2020高考冲刺提分-高考数学复习点拨 频率分布直方图典型例题析

合集下载

频率分布直方图题型归纳

频率分布直方图题型归纳

频率分布直方图题型归纳1.频率、频数、样本容量三个量产生的知二求一2.补全频率分布表3.做频率分布直方图4.性质“面积和为1”的应用,补全直方图5.估计总体的频率分布,区间内的频数问题1. 如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11.2. 若某产品的直径长与标准值的差的绝对值不超过...1 mm时,则视为合格品,否则视为不合格品,在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5 000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:mm),将所得数据分组,得到如下频率分布表:(1)将上面表格中缺少的数据填在答题卡...的相应位置.(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品,据此估算这批产品中的合格品的件数.3. 从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示.(1)直方图中x的值为________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.4.20(1)求频率分布直方图中a的值;(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.5.某家庭记录了使用了节水龙头50天的日用水量频数分布表频数(1)在下图中作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 的概率;3m。

频数(率)分布直方图(详细解析+考点分析+名师点评)-1.doc

频数(率)分布直方图(详细解析+考点分析+名师点评)-1.doc

频数(率)分布直方图(详细解析+考点分析+名师点评)-1.doc答案与评分标准一、选择题(共20小题)1、夷昌中学开展“阳光体育活动”,九年级一班全体同学在2011年4月18日16时分别参加了巴山舞、乒乓球、篮球三个项目的活动,陈老师在此时统计了该班正在参加这三项活动的人数,并绘制了如图所示的频数分布直方图和扇形统计图.根据这两个统计图,可以知道此时该班正在参加乒乓球活动的人数是()A、50B、25C、15D、102、为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A、0.1B、0.2C、0.3D、0.4考点:频数(率)分布直方图。

分析:频率=,从直方图可知在5.5~6.5组别的频数是8,总数是40可求出解.解答:解:∵在5.5~6.5组别的频数是8,总数是40,∴=0.2.故选B.点评:本题考查频数分布直方图,从直方图上找出该组的频数,根据频率=,可求出解.3、某学校为了了解九年级体能情况,随机选取20名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为()A、0.1B、0.17C、0.33D、0.4考点:频数(率)分布直方图。

专题:应用题;图表型。

分析:首先根据频数分布直方图可以知道仰卧起坐次数在25~30之间的频数,然后除以总次数(30)即可得到仰卧起坐次数在25~30之间的频率.解答:解:∵从频数率分布直方图可以知道仰卧起坐次数在25~30之间的频数为12,而仰卧起坐总次数为:3+10+12+5=30,∴学生仰卧起坐次数在25~30之间的频率为12÷30=0.4.故选D.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.4、学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A、0.1B、0.15C、0.25D、0.3考点:频数(率)分布直方图。

江西省九江市都昌县狮山中学2020年高考考前45天大冲刺卷文科数学试卷及其详细解析(3)

江西省九江市都昌县狮山中学2020年高考考前45天大冲刺卷文科数学试卷及其详细解析(3)

初高中数学学习资料的店初高中数学学习资料的店第 1 页 共 8 页2020年高考考前45天大冲刺卷文 科 数 学(三)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.复数2(i 1)4i 1z -+=+的虚部为( )A .1-B .3-C .1D .22.已知集合{0,1,2}A =,{|2}B x x A =∈∈N ,则B =( ) A .{0}B .{0,2}C .1{0,,2}2D .{0,2,4}3.已知12log 3a =,0.21()3b =,132c =,则( )A .a b c <<B .c b a <<C .c a b <<D .b a c <<4.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(2700,3000]的频率为( )A .0.25B .0.3C .0.4D .0.455.已知(3,6)P 为双曲线222:1(0)y C x b b-=>上一点,则点P 到双曲线C 的渐近线的距离为( ) A .362+ B .362-或362+ C .362- D .362+或632- 6.成语“运筹帷幄”的典故出自《史记·高祖本纪》,表示善于策划用兵,指挥战争.其中的“筹”指算筹,引申为策划.古代用算筹来进行计数和计算,据《孙子算经》记载,算筹计数法则是:“凡算之法,先识其位,一纵十横,百立千僵,千十相望,万百相当.”也就是说:在算筹计数法中,以纵横两种排列方式来表示单位数目的算筹,其中15:分别以纵横方式排列相应数目的算筹来表示,69-则以上面的算筹再加下面相应的算筹来表示(如下图所示).表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空.那么2536用算筹可表示为( )A .B .C .D .7.函数sin 21cos xy x=-的部分图象大致为( )A .B .C .D .8.已知函数2()sin 3sin cos f x x x x =+,则下列说法正确的是( )A .()f x 的最小正周期为2πB .()f x 的最大值为32C .()f x 在π5π(,)36上单调递增 D .()f x 的图象关于直线π6x =对称 9.“直线l 上有两点到平面α的距离相等”是“直线l 与平面α平行”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件。

2020高考数学 三轮冲刺 解答题专练--统计 二(10题含答案)

2020高考数学 三轮冲刺 解答题专练--统计 二(10题含答案)

2020高考数学三轮冲刺解答题专练--统计二1.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?2.为了了解初中学生的体能情况,从实验中学八年级学生中随机抽取若干名学生进行铅球测试,把所得数据(精确到0.1米)进行整理后,分成6组,画出频率分布直方图.如下图所示是频率分布直方图的一部分,已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第六小组的频数是7.(1)请将频率分布直方图补充完整;(2)该校参加这次铅球测试的学生有多少人?(3)若成绩在8.0米以上(含8.0米)的为合格,试求这次铅球测试的合格率;(4)在这次测试中,你能确定该校参加测试的学生的铅球成绩的中位数落在哪个小组内吗?3.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少;(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.4.为考虑广告费用x与销售额y之间的关系,抽取了5家餐厅,得到如下数据:(1)在同一张图上画散点图,直线ˆy(1)=24+2.5x,ˆy(2)=602xx;(2)比较所画直线与曲线,哪一条更能表现这组数据之间的关系?(3)分别计算用直线方程与曲线方程得到在5个x点处的销售额预测值、预测值与实际预测之间的误差,最后比较两个误差绝对值之和的大小。

2020年高考冲刺解答题专项训练(文)-概率与统计

2020年高考冲刺解答题专项训练(文)-概率与统计

2020年高考冲刺解答题专项训练—概率与统计1、(考查频率分布直方图、平均数、中位数)某学校为了解本校文、理科学生的学业水平模拟测试数学成绩情况,分别从理科班学生中随机抽取60人的成绩得到样本甲,从文科班学生中随机抽取n人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:甲样本数据直方图乙样本数据直方图70,80的有10个.已知乙样本中数据在[)(1)求n和乙样本直方图中a的值;(2)试估计该校理科班学生本次模拟测试数学成绩的平均值和文科班学生本次模拟测试数学成绩的中位数(同一组中的数据用该组区间中点值为代表).2、(考查线性回归方程、古典概率)细叶青萎藤又称海风藤,俗称穿山龙,属木质藤本植物,是我国常用大宗中药材,以根茎入药,具有舒筋活血、祛风止痛、止咳平喘、强身健体等医疗保健功效.通过研究光照、温度和沙藏时间对细叶青萎藤种子萌发的影响,结果表明,细叶青萎藤种子发芽率和发芽指数均随着沙藏时间的延长而提高。

下表给岀了2019年种植的一批试验细叶青萎藤种子6组不同沙藏时间发芽的粒数。

经计算:615550i i i x y ==∑,6214108ii x ==∑,6219866i i y ==∑0.00961≈.其中i x ,i y 分别为试验数据中的天数和发芽粒数,1,2,3,4,5,6i =.(1)求y 关于x 的回归方程ˆˆˆy bx a =+(ˆb 和ˆa 都精确到0.01);(2)在题中的6组发芽的粒数不大于30的组数中,任意抽岀两组,则这两组数据中至少有一组满足“12<发芽数沙藏时间”的概率是多少?附:对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线ˆˆˆ=u υαβ+的斜率和截距的最小二乘估计分别为:()()()1122211ˆn niii i i i nni ii i u u v v u v nuvu u unu β====---==--∑∑∑∑,ˆˆv u αβ=-.3、(考查独立性检验)中央政府为了对应因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65的人群中随机调查50人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:(1)由以上统计数据填下面2×2列联表,并问是否有90%的把握认为以45岁为分界点对“延迟退休年龄政策”的支持度有差异:(2)若从年龄在[45,55)的被调查人中随机选取两人进行调查,求选中的2人中恰有1人支持“延迟退休”的概率. 参考数据:22()()()()()n ad bc k a b c d a c b d -=++++.4、(考查频率分布直方图、分层抽样、古典概率)某中学高三年级有学生500人,其中男生300人,女生200人.为了研究学生的数学成绩是否与性别有关,采用分层抽样的方法,从中抽取了100名学生,统计了他们期中考试的数学分数,然后按照性别分为男、女两组,再将两组的分数分成5组:[)[)[)[)[]100,110,110,120,120,130,130,140,140,150分别加以统计,得到如图所示的频率分布直方图.(I)从样本分数小于110分的学生中随机抽取2人,求两人恰为一男一女的概率;(II)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?附表:5、(考查线性回归方程)某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:(1)试估计这款保险产品的收益率的平均值;(2)设每份保单的保费在20元的基础上每增加x 元,对应的销量为y (万份).从历史销售记录中抽样得到如下5组x 与y 的对应数据:x 元25 30 38 45 52 销量为y (万份)7.5 7.16.05.64.8由上表,知x 与y 有较强的线性相关关系,且据此计算出的回归方程为10.0ˆybx =-.(ⅰ)求参数b 的值;(ⅱ)若把回归方程10.0ˆybx =-当作y 与x 的线性关系,用(1)中求出的收益率的平均值作为此产品的收益率,试问每份保单的保费定为多少元时此产品可获得最大利润,并求出最大利润.注:保险产品的保费收入=每份保单的保费⨯销量.6、(考查茎叶图、平均数)某工厂为生产一种标准长度为40cm 的精密器件,研发了一台生产该精密器件的车床,该精密器件的实际长度为acm ,“长度误差”为40a cm ,只要“长度误差”不超过0.03cm 就认为合格.已知这台车床分昼、夜两个独立批次生产,每天每批次各生产1000件.已知每件产品的成本为5元,每件合格品的利润为10元.在昼、夜两个批次生产的产品中分别随机抽取20件,检测其长度并绘制了如下茎叶图:(1)分别估计在昼、夜两个批次的产品中随机抽取一件产品为合格品的概率; (2)以上述样本的频率作为概率,求这台车床一天的总利润的平均值.7、(考查非线性回归方程、古典概率、平均值)近几年一种新奇水果深受广大消费者的喜爱,一位农户发挥聪明才智,把这种露天种植的新奇水果搬到了大棚里,收到了很好的经济效益.根据资料显示,产出的新奇水果的箱数x(单位:十箱)与成本y(单位:千元)的关系如下:x 1 3 4 6 7y 5 6.5 7 7.5 8y与x可用回归方程$$ˆlgy b x a=+(其中$a,b$为常数)进行模拟.(Ⅰ)若该农户产出的该新奇水果的价格为150元/箱,试预测该新奇水果100箱的利润是多少元.|.(Ⅱ)据统计,10月份的连续16天中该农户每天为甲地配送的该新奇水果的箱数的频率分布直方图如图所示.(i)若从箱数在[40,120)内的天数中随机抽取2天,估计恰有1天的水果箱数在[80,120)内的概率;(ⅱ)求这16天该农户每天为甲地配送的该新奇水果的箱数的平均值.(每组用该组区间的中点值作代表)参考数据与公式:设lgt x=,则t y()()51i iit t y y=--∑()521iit t=-∑0.54 6.8 1.53 0.45线性回归直线$$ˆlgy b x a=+中,()()()121ˆni iiniit t y ybt t==--=-∑∑,$ˆa y bt=-.8、(考查古典概率、方案预算)某市政府为减轻汽车尾气对大气的污染,保卫蓝天,鼓励广大市民使用电动交通工具出行,决定为电动车(含电动自行车和电动汽车)免费提供电池检测服务.现从全市已挂牌照的50000电动车中随机抽取100辆委托专业机构免费为它们进行电池性能检测,电池性能分为需要更换、尚能使用、较好、良好四个等级,并分成电动自行车和电动汽车两个群体分别进行统计,样本分布如图.(1)采用分层抽样的方法从电池性能较好的电动车中随机抽取9辆,再从这9辆中随机抽取2辆,求至少有一辆为电动汽车的概率;(2)为进一步提高市民对电动车的使用热情,市政府准备为电动车车主一次性发放补助,标准如下:①电动自行车每辆补助300元;②电动汽车每辆补助500元;③对电池需要更换的电动车每辆额外补助400元.试求抽取的100辆电动车执行此方案的预算;并利用样本估计总体,试估计市政府执行此方案的预算.9、(考查频数分布表、古典概率)某大学为了调查该校学生性别与身高的关系,对该校1000名学生按照10:1的比例进行抽样调查,得到身高频数分布表如下: 男生身高频率分布表女生身高频数分布表(1)估计这1000名学生中女生的人数;(2)估计这1000名学生中身高在[]170,190的概率;(3)在样本中,从身高在[]170,180的女生中任取2名女生进行调查,求这2名学生身高在[)170175,的概率.(身高单位:厘米)10、(考查平均数、标准差、古典概率)一个小商店从一家食品有限公司购进10袋白糖,每袋白糖的标准重量是500g,为了了解这些白糖的实际重量,称量出各袋白糖的实际重量(单位:g)如下:503,502,496,499,491,498,506,504,501,510(1)求这10袋白糖的平均重量x和标准差s;(2)从这10袋中任取2袋白糖,那么其中恰有一袋的重量不在(x-s,x+s)的概率是多少?(附:≈5.08≈16.06≈5.09≈16.09)11、(考查古典概率、决策问题)某蔬菜批发商经销某种新鲜蔬菜(以下简称A蔬菜),购入价为200元/袋,并以300元/袋的价格售出,若前8小时内所购进的A蔬菜没有售完,则批发商将没售完的A蔬菜以150元/袋的价格低价处理完毕(根据经验,2小时内完全能够把A蔬菜低价处理完,且当天不再购进).该蔬菜批发商根据往年的销量,统计了100天A蔬菜在每天的前8小时内的销售量,制成如下频数分布条形图.(1)若某天该蔬菜批发商共购入6袋A蔬菜,有4袋A蔬菜在前8小时内分别被4名顾客购买,剩下2袋在8小时后被另2名顾客购买.现从这6名顾客中随机选2人进行服务回访,则至少选中1人是以150元/袋的价格购买的概率是多少?(2)以上述样本数据作为决策的依据.(i)若今年A蔬菜上市的100天内,该蔬菜批发商坚持每天购进6袋A蔬菜,试估计该蔬菜批发商经销A 蔬菜的总盈利值;(ii)若明年该蔬菜批发商每天购进A蔬菜的袋数相同,试帮其设计明年的A蔬菜的进货方案,使其所获取的平均利润最大.12、(考查频率分布直方图、平均数)国家每年都会对中小学生进行体质健康监测,一分钟跳绳是监测的项目之一.今年某小学对本校六年级300名学生的一分钟跳绳情况做了统计,发现一分钟跳绳个数最低为10,最高为189.现将跳绳个数分成[)10,40,[)40,70,[)70,100,[)100,130,[)130,160,[]160,1906组,并绘制出如下的频率分布直方图.(1)若一分钟跳绳个数达到160为优秀,求该校六年级学生一分钟跳绳为优秀的人数;(2)上级部门要对该校体质监测情况进行复查,发现每组男、女学生人数比例有很大差别,[)10,40组男、女人数之比为2:1,[)40,70组男、女人数之比为5:1,[)70,100组男、女人数之比为11:7,[)100,130组男、女人数之比为10:11,[)130,160组男、女人数之比为19:20,[]160,190组男、女人数之比为1: 6.试估计此校六年级男生一分钟跳绳个数的平均数(同一组中的数据用该组区间的中点值作代表,结果保留整数).2020年高考冲刺解答题专项训练—概率与统计参考答案1、【解析】(1)由直方图可知,乙样本中数据在[)70,80的频率为0.020100.20⨯=,而这个组学生有10人,则100.20n=,得50n =,由乙样本数据直方图可知()0.0060.0160.0200.040101a ++++⨯=,故0.018a =。

