环节,我们学习了遥感在地学、环境科学、气象学、农业和城市规划等领域中的应用。

遥感技术可以用于地表覆盖变化监测、地震灾害评估、环境污染监测、气候变化研究和农作物生长监测等。

遥感技术的应用可以提供大范围、全天候、多时相和高精度的地表信息,帮助我们更好地理解和管理地球资源和环境。

通过这门课程的学习,我不仅掌握了遥感技术的基本原理和方法,还了解了遥感在不同领域中的应用。

遥感导论

遥感导论

遥感:应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。

遥感探测系统包括哪几个部分?被侧目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用.作为对地观测系统,遥感与常规手段相比有什么特点?答:①大面积同步观测:传统地面调查实施困难,工作量大,遥感观测可以不受地面阻隔等限制。

②时效性:可以短时间内对同一地区进行重复探测,发现地球上许多事物的动态变化,传统调查,需要大量人力物力,用几年甚至几十年时间才能获得地球上大范围地区动态变化的数据。

因此,遥感大大提高了观测的时效性。

这对天气预报、火灾、水灾等的灾情监测,以及军事行动等都非常重要。

(比较多,大家理解性的删除自己不需要的)③数据的综合性和可比性遥感获得地地物电磁波特性数据综合反映了地球上许多自然、人文信息。

由于遥感的探测波段、成像方式、成像时间、数据记录、等均可按照要求设计,使获得的数据具有同一性或相似性。

同时考虑道新的传感器和信息记录都可以向下兼容,所以数据具有可比性。

与传统地面调查和考察相比较,遥感数据可以较大程度地排除人为干扰。

④经济性遥感的费用投入与所获得的效益,与传统的方法相比,可以大大的节省人力、物力、财力和时间、具有很高的经济效益和社会效益。

⑤局限性遥感技术所利用的电磁波有限,有待进一步开发,需要更高分辨率以及遥感以外的其他手段相配合,特别是地面调查和验证。

波可分为横波和纵波,按照传播需要媒介与否可以分为机械波(需要媒介)和电磁波(有无媒质均可),电磁波是横波。

按电磁波波长的长短,依次排列制成的图表叫电磁波谱。

依次为γ射线—X射线—紫外线—可见光—红外线—微波—无线电波目前遥感技术中通常采用的电磁波位于可见光、红外和微波波谱区间。

由于它们的波长或频率不同,不同电磁波又表现出各自的特性和特点。

可见光、红外和微波遥感,就是利用不同电磁波的特性。

电磁波与地物相互作用特点与过程,是遥感成像机理探讨的主要内容。

遥感导论——精选推荐

遥感导论——精选推荐

遥感导论遥感导论DFH第⼀章⼀、填空:1、遥感的分类⽅法很多,按遥感平台分:地⾯遥感、航空遥感、航天遥感、航宇遥感。

2、遥感的分类⽅法很多,按⼯作⽅式分:主动遥感和被动遥感。

成像遥感与⾮成像遥感。

⼆、简答及综合题1、何谓遥感?遥感技术系统主要包括哪⼏部分?遥感:⼴义上指⼀切⽆接触的远距离探测,包括对电磁场、⼒场、机械波(声波、地震波)等的探测。

狭义上指是应⽤探测器,不与探测⽬标相接触,从远处把⽬标的电磁波特性记录下来,通过分析,揭⽰出物体的特征性质及其变化的综合性探测技术。

遥感技术系统主要包括:被测⽬标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应⽤五⼤部分。

2、遥感的主要特点表现在哪⼏⽅⾯?并举例说明。

遥感的主要特点:(1)观测范围⼤、具有综合、宏观的特点(2)信息量⼤,具有⼿段多,技术先进的特点(3)获取信息快,更新周期短,具有动态监测的特点(4)数据的综合性和可⽐性:反映了地球上许多⾃然⼈⽂信息,红外遥感昼夜探测、微波遥感全球探测⼈们可以从中选择需要的信息(5)经济性:与传统⽅法相⽐⼤⼤节省⼈⼒、物⼒、财⼒和时间,具有很⾼的经济效益和社会效益(6)局限性:遥感技术所利⽤的电磁波还是很有限,仅是其中的⼏个波段。