高中数学复习概率统计题型归纳与讲解03 频率分布直方图

高中数学复习概率统计题型归纳与讲解03 频率分布直方图

高中数学复习概率统计题型归纳与讲解专题3频率分布直方图例1.要调查某地区高中学生身体素质,从高中生中抽取100人进行跳高测试,根据测试成绩制作频率分布直方图如图,现从成绩在[120,140)之间的学生中用分层抽样的方法抽取5人,应从[120,130)间抽取人数为b,则()A.a=0.2,b=2B.a=0.025,b=3C.a=0.3,b=4D.a=0.030,b=3【解析】解:由题得10×(0.005+0.035+a+0.020+0.010)=1,所以a=0.030.在[120,130)之间的学生人数为:100×10×0.030=30人,在[130,140)之间的学生人数为:100×10×0.020=20人,在[120,140)之间的学生人数为:100×(10×0.030+0.020)=50人,又用分层抽样的方法在[120,140)之间的学生50人中抽取5人,即抽取比例为:110,所以成绩在[120,130)之间的学生中抽取的人数应,30×110=3,即b=3,故选:D.例2.从某企业生产的某种产品中随机抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分组[70,80) [80,90) [90,100) [100,110) 110,120)频数 14 20 36 18 12估计这种产品质量指标值的平均数为(同一组中的数据用该组区间的中点值作代表)( )A .100B .98.8C .96.6D .94.4【解析】解:平均数x →=0.14×75+0.20×85+0.36×95+0.18×105+0.12×115=94.4.故选:D .例3.“新冠肺炎”席卷全球,我国医务工作者为了打好这次疫情阻击战,充分发挥优势,很快抑制了病毒,据统计老年患者治愈率为71%,中年患者治愈率为85%,青年患者治愈率为91%.如果某医院有30名老年患者,40名中年患者,50名青年患者,则估计该医院的平均治愈率是( )A .86%B .83%C .90%D .84%【解析】解:利用求加权平均数的公式解得:30×71%+40×85%+50×91%30+40+50=0.84=84%,故选:D .例4.已知样本数据x 1,x 2,…,x n (n ∈N *)的平均数与方差分别是a 和b ,若y i =﹣2x i +3(i =1,2,…n ),且样本数据y 1,y 2,…,y n 的平均数与方差分别是b 和a ,则a ﹣b =( )A .1B .2C .3D .4【解析】解:由题意得:{−2a +3=b a =4b ,解得:{a =43b =13,故a ﹣b =1, 故选:A .例5.下面定义一个同学数学成绩优秀的标志为:“连续5次考试成绩均不低于120分”.现有甲、乙、丙三位同学连续5次数学考试成绩的记录数据(记录数据都是正整数):①甲同学:5个数据的中位数为127,众数为120;②乙同学:5个数据的中位数为125,总体均值为127;③丙同学:5个数据的中位数为135,总体均值为128,总体方差为19.8.则可以判定数学成绩优秀同学为( )A .甲、乙B .乙、丙C .甲、丙D .甲、乙、丙【解析】解:在①中,甲同学:5个数据的中位数为127,众数为120,所以前三个数为120,120,127,则后两个数肯定大于127,故甲同学数学成绩优秀,故①成立;在②中,5个数据的中位数为125,总体均值为127,可以找到很多反例,如:118,119,125,128,145,故乙同学数学成绩不优秀,故②不成立;在③中,5个数据的中位数为135,总体均值为128,总体方差为19.8设x 1<x 2<x 3<x 4,则丙的方差为15[(x 1﹣128)2+(x 2﹣128)2+(x 3﹣128)2+(x 4﹣128)2+(135﹣128)2]=19.8, ∴(x 1﹣128)2+(x 2﹣128)2+(x 3﹣128)2+(x 4﹣128)2=50,∴(x 1﹣128)2≤50,得|x 1﹣128|≤5,∴x 1≥128﹣5>120,∴丙同学数学成绩优秀,故③成立.∴数学成绩优秀有甲和丙2个同学.故选:C .例6.若数据x 1,x 2,…,x n 的平均数x =3,方差s 2=1,则数据2x 1+3,2x 2+3,…,2x n +3的平均数和方差分别为( )A.6,6B.9,2C.9,6D.9,4【解析】解:由题意若数据x1,x2,…,x n的平均数x=3,方差s2=1,可得x1+x2+…+x n=3n,则:2x1+3+x2+3+…+x n+3=2(x1+x2+…+x n)+3n=9n,所以数据2x1+3,2x2+3,…,2x n+3的平均数为9.又S2=1n[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2]=1,所以[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2]=n,所以1n [(2x1+3﹣9)2+(2x2+3﹣9)2+…+(2x n+3﹣9)2]=4n[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2]=4,则数据2x1+3,2x2+3,…,2x n+3的平均数和方差分别为9,4.故选:D.例7.随着城镇化的不断发展,老旧小区的改造及管理已经引起了某市政府的高度重视,为了了解本市甲,乙两个物业公司管理的小区住户对其服务的满意程度,现从他们所服务的小区中随机选择了40个住户,根据住户对其服务的满意度评分,得到A区住户满意度评分的频率分布直方图和B 区住户满意度评分的频率分布表.B区住户满意度评分的频率分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100]频数4610128(Ⅰ)在图2中作出B区住户满意度评分的频率分布直方图,并通过频率分布直方图计算两区住户满意度评分的平均值及分散程度(其中分散程度不要求计算出具体值,给出结论即可);(Ⅱ)根据住户满意度评分,将住户和满意度分为三个等级:满意度评分低于70分,评定为不满意;满意度评分在70分到89分之间,评定为满意;满意度评分不低于90分,评定为非常满意.试估计哪个地区住户的满意度等级为不满意的概率大?若是要选择一个物业公司来管理老旧小区的物业,从满意度角度考虑,应该选择哪一个物业公司?说明理由.【解析】解:(Ⅰ)作出如图所示的频率分布直方图,B区住户满意度评分的频率分布直方图如图所示A区住户满意度评分的平均值为45×0.1+55×0.2+65×0.3+75×0.2+85×0.15+95×0.05=67.5;B区住户满意度评分的平均值为55×0.1+65×0.15+75×0.25+85×0.3+95×0.2=78.5.通过比较两区住户满意度评分的频率分布直方图可以看出,B区住户满意度评分比较集中,而A 区住户满意度评分比较分散.(Ⅱ)记D表示事件:“A区住户的满意度等级为不满意”,记E表示事件:“B区住户的满意度等级为不满意”,则P(D)=(0.010+0.020+0.030)×10=0.6,P(E)=(0.010十0.015)×10=0.25,所以A区住户的满意度等级为不满意的概率较大.若是要选择一个物业公司来管理老旧小区的物业,从满意度等级为满意来考虑,应该选择乙物业公司来为小区服务,这样的话小区住户满意度会高一些.例8.某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),……第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)求第七组的频率,并完成频率分布直方图;(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.【解析】解:(1)由频率分布直方图得第七组的频率为:1﹣(0.004+0.012+0.016+0.030+0.020+0.006+0.004)×10=0.08.完成频率分布直方图如下:(2)用样本数据估计该校的2000名学生这次考试成绩的平均分为:70×0.004×10+80×0.012×10+90×0.016×10+100×0.030×10+110×0.020×10+120×0.006×10+130×0.008×10+140×0.004×10=102.(3)样本成绩属于第六组的有0.006×10×50=3人,样本成绩属于第八组的有0.004×10×50=2人,从样本成绩属于第六组和第八组的所有学生中随机抽取2名,基本事件总数n=C52=10,他们的分差的绝对值小于10分包含的基本事件个数m=C32+C22=4,∴他们的分差的绝对值小于10分的概率p=mn=410=25.例9.我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准x,用水量不超过x的部分按平价收费,超出x的部分按议价收费.下面是居民月均用水量的抽样频率分布直方图.①求直方图中a的值;②试估计该市居民月均用水量的众数、平均数;③设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;④如果希望85%的居民月均用水量不超过标准x ,那么标准x 定为多少比较合理?【解析】解:①由概率统计相关知识,各组频率之和的值为1,∵频率=(频率/组距)*组距,∴0.5×(0.08+0.16+0.4+0.52+0.12+0.08+0.04+2a )=1,解得:a =0.3,∴a 的值为0.3;②由频率分布直方图估计该市居民月均用水量的众数为2+2.52=2.25(吨),估计该市居民月均用水量的平均数为:0.5(0.25×0.08+0.75×0.16+1.25×0.3+1.75×0.4+2.25×0.52+2.75×0.3+3.25×0.12+3.75×0.08+4.25×0.04)=2.035(吨).③由图,不低于3吨人数所占百分比为0.5×(0.12+0.08+0.04)=12%,∴全市月均用水量不低于3吨的人数为:30×12%=3.6(万);④由频率分布直方图得月均用水量低于2.5吨的频率为:0.5×(0.08+0.16+0.3+0.4+0.52)=0.73<85%,月均用水量低于3吨的频率为:0.5×(0.08+0.16+0.3+0.4+0.52+0.3)=0.88>85%,∴x=2.5+0.5×0.85−0.730.3×0.5=2.9(吨).例10.如图是某校高三(1)班的一次数学知识竞赛成绩的基叶图(图中仅列出[50,60),[90,100)的数据)和频率分布直方图.(1)求全班人数以及频率分布直方图中的x,y;(2)估计学生竞赛成绩的平均数和中位数(保留两位小数).【解析】解:(1)分数在[50,60)的频率为0.020×10=0.2,由茎叶图知,分数在[50,60)之间的频数为5,所以全班人数为50.2=25(人);分数在[90,100)之间的频数为2,由225=10y,解得y=0.008;又10x=1﹣10×(0.036+0.024+0.020+0.008),解得x=0.012.(2)由频率分布直方图,计算平均数为x=55×0.2+65×0.24+75×0.36+85×0.12+95×0.08=71.4,由0.2+0.24+0.36=0.80,所以中位数在[70,80)内,设中位数为m,则0.20+0.24+(m﹣70)×0.036=0.5,解得m≈71.67,所以中位数约为71.67.例11.某高中数学建模兴趣小组的同学为了研究所在地区男高中生的身高与体重的关系,从若干个高中男学生中抽取了1000个样本,得到如下数据.数据一:身高在[170,180)(单位:cm)的体重频数统计体重(kg)[50,55)[55,60)[60,65)[65,70)[70,75)[75,80)[80,85)[85,90)人数206010010080201010数据二:身高所在的区间含样本的个数及部分数据身高x(cm)[140,150)[150,160)[160﹣170)[170﹣180)[180﹣190)平均体重y(kg)4553.66075(Ⅰ)依据数据一将下面男高中生身高在[170﹣180)(单位:cm)体重的频率分布直方图补充完整,并利用频率分布直方图估计身高在[170﹣180)(单位:cm)的中学生的平均体重;(保留小数点后一位)(Ⅱ)依据数据一、二,计算身高(取值为区间中点)和体重的相关系数约为0.99,能否用线性回归直线来刻画中学生身高与体重的相关关系,请说明理由;若能,求出该回归直线方程;(Ⅲ)说明残差平方和或相关指数R2与线性回归模型拟合效果之间关系.(只需写出结论,不需要计算)参考公式:b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2=∑ni=1x i y i−nx⋅y∑n i=1x i2−nx2,a=y−b x.参考数据:(1)145×45+155×53.6+165×60+185×75=38608;(2)1452+1552+1652+1752+1852﹣5×1652=1000.(3)663×175=116025,664×175=116200,665×175=116375.(4)728×165=120120.【解析】解:(1)身高在[170,180)的总人数为:20+60+100+100+80+20+10+10=400,体重在[55﹣60)的频率为:60400=0.15,体重在[70﹣75)的频率为:80400=0.2,平均体重为:52.5×0.05+57.5×0.15+62.5×0.25+67.5×0.25+72.5×0.2+77.5×0.05+82.5×0.025+87.5×0.025≈66.4,(2)因为r=0.99→1,线性相关很强,故可以用线性回归直线来刻画中学生身高与体重的相关,x=145+155+165+175+1855=165,y=45+75+60+53.6+66.45=60,b=∑8i=1x i y i−8x⋅y∑8i=1x i2−8x2=38608+175×66.4−5×165×601000=0.728,a=y−b x=60−0.728×165=−60.12,所以回归直线方程为:y=0.728x−60.12,(3)残差平方和越小或相关指数R2越接近于1,线性回归模型拟合效果越好.例12.市政府为了节约用水,调查了100位居民某年的月均用水量(单位:t),频数分布如下:分组[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3)[3,3.5)[3.5,4)[4,4.5]频数4815222514642(1)根据所给数据将频率分布直方图补充完整(不必说明理由);(2)根据频率分布直方图估计本市居民月均用水量的中位数;(3)根据频率分布直方图估计本市居民月均用水量的平均数(同一组数据由该组区间的中点值作为代表).【解析】解:(1)频率分布直方图如图所示:(2)∵0.04+0.08+0.15+0.22=0.49<0.5,∴中位数为2+0.5−0.490.25×0.5=2.02,(3)由频率分布直方图得平均数为:0.25×0.04+0.75×0.08+1.25×0.15+1.75×0.22+2.25×0.25+2.75×0.14+3.25×0.06+3.75×0.04+4.25×0.02=2.02.例13.某地区100居民的人均用水量(单位:t)的分组的频数如下:[0,0.5),4;[0.5,1),8;[1,1.5),15;[1.5,2),22;[2,2.5),25;[2.5,3),14;[3,3.5),6;[3.5,4),4;[4,4.5),2.(1)列出样本的频率分布表;(2)画出频率分布直方图,并根据直方图估计这组数据的众数;(坐标轴单位自定)(3)当地政府制订了人均月用水量为3t的标准,若超出标准加倍收费,当地政府解释说,85%以上的居民不超出这个标准,这个解释对吗?为什么?【解析】解:(1 )分组频数频率[0,0.5 )40.04[0.5,1 )80.08[1,1.5 )150.15[1.5,2 )220.22[2,2.5 )250.25[2.5,3 )140.14[3,3.5 )60.06[3.5,4 )40.04[4,4.5 )20.02(2):频率分布直方图如下图,由图知,这组数据的众数为2.25.(3)人均月用水量在3t以上的居民的比例为6%+4%+2%=12%,即大约是有12%的居民月均用水量在3t以上,88%的居民月均用水量在3t以下,因此,政府的解释是正确的.例14.某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后画出如下频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)估计这次考试的众数m与中位数n(结果保留一位小数);(Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分.【解析】解:(Ⅰ)众数是最高小矩形中点的横坐标,所以众数为m=75(分);(3分)前三个小矩形面积为0.01×10+0.015×10+0.015×10=0.4,∵中位数要平分直方图的面积,∴n=70+0.5−0.40.03=73.3(7分)(Ⅱ)依题意,60及以上的分数所在的第三、四、五、六组,频率和为(0.015+0.03+0.025+0.005)*10=0.75所以,抽样学生成绩的合格率是75% (11分)利用组中值估算抽样学生的平均分45•f1+55•f2+65•f3+75•f4+85•f5+95•f6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71估计这次考试的平均分是71分.(14分)例15.为应对新冠疫情,重庆市于2020年1月24日启动重大突发公共卫生事件一级响应机制,要求市民少出门,少聚集,于是快递业务得到迅猛发展.为满足广大市民的日常生活所需,某快递公司以优厚的条件招聘派送员,现给出了两种日薪薪酬方案,甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪150元,每日前55单没有奖励,超过55单的部分每单奖励10元.(Ⅰ)请分别求出这两种薪酬方案中日薪y(单位:元)与送货单数n的函数关系式;(Ⅱ)根据该公司所有派送员10天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:日均派送单数5054565860频数(天)23221回答下列问题:①根据以上数据,设每名派送员的日薪为X(单位:元),试分别求出这10天中甲、乙两种方案的日薪X的平均数及方差;②结合①中的数据,根据统计学的思想,若你去应聘派送员,选择哪种薪酬方案比较合适,并说明你的理由.(参考数据:172=289,372=1369)【解析】解:(1)甲方案,y =100+n ;乙方案,y ={150,n ≤5510n −400,n >55.(2),①甲方案中,根据已知表格可计算出日平均派送单数为2×50+3×54+2×56+2×58+6010=55,方差为0.2×(50﹣55)2+0.3×(54﹣55)2+0.2×(56﹣55)2+0.2×(58﹣55)2+0.1×(60﹣55)2=9.8,所以,由(1)中变量之间的关系,可以指,甲方案的日薪X 的平均数为155,方差为9.8. 乙方案中,日薪X 的平均数为[5×150+160×2+180×2+200]×0.1=163,日薪方差为0.5×(150﹣163)2+0.2×(160﹣163)2+0.2×(180﹣163)2+0.1×(200﹣163)2=213.4.(3)若去应聘派送员,我会选择乙方案,从平均数的角度来看,乙方案的平均薪酬更高,同时更有激励作用.例16.2019年起,全国地级及以上城市全面启动生活垃圾分类工作,垃圾分类投放逐步成为居民的新时尚.为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收垃圾、有害垃圾和其他垃圾四类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了某市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱 “可回收垃圾”箱 “有害垃圾”箱“其他垃圾”箱厨余垃圾 300 70 30 80 可回收垃圾 30 210 30 30 有害垃圾 20 20 60 20 其他垃圾10201060(1)分别估计厨余垃圾和有害垃圾投放正确的概率;(2)假设厨余垃圾在“厨余垃圾”箱、“可回收垃圾”箱、“有害垃圾”箱、“其他垃圾”箱的投放量分别为a,b,c,d,其中a>0,a+b+c+d=800.当数据a,b,c,d的方差s2最大时,写出a,b,c,d的值(结论不要求证明),并求此时s2的值.【解析】解:(1)根据题意,厨余垃圾共300+70+30+80=480吨,其中投放正确的有300吨,则厨余垃圾投放正确的概率P1=300480=58,有害垃圾共20+20+60+20=120吨,其中投放正确的有60吨,则害垃圾投放正确的概率P2=60120=12;(2)根据题意,厨余垃圾在四种垃圾箱的投放量分别为a,b,c,d,其中a>0,a+b+c+d=800,则其平均数x=8004=200,则其方差S2=14[(a﹣200)2+(b﹣200)2+(c﹣200)2+(d﹣200)2],当a=600,b=c=d=0时,s2最大,而x=a+b+c+d4=200,此时s2=14[(600﹣200)2+(0﹣200)2+(0﹣200)2+(0﹣200)2]=120000例17.某市教育局为了解全市高中学生在素质教育过程中的幸福指数变化情况,对8名学生在高一,高二不同学习阶段的幸福指数进行了一次跟踪调研.结果如表:学生编号12345678高一阶段幸福指数9593969497989695学生编号12345678高二阶段幸福指数9497959695949396(1)根据统计表中的数据情况,分别计算出两组数据的平均值及方差;(2)请根据上述结果,就平均值和方差的角度分析,说明在高一,高二不同阶段的学生幸福指数状况,并发表自己观点.【解析】解:(1)8名学生在高一阶段的幸福指数的平均数为:x=18(95+93+96+94+97+98+96+95)=95.5,方差为:S12=18∑8i=1(x i−x1)2=2.25,8名学生在高二阶段的幸福指数的平均数为:y=18(94+97+95+96+95+94+93+96)=95,方差为:S22=18∑8i=1(y i−y)2=1.5;(2)①∵x>y,∴可以认为这8名学生在高一的平均幸福指数大于在高二的平均幸福指数,②∵S12>S22,∴可以认为这8名学生在高二的幸福指数的稳定性大于在高一的幸福指数的稳定性.例18.2020年1月,教育部《关于在部分高校开展基础学科招生改革试点工作的意见》印发,自2020年起,在部分高校开展基础学科招生改革试点(也称“强基计划”).强基计划聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域,选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.新材料产业是重要的战略性新兴产业,如图是我国2011﹣2019年中国新材料产业市场规模及增长趋势图.其中柱状图表示新材料产业市场规模(单位:万亿元),折线图表示新材料产业市场规模年增长率(%).(1)求从2012年至2019年,每年新材料产业市场规模年增长量的平均数(精确到0.1);(2)从2015年至2019年中随机挑选两年,求两年中至少有一﹣年新材料产业市场规模年增长率超过20%的概率;(3)由图判断,从哪年开始连续三年的新材料产业市场规模的方差最大.(结论不要求证明)【解析】解:(1)从2012年起,每年新材料产业市场规模的年增加值依次为:0.3,0.2,0.3,0.5,0.6,0.4,0.8,0.6,(单位:万亿元),∴年增加的平均数为:0.3+0.2+0.3+0.5+0.6+0.4+0.8+0.68=0.5万亿元.(2)设A表示事件“从2015年至2019年中随机挑选两个,两年中至少有一年新材料产业市场规模增长率超过20%”,依题意P(A)=1−C22C52=910.(3)从2017年开始连续三年的新材料产业市场规模的方差最大.。

高考题型之 频率分布直方图

高考题型之 频率分布直方图

高考题型之频率分布直方图典型例题:......................................................................答案............................................................................知识点:典型例题:1.某工厂对一批产品进行了抽样检测.有图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是(A)90(B)75(C)60(D)452.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……第六组,成绩大于等于18秒且小于19秒。

右图是按上述分组方法得到的频率分布直方图。

设成绩小于17秒的学生人数占全班总人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,则从频率分布直方图中可分析出x和y分别为(A)0.9,35(B)0.9,45(C)0.1,35(D)0.1,453.某个小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m3)的频率分布直方图如图所示,则小区内用水量超过15m3的住户的户数为A.10B.50C.60D.1404.某时段内共有100辆汽车经过某一雷达地区,时速频率分布直方图如右图所示,则时速超过60 km/h的汽车数量为_____________;5.某个容量为100的样本的频率分布直方图如下,则在区间[4,5)上的数据的频数..为.6.某地区教育主管部门为了对该地区模拟考试成绩进行分析,抽取了总成绩介于350分到650分之间的10000名学生成绩,并根据这10000名学生的总成绩画了样本的频率分布直方图.为了进一步分析学生的总成绩与各科成绩等方面的关系,要从这10000名学生中,再用分层抽样方法抽出200人作进一步调查,则总成绩在[400,500)内共抽出()A.100人B.90人C.65人D.50人7.济南交警部门随机测量了顺河高架桥南下口某一时间段经过的2000辆汽车的时速,时速频率分布直方图如图所示,则时速超过70km/h的汽车数量为_______8.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg),得到频率分布直方图如下:根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是()(A)20(B)30(C)40(D)509.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出人.10.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。

高中数学复习典型题专题训练118---频率直方图

高中数学复习典型题专题训练118---频率直方图

高中数学复习典型题专题训练118频率直方图列出样本数据的频率分布表和频率分布直方图的步骤: ①计算极差:找出数据的最大值与最小值,计算它们的差;②决定组距与组数:取组距,用极差组距决定组数;③决定分点:决定起点,进行分组;④列频率分布直方图:对落入各小组的数据累计,算出各小数的频数,除以样本容量,得到各小组的频率.⑤绘制频率分布直方图:以数据的值为横坐标,以频率组距的值为纵坐标绘制直方图,知小长方形的面积=组距×频率组距=频率.频率分布折线图:将频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,一般把折线图画成与横轴相连,所以横轴左右两端点没有实际意义.总体密度曲线:样本容量不断增大时,所分组数不断增加,分组的组距不断缩小,频率分布直方图可以用一条光滑曲线()y f x 来描绘,这条光滑曲线就叫做总体密度曲线.总体密度曲线精确地反映了一个总体在各个区域内取值的规律.题型一 频率分布直方图【例1】 (2010西城二模)某区高二年级的一次数学统考中,随机抽取200名同学的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成5组:第一组,成绩大于等于50分且小于60分;第二组,成绩大于等于60分且小于70分;……第五组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.知识内容典例分析板块二.频率直方图则这200名同学中成绩大于等于80分且小于90分的学生有______名.【例2】 (2010东城二模)已知一个样本容量为100的样本数据的频率分布直方图如图所示,样本数据落在[6,10)内的样本频数为 ,样本数据落在[2,10)内的频率为 .【例3】 (2010北京)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a = .若要从身高在[)120,130,[)130,140,[]140,150三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[]140,150内的学生中选取的人数应为 .【例4】 (2010江苏高考)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[]540,中,其频率分布直方图如图所示,则其抽样的100根中,有____根在棉花纤维的长度小于20mm .(mm)频率组距【例5】 (2009湖北15)下图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,样本数据落在[)610,内的频数为 ,数据落在[)210,内的概率约为 .【例6】 (2009福建3)A .0.13B .0.39C .0.52D .0.64【例7】 某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示,根据条形图可得这50名学生这一天平均每人的课外阅读时间为( )时间(h)A .0.6hB .0.9hC .1.0hD .1.5h【例8】 为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[)4555,,[)5565,,[)6575,,[)7585,,[)8595,由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[)5575,的人数是 .产品数量0.0200.0150.0100.005【例9】 (2009山东8)某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96106],,样本数据分组为[)9698,,[)98100,,[)100102,,[)102104,,[104106],.已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A .90B .75C .60D .45【例10】 某路段检查站监控录象显示,在某时段内,有1000辆汽车通过该站,现在随机抽取其中的200辆汽车进行车速分析,分析的结果表示为右图的频率分布直方图,则估计在这一时段内通过该站的汽车中速度不小于90km/h 的车辆数为( )A .200B .600C .500D .300【例11】 (2006年全国II )一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本频率分布直方图,为了分析居民的收入与年龄、学历、职业等方面的联系,要从这10000人中用分层抽样的方法抽出100人做进一步调查,则在[25003000],(元)月收入段应抽出_____人.0.00050.00040.00030.00020.0001频率组距月收入(元)【例12】 如图为某样本数据的频率分布直方图,则下列说法不正确的是( )频率A .[610),的频率为0.32 B .若样本容量为100,则[1014),的频数为40 C .若样本容量为100,则(10] ,的频数为40 D .由频率分布布直方图可得出结论:估计总体大约有10%分布在[1014),【例13】 (2006北京模拟)下面是某学校学生日睡眠时间的抽样频率分布表:【例14】 (2010崇文一模)为了调查某厂2000名工人生产某种产品的能力,随机抽查了m 位工人某天生产该产品的数量,产品数量的分组区间为[)10,15,[)15,20,[)20,25,[)25,30,[30,35],频率分布直方图如图所示.已知生产的产品数量在[)20,25之间的工人有6位. ⑴求m ; 10 15 20 25 30 35产品数量⑵工厂规定从各组中任选1人进行再培训,则选取5人不在同一组的概率是多少?【例15】 考查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm )如下:⑴ 作出频率分布表; ⑵ 画出频率分布直方图.【例16】(2010陕西卷高考)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:/cm/cm⑴估计该小男生的人数;⑵估计该校学生身高在170~185cm之间的概率;⑶从样本中身高在165~180cm之间的女生..中任选2人,求至少有1人身高在170~180cm 之间的概率.【例17】从某校高一年级的1002名新生中用系统抽样的方法抽取一个容量为100的身高样本,如下(单位:cm).作出该样本的频率分布表,画出频率分布直方图及折线图,并根据作出的频率分布直方图估计身高不小于170的同学的人数.【例18】为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.10.30.4,,.第一小组的频数是5.⑴求第四小组的频率和参加这次测试的学生人数;⑵在这次测试中,学生跳绳次数的中位数落在第几小组内?⑶参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩优秀率是多少?O频率组距次数149.5124.599.574.549.5【例19】 为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计. 请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题:⑴ 填充频率分布表的空格(将答案直接填在表格内); ⑵ 补全频数条形图;⑶ 若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?【例20】 (2010丰台一模)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.85987654322198653328698765叶茎1009080706050分数频率组距0.040.0280.0160.008⑴求全班人数及分数在[)80,90之间的频数;⑵估计该班的平均分数,并计算频率分布直方图中[)80,90间的矩形的高;⑶若要从分数在[]80,100之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[]90,100之间的概率.【例21】某地区为了了解70~80岁老人的日平均睡眠时间(单位:h).随机选择了50位老人的进行调查.下表是这50位老人日睡眠时间的频率分布表.在上述统计数据中,一部分计算见算法流程图(其中←可用=代替),则输出的S的值是.。