3、遥感的发展主要经历了哪⼏个阶段?(1)⽆记录的地⾯遥感阶段(2)有记录的地⾯遥感阶段(3)空中摄影遥感阶段(4)航天遥感阶段4、当前遥感发展趋势?(1)新⼀代传感器的研制,以获得分辨率更⾼,质量更好遥感图像和数据(2)遥感应⽤不断深化(3)地理信息系统的发展与⽀持是遥感发展的⼜⼀进展和⽅向5、根据你所学的知识,例举遥感在你所学专业领域中的应⽤。

(1)遥感在资源调查⽅⾯的应⽤ a:在农业、林业⽅⾯的应⽤ b:在地质矿产⽅⾯的应⽤ c:在⽔⽂⽔资源⽅⾯的应⽤(2)遥感在环境监测评价及对抗⾃然灾害⽅⾯的应⽤ a:在环境监测⽅⾯b:在对抗⾃然灾害⽅⾯的应⽤(3)遥感在区域分析及建设规划⽅⾯的应⽤(4)遥感在全球宏观研究中的应⽤(5)遥感在其他⽅⾯的应⽤a:在测绘地图⽅⾯的应⽤b:在历史遗迹、考古调查⽅⾯的应⽤c:军事上的应⽤第⼆章⼀、填空:1、电磁波谱按波长由低到⾼排列主要由γ射线、X射线、紫外线、可见光、红外线、微波⽆线电波等组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章概论第一节图像和数字图像一、几个基本概念1.数字图像:指用计算机存储和处理的图像,是一种空间坐标和灰度均不连续、以离散数学原理表达的图像,属于不可见图像。

模拟图像:是空间坐标和明暗程度连续变化的、计算机无法直接处理的图像,属可见图像。

像素:数字图像最基本的单位(pixel),是计算机图像处理的最小单元。

每个像素具有特定的空间位置和属性特征数字图像处理:对一个物体的数字表示施加一系列操作,以得到所期望结果的过程数字图像分析:将一幅图像转化成为一种非图像的表示,如一个测量数据集或一个决策等数字图像的表示:一幅数字图像可表示和记录为M行×N列像素组成的矩阵。

2.遥感数字图像:定义:数字形式表示的遥感图像特点:便于计算机存储和处理图像信息损失低(在获取、传输和分发过程中质量并不降低)抽象性强,用数字形式表示,便于建立分析模型,进行计算机解译和运用遥感图像专家系统像素和灰度值:像素(正像素,混合像素)DN值(Digital Number)是遥感数字图像中的像素值,又称为亮度值或灰度级。

(无单位,是一个整数值,值大小与传感器的辐射分辨率、地物发射率、大气透过率和散射率等有关。

)反映了传感器探测到的地物反射或辐射电磁波的强度DN值的相对性:同一物理过程获取的两景图像(如:TM或SPOT获取的不同波段图像)经过标准化处理后的不同物理过程获取的两景图像。

遥感图像处理:利用计算机图像处理系统对遥感图像中的像素进行系列操作的过程3.遥感数字图像处理的主要内容:①图像增强:去除噪声、增强整体图像或突出图像中的特定地物信息,使图像更容易理解、解释和判读,不会增加数据原有信息内容,其目的是增强整体图像或突出图像中的特定地物的信息,其方法主要包括:灰度拉伸、平滑、锐化、彩色合成、主成分变换、缨帽变换、代数运算、图像融合等;②图像校正:对传感器或环境造成的退化图像进行模糊消除、噪声滤除、几何失真消除等,其目的是对传感器或环境造成的模糊、噪声、几何失真等进行校正,其主要方法是辐射校正和几何校正;③信息提取:根据地物光谱特征和几何特征,从校正后的遥感图像中提取各种有用的地物信息,主要包括图像分割、监督分类、非监督分类等,处理结果为分类专题图。

4.数字图像处理存在的两种观点:(P7,第三段)①离散方法的观点:即一幅图像的存储和表示均为数字形式,数字是离散的,因此,使用离散方法进行图像处理才是合理的,与其对应的概念为空间域;②连续方法的观点:即图像具有连续性,可用连续的数学形式表达,与其对应的概念为频率域。