高三数学频率直方图知识点

高三数学频率直方图知识点

高三数学频率直方图知识点频率直方图是数学中常用的统计图表之一,用于展示一组数据的频率分布情况。

它通过将数据划分为若干个互不重叠的区间,并用柱状图表示每个区间的频率来展现数据的分布特征。

本文将介绍高三数学中频率直方图的相关知识点。

一、频率直方图的构成频率直方图由两个主要部分组成:横坐标和纵坐标。

横坐标表示数据的区间范围,纵坐标表示频数或频率。

二、频数与频率的区别频数是指数据落在每个区间内的个数,用符号f表示;频率是指频数与总样本量的比值,用符号f/n表示,其中n表示总样本量。

三、绘制频率直方图的步骤1. 确定数据的范围和区间宽度:根据数据的特点和要求,确定区间的范围和宽度,确保每个区间都有数据。

2. 划分区间:将数据按照范围和宽度进行划分,每个区间包含的数据个数即为频数。

3. 绘制坐标轴:横坐标表示区间范围,纵坐标表示频数或频率。

4. 绘制矩形柱状图:根据每个区间的频数或频率,在对应的横坐标上绘制矩形柱。

5. 添加图例和标题:为了清晰表达图表信息,添加图例和标题,说明数据的意义和来源。

四、理解频率直方图频率直方图可以直观地展示数据的分布情况。

柱状图的高度代表了每个区间的频数或频率,柱状图的宽度则代表了区间的宽度。

通过观察频率直方图,可以得知数据的集中程度、变异程度以及分布的偏态情况。

五、应用频率直方图的场景频率直方图在实际应用中具有广泛的应用场景。

例如,在市场调查中,可以利用频率直方图分析某一产品的销售数量分布,从而判断其受欢迎程度;在教育领域,可以通过频率直方图了解学生的考试成绩分布情况,帮助教师制定有针对性的教学计划。

六、总结频率直方图是一种有效的统计图表,能够直观地展示数据的分布特征。

通过学习频率直方图的构成和绘制步骤,我们可以更好地理解和分析数据,为实际问题的解决提供有力的支持。

在高三数学学习中,掌握频率直方图的相关知识点对于理解和应用统计学概念具有重要的意义。

频率分布直方图典例解析

频率分布直方图典例解析
一 、 识 图 与 基本 运算 题 例1 在某一样本的频率分布表 中,第三组 的频
数和频率分别为24和÷ ,则该样本的样本容量为

( )。
一~一一舳 一 解得a=15。b=15。
设 “该 学 校 学 生 的 Et平 均 睡 眠 时 间 在 7/h时 以
上 ”为事件 ,则P(A)= =0.38。
50
该学校学生 的 日平 均睡眠时 间在 7小 时以上 的 概率 约 为 0.38。
三 、与 其 他知 识 结 合 的 创 新题 例 3 某 中学 团委 组织 了 “我 对 祖 国 知 多 少 ”的 知识竞赛 ,从参加考试 的学生 中抽 出60名学生 ,将其 成 绩 (均 为整 数 )分 成 六 组 [40,50),[50,6O),… ,
O.20 0 O8
(2)由题 意 ,知
1f ×6×4.5+10×5.5+(Ⅸ6.5+6×7.5+4×8.5=6.52, 50 I6+10+叶 6+4=50。
(分 )
图 2
(2)依 题 意 ,60分 及 以上 的分 数 在 [60,70), [70,80),[80,90),[90,100]这 四个组 ,其频 率和 为 (0.015+0.03+0.025+0.005)xlO=0.75。所 以估计这 次 考 试 的 及 格率 是 75%。
利用组 中值估算 学生成绩 的平均 分 ,则有45x
0.1+55x0.15+65x0.15+75x0.3+85x0.25+95x0.05=71 o
所 以估计这次考试 的平均分是71分 。 (3)成绩在 [40,50)的人数是 60xO.1=6,成绩 在
[90,100] 的 人 数 是 60×0.05=3,所 以 从 成 绩 在 [40,50)与[90,100]的学生 中选 两人 ,他们在同一分

高考数学频率分布直方图大题训练题(含答案)

高考数学频率分布直方图大题训练题(含答案)

频率分布直方图大题训练题一、解答题(共18题;共205分)1.(2020·龙岩模拟)某电讯企业为了了解某地区居民对电讯服务质量评价情况,随机调查100 名用户,根据这100名用户对该电讯企业的评分,绘制频率分布直方图,如图所示,其中样本数据分组为,,…… .(1)估计该地区用户对该电讯企业评分不低于70分的概率,并估计对该电讯企业评分的中位数;(2)现从评分在的调查用户中随机抽取2人,求2人评分都在的概率.2.(2020·芜湖模拟)某学校为了了解该校高三年级学生寒假在家自主学习的情况,随机对该校300名高三学生寒假的每天学习时间(单位:h)进行统计,按照,,,,的分组作出频率分布直方图如图所示.参考公式:,其中.参考附表:0.050 0.010 0.001(Ⅰ)根据频率分布直方图计算该校高三年级学生的平均每天学习时间(同一组中的数据用该组区间中点值代表);(Ⅱ)该校规定学习时间超过4h为合格,否则不合格.已知这300名学生中男生有140人,其中合格的有70人,请补全下表,根据表中数据,能否有99.9%的把握认为该校高三年级学生的性别与学习时长合格有关?3.(2020·泰安模拟)某水果批发商经销某种水果(以下简称A水果),购入价为300元/袋,并以360元/袋的价格售出,若前8小时内所购进的A水果没有售完,则批发商将没售完的A水果以220元/袋的价格低价处理完毕(根据经验,2小时内完全能够把A水果低价处理完,且当天不再购进).该水果批发商根据往年的销量,统计了100天A水果在每天的前8小时内的销售量,制成如下频数分布条形图.现以记录的100天的A水果在每天的前8小时内的销售量的频率作为A水果在一天的前8小时内的销售量的概率,记X表示A水果一天前8小时内的销售量,n表示水果批发商一天批发A水果的袋数.(1)求X的分布列;(2)以日利润的期望值为决策依据,在与中选其一,应选用哪个?4.(2020·南昌模拟)某产品自生产并投入市场以来,生产企业为确保产品质量,决定邀请第三方检测机构对产品进行质量检测,并依据质量指标Z来衡量产品的质量.当时,产品为优等品;当时,产品为一等品;当时,产品为二等品.第三方检测机构在该产品中随机抽取500件,绘制了这500件产品的质量指标Z的条形图.用随机抽取的500件产品作为样本,估计该企业生产该产品的质量情况,并用频率估计概率.(1)从该企业生产的所有产品中随机抽取4件,求至少有1件优等品的概率;(2)现某人决定购买80件该产品.已知每件成本1000元,购买前,邀请第三方检测机构对要购买的80件产品进行抽样检测,买家、企业及第三方检测机构就检测方案达成以下协议:从80件产品中随机抽出4件产品进行检测,若检测出3件或4件为优等品,则按每件1600元购买,否则按每件1500元购买,每件产品的检测费用250元由企业承担.记企业的收益为X元,求X的分布列与数学期望.5.(2020·南昌模拟)在“挑战不可能”的电视节目上,甲、乙、丙三个人组成的解密团队参加一项解密挑战活动,规则是由密码专家给出题目,然后由3个人依次出场解密,每人限定时间是1分钟内,否则派下一个人.3个人中只要有一人解密正确,则认为该团队挑战成功,否则挑战失败.根据甲以往解密测试情况,抽取了甲100次的测试记录,绘制了如下的频率分布直方图.(1)若甲解密成功所需时间的中位数为47,求a、b的值,并求出甲在1分钟内解密成功的频率;(2)在“挑战不可能”节目上由于来自各方及自身的心理压力,甲,乙,丙解密成功的概率分别为,其中表示第个出场选手解密成功的概率,并且定义为甲抽样中解密成功的频率代替,各人是否解密成功相互独立.①求该团队挑战成功的概率;②该团队以从小到大的顺序按排甲、乙、丙三个人上场解密,求团队挑战成功所需派出的人员数目X 的分布列与数学期望.6.(2020·江西模拟)冠状病毒是一个大型病毒家族,可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.出现的新型冠状病毒(nCoV)是从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检测血液中的指标A.现从采集的血液样品中抽取500份检测指标A的值,由测量结果得下侧频率分布直方图:(1)求这500份血液样品指标A值的平均数和样本方差(同一组数据用该区间的中点值作代表,记作);(2)由频率分布直方图可以认为,这项指标的值X服从正态分布,其中近似为样本平均数,近似为样本方差.在统计学中,把发生概率小于3‰的事件称为小概率事件(正常条件下小概率事件的发生是不正常的).该医院非常关注本院医生健康状况,随机抽取20名医生,独立的检测血液中指标A的值,结果发现4名医生血液中指标A的值大于正常值20.03,试根据题中条件判断该院医生的健康率是否正常,并说明理由.附:参考数据与公式:,,;若,则① ;② ;③.,,,.7.(2020·江西模拟)年前某市质监部门根据质量管理考核指标对本地的500家食品生产企业进行考核,然后通过随机抽样抽取其中的50家,统计其考核成绩(单位:分),并制成如下频率分布直方图.(1)求这50家食品生产企业考核成绩的平均数(同一组中的数据用该组区间的中点值为代表)及中位数a(精确到0.01)(2)该市质监部门打算举办食品生产企业质量交流会,并从这50家食品生产企业中随机抽取4家考核成绩不低于88分的企业发言,记抽到的企业中考核成绩在的企业数为X,求X的分布列与数学期望(3)若该市食品生产企业的考核成绩X服从正态分布其中近似为50家食品生产企业考核成绩的平均数,近似为样本方差,经计算得,利用该正态分布,估计该市500家食品生产企业质量管理考核成绩高于90.06分的有多少家?(结果保留整数).附参考数据与公式:则,.8.(2020·漯河模拟)十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加,为了制定提升农民收入、实现2020年脱贫的工作计划,该地扶贫办统计了2019年50位农民的年收入并制成如下频率分布直方图:附参考数据:,若随机变量X服从正态分布,则,,.(1)根据频率分布直方图,估计50位农民的平均年收入(单位:千元);(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布,其中近似为年平均收入,近似为样本方差,经计算得=6.92,利用该正态分布,求:①在扶贫攻坚工作中,若使该地区约有占总农民人数的的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入标准大约为多少千元?②为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?9.(2017·黑龙江模拟)某学生社团在对本校学生学习方法开展问卷调查的过程中发现,在回收上来的1000份有效问卷中,同学们背英语单词的时间安排共有两种:白天背和晚上临睡前背.为研究背单词时间安排对记忆效果的影响,该社团以5%的比例对这1000名学生按时间安排粪型进行分层抽样,并完成一项实验,实验方法是,使两组学生记忆40个无意义音节(如xIQ、GEH),均要求在刚能全部记清时就停止识记,并在8小时后进行记忆测验.不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验.两组同学识记停止8小时后的准确回忆(保持)情况如图(区间含左端点而不舍右端点)(1)估计1000名被调查的学生中识记停止后8小时40个音节的保持率大于等于60%的人数;(2)从乙组准确回忆结束在|12,24)范围内的学生中随机选3人,记能准确回忆20个以上(含20)的人数为随机变量x.求X分布列及数学期望;(3)从本次实验的结果来看,上述两种时间安排方法中哪种方法背英语单词记忆效果更好?计算并说明理由.10.(2018·南宁模拟)在某单位的食堂中,食堂每天以10元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂购进了80斤米粉,以(斤)(其中)表示米粉的需求量,(元)表示利润.(1)估计该天食堂利润不少于760元的概率;(2)在直方图的需求量分组中,以区间中间值作为该区间的需求量,以需求量落入该区间的频率作为需求量在该区间的概率,求的分布列和数学期望.11.(2020·辽宁模拟)某城市100户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?12.(2020·大连模拟)某校从参加高三模拟考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)用分层抽样的方法在分数段为的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取个,求至多有人在分数段内的概率.13.(2020·莆田模拟)为了解某地网民浏览购物网站的情况,从该地随机抽取100名网民进行调查,其中男性、女性人数分别为45和55.下面是根据调查结果绘制的网民日均浏览购物网站时间的频率分布直方图,将日均浏览购物网站时间不低于40分钟的网民称为“网购达人”,已知“网购达人”中女性有10人.参考公式:,其中.参考数据:0.102.7063.841 5.024 6.635 7.879 10.828(1)根据已知条件完成下面的列联表,并判断是否有90%的把握认为是否为“网购达人”与性别有关;(2)将上述调査所得到的频率视为概率,现在从该地的网民中随机抽取3名,记被抽取的3名网民中的“网购达人”的人数为X,求X的分布列、数学期望和方差.14.(2020·长春模拟)笔、墨、纸、砚是中国独有的文书工具,即“文房四宝”.笔、墨、纸、砚之名,起源于南北朝时期,其中的“纸”指的是宣纸,宣纸“始于唐代,产于泾县”,而唐代泾县隶属于宣州府管辖,故因地而得名“宣纸”,宣纸按质量等级,可分为正牌和副牌(优等品和合格品),某公司年产宣纸10000刀(每刀100张),公司按照某种质量标准值给宣纸确定质量等级,如下表所示:公式在所生产的宣纸中随机抽取了一刀(100张)进行检验,得到频率分布直方图如图所示,已知每张正牌纸的利润是10元,副牌纸的利润是5元,废品亏损10元.(1)估计该公式生产宣纸的年利润(单位:万元);(2)该公司预备购买一种售价为100万元的机器改进生产工艺,这种机器的使用寿命是一年,只能提高宣纸的质量,不影响产量,这种机器生产的宣纸的质量标准值的频率,如下表所示:其中为改进工艺前质量标准值的平均值,改进工艺后,每张正牌和副牌宣纸的利润都下降2元,请判断该公司是否应该购买这种机器,并说明理由.15.(2020·蚌埠模拟)随着网购人数的日益增多,网上的支付方式也呈现一种多样化的状态,越来越多的便捷移动支付方式受到了人们的青睐,更被网友们评为“新四大发明”之一.随着人们消费观念的进步,许多人喜欢用信用卡购物,考虑到这一点,一种“网上的信用卡”横空出世——蚂蚁花呗.这是一款支付宝和蚂蚁金融合作开发的新支付方式,简单便捷,同时也满足了部分网上消费群体在支付宝余额不足时的“赊购”消费需求.为了调查使用蚂蚁花呗“赊购”消费与消费者年龄段的关系,某网站对其注册用户开展抽样调查,在每个年龄段的注册用户中各随机抽取100人,得到各年龄段使用蚂蚁花呗“赊购”的人数百分比如图所示.参考答案:,.(1)由大数据可知,在18到44岁之间使用花呗“赊购”的人数百分比y与年龄x成线性相关关系,利用统计图表中的数据,以各年龄段的区间中点代表该年龄段的年龄,求所调查群体各年龄段“赊购”人数百分比y与年龄x的线性回归方程(回归直线方程的斜率和截距保留两位有效数字);(2)该网站年龄为20岁的注册用户共有2000人,试估算该网站20岁的注册用户中使用花呗“赊购”的人数;(3)已知该网店中年龄段在18-26岁和27-35岁的注册用户人数相同,现从18到35岁之间使用花呗“赊购”的人群中按分层抽样的方法随机抽取8人,再从这8人中简单随机抽取2人调查他们每个月使用花呗消费的额度,求抽取的两人年龄都在18到26岁的概率.16.(2020·辽宁模拟)港珠澳大桥是一座具有划时代意义的大桥.它连通了珠海香港澳门三地,大大缩短了三地的时空距离,盘活了珠江三角洲的经济,被誉为新的世界七大奇迹.截至2019年10月23日8点,珠海公路口岸共验放出入境旅客超过1400万人次,日均客流量已经达到4万人次,验放出入境车辆超过70万辆次,2019年春节期间,客流再次大幅增长,日均客流达8万人次,单日客流量更是创下11.3万人次的最高纪录.2019年从五月一日开始的连续100天客流量频率分布直方图如下(1)①同一组数据用该区间的中点值代替,根据频率分布直方图.估计客流量的平均数.②求客流量的中位数.(2)设这100天中客流量超过5万人次的有天,从这天中任取两天,设为这两天中客流量超过7万人的天数.求的分布列和期望.17.(2020·江门模拟)2019年7月1日到3日,世界新能源汽车大会在海南博鳌召开,大会着眼于全球汽车产业的转型升级和生态环境的持续改善.某汽车公司顺应时代潮流,最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行分析,得到如图的频率分布直方图.(1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表);(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航量程X近似地服从正态分布,经计算第(1)问中样本标准差s的近似值为50.用样本平均数作为的近似值,用样本标准差s作为的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率;(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.已知硬币出现正,反面的概率都是,方格图上标有第0格、第1格、第2格……第50格.遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次,若掷出正面,遥控车向前移动一格(从k到),若掷出反面,遥控车向前移动两格(从k到),直到遥控车移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束.设遥控车移到第n格的概率为,试证明是等比数列,并解释此方案能否成功吸引顾客购买该款新能源汽车.参考数据:若随机变量服从正态分布,则,,.18.(2020·肇庆模拟)某公司新上一条生产线,为保证新的生产线正常工作,需对该生产线进行检测,现从该生产线上随机抽取100件产品,测量产品数据,用统计方法得到样本的平均数,标准差,绘制如图所示的频率分布直方图,以频率值作为概率估值.(1)从该生产线加工的产品中任意抽取一件,记其数据为,依据以下不等式评判(表示对应事件的概率)①②③评判规则为:若至少满足以上两个不等式,则生产状况为优,无需检修;否则需检修生产线,试判断该生产线是否需要检修;(2)将数据不在内的产品视为次品,从该生产线加工的产品中任意抽取2件,次品数记为,求的分布列与数学期望.答案解析部分一、解答题1.【答案】(1)解:由题意,该地区用户对该电讯企业评分的频率分布如下表:因此可估计评分不低于70分的概率为;对该电讯企业评分的中位数设为x,可得,则,解得,所以可估计对该电讯企业评分的中位数为;(2)解:受调查用户评分在的有人,若编号依次为1,2,3,4,从中选2人的事件有、、、、、,共有个基本事件;受调查用户评分在的有人,若编号依次为1,2,3,..9,10,从中选2人,可得共有个基本事件;因此2人评分都在的概率.【解析】【分析】(1)由题意列出频率分布表,求和即可估计该地区用户对该电讯企业评分不低于70分的概率;利用中位数两侧的概率和相等列方程即可估计对该电讯企业评分的中位数;(2)由题意计算出受调查用户评分在、的人数,求出总的基本事件个数及满足要求的基本事件的个数,由古典概型概率公式即可得解.2.【答案】解:(Ⅰ)高三年级学生平均每天的学习时间为:(h);(Ⅱ)300名学生中合格的人数为(人),故补全表格如下:所以所以有99.9%的把握认为该校高三年级学生的性别与学习时长合格有关.【解析】【分析】(Ⅰ)根据频率分布直方图直接计算平均值即可;(Ⅱ)先求出300名学生中合格的人数,再补全表格,然后根据表格数据和公式计算,最后将与进行比较,进而得出结论.3.【答案】(1)解:由题意知,根据条形图,可得A水果在每天的前8小时内的销售量分别为14,15,16,17的频率分别是0.2,0.3,0.4和0.1 ,所以X的分布列为140.2(2)解:当时,设Y为水果批发商的日利润,则Y的可能取值为760,900,可得,所以期望,当时,设Z为水果批发商的日利润,则Z的可能取值为680,820,960,可得,所以期望.因为,综上可知,当时的日利润期望值大于时的日利润期望值,故答案为:.【解析】【分析】(1)由题意知,根据条形图,得到销售量分别为14,15,16,17的频率,进而得到随机变量X的分布列;(2)分别求得当和时,利润的数学期望,比较即可得到结论.4.【答案】(1)解:由题意知,500件产品中共有优等品件,则从样本中随机取一件为优等品的概率为,所以从该企业生产的所有产品中随机抽取4件,没有一件是优等品的概率为,则随机抽取4件,至少有1件优等品的概率为.(2)解:检测出3件或4件为优等品时,检测出的优等品低于3件时,,由题意知,,故X的分布列为所以数学期望.【解析】【分析】(1)先求出从样本中随机取一件为优等品的概率,再求从该企业生产的所有产品中随机抽取4件,没有一件是优等品的概率,从而可求出至少有一件是优等品的概率.(2)由题意求出检测出3件或4件为优等品时及检测出的优等品低于3件时的X的值,结合第一问求出,,从而可得X的分布列,即可计算其数学期望5.【答案】(1)解:甲解密成功所需时间的中位数为47,,解得,,解得,由频率分布直方图知,甲在分钟内解密成功的频率是;(2)解:①由题意及(1)可知第一个出场选手解密成功的概率为,第二个出场选手解密成功的概率为,第三个出场选手解密成功的概率为,所以该团队挑战成功的概率为;②由①可知按从小到大的顺序的概率分别、、,根据题意知的取值为、、,则,,,所以所需派出的人员数目的分布列为:因此,.【解析】【分析】(1)根据中位数左右两边的矩形面积之和均为0.5可求得a、b的值,并根据频率分布直方图求得甲在1分钟内解密成功的频率;(2)①由(1)得出,求出、的值,由此得出该团队挑战成功的概率为;②由题意可得出随机变量X的可能取值有1、2、3,利用独立事件的概率乘法公式计算出随机变量X在不同取值下的概率,据此可得出随机变量X的分布列,结合期望公式可计算出X的数学期望值.6.【答案】(1)解:根据题意,由频率分布直方图可知,500份血液样品指标A值的平均数为:,500份血液样品指标A值的样本方差为:.(2)解:由题意知:指标的值服从正态分布,,,则,所以,.随机抽取20名医生独立检测血液中指标的值,就相当于进行了20次独立重复试验,记“20名医生中出现4名医生血液中指标的值大于正常值20,03”为事件,则,所以从血液中指标的值的角度来看:该院医生的健康率是正常的.【解析】【分析】(1)由频率分布直方图,直接利用平均数和方差公式,求出500份血液样品指标值的平均数和样本方差;(2)由(1)得出指标的值服从正态分布,从而可求出,在根据独立重复试验中的概率求法,求出20名医生中出现4名医生血液中指标的值大于正常值20.03的概率,即可判断该院医生的健康率是否正常7.【答案】(1)解:由题意,这50家食品生产企业考核成绩的平均数为:(分),由频率分布图可知内,所以,解得分.(2)解:根据题意,这50家食品生产企业中考核成绩不低于88分的企业有:(家),其中考核成绩在内的企业有(家),所以X可能取值有0,1,2,3,4则,,,,,所以X的分布列为所以.(3)解:由题意得,所以,所以,所以(家),所以500家食品生产企业质量管理考核成绩高于90.06分的有79家.【解析】【分析】(1)利用频率分布直方图的性质能求出这50家食品生产企业考核成绩的平均数和中位数;(2)由已知得到考核成绩在内的企业有5家,得出随机变量的可能取值,分别求出相应的概率和分布列,求得数学期望;(3)根据题意得,由此估计该市500家食品生产企业质量管理考核成绩高于90.06分的企业个数.8.【答案】(1)解:千元.故估计50位农民的年平均收入为17.40千元.(2)解:由题意知,① ,所以时,满足题意,即最低年收入大约为14.77千元.②由,每个农民的年收入不少于12.14千元的事件的概率为0.9773,记1000个农民的年收入不少于12.14千元的人数为则,其中于是恰好有k个农民的年收入不少于12.14千元的事件概率为,。

高考数学频率分布直方图大题训练题(含答案)

高考数学频率分布直方图大题训练题(含答案)