频率域的图像处理是对傅里叶变换后产生的反映频率信息的图像进行处理。

5.遥感数字图像处理系统:硬件系统:指进行图像处理所必须具备的设备,包括输入、存储、处理、显示、输出等设备。

主要由5部分组成:计算机、数字化设备、大容量存储器、显示器和输出设备以及操作台。

软件系统:指用于图像处理的各种程序。

由图像处理控制程序、管理程序、图像处理程序组成。

第二章遥感数字图像的获取和存储第一节遥感图像的获取和数字化遥感系统传感器摄影成像扫描成像电磁波与传感器-- 电磁波:紫外(50~380)、可见光(380~760)、红外(760~1mm)、微波(1mm~1m) 传感器的分辨率辐射分辨率、光谱分辨率、空间分辨率、时间分辨率采样和量化--采样--量化遥感图像的特征目标地物---传感器---遥感图像----遥感图像处理空间分辨率-----几何特征------目标地物的大小、形状及空间分布光谱分辨率辐射分辨率----物理特征-------目标地物的属性特点时间分辨率----时间特征------目标地物的变化动态特点空间分辨率图像的空间分辨率指像素所代表的地面范围的大小,即扫描仪的瞬时视场,或地面物体能分辨的最小单元。

波谱分辨率是指传感器在接收目标辐射的波谱时能分辨的最小波长间隔。

间隔愈小,分辨率愈高。

不同波谱分辨率的传感器对同一地物探测效果有很大区别。

成像光谱仪在可见光至红外波段范围内,被分割成几百个窄波段,具有很高的光谱分辨率,从其近乎连续的光谱曲线上,可以分辨出不同物体光谱特征的微小差异,有利于识别更多的目标,甚至有些矿物成分也可被分辨。

传感器的波段选择必须考虑目标的光谱特征值,才能取得好效果。

辐射分辨率是指传感器接收波谱信号时,能分辨的最小辐射度差。

在遥感图像上表现为每一像元的辐射量化级。

某个波段遥感图像的总信息量Im由空间分辨率(以像元数n表示)与辐射分辨率(以灰度量化级D表示)有关,以bit为单位,可表达为Im=n·log2D在多波段遥感中,遥感图像总信息量还取决于波段数k。

k个波段的遥感图像的总信息量为A:图像对应的地面面积;P:图像的空间分辨率时间分辨率时间分辨率指对同一地点进行遥感来样的时间间隔,即采样的时间频率,也称重访周期。

遥感的时间分辨率范围较大。

以卫星遥感来说,静止气象卫星(地球同步气象卫星)的时间分辨率为1次/0.5小时;太阳同步气象卫星的时间分辨率2次/天;Landsat为1次/16天;中巴(西)合作的CBERS为1次/26天等。

还有更长周期甚至不定周期的。

时间分辨率对动态监测尤为重要,天气预报、灾害监测等需要短周期的时间分辨率,故常以“小时”为单位。

植物、作物的长势监测、估产等需要用“旬”或“日”为单位。

而城市扩展、河道变迁、土地利用变化等多以“年”为单位。

总之可根据不同的遥感目的,采用不同时间分辨率。

数字图像数字图像的性质与特点什么是数字图像?模拟图像:普通像片那样的灰度级及颜色连续变化的图像数字图像:而是以数字形式表示的遥感影像。

包括把模拟图像分割成同样形状的小单元,以各个小单元的平均亮度值或中心部分的亮度值作为该单元的亮度值进行数字化的图像。

把前一部分的空间离散化处理叫采样(sampling),而后一部分的亮度值的离散化处理叫量化(quantization),以上两种过程结合起来叫图像的数字化(digitization)。

数字图像又称数字化图像,是一种以二维数组(矩阵)形式表示的图像。

或者称为相应区域内地物电磁辐射强度的二维分布。

该数组由对连续变化的空间图像作等间距抽样所产生的抽样点——像元(像素)组成。

像元的量值,通常为抽样区间内连续变化的景物的均值化量值,一般为亮度值或灰度值,它们的最大、最小值区间代表该数字图像的动态范围。

0<=f(x, y)<=Gx belong to [0, xmax], y belong to [0, ymax]式中, G为灰度值的上界.因此, 一幅图像可用M(行)N(列)的矩阵函数表示:1 2 7 12 34 56 3 4 56 123 4 23 23 5 6 8 9 45 86 5 12 6 45 34 5 34 34 239 9 23 34 34 5 6 45 67 56在遥感图像处理中, 既需要将光学图像转换为数字图像进行计算机处理,也需要将处理后的数字图像变成光学图像输出。