频率分布直方图大题训练题一、解答题(共18题;共205分)1.(2020·龙岩模拟)某电讯企业为了了解某地区居民对电讯服务质量评价情况,随机调查100 名用户,根据这100名用户对该电讯企业的评分,绘制频率分布直方图,如图所示,其中样本数据分组为,,…… .(1)估计该地区用户对该电讯企业评分不低于70分的概率,并估计对该电讯企业评分的中位数;(2)现从评分在的调查用户中随机抽取2人,求2人评分都在的概率.2.(2020·芜湖模拟)某学校为了了解该校高三年级学生寒假在家自主学习的情况,随机对该校300名高三学生寒假的每天学习时间(单位:h)进行统计,按照,,,,的分组作出频率分布直方图如图所示.参考公式:,其中.参考附表:0.050 0.010 0.001(Ⅰ)根据频率分布直方图计算该校高三年级学生的平均每天学习时间(同一组中的数据用该组区间中点值代表);(Ⅱ)该校规定学习时间超过4h为合格,否则不合格.已知这300名学生中男生有140人,其中合格的有70人,请补全下表,根据表中数据,能否有99.9%的把握认为该校高三年级学生的性别与学习时长合格有关?3.(2020·泰安模拟)某水果批发商经销某种水果(以下简称A水果),购入价为300元/袋,并以360元/袋的价格售出,若前8小时内所购进的A水果没有售完,则批发商将没售完的A水果以220元/袋的价格低价处理完毕(根据经验,2小时内完全能够把A水果低价处理完,且当天不再购进).该水果批发商根据往年的销量,统计了100天A水果在每天的前8小时内的销售量,制成如下频数分布条形图.现以记录的100天的A水果在每天的前8小时内的销售量的频率作为A水果在一天的前8小时内的销售量的概率,记X表示A水果一天前8小时内的销售量,n表示水果批发商一天批发A水果的袋数.(1)求X的分布列;(2)以日利润的期望值为决策依据,在与中选其一,应选用哪个?4.(2020·南昌模拟)某产品自生产并投入市场以来,生产企业为确保产品质量,决定邀请第三方检测机构对产品进行质量检测,并依据质量指标Z来衡量产品的质量.当时,产品为优等品;当时,产品为一等品;当时,产品为二等品.第三方检测机构在该产品中随机抽取500件,绘制了这500件产品的质量指标Z的条形图.用随机抽取的500件产品作为样本,估计该企业生产该产品的质量情况,并用频率估计概率.(1)从该企业生产的所有产品中随机抽取4件,求至少有1件优等品的概率;(2)现某人决定购买80件该产品.已知每件成本1000元,购买前,邀请第三方检测机构对要购买的80件产品进行抽样检测,买家、企业及第三方检测机构就检测方案达成以下协议:从80件产品中随机抽出4件产品进行检测,若检测出3件或4件为优等品,则按每件1600元购买,否则按每件1500元购买,每件产品的检测费用250元由企业承担.记企业的收益为X元,求X的分布列与数学期望.5.(2020·南昌模拟)在“挑战不可能”的电视节目上,甲、乙、丙三个人组成的解密团队参加一项解密挑战活动,规则是由密码专家给出题目,然后由3个人依次出场解密,每人限定时间是1分钟内,否则派下一个人.3个人中只要有一人解密正确,则认为该团队挑战成功,否则挑战失败.根据甲以往解密测试情况,抽取了甲100次的测试记录,绘制了如下的频率分布直方图.(1)若甲解密成功所需时间的中位数为47,求a、b的值,并求出甲在1分钟内解密成功的频率;(2)在“挑战不可能”节目上由于来自各方及自身的心理压力,甲,乙,丙解密成功的概率分别为,其中表示第个出场选手解密成功的概率,并且定义为甲抽样中解密成功的频率代替,各人是否解密成功相互独立.①求该团队挑战成功的概率;②该团队以从小到大的顺序按排甲、乙、丙三个人上场解密,求团队挑战成功所需派出的人员数目X 的分布列与数学期望.6.(2020·江西模拟)冠状病毒是一个大型病毒家族,可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.出现的新型冠状病毒(nCoV)是从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检测血液中的指标A.现从采集的血液样品中抽取500份检测指标A的值,由测量结果得下侧频率分布直方图:(1)求这500份血液样品指标A值的平均数和样本方差(同一组数据用该区间的中点值作代表,记作);(2)由频率分布直方图可以认为,这项指标的值X服从正态分布,其中近似为样本平均数,近似为样本方差.在统计学中,把发生概率小于3‰的事件称为小概率事件(正常条件下小概率事件的发生是不正常的).该医院非常关注本院医生健康状况,随机抽取20名医生,独立的检测血液中指标A的值,结果发现4名医生血液中指标A的值大于正常值20.03,试根据题中条件判断该院医生的健康率是否正常,并说明理由.附:参考数据与公式:,,;若,则① ;② ;③.,,,.7.(2020·江西模拟)年前某市质监部门根据质量管理考核指标对本地的500家食品生产企业进行考核,然后通过随机抽样抽取其中的50家,统计其考核成绩(单位:分),并制成如下频率分布直方图.(1)求这50家食品生产企业考核成绩的平均数(同一组中的数据用该组区间的中点值为代表)及中位数a(精确到0.01)(2)该市质监部门打算举办食品生产企业质量交流会,并从这50家食品生产企业中随机抽取4家考核成绩不低于88分的企业发言,记抽到的企业中考核成绩在的企业数为X,求X的分布列与数学期望(3)若该市食品生产企业的考核成绩X服从正态分布其中近似为50家食品生产企业考核成绩的平均数,近似为样本方差,经计算得,利用该正态分布,估计该市500家食品生产企业质量管理考核成绩高于90.06分的有多少家?(结果保留整数).附参考数据与公式:则,.8.(2020·漯河模拟)十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加,为了制定提升农民收入、实现2020年脱贫的工作计划,该地扶贫办统计了2019年50位农民的年收入并制成如下频率分布直方图:附参考数据:,若随机变量X服从正态分布,则,,.(1)根据频率分布直方图,估计50位农民的平均年收入(单位:千元);(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布,其中近似为年平均收入,近似为样本方差,经计算得=6.92,利用该正态分布,求:①在扶贫攻坚工作中,若使该地区约有占总农民人数的的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入标准大约为多少千元?②为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?9.(2017·黑龙江模拟)某学生社团在对本校学生学习方法开展问卷调查的过程中发现,在回收上来的1000份有效问卷中,同学们背英语单词的时间安排共有两种:白天背和晚上临睡前背.为研究背单词时间安排对记忆效果的影响,该社团以5%的比例对这1000名学生按时间安排粪型进行分层抽样,并完成一项实验,实验方法是,使两组学生记忆40个无意义音节(如xIQ、GEH),均要求在刚能全部记清时就停止识记,并在8小时后进行记忆测验.不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验.两组同学识记停止8小时后的准确回忆(保持)情况如图(区间含左端点而不舍右端点)(1)估计1000名被调查的学生中识记停止后8小时40个音节的保持率大于等于60%的人数;(2)从乙组准确回忆结束在|12,24)范围内的学生中随机选3人,记能准确回忆20个以上(含20)的人数为随机变量x.求X分布列及数学期望;(3)从本次实验的结果来看,上述两种时间安排方法中哪种方法背英语单词记忆效果更好?计算并说明理由.10.(2018·南宁模拟)在某单位的食堂中,食堂每天以10元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂购进了80斤米粉,以(斤)(其中)表示米粉的需求量,(元)表示利润.(1)估计该天食堂利润不少于760元的概率;(2)在直方图的需求量分组中,以区间中间值作为该区间的需求量,以需求量落入该区间的频率作为需求量在该区间的概率,求的分布列和数学期望.11.(2020·辽宁模拟)某城市100户居民的月平均用电量(单位:度),以,,,,,,分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,,,的四组用户中,用分层抽样的方法抽取户居民,则月平均用电量在的用户中应抽取多少户?12.(2020·大连模拟)某校从参加高三模拟考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求分数在内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)用分层抽样的方法在分数段为的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取个,求至多有人在分数段内的概率.13.(2020·莆田模拟)为了解某地网民浏览购物网站的情况,从该地随机抽取100名网民进行调查,其中男性、女性人数分别为45和55.下面是根据调查结果绘制的网民日均浏览购物网站时间的频率分布直方图,将日均浏览购物网站时间不低于40分钟的网民称为“网购达人”,已知“网购达人”中女性有10人.参考公式:,其中.参考数据:0.102.7063.841 5.024 6.635 7.879 10.828(1)根据已知条件完成下面的列联表,并判断是否有90%的把握认为是否为“网购达人”与性别有关;(2)将上述调査所得到的频率视为概率,现在从该地的网民中随机抽取3名,记被抽取的3名网民中的“网购达人”的人数为X,求X的分布列、数学期望和方差.14.(2020·长春模拟)笔、墨、纸、砚是中国独有的文书工具,即“文房四宝”.笔、墨、纸、砚之名,起源于南北朝时期,其中的“纸”指的是宣纸,宣纸“始于唐代,产于泾县”,而唐代泾县隶属于宣州府管辖,故因地而得名“宣纸”,宣纸按质量等级,可分为正牌和副牌(优等品和合格品),某公司年产宣纸10000刀(每刀100张),公司按照某种质量标准值给宣纸确定质量等级,如下表所示:公式在所生产的宣纸中随机抽取了一刀(100张)进行检验,得到频率分布直方图如图所示,已知每张正牌纸的利润是10元,副牌纸的利润是5元,废品亏损10元.(1)估计该公式生产宣纸的年利润(单位:万元);(2)该公司预备购买一种售价为100万元的机器改进生产工艺,这种机器的使用寿命是一年,只能提高宣纸的质量,不影响产量,这种机器生产的宣纸的质量标准值的频率,如下表所示:其中为改进工艺前质量标准值的平均值,改进工艺后,每张正牌和副牌宣纸的利润都下降2元,请判断该公司是否应该购买这种机器,并说明理由.15.(2020·蚌埠模拟)随着网购人数的日益增多,网上的支付方式也呈现一种多样化的状态,越来越多的便捷移动支付方式受到了人们的青睐,更被网友们评为“新四大发明”之一.随着人们消费观念的进步,许多人喜欢用信用卡购物,考虑到这一点,一种“网上的信用卡”横空出世——蚂蚁花呗.这是一款支付宝和蚂蚁金融合作开发的新支付方式,简单便捷,同时也满足了部分网上消费群体在支付宝余额不足时的“赊购”消费需求.为了调查使用蚂蚁花呗“赊购”消费与消费者年龄段的关系,某网站对其注册用户开展抽样调查,在每个年龄段的注册用户中各随机抽取100人,得到各年龄段使用蚂蚁花呗“赊购”的人数百分比如图所示.参考答案:,.(1)由大数据可知,在18到44岁之间使用花呗“赊购”的人数百分比y与年龄x成线性相关关系,利用统计图表中的数据,以各年龄段的区间中点代表该年龄段的年龄,求所调查群体各年龄段“赊购”人数百分比y与年龄x的线性回归方程(回归直线方程的斜率和截距保留两位有效数字);(2)该网站年龄为20岁的注册用户共有2000人,试估算该网站20岁的注册用户中使用花呗“赊购”的人数;(3)已知该网店中年龄段在18-26岁和27-35岁的注册用户人数相同,现从18到35岁之间使用花呗“赊购”的人群中按分层抽样的方法随机抽取8人,再从这8人中简单随机抽取2人调查他们每个月使用花呗消费的额度,求抽取的两人年龄都在18到26岁的概率.16.(2020·辽宁模拟)港珠澳大桥是一座具有划时代意义的大桥.它连通了珠海香港澳门三地,大大缩短了三地的时空距离,盘活了珠江三角洲的经济,被誉为新的世界七大奇迹.截至2019年10月23日8点,珠海公路口岸共验放出入境旅客超过1400万人次,日均客流量已经达到4万人次,验放出入境车辆超过70万辆次,2019年春节期间,客流再次大幅增长,日均客流达8万人次,单日客流量更是创下11.3万人次的最高纪录.2019年从五月一日开始的连续100天客流量频率分布直方图如下(1)①同一组数据用该区间的中点值代替,根据频率分布直方图.估计客流量的平均数.②求客流量的中位数.(2)设这100天中客流量超过5万人次的有天,从这天中任取两天,设为这两天中客流量超过7万人的天数.求的分布列和期望.17.(2020·江门模拟)2019年7月1日到3日,世界新能源汽车大会在海南博鳌召开,大会着眼于全球汽车产业的转型升级和生态环境的持续改善.某汽车公司顺应时代潮流,最新研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程(理论上是指新能源汽车所装载的燃料或电池所能够提供给车行驶的最远里程)的测试.现对测试数据进行分析,得到如图的频率分布直方图.(1)估计这100辆汽车的单次最大续航里程的平均值(同一组中的数据用该组区间的中点值代表);(2)根据大量的汽车测试数据,可以认为这款汽车的单次最大续航量程X近似地服从正态分布,经计算第(1)问中样本标准差s的近似值为50.用样本平均数作为的近似值,用样本标准差s作为的估计值,现任取一辆汽车,求它的单次最大续航里程恰在250千米到400千米之间的概率;(3)某汽车销售公司为推广此款新能源汽车,现面向意向客户推出“玩游戏,送大奖”活动,客户可根据抛掷硬币的结果,操控微型遥控车在方格图上行进,若遥控车最终停在“胜利大本营”,则可获得购车优惠券.已知硬币出现正,反面的概率都是,方格图上标有第0格、第1格、第2格……第50格.遥控车开始在第0格,客户每掷一次硬币,遥控车向前移动一次,若掷出正面,遥控车向前移动一格(从k到),若掷出反面,遥控车向前移动两格(从k到),直到遥控车移到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束.设遥控车移到第n格的概率为,试证明是等比数列,并解释此方案能否成功吸引顾客购买该款新能源汽车.参考数据:若随机变量服从正态分布,则,,.18.(2020·肇庆模拟)某公司新上一条生产线,为保证新的生产线正常工作,需对该生产线进行检测,现从该生产线上随机抽取100件产品,测量产品数据,用统计方法得到样本的平均数,标准差,绘制如图所示的频率分布直方图,以频率值作为概率估值.(1)从该生产线加工的产品中任意抽取一件,记其数据为,依据以下不等式评判(表示对应事件的概率)①②③评判规则为:若至少满足以上两个不等式,则生产状况为优,无需检修;否则需检修生产线,试判断该生产线是否需要检修;(2)将数据不在内的产品视为次品,从该生产线加工的产品中任意抽取2件,次品数记为,求的分布列与数学期望.答案解析部分一、解答题1.【答案】(1)解:由题意,该地区用户对该电讯企业评分的频率分布如下表:因此可估计评分不低于70分的概率为;对该电讯企业评分的中位数设为x,可得,则,解得,所以可估计对该电讯企业评分的中位数为;(2)解:受调查用户评分在的有人,若编号依次为1,2,3,4,从中选2人的事件有、、、、、,共有个基本事件;受调查用户评分在的有人,若编号依次为1,2,3,..9,10,从中选2人,可得共有个基本事件;因此2人评分都在的概率.【解析】【分析】(1)由题意列出频率分布表,求和即可估计该地区用户对该电讯企业评分不低于70分的概率;利用中位数两侧的概率和相等列方程即可估计对该电讯企业评分的中位数;(2)由题意计算出受调查用户评分在、的人数,求出总的基本事件个数及满足要求的基本事件的个数,由古典概型概率公式即可得解.2.【答案】解:(Ⅰ)高三年级学生平均每天的学习时间为:(h);(Ⅱ)300名学生中合格的人数为(人),故补全表格如下:所以所以有99.9%的把握认为该校高三年级学生的性别与学习时长合格有关.【解析】【分析】(Ⅰ)根据频率分布直方图直接计算平均值即可;(Ⅱ)先求出300名学生中合格的人数,再补全表格,然后根据表格数据和公式计算,最后将与进行比较,进而得出结论.3.【答案】(1)解:由题意知,根据条形图,可得A水果在每天的前8小时内的销售量分别为14,15,16,17的频率分别是0.2,0.3,0.4和0.1 ,所以X的分布列为140.2(2)解:当时,设Y为水果批发商的日利润,则Y的可能取值为760,900,可得,所以期望,当时,设Z为水果批发商的日利润,则Z的可能取值为680,820,960,可得,所以期望.因为,综上可知,当时的日利润期望值大于时的日利润期望值,故答案为:.【解析】【分析】(1)由题意知,根据条形图,得到销售量分别为14,15,16,17的频率,进而得到随机变量X的分布列;(2)分别求得当和时,利润的数学期望,比较即可得到结论.4.【答案】(1)解:由题意知,500件产品中共有优等品件,则从样本中随机取一件为优等品的概率为,所以从该企业生产的所有产品中随机抽取4件,没有一件是优等品的概率为,则随机抽取4件,至少有1件优等品的概率为.(2)解:检测出3件或4件为优等品时,检测出的优等品低于3件时,,由题意知,,故X的分布列为所以数学期望.【解析】【分析】(1)先求出从样本中随机取一件为优等品的概率,再求从该企业生产的所有产品中随机抽取4件,没有一件是优等品的概率,从而可求出至少有一件是优等品的概率.(2)由题意求出检测出3件或4件为优等品时及检测出的优等品低于3件时的X的值,结合第一问求出,,从而可得X的分布列,即可计算其数学期望5.【答案】(1)解:甲解密成功所需时间的中位数为47,,解得,,解得,由频率分布直方图知,甲在分钟内解密成功的频率是;(2)解:①由题意及(1)可知第一个出场选手解密成功的概率为,第二个出场选手解密成功的概率为,第三个出场选手解密成功的概率为,所以该团队挑战成功的概率为;②由①可知按从小到大的顺序的概率分别、、,根据题意知的取值为、、,则,,,所以所需派出的人员数目的分布列为:因此,.【解析】【分析】(1)根据中位数左右两边的矩形面积之和均为0.5可求得a、b的值,并根据频率分布直方图求得甲在1分钟内解密成功的频率;(2)①由(1)得出,求出、的值,由此得出该团队挑战成功的概率为;②由题意可得出随机变量X的可能取值有1、2、3,利用独立事件的概率乘法公式计算出随机变量X在不同取值下的概率,据此可得出随机变量X的分布列,结合期望公式可计算出X的数学期望值.6.【答案】(1)解:根据题意,由频率分布直方图可知,500份血液样品指标A值的平均数为:,500份血液样品指标A值的样本方差为:.(2)解:由题意知:指标的值服从正态分布,,,则,所以,.随机抽取20名医生独立检测血液中指标的值,就相当于进行了20次独立重复试验,记“20名医生中出现4名医生血液中指标的值大于正常值20,03”为事件,则,所以从血液中指标的值的角度来看:该院医生的健康率是正常的.【解析】【分析】(1)由频率分布直方图,直接利用平均数和方差公式,求出500份血液样品指标值的平均数和样本方差;(2)由(1)得出指标的值服从正态分布,从而可求出,在根据独立重复试验中的概率求法,求出20名医生中出现4名医生血液中指标的值大于正常值20.03的概率,即可判断该院医生的健康率是否正常7.【答案】(1)解:由题意,这50家食品生产企业考核成绩的平均数为:(分),由频率分布图可知内,所以,解得分.(2)解:根据题意,这50家食品生产企业中考核成绩不低于88分的企业有:(家),其中考核成绩在内的企业有(家),所以X可能取值有0,1,2,3,4则,,,,,所以X的分布列为所以.(3)解:由题意得,所以,所以,所以(家),所以500家食品生产企业质量管理考核成绩高于90.06分的有79家.【解析】【分析】(1)利用频率分布直方图的性质能求出这50家食品生产企业考核成绩的平均数和中位数;(2)由已知得到考核成绩在内的企业有5家,得出随机变量的可能取值,分别求出相应的概率和分布列,求得数学期望;(3)根据题意得,由此估计该市500家食品生产企业质量管理考核成绩高于90.06分的企业个数.8.【答案】(1)解:千元.故估计50位农民的年平均收入为17.40千元.(2)解:由题意知,① ,所以时,满足题意,即最低年收入大约为14.77千元.②由,每个农民的年收入不少于12.14千元的事件的概率为0.9773,记1000个农民的年收入不少于12.14千元的人数为则,其中于是恰好有k个农民的年收入不少于12.14千元的事件概率为,。

2020届高中数学分册同步讲义(必修3) 第2章 专题突破一 例析频率分布直方图中的统计问题

2020届高中数学分册同步讲义(必修3) 第2章  专题突破一  例析频率分布直方图中的统计问题

专题突破一例析频率分布直方图中的统计问题一、求样本中限制条件下的个体所占频率例1观察新生儿的体重,其频率分布直方图如图所示,则新生儿体重在[2 700,3 000)的频率为()A.0.001 B.0.1C.0.2 D.0.3思维切入求对应区间上的小矩形的面积.答案 D解析由直方图的意义可知,在区间[2 700,3 000)内取值的频率为(3 000-2 700)×0.001=0.3. 点评频率为直方图中相应小长方形的面积,即频率=纵坐标×横坐标差的绝对值.跟踪训练1某中学举办电脑知识竞赛,满分为100分,80分以上为优秀(含80分),现将高一两个班参赛学生的成绩进行整理后分成5组,绘制成频率分布直方图如下图所示.已知图中从左到右的第一、三、四、五小组的频率分别为0.30,0.15,0.10,0.05,而第二小组的频数是40,则参赛的人数是________,成绩优秀的频率是________. 答案 100 0.15解析 设参赛的人数为n ,第二小组的频率为1-(0.30+0.15+0.10+0.05)=0.4, 依题意40n=0.4,∴n =100,优秀的频率是0.10+0.05=0.15. 二、求样本中限制条件下的个体的频数例2 某市高三数学抽样考试中,对90分以上的成绩进行统计,其频率分布如图所示.若130~140分数段的人数为90,则90~100分数段的人数为________.思维切入 对应区间上的频数即为对应区间的频率×样本总体. 答案 810解析 由于90分以上的考试人数是样本总体,则图中5个分数段的频率之和等于1,设130~140分数段的频率为p ,则0.45+0.25+0.15+0.10+p =1,即0.95+p =1,则p =0.05,设该样本总体共有n 个学生的分数,且设90~100分数段的人数为x ,则由频率概念得⎩⎪⎨⎪⎧ 0.05×n =90,0.45×n =x ,解得⎩⎪⎨⎪⎧n =1 800,x =810,故90~100分数段的人数为810. 点评 本题是频率分布条形图.由于各分数段的人数与频率成正比,则可由x 90=0.450.05,求出x ;题设条形图的纵坐标是“频率”这是有别于常规的,在审题时不能混淆.跟踪训练2 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为________.答案 12解析 志愿者的总人数为20(0.24+0.16)×1=50,所以第三组人数为50×0.36×1=18, 所以有疗效的人数为18-6=12. 三、求频率分布直方图中的参数问题例3 为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力,得到频率分布直方图,如图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a ,b 的值分别为( )A .0.27,78B .0.27,83C .2.7,78D .2.7,83思维切入 根据频率分布直方图的性质列方程求解. 答案 A解析 注意到纵轴表示频率组距,由图象可知,前4组的公比为3,最大频率a =0.1×33×0.1=0.27, 设后6组公差为d ,则0.01+0.03+0.09+0.27×6+5×62·d =1,解得d =-0.05,即后6组频率的公差为-0.05, 所以,视力在4.6到5.0之间的学生数为 (0.27+0.22+0.17+0.12)×100=78, 故选A.点评 解答本题关键是要利用频率分布直方图中残缺不全的数据,分析它们之间存在的内在关系.跟踪训练3 某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图所示),其中上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100]. (1)求频率分布直方图中x 的值;(2)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿.解(1)由频率分布直方图可得20×x+0.025×20+0.006 5×20+0.003×2×20=1,所以x=0.012 5.(2)由频率分布直方图可知,新生上学所需时间不少于1小时的频率为0.003×2×20=0.12.因为600×0.12=72,所以估计600名新生中有72名学生可以申请住宿.四、频率分布直方图中的数字特征例4从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图).(1)由图中数据求a的值;(2)若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为多少?(3)估计这所小学的小学生身高的众数、中位数(保留两位小数)及平均数.思维切入众数即为出现次数最多的数,所以它的频率最大,在最高的小矩形中.中位数即为从小到大中间的数(或中间两数的平均数).解(1)因为直方图中的各个矩形的面积之和为1,所以10×(0.005+0.035+a+0.020+0.010)=1,解得a=0.030.(2)由直方图知,身高在[120,130),[130,140),[140,150]三组的学生总数为100×10×(0.030+0.020+0.010)=60,其中身高在[140,150]的学生人数为10,所以从身高在[140,150]内选取的学生人数为1860×10=3.(3)根据频率分布直方图知,身高在[110,120)的小矩形最高,所以这所小学的小学生身高的众数为110+1202=115(cm).又0.005×10+0.035×10=0.4<0.5,0.4+0.030×10=0.7>0.5,所以中位数在[120,130)内,可设为x,则(x-120)×0.030+0.4=0.5,解得x≈123.33,所以中位数为123.33 cm.根据频率分布直方图,计算平均数为105×0.05+115×0.35+125×0.3+135×0.2+145×0.1=124.5(cm).点评用频率分布直方图求得的众数、中位数不一定是样本中的具体数.跟踪训练4某工厂对一批新产品的长度(单位:mm)进行检测,如图是检测结果的频率分布直方图,据此估计这批产品的中位数为()A.20 B.25 C.22.5 D.22.75答案 C解析产品的中位数出现在频率是0.5的地方.自左至右各小矩形的面积依次为0.1,0.2,0.4,0.15,0.15,设中位数是x,则由0.1+0.2+0.08×(x-20)=0.5,得x=22.5,故选C.1.统计某校1 000名学生的数学水平测试成绩,得到样本的频率分布直方图如图所示.若满分为100分,规定不低于60分为及格,则及格率是()A.20% B.25% C.60% D.80%答案 D2.在中秋的促销活动中,某商场对9月14日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知12时到14时的销售额为7万元,则10时到11时的销售额为()A.1万元B.2万元C.3万元D.4万元答案 C3.如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.答案94.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2 500,3 000)(元)月收入段应抽出________人.答案25解析由频率分布直方图可得[2 500,3 000)(元)月收入段共有10 000×0.000 5×500=2500(人),按分层抽样应抽出2 500×10010 000=25(人).5.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.估计居民月均用水量的中位数.解由(0.08+0.16+a+0.42+0.50+a+0.12+0.08+0.04)×0.5=1,解得a=0.30.设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5.而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5.所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.6.某市居民用水拟实行阶梯水价.每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如图所示的频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/方立米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替.当w=3时,估计该市居民该月的人均水费.解(1)由用水量的频率分布直方图知,该市居民该月用水量在区间[0.5,1),[1,1.5),[1.5,2),[2,2.5),[2.5,3)内的频率依次为0.1,0.15,0.2,0.25,0.15.所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w至少定为3.(2)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表:根据题意,该市居民该月的人均水费估计为4×0.1+6×0.15+8×0.2+10×0.25+12×0.15+17×0.05+22×0.05+27×0.05=10.5(元).一、选择题1.从向阳小区抽取100户居民进行月用电量调查,为制定阶梯电价提供数据,发现其月用电量都在50到350度之间,制作频率分布直方图(如图所示)的工作人员粗心大意,位置t处未标明数据,则t等于()A.0.004 1 B.0.004 2C.0.004 3 D.0.004 4答案 D解析由题意得50×(0.006+t+0.003 6+0.002 4×2+0.001 2)=1,故t=0.004 4.故选D. 2.有一容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12]内的频数为()A.18 B.36 C.54 D.72答案 B解析易得样本数据落在区间[10,12]内的频率为0.18,则样本数据落在区间[10,12]内的频数为36.3.测量某地新生婴儿的体重,得到其频率分布直方图如图所示,则新生婴儿的体重(单位:g)在[2 700,3 000)的频率为()A.0.001 B.0.1 C.0.2 D.0.3答案 D解析由频率分布直方图可知,所求频率为0.001×300=0.3.4.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据频率分布直方图可知,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.140答案 D解析设所求人数为N,则N=2.5×(0.16+0.08+0.04)×200=140,故选D.5.如图是某班50名学生身高的频率分布直方图,那么身高(单位:cm)在区间[150,170)内的学生人数为()A.16 B.20 C.22 D.26答案 B解析根据频率分布直方图可知身高在区间[150,170)内的频率为(0.01+0.03)×10=0.4,所以身高在区间[150,170)内的学生人数为50×0.4=20,故选B.6.某学校对高二年级一次考试进行抽样分析,如图是根据抽样分析后的考试成绩绘制的频率分布直方图,其中抽样成绩的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].已知样本中成绩小于100分的人数是36.则样本中成绩大于或等于98分且小于104分的人数是()A.90 B.75 C.60 D.45答案 A解析因为样本中成绩小于100分的人数是36,其对应频率之和为0.050×2+0.100×2=0.3,所以样本总数为36÷0.3=120,所以样本中成绩大于或等于98分且小于104分的人数为120×2×(0.100+0.150+0.125)=90,故选A.7.如图是某校高一一次数学考试成绩的样本频率分布直方图(样本容量n=200),若成绩不低于60分为及格,则样本中的及格人数是()A.6 B.36 C.60 D.120答案 D解析由题中频率分布直方图得,成绩不低于60分的人数为(0.012+0.018)×20×200=120.8.为了解学生在课外活动方面的支出情况,抽取了n 个同学进行调查,结果显示这些学生的支出金额(单位:元)都在[10,50]内,其中支出金额在[30,50]内的学生有117人,频率分布直方图如图所示,则n 等于( )A .180B .160C .150D .200 答案 A解析 [30,50]对应的概率为1-()0.01+0.025×10=0.65,所以n =1170.65=180. 二、填空题9.为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间[40,80]中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间[40,60)内的汽车有________辆.答案 80解析 由频率分布直方图得:时速在区间[40,60)内的汽车的频率为(0.01+0.03)×10=0.4.∴时速在区间[40,60)内的汽车有0.4×200=80(辆).10.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用的时间的条形图(如图所示)根据条形图可得这50名学生这一天平均每人的课外阅读时间为________.答案0.9解析这50名学生这一天平均每人的课外阅读时间为(0×5+0.5×20+1.0×10+1.5×10+2.0×5)÷50=0.9(小时).故选B.三、解答题11.为了了解小学生的体能情况,抽取某校一个年级的部分学生进行一分钟跳绳次数的测试,将数据整理后,画出频率分布直方图如图所示.已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,且第一小组的频数为5.(1)求第四小组的频率;(2)求参加这次测试的学生的人数;(3)若一分钟跳绳次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率.解(1)第四小组的频率为1-0.1-0.3-0.4=0.2.(2)设参加这次测试的学生有x人,则0.1x=5,解得x=50,故参加这次测试的学生有50人.(3)由题意及频率分布直方图知,样本数据的达标率约为0.3+0.4+0.2=0.9,∴可估计该年级学生跳绳测试的达标率为90%.12.为组织好“市九运会”,组委会征集了800名志愿者,现对他们的年龄调查统计后,得到如图所示的频率分布直方图,但是年龄在[25,30)内的数据不慎丢失,依据此图可得:(1)年龄分组[25,30)对应小长方形的高度为________.(2)这800名志愿者中年龄在[25,35)内的人数为________.答案(1)0.04(2)440解析(1)因为各个小长方形的面积之和为1,所以年龄分组[25,30)对应小长方形的高度为1-(5×0.01+5×0.07+5×0.06+5×0.02)5=0.04.(2)年龄在[25,35)内的频率为0.04×5+0.07×5=0.55,人数为0.55×800=440.13.某校100名学生的期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)若这100名学生的语文成绩在某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.解 (1)由频率分布直方图知(2a +0.02+0.03+0.04)×10=1,解得a =0.005.(2)由频率分布直方图知语文成绩在[50,60),[60,70),[70,80),[80,90)分数段的人数依次为0.005×10×100=5,0.04×10×100=40,0.03×10×100=30,0.02×10×100=20. 由题中给出的比例关系知数学成绩在上述分数段的人数依次为 5,40×12=20,30×43=40,20×54=25.故数学成绩在[50,90)之外的人数为100-(5+20+40+25)=10.。

2020高考数学二轮复习解题思维提升专题及答案解析 (统计知识及统计案例小题部分)

2020高考数学二轮复习解题思维提升专题及答案解析 (统计知识及统计案例小题部分)
【答案】B
9、某工厂采用系统抽样方法,从一车间全体 名职工中抽取 名职工进行一项安全生产调查,现将 名职工从 到 进行编号,已知从 到 这 个编号中抽到的编号是 ,则在 到 中随机抽到的编号应是( )
A. B. C.6 D.7
【答案】C
【解析】
某工厂采用系统抽样方法,从一车间全体 名职工中抽取 名职工进行一项安全生产调查,∴抽样间隔为: ,现将 名职工从 到 进行编号,
5、熟记平均数,方差的计算公式及性质,理解平均数,中位数,众数,方差的实际意义;
6、能根据数据和公式求线性回归方程,把握线性回归方程的核心即一定经过样本中心点 ;
7、理解相关系数,残差等概念及相应的含义,并能正确的使用公式求解;
8、会根据数据列 列联表,掌握利用 公式进行独立性检验的方法;
【温馨小提示】
①有 的把握认为“这套眼保健操能起到预防近视的作用”;
②若某人未做该套眼保健操,那么他有 的可能近视;
③这套眼保健操预防近视的有效率为 ;
④这套眼保健操预防近视的有效率为 .
其中所 有正确结论的序号是_________.
【答案】①
【解析】根据查对临界表知 ,故有 的把握认为“这套眼保健操能起到预防近视的作用”,即①正确; 仅指“这套眼保健操能起到预防近视的作用”的可信程度,所以②③④错误.
【答案】
【解析】
由表中数据得, , ,样本中心点 一定在回归直线上, ,解得 .当 时, ,点 在回归直线下方;当 时, ,点 在回归直线上方;当 时, ,点 在回归直线下方.
A.甲、乙型号平板电脑的综合得分相同B.乙型号平板电脑的拍照功能比较好
C.在性能方面,乙型号平板电脑做得比较好D.消费者比较喜欢乙型号平板电脑的屏幕