光学图像为模拟量,数字图像又称数字量,它们之间的转换称模/数转换,记作A/D, 反之称数/模转换,记D/A以一景Landsat 4 或5的TM数字图像为例,共7个波段,其中6个波段有6166行,6166列,代表地面约185 km x 185 km 的范围。

每一个波段约有6166x6166=38M个像元,则7个波段共(6x38M)+24M = 252M个像元,即需要252M字节存储空间才能存下一景全部的TM 数据。

遥感卫星地面站(气象卫星接受站)提供计算兼容的数字磁带,输入计算机图像处理系统,形成数字图像。

记录在胶片上的影像可在专用设备上进行数字化。

也可以使用胶片,即透明正片,用一束强度固定的光束扫描,透射光用光电增强管进行量度,通过抽样和量化而成为一连串的数字,可以存储在磁盘上或记录磁带上,成为数字图像文件。

由于传感器上探测元件的灵敏度直接影响有效量化的级数,因此,不同传感器提供的有效量化的级数是不同的。

遥感数字图像的级别和数据格式数据级别0级产品:未经任何校正的原始图像产品1级产品:经过初步辐射校正的图像数据2级产品:经过了系统级的几何校正,即根据卫星的轨道和姿态等参数以及地面系统中的有关参数对原始数据进行集合校正。

3级产品:经过了几何精校正,即利用地面控制点对图像进行了校正,使之具有了更精确的地理坐标信息,产品的几何精度要求在亚像素量级上。

元数据:关于图像数据特征的表述,关于数据的数据,如图像获取的日期、时间、投影参数、几何校正精度、图像分辨率、辐射校正参数等多波段数字图像存储与分发的常用数据格式:(1)BSQ数据格式(Band sequential);(2)BIP数据格式(Band interleaved by pixel);(3)BIL数据格式(Band interleaved by line);辅助数据:数字图像尺寸等各种参数BSQ(Band sequential)数据格式:按波段顺序依次排列,1个文件,文件内划分1-K段,第n段数据为第n波段的图像数据[M行][N列]。

BIP数据格式(Band interleaved by pixel),1个文件,[M行][N列]格式,每个单元顺序记录K个波段的相应数据。

BIL数据格式(Band interleaved by line),1个文件,逐行按波段次序排列。

第1波段的第1行、第2波段的第1行、…、第K波段的第1行;第1波段的第2行、第2波段的第2行、…、第K波段的第2行;……第二章遥感数字图像的获取和存储2.1遥感图像的获取和数字化传感器是收集、量测和记录遥远目标的信息(电磁波辐射能量信息)的仪器,是遥感技术系统的核心。

传感器一般由信息收集、探测系统、信息处理和信息输出4部分组成。

按平台分地面遥感、航空遥感、航天遥感数据。

按传感器的工作方式分主动遥感、被动遥感数据。

按数据的记录方式分成像方式、非成像方式。

按成像原理分摄影成像、扫描成像从地面到大气上界,大气的结构分层为:对流层:高度在7~12 km,温度随高度而降低,天气变化频繁,航空遥感主要在该层内。

平流层:高度在12~50 km,底部为同温层(航空遥感活动层),同温层以上,温度由于臭氧层对紫外线的强吸收而逐渐升高。

电离层:高度在50~1000 km,大气中的O2、N2受紫外线照射而电离,对遥感波段是透明的,是陆地卫星活动空间。

大气外层:800~35000 km ,空气极稀薄,对卫星基本上没有影响。

摄影成像机理:卤化银物质在光照下会发生分解,地物明暗变化导致摄影图像上卤化银物质光化分解程度的差异和金属银沉淀密度大小的差异;影像明暗变化和差异与地物反射或发射电磁波强弱有密切关系扫描成像原理:通过探测器将扫描获得的地物电磁波辐射转变成电能,再由处理器对电能信号(视频信号)进行放大、变换、校正、编辑等处理,再经过电-光变换记录在胶片上形成模拟图像,或经过A/D转换、采样、量化、编码处理,记录在磁带上,形成数字图像。

相关文档
最新文档