《直方图》典型例题

《直方图》典型例题

《直方图》典型例题例1. 某区七年级有3000名学生参加“安全伴我行知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分(得分取正整数,满分为100分)进行统计.分组 频数 频率 49.5~59.5 10 59.5~69.5 16 0.08 69.5~79.5 0.20 79.5~89.5 62 89.5~100.5720.36请你根据不完整的频率分布表,解析下列问题: (1)补全频数分布直方图;(2)若将得分转化为等级,规定得分低于59.5分评为“D ”,59.5~69.5分评为“C ”,69.5~89.5分评为“B ”,89.5~100.5分评为“A ”.这次全区七年级参加竞赛的学生约有多少学生参赛成绩被评为“D ”?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩被评为“A ”、“B ”、“C ”、“D ”哪一个等级的可能性大?请说明理由. 思路探索:(1)直方图缺第一组和第三组,通过计算可知,第一组的频率为0.05,第三组的频数为20,我们可根据第一、三两组的频数10、20画出两组的直方图.(2)这名学生的成绩被评为“A ”、“B ”、“C ”、“D ”哪一个等级的可能性大?可转化为“被评为“A ”、“B ”、“C ”、“D ”哪一个等级的频率较大”频率大的可能性就大. 解析:(1)图略 (2)由表知:评“D ”的频率是10120020,由此估计全区七年级参加竞赛的学生约120×3000=150(人)被评为“D ”∵P (A )=0.36,P (B )=0.51,P (C )=0.08,P (D )=0.05,∴P (A )>P (B )>P (C )>P (D ),∴随机抽查一名参赛学生的成绩等级“B ”的可能性大.规律总结:运用直方图解题,要综合直方图的特点和频率、频数的知识综合起来解题. 例 2. 某市对当年初中升高中数学考试成绩进行抽样分析,试题满分100分,将所得成绩(均为整数)整理后,绘制了如图所示的统计图,根据图中所提供的信息,回答下列问题: (1)共抽取了多少名学生的数学成绩进行分析?(2)如果80分以上(包括80分)为优生,估计该市的优生率为多少?(3)该年全市共有22000人参加初中升高中数学考试,请你估计及格(60分及60分以上)人数大约为多少?思路探索:(1)计算学生总数的时候,我们可以把各组频数进行相加即可得出:共抽取了300名学生的数学成绩进行分析;(2)在这300名学生中,共有105名学生80分以上(包括80分),20 10 30 40 50 60 70 80 166272频数成绩()49.5 59.5 69.5 79.5 89.5 100.5在样本里面的优生率为35%,根据样本估计总体可知,该市的优生率为大约是35%;(3)在这300个学生中,60分及60分以上人数为210人,频率为0.7, 22000×0.7=15400(人),所以全市60分及60分以上人数估计为15400人.规律总结:利用样本估计总体的时候,只要样本的选取具有代表性和广泛性,根据样本的频率就可以估计总体的频率.。

2020年高考数学人教B版典例透析能力提升必修3课件:2.2.1 用样本的频率分布估计总体的分布

2020年高考数学人教B版典例透析能力提升必修3课件:2.2.1 用样本的频率分布估计总体的分布

(2)若
极差 组距
不为整数,则
极差 组距
+ 1=组数.
注意:[x]表示不大于x的最大整数.
-5-
目标导航
知识梳理
重难聚焦
典例透析
随堂演练
【做一做2】 抽查100袋洗衣粉,测得它们的质量如下(单位:g):
494 498 493 505 496 492 485 483 508 511 495 494 483 485 511

40-(5+6+7+10+8)=4,所以第六组的频率是
4 40
=
0.1.
答案:4 0.1
-14-
目标导航
知识梳理
重难聚焦
典例透析
随堂演练
题型一
题型二
题型三
题型四
频率分布直方图的制作 【例2】 某学校为了了解高一男生的身高情况,从高一年级的16 个班中共抽取了50名男生,对其身高进行了测量,结果如下(单 位:cm): 175,168,170,176,167,181,162,173,171,177, 171,171,174,173,174,175,177,166,163,160, 166,166,163,169,174,165,175,165,170,158, 174,172,166,172,167,167,173,161,172,175, 181,179,177,166,173,170,172,165,157,172. 试画出相应的频率分布直方图. 分析:按照画频率分布直方图的步骤,计算极差,确定组数,列出频 率分布表,最后画出频率分布直方图.
-4-
目标导航
知识梳理
重难聚焦
典例透析
随堂演练
2.极差是一组数据的最大值与最小值的差,它反映了一组数据变 化的幅度,极差又叫全距.因此计算极差时,需要找出这组数据的 最大值和最小值.

高中数学复习典型题专题训练118---频率直方图

高中数学复习典型题专题训练118---频率直方图

高中数学复习典型题专题训练118频率直方图列出样本数据的频率分布表和频率分布直方图的步骤:①计算极差:找出数据的最大值与最小值,计算它们的差;②决定组距与组数:取组距,用极差组距决定组数;③决定分点:决定起点,进行分组;④列频率分布直方图:对落入各小组的数据累计,算出各小数的频数,除以样本容量,得到各小组的频率.⑤绘制频率分布直方图:以数据的值为横坐标,以频率组距的值为纵坐标绘制直方图,知小长方形的面积=组距×频率组距=频率.频率分布折线图:将频率分布直方图各个长方形上边的中点用线段连接起来,就得到频率分布折线图,一般把折线图画成与横轴相连,所以横轴左右两端点没有实际意义.总体密度曲线:样本容量不断增大时,所分组数不断增加,分组的组距不断缩小,频率分布直方图可以用一条光滑曲线()y f x 来描绘,这条光滑曲线就叫做总体密度曲线.总体密度曲线精确地反映了一个总体在各个区域内取值的规律.题型一 频率分布直方图【例1】 (2010西城二模)某区高二年级的一次数学统考中,随机抽取200名同学的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成5组:第一组,成绩大于等于50分且小于60分;第二组,成绩大于等于60分且小于70分;……第五组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.知识内容典例分析板块二.频率直方图则这200名同学中成绩大于等于80分且小于90分的学生有______名.【例2】(2010东城二模)已知一个样本容量为100的样本数据的频率分布直方图如图所示,样本数据落在[6,10)内的样本频数为,样本数据落在[2,10)内的频率为.【例3】(2010北京)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分120,130,布直方图(如图).由图中数据可知a=.若要从身高在[)[)140,150三组内的学生中,用分层抽样的方法选取18人参加一项活130,140,[]140,150内的学生中选取的人数应为.动,则从身高在[]【例4】(2010江苏高考)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[]540,中,其频率分布直方图如图所示,则其抽样的100根中,有____根在棉花纤维的长度小于20mm .(mm)0.010.020.030.040.050.06频率组距【例5】 (2009湖北15)下图是样本容量为200的频率分布直方图.O频率/组距根据样本的频率分布直方图估计,样本数据落在[)610,内的频数为 ,数据落在[)210,内的概率约为 .【例6】 (2009福建3)组别 (]010,(]1020, (]2030, (]3040, (]4050, (]5060, (]6070,频数12 13 2415 16 137]A .0.13B .0.39C .0.52D .0.64【例7】 某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示,根据条形图可得这50名学生这一天平均每人的课外阅读时间为( )时间(h)A .0.6hB .0.9hC .1.0hD .1.5h【例8】 为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[)4555,,[)5565,,[)6575,,[)7585,,[)8595,由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在[)5575,的人数是 .产品数量0.0200.0150.0100.005【例9】 (2009山东8)某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96106],,样本数据分组为[)9698,,[)98100,,[)100102,,[)102104,,[104106],.已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A .90B .75C .60D .45【例10】 某路段检查站监控录象显示,在某时段内,有1000辆汽车通过该站,现在随机抽取其中的200辆汽车进行车速分析,分析的结果表示为右图的频率分布直方图,则估计在这一时段内通过该站的汽车中速度不小于90km/h 的车辆数为( )A .200B .600C .500D .300【例11】 (2006年全国II )一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本频率分布直方图,为了分析居民的收入与年龄、学历、职业等方面的联系,要从这10000人中用分层抽样的方法抽出100人做进一步调查,则在[25003000],(元)月收入段应抽出_____人.0.00050.00040.00030.00020.0001频率组距月收入(元)【例12】 如图为某样本数据的频率分布直方图,则下列说法不正确的是( )0.1频率组距A .[610),的频率为0.32B .若样本容量为100,则[1014),的频数为40C .若样本容量为100,则(10]-∞,的频数为40D .由频率分布布直方图可得出结论:估计总体大约有10%分布在[1014),【例13】 (2006北京模拟)下面是某学校学生日睡眠时间的抽样频率分布表:【例14】 (2010崇文一模)为了调查某厂2000名工人生产某种产品的能力,随机抽查了m 位工人某天生产该产品的数量,产品数量的分组区间为[)10,15,[)15,20,[)20,25,[)25,30,[30,35],频率分布直方图如图所示.已知生产的产品数量在[)20,25之间的工人有6位.⑴求m ;10 15 20 25 30 35产品数量⑵工厂规定从各组中任选1人进行再培训,则选取5人不在同一组的概率是多少?【例15】 考查某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm )⑴ 作出频率分布表; ⑵ 画出频率分布直方图.【例16】 (2010陕西卷高考)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:/cm/cm⑴估计该小男生的人数;⑵估计该校学生身高在170~185cm 之间的概率; ⑶从样本中身高在165~180cm 之间的女生..中任选2人,求至少有1人身高在170~180cm 之间的概率.【例17】 从某校高一年级的1002名新生中用系统抽样的方法抽取一个容量为100的身高样本,如下(单位:cm ).作出该样本的频率分布表,画出频率分布直方图及折线图,并根据作出的频率分布直方图估计身高不小于170的同学的人数.【例18】 为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.10.30.4,,.第一小组的频数是5.⑴求第四小组的频率和参加这次测试的学生人数;⑵在这次测试中,学生跳绳次数的中位数落在第几小组内? ⑶参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩优秀率是多少?【例19】 为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计. 请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题: ⑴ 填充频率分布表的空格(将答案直接填在表格内); ⑵ 补全频数条形图;⑶ 若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?【例20】 (2010丰台一模)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.85987654322198653328698765叶茎6050分数频率组距0.040.0280.0160.008⑴求全班人数及分数在[)80,90之间的频数;⑵估计该班的平均分数,并计算频率分布直方图中[)80,90间的矩形的高;⑶若要从分数在[]80,100之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[]90,100之间的概率.【例21】 某地区为了了解70~80岁老人的日平均睡眠时间(单位:h ).随机选择了50位老人的进行调查.下表是这50位老人日睡眠时间的频率分布表.序号 (i ) 分组 (睡眠时间) 组中值 (i G ) 频数 (人数) 频率(i F ) 1 [4,5) 4.5 6 0.12 2 [5,6) 5.5 10 0.20 3 [6,7) 6.520 0.404 [7,8) 7.5 10 0.20 5[8,9]8.540.08在上述统计数据中,一部分计算见算法流程图(其中←可用=代替),则输出的S的值是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

冲刺2020高考 提分必备
频率分布直方图典型例题析
频率分布直方图是表达和分析数据的重要工具,还可以直观、准确地理解相应的有用的信息,所以成为新高考的重点,我们必须总结其重要题型及有关计算。

一、基本概念类
例1、关于频率 分布直方图的下列说法中,正确的是( )
(A )、直方图的高表示某数的频率;
(B )、直方图的高表示该组上的个体在样本中出现的频率;
(C )、直方图的高表示该组上的个体与组距的比值;
(D )、直方图的高表示该组上的个体在样本中
出现的频率与组距的比值;
解析:在频率分布直方图中,每一个小矩形
都是等宽的,即等于组距,其面积表示数据的取
值落在相应区间上的频率,因此每一个小矩形的
高表示该组上的个体在样本中出现的频率与组
距的比值,所以选(D )。

二、识图计算类
例2、为了了解某地区高三学生的身体发育
情况,抽查了该地区100名年龄为17.5岁-1
8岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在
[56.5,64.5)的学生人数是 ( )
(A)20 (B)30
(C)40 (D )50
解:本题主要考查频率分布直方图和总体分布的估计等知识,同时考查图形的识别能力。

由频率直方图可知组距为2,故学生中体重在[56.5,64.5)的频率为:
(0.03+0.05+0.05+0.07)×2=0.4,所以100名学生中体重在[56.5,64.5)的学生人数有: 0. 4×100=40人。

故选择C
点评:在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,高是,所以有:×组距=频率;即可把所求范围内的频率求出,进而求该范围的人数。

例3:某校高一某班共有64名学生,下图是该班某次数学考
试成绩的频率分布直方图,根据该图可知,成绩在110120间的
同学大约有( )
A 、 10
B 、11
C 、13
D 、16
解析:通过直方图可知:成绩在110120的频率是:
2.02
3.015.01.005.01=----,所以成绩在110120之间的同学大约有:64×0.2=12.813≈人。

故选择C
点评:解决本题需要注意两点:所有小矩形的面积之和等于1;在分布图中若有高度相同的两个矩形,不能出现计算失误。

三、识图综合计算类
例4、一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图)。

为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人
作进一步调查,则在[2500,3000)(元)月收入段应
抽出____________人。

解:由已知可得每个个体被抽入样的概率均为100110000100 ,由直方图知识可得在)3000,2500[内的频率为该矩形的面积,即得0.0005×(3000-2500)=0.25,即得该范围内的人数为10 000×0.25=2 500人,则分层抽样时,该范围内应当抽取的人数为2 500×100
1=25人. 点评:本题考查了频率分布直方图以及抽样方法,这两点知识作为高考考查重点,需要掌握分层抽样的有关的计算及频率分布直方图的有关计算,本题设计小、活、新颖但是需要思考才能正确求解。

0.0005300035000.0003
0.0004
200015000.0002
0.0001400025001000月收入(元)
频率/组距。

相关文档
最新文